JP6087854B2 - 組換え酵母を用いたエタノールの製造方法 - Google Patents
組換え酵母を用いたエタノールの製造方法 Download PDFInfo
- Publication number
- JP6087854B2 JP6087854B2 JP2014036652A JP2014036652A JP6087854B2 JP 6087854 B2 JP6087854 B2 JP 6087854B2 JP 2014036652 A JP2014036652 A JP 2014036652A JP 2014036652 A JP2014036652 A JP 2014036652A JP 6087854 B2 JP6087854 B2 JP 6087854B2
- Authority
- JP
- Japan
- Prior art keywords
- gene
- yeast
- amino acid
- ethanol
- xylose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
- C12P7/08—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
- C12P7/10—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0008—Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Mycology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Botany (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
(a)配列番号4に示すアミノ酸配列を有するタンパク質
(b)配列番号4に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列を有し、キシロースをキシルロースにする酵素活性を有するタンパク質
(a)配列番号2又は20に示すアミノ酸配列を有する蛋白質
(b)配列番号2又は20に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列を有し、アセトアルデヒド脱水素酵素活性を有する蛋白質
(a)配列番号22に示すアミノ酸配列を有する蛋白質
(b)配列番号22に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列を有し、アセトアルデヒド脱水素酵素活性を有する蛋白質
(a)配列番号24に示すアミノ酸配列を有する蛋白質
(b)配列番号24に示すアミノ酸配列に対して70%以上の同一性を有するアミノ酸配列を有し、アセトアルデヒド脱水素酵素活性を有する蛋白質
本発明に係るエタノールの製造方法に使用される組換え酵母は、キシロースイソメラーゼ遺伝子とアセトアルデヒド脱水素酵素遺伝子とを導入した酵母であって、キシロース代謝能を有する酵母である。ここで、キシロース代謝能を有する酵母とは、本来的にはキシロース代謝能を有しない酵母に対してキシロースイソメラーゼ遺伝子が導入されることによりキシロース代謝能が付与された酵母、本来的にはキシロース代謝能を有しない酵母に対してキシロースイソメラーゼ遺伝子及びその他のキシロース代謝関連遺伝子が導入されることによりキシロース代謝能が付与された酵母、本来的にキシロース代謝能を有する酵母のいずれも含む意味である。
上述したキシロースイソメラーゼ遺伝子及びアセトアルデヒド脱水素酵素遺伝子を宿主となる酵母ゲノムに導入することにより、本発明に使用できる組換え酵母を作製することができる。ここで、キシロースイソメラーゼ遺伝子及びアセトアルデヒド脱水素酵素遺伝子は、キシロース代謝能を有しない酵母に導入しても良いし、キシロース代謝能を本来的に有する酵母に導入しても良いし、キシロース代謝能を有しない酵母にキシロース代謝関連遺伝子とともに導入されても良い。また、キシロースイソメラーゼ遺伝子、アセトアルデヒド脱水素酵素遺伝子及び上述した遺伝子を酵母に導入する際、全ての遺伝子を同時に導入しても良いし、異なる発現ベクターを利用して逐次導入しても良い。
以上で説明した組換え酵母を使用してエタノールを製造する際には、少なくともキシロースを含有する培地にてエタノール発酵培養を行う。すなわち、エタノール発酵を行う培地とは、炭素源として少なくともキシロースを含有することとなる。なお、培地には、予めグルコース等の他の炭素源が含まれていても良い。
本実施例では、キシロースイソメラーゼ遺伝子及び大腸菌のアセトアルデヒド脱水素酵素遺伝子(mhpF遺伝子)を導入した組換え酵母を作製し、この組換え酵母の酢酸代謝能を評価した。
(1)XKS1遺伝子導入用ベクター
S. cerevisiae由来のキシルロキナーゼ(XK)遺伝子の酵母導入用ベクターとして、図1に示すpUC-HIS3U-P_HOR7-XKS1-T_TDH3-P_TDH2-hph-T_CYC1-HIS3Dを作製した。このベクターには、5’側にHOR7プロモーター及び3’側にTDH3ターミネーターが付加されたS. cerevisiae NBRC304 株由来のXK遺伝子であるXKS1遺伝子(genebank:X61377)、酵母ゲノム上への相同組換え領域となるヒスチジン合成酵素(HIS3)遺伝子の上流約500bpの領域(HIS3U)及びその遺伝子内の約500bpの領域(HIS3D)、並びに5’側にTDH2プロモーター及び3’側にCYC1ターミネーターが付加されたハイグロマイシンフォスフォトランスフェラーゼ(hph)遺伝子(マーカー遺伝子)が含まれている。なお、相同組換え領域の外側には制限酵素Sse8387Iのサイトを導入した。また、S. cerevisiae NBRC304 株由来XKS1遺伝子のコーディング領域の塩基配列及び当該遺伝子がコードするキシルロキナーゼのアミノ酸配列をそれぞれ配列番号9及び10に示した。
ヤマトシロアリ(Reticulitermes speratus)腸内原生生物由来のキシロースイソメラーゼ(RsXI-C1、特開2011-147445参照)遺伝子の酵母導入用ベクターとして、図2に示すpUC-R67-HOR7p-RsXI-T_TDH3-TRP1d-R45を作製した。このベクターには、5’側にHOR7プロモーター及び3’側にTDH3ターミネーターが付加されたRsXI-C1遺伝子、酵母ゲノム上への相同組換え領域となるrRNA遺伝子(rDNA)との相同配列であるR45及びR67、並びにプロモーター部分を欠失して発現量を低下させたTRP1dマーカー遺伝子が含まれている。なお、相同組換え領域の外側には制限酵素Sse8387Iのサイトを導入した。R45及びR67により、RsXI-C1を含む遺伝子が第12番染色体上のrDNA座に多コピー導入される。さらにTRP1dマーカーは多コピーで染色体上に導入された場合にはじめてマーカーとして機能する。よって、本ベクターを利用することによって、多コピー導入が可能となる。なお、本実施例においてRsXI-C1遺伝子は、全領域を酵母のコドン使用頻度に合わせて使用するコドンを変換した塩基配列を設計し、その塩基配列に基づいて全合成したものを使用した。本実施例で設計したRsXI-C1遺伝子の塩基配列及び当該遺伝子がコードするキシロースイソメラーゼのアミノ酸配列をそれぞれ配列番号3及び4に示した。
S. cerevisiae由来のトランスアルドラーゼ1(TAL1)遺伝子及びトランスケトラーゼ1(TKL1)遺伝子の酵母導入用ベクターとして、図3に示すpUC-LEU2U-P_HOR7-TAL1-T_TDH3-P_HOR7-TKL1-T_TDH3-HIS3-LEU2Dを作製した。このベクターには、5’側にHOR7プロモーター及び3’側にTDH3ターミネーターが付加されたS. cerevisiae S288 株由来のTAL1遺伝子であるTAL1遺伝子(genebank:U19102);5’側にHOR7プロモーター及び3’側にTDH3ターミネーターが付加されたS. cerevisiae S288 株由来のTKL1遺伝子であるTKL1遺伝子(genebank:X73224);酵母ゲノム上への相同組換え領域となるロイシン合成酵素(LEU2)遺伝子3’側末端より上流約500bpの領域(LEU2U)及びその遺伝子5’側末端上流の約450bpの領域(LEU2D);並びにヒスチジン合成酵素(HIS3)遺伝子(マーカー遺伝子)が含まれている。なお、相同組換え領域の外側には制限酵素Sse8387Iのサイトを導入した。また、S. cerevisiae S288 株由来TAL1遺伝子のコーディング領域の塩基配列及び当該遺伝子がコードするトランスアルドラーゼ1のアミノ酸配列をそれぞれ配列番号11及び12に示した。さらにS. cerevisiae S288 株由来TKL1遺伝子のコーディング領域の塩基配列及び当該遺伝子がコードするトランスケトラーゼ1のアミノ酸配列をそれぞれ配列番号13及び14に示した。
S. cerevisiae由来のリブロースリン酸エピメラーゼ1(RPE1)遺伝子及びリボースリン酸ケトイソメラーゼ(RKI1)遺伝子の酵母導入用ベクターとして、図4に示すpUC-GRE3U-P_HOR7-RPE1-T_TDH3-P_HOR7-RKI1-T_TDH3-LEU2-GRE3Dを作製した。このベクターには、5’側にHOR7プロモーター及び3’側にTDH3ターミネーターが付加されたS. cerevisiae S288 株由来のRPE1遺伝子であるRPE1遺伝子(genebank:X83571);5’側にHOR7プロモーター及び3’側にTDH3ターミネーターが付加されたS. cerevisiae S288 株由来のRKI1遺伝子(genebank:Z75003);酵母ゲノム上への相同組換え及びアルドースレダクターゼ3(GRE3)遺伝子を破壊するための領域となるGRE3遺伝子の3’末端領域約500bpを含む約800bpの領域(GRE3U)及びGRE3遺伝子の上流約1000bpの領域(GRE3D);並びにロイシン合成酵素(LEU2)遺伝子(マーカー遺伝子)が含まれている。なお、相同組換え領域の外側には制限酵素Sse8387Iのサイトを導入した。また、S. cerevisiae S288 株由来RPE1遺伝子のコーディング領域の塩基配列及び当該遺伝子がコードするリブロースリン酸エピメラーゼ1のアミノ酸配列をそれぞれ配列番号15及び16に示した。さらに、S. cerevisiae S288株由来RKI1遺伝子のコーディング領域の塩基配列及び当該遺伝子がコードするリボースリン酸ケトイソメラーゼのアミノ酸配列をそれぞれ配列番号17及び18に示した。
宿主に内在するADH2遺伝子の破壊用ベクターとして、図5に示すpCR-ADH2U-URA3-ADH2Dを作製した。このベクターには、酵母ゲノム上への相同組換え及びアルコールデヒドロゲナーゼ2(ADH2)遺伝子を破壊するための領域として、ADH2遺伝子の上流約700bpの領域(ADH2U)、ADH2遺伝子の下流約800bpの領域(ADH2D)、並びにオロチジン−5’−リン酸デカルボキシラーゼ(URA3)遺伝子(マーカー遺伝子)が含まれている。
アルコールデヒドロゲナーゼ1(ADH1)遺伝子の酵母導入用ベクターとして、図6に示すpCR-ADH2part-T_CYC1-P_TDH3-ADH1-T_ADH1-URA3-ADH2Dを作製した。このベクターには、5’側にTDH3プロモーター及び3’側にADH1ターミネーターが付加されたS. cerevisiae S288 株由来のADH1遺伝子(genebank:Z74828.1)、酵母ゲノム上への相同組換え領域となるADH2遺伝子の3’側末端より上流約450bpの領域(ADH2part)及び3’側末端より下流の約700bpの領域(ADH2D)、ADH2のターミネーターとしてCYC1ターミネーター、並びにURA3遺伝子(マーカー遺伝子)が含まれている。
E. coli由来のアセトアルデヒド脱水素酵素(mhpF)遺伝子の酵母導入用ベクターとして、図7に示すpCR-ADH2part-T_CYC1-ERO1_T-mhpF-HOR7_P-URA3-ADH2Dを作製した。このベクターには、5’側にHOR7プロモーター及び3’側にERO1ターミネーターが付加されたE. coli由来のアセトアルデヒド脱水素遺伝子(mhpF遺伝子)、酵母ゲノム上への相同組換え領域となるADH2遺伝子の3’側末端より上流約450bpの領域(ADH2part)及び3’側末端より下流の約700bpの領域(ADH2D)、ADH2のターミネーターとしてCYC1ターミネーター、並びにURA3遺伝子を含む遺伝子(マーカー遺伝子)が含まれている。なお、本実施例においてmhpF遺伝子は、全領域を酵母のコドン使用頻度に合わせて使用コドンを変換した塩基配列を設計し、その塩基配列に基づいて全合成したものを使用した。本実施例で設計したmhpF遺伝子の塩基配列及び当該遺伝子がコードするアセトアルデヒド脱水素酵素のアミノ酸配列をそれぞれ配列番号1及び2に示した。
mhpF遺伝子及びADH1遺伝子の酵母導入用ベクターとして、図8に示すpCR-ADH2part-T_CYC1-P_TDH3-ADH1-T_ADH1-ERO1_T-mhpF-HOR7_P-URA3-ADH2Dを作製した。このベクターには、5’側にHOR7プロモーター及び3’側にERO1ターミネーターが付加されたmhpF遺伝子(上記(7)と同じ)、5’側にTDH3プロモーター及び3’側にADH1ターミネーターが付加されたS. cerevisiae S288 株由来のADH1遺伝子(上記(6)と同じ)、酵母ゲノム上への相同組換え領域となるADH2遺伝子の3’側末端より上流約450bpの領域(ADH2part)、及び3’側末端より下流の約700bpの領域(ADH2D)、ADH2のターミネーターとしてCYC1ターミネーター、並びにURA3遺伝子(マーカー遺伝子)が含まれている。
mhpF遺伝子の酵母導入及びADH2遺伝子破壊用ベクターとして、図9に示すpCR-ADH2U-ERO1_T-mhpF-HOR7_P-URA3-ADH2Dを作製した。このベクターには、5’側にHOR7プロモーター及び3’側にERO1ターミネーターが付加されたmhpF遺伝子(上記(7)と同じ)、酵母ゲノム上への相同組換え及びADH2遺伝子を破壊するための領域となるADH2遺伝子の上流約700bpの領域(ADH2U)及びADH2遺伝子の上流約800bpの領域(ADH2D)、並びにURA3遺伝子(マーカー遺伝子)が含まれている。
mhpF遺伝子及びADH1遺伝子の酵母導入並びにADH2遺伝子破壊用ベクターとして、図10に示すpCR-ADH2U-P_TDH3-ADH1-T_ADH1-ERO1_T-mhpF-HOR7_P-URA3-ADH2Dを作製した。このベクターには、5’側にHOR7プロモーター及び3’側にERO1ターミネーターが付加されたmhpF遺伝子(上記(7)と同じ)、5’側にTDH3プロモーター及び3’側にADH1ターミネーターが付加されたS. cerevisiae S288 株由来のADH1遺伝子(上記(6)と同じ)、酵母ゲノム上への相同組換え及びADH2遺伝子を破壊するための領域となるADH2遺伝子の上流約700bpの領域(ADH2U)及びADH2遺伝子の上流約800bpの領域(ADH2D)、並びにURA3遺伝子(マーカー遺伝子)が含まれている。
マーカー遺伝子のみ導入するコントロールベクターとして、図11に示すpCR-ADH2part-T_CYC1-URA3-ADH2Dを作製した。このベクターには、酵母ゲノム上への相同組換え領域となるADH2遺伝子の3’側末端より上流約450bpの領域(ADH2part)及び3‘側末端より下流の約700bpの領域(ADH2D)、ADH2のターミネーターとしてCYC1ターミネーター、並びにURA3遺伝子(マーカー遺伝子)が含まれている。
2倍体酵母のSaccharomyces cerevisiae OC2-T株(Saitoh, S.ら、J. Ferment. Bioeng. 1996年、81巻 98-103)を5-フルオロオロチン酸添加培地で選抜し(Boeke, J.D., et al. 1987 Methods Enzymol.;154:164-75.)、ウラシル要求性となった株を宿主とした。
上述のように得られたUz1048、Uz1047、Uz928、Uz1012、Uz926、Uz736及びUz1049系統の株からそれぞれ発酵能力が高い株を選び、フラスコ発酵試験を以下のように実施した。まず、グルコース濃度20g/LのYPD液体培地(イーストエキストラクト 10g/L、ペプトン 20g/L、グルコース 20g/L)を20ml分注した100ml容バッフル付きフラスコに供試株を植菌し、30℃ 120rpmで24時間培養を行った。集菌後、D20X60YAc6培地(グルコース20g/L、キシロース60g/L、イーストエキストラクト10g/L、酢酸6g/L)を10ml分注した20ml容フラスコに植菌し(菌濃度0.3g乾燥菌体/L)、振盪培養(80rpm、振幅35mm、30℃)にて発酵試験を行った。なお、フラスコにつける栓は、内径1.5mmニードルを通したゴム製で、ニードルの先に逆止弁を取り付けることでフラスコが嫌気的に保たれるようにした。
カラム:AminexHPX-87H
移動相:0.01N H2SO4
流量:0.6ml/min
温度:30℃
検出器:示差屈折率検出器 RID-10A
上記発酵試験の結果を表1に示す。
本実施例では、キシロースイソメラーゼ遺伝子及び大腸菌のmhpF遺伝子、adhE遺伝子、Clostridium beijerinckii由来のアセトアルデヒド脱水素遺伝子又はChlamydomonas reinhardtii由来のアセトアルデヒド脱水素遺伝子を導入した組換え酵母を作製した。本実施例で作製した組換え酵母では、内在する一対のADH2遺伝子のうち一方又は両方を破壊した。
(1)XI・XKS1・TKL1・TAL1・RKI1・RPE1遺伝子導入及びGRE3遺伝子破壊用プラスミド
GRE3遺伝子座にGRE3遺伝子を破壊しながら、ヤマトシロアリ(Reticulitermes speratus)腸内原生生物由来のキシロースイソメラーゼ遺伝子の377番目のアミノ酸をアスパラギンからシステインに置換され、キシロースの資化速度が向上した変異遺伝子(XI_N337C)、酵母由来のキシルロキナーゼ(XKS1)遺伝子、ペントースリン酸回路のトランスケトラーゼ1(TKL1)遺伝子、トランスアルドラーゼ1(TAL1)遺伝子、リブロースリン酸エピメラーゼ1(RPE1)遺伝子及びリボースリン酸ケトイソメラーゼ(RKI1)遺伝子を酵母に導入するために必要な配列を含むプラスミド、pUC-5U_GRE3-P_HOR7-TKL1-TAL1-FBA1_P-P_ADH1-RPE1-RKI1-TEF1_P-P_TDH1-XI_N337C-T_DIT1-P_TDH3-XKS1-T_HIS3-LoxP-G418-LoxP-3U_GRE3を作製した。
ADH2遺伝子座にADH2遺伝子を破壊しながら、E. coli由来のアセトアルデヒド脱水素遺伝子(mhpF)及び酵母由来のアルコールデヒドロゲナーゼ1(ADH1)遺伝子を酵母に導入するために必要な配列を含むプラスミド、pUC-5U_ADH2-P_TDH3-ADH1-T_ADH1-DIT1_T-mhpF-HOR7_P-URA3-3U_ADH2を作製した。
ADH2遺伝子座にADH2遺伝子を破壊しながら、E. coli由来のアセトアルデヒド脱水素遺伝子(adhE)及び酵母由来のアルコールデヒドロゲナーゼ1(ADH1)遺伝子を酵母に導入するために必要な配列を含むプラスミド、pUC-5U_ADH2-P_TDH3-ADH1-T_ADH1-DIT1_T-adhE-HOR7_P-URA3-3U_ADH2を作製した。
ADH2遺伝子座にADH2遺伝子を破壊しながら、Clostridium beijerinckii由来のアセトアルデヒド脱水素遺伝子及び酵母由来のアルコールデヒドロゲナーゼ1(ADH1)遺伝子を酵母に導入するために必要な配列を含むプラスミド、pUC-5U_ADH2-P_TDH3-ADH1-T_ADH1-DIT1_T-CloADH-HOR7_P-URA3-3U_ADH2を作製した。
ADH2遺伝子座にADH2遺伝子を破壊しながら、Chlamydomonas reinhardtii由来のアセトアルデヒド脱水素遺伝子及び、酵母由来のアルコールデヒドロゲナーゼ1(ADH1)遺伝子を酵母に導入するために必要な配列を含むプラスミド、pUC-5U_ADH2-P_TDH3-ADH1-T_ADH1-DIT1_T-ChlaADH1-HOR7_P-URA3-3U_ADH2を作製した。
ADH2遺伝子座にADH2遺伝子を破壊せず、ADH2遺伝子座近傍にE. coli由来のアセトアルデヒド脱水素遺伝子(mhpF)を酵母に導入するために必要な配列を含むプラスミド、pUC-ADH2-T_CYC1 -DIT1_T-mhpF-HOR7_P-URA3-3U_ADH2を作製した。
2倍体酵母のSaccharomyces cerevisiae OC2株(NBRC2260)を5-フルオロオロチン酸添加培地で選抜し(Boeke, J.D., et al. 1987 Methods Enzymol.;154:164-75.)、ウラシル要求性となった株(OC2U)を宿主とした。酵母の形質転換は、Frozen-EZ Yeast Transformation II(ZYMO RESEARCH)を用い、添付のプロトコルに従って行った。
上述のように作成した株からそれぞれ発酵能力が高い2株を選び、フラスコ発酵試験を以下のように実施した。まず、グルコース濃度20g/LのYPD液体培地(イーストエキストラクト 10g/L、ペプトン 20g/L、グルコース 20g/L)を20ml分注した100ml容バッフル付きフラスコに供試株を植菌し、30℃ 120rpmで24時間培養を行った。集菌後、D60X80YPAc4培地(グルコース60g/L、キシロース80g/L、イーストエキストラクト10g/L、ペプトン20g/L、酢酸4g/L)又はD40X80YPAc2培地(グルコース40g/L、キシロース80g/L、イーストエキストラクト10g/L、ペプトン20g/L、酢酸2g/L)を8ml分注した10ml容フラスコに植菌し、振盪培養(80rpm、振幅35mm、30℃)にて発酵試験を行った。なお、フラスコにつける栓は、内径1.5mmニードルを通したゴム製で、ニードルの先に逆止弁を取り付けることでフラスコが嫌気的に保たれるようにした。
カラム:AminexHPX-87H
移動相:0.01N H2SO4
流量:0.6ml/min
温度:30℃
検出器:示差屈折率検出器 RID-10A
D60X80YPAc4培地を使用して発酵時間を66時間としたときの発酵試験(仕込み菌濃度0.3g乾燥菌体/L)の結果を表9及び10に示す。なお、表9及び10に示すデータは独立して取得した組換え株3株のデータ平均値である。
Claims (5)
- 以下の(a)又は(b)のタンパク質をコードするキシロースイソメラーゼ遺伝子と、以下の(c)又は(d)のタンパク質をコードするアセトアルデヒド脱水素酵素遺伝子を導入し、アセトアルデヒドをエタノールに変換する活性を有するアルコール脱水素酵素遺伝子を高発現し、且つエタノールをアセトアルデヒドに変換する活性を有するアルコール脱水素酵素遺伝子の発現量が低下した組換え酵母を、キシロースを含有する培地にて培養してエタノール発酵を行う工程を有するエタノールの製造方法。
(a)配列番号4に示すアミノ酸配列を有するタンパク質
(b)配列番号4に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を有し、キシロースをキシルロースにする酵素活性を有するタンパク質
(c)配列番号2、20、22又は24に示すアミノ酸配列を有するタンパク質
(d)配列番号2、20、22又は24に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を有し、アセトアルデヒド脱水素酵素活性を有するタンパク質 - 上記組換え酵母は、更にキシルロキナーゼ遺伝子が導入されたものであることを特徴とする請求項1記載のエタノールの製造方法。
- 上記組換え酵母は、ペントースリン酸経路における非酸化過程の経路を構成する酵素群から選ばれる酵素をコードする遺伝子が導入されたものであることを特徴とする請求項1記載のエタノールの製造方法。
- ペントースリン酸経路における非酸化過程の経路を構成する酵素群は、リボース-5-リン酸イソメラーゼ、リブロース-5-リン酸-3-エピメラーゼ、トランスケトラーゼ及びトランスアルドラーゼであることを特徴とする請求項3記載のエタノールの製造方法。
- 上記培地はセルロースを含有しており、上記エタノール発酵では、少なくとも上記セルロースの糖化が同時に進行することを特徴とする請求項1記載のエタノールの製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480010549.7A CN105073990A (zh) | 2013-02-27 | 2014-02-27 | 使用了重组酵母的乙醇的制造方法 |
CN202111253587.3A CN114774477B (zh) | 2013-02-27 | 2014-02-27 | 使用了重组酵母的乙醇的制造方法 |
BR112015019777-9A BR112015019777B1 (pt) | 2013-02-27 | 2014-02-27 | Método para produzir etanol com o uso de saccharomyces cerevisiae recombinante |
JP2014036652A JP6087854B2 (ja) | 2013-02-27 | 2014-02-27 | 組換え酵母を用いたエタノールの製造方法 |
US14/767,821 US20160002674A1 (en) | 2013-02-27 | 2014-02-27 | Method for producing ethanol using recombinant yeast |
PCT/JP2014/054915 WO2014133092A1 (ja) | 2013-02-27 | 2014-02-27 | 組換え酵母を用いたエタノールの製造方法 |
CA2901974A CA2901974C (en) | 2013-02-27 | 2014-02-27 | Method for producing ethanol using recombinant yeast |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013037501 | 2013-02-27 | ||
JP2013037501 | 2013-02-27 | ||
JP2014036652A JP6087854B2 (ja) | 2013-02-27 | 2014-02-27 | 組換え酵母を用いたエタノールの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014193152A JP2014193152A (ja) | 2014-10-09 |
JP6087854B2 true JP6087854B2 (ja) | 2017-03-01 |
Family
ID=51428351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014036652A Active JP6087854B2 (ja) | 2013-02-27 | 2014-02-27 | 組換え酵母を用いたエタノールの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20160002674A1 (ja) |
JP (1) | JP6087854B2 (ja) |
CN (2) | CN114774477B (ja) |
BR (1) | BR112015019777B1 (ja) |
CA (1) | CA2901974C (ja) |
WO (1) | WO2014133092A1 (ja) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013061941A1 (ja) | 2011-10-24 | 2013-05-02 | トヨタ自動車株式会社 | 組換え酵母を用いたエタノールの製造方法 |
JP6027559B2 (ja) | 2013-03-28 | 2016-11-16 | 株式会社豊田中央研究所 | キシロースイソメラーゼ活性を有するタンパク質及びその利用 |
BR112017005959A2 (pt) * | 2014-10-15 | 2017-12-19 | Jx Nippon Oil & Energy Corp | levedura capaz de produzir etanol a partir de xilose |
JP6303984B2 (ja) | 2014-10-31 | 2018-04-04 | トヨタ自動車株式会社 | 連続培養によるエタノールの製造方法及び連続培養装置 |
JP6697250B2 (ja) * | 2015-12-02 | 2020-05-20 | 株式会社豊田中央研究所 | ゲノム再編方法及びその利用 |
JP6447583B2 (ja) * | 2016-06-24 | 2019-01-09 | トヨタ自動車株式会社 | 組換え酵母、及びそれを用いたエタノールの製造方法 |
JP6097869B1 (ja) * | 2016-08-01 | 2017-03-15 | 新日鉄住金エンジニアリング株式会社 | エタノールの製造方法 |
JP6879111B2 (ja) | 2017-08-02 | 2021-06-02 | トヨタ自動車株式会社 | 組換え酵母及びこれを用いたエタノールの製造方法 |
WO2019058260A1 (en) | 2017-09-19 | 2019-03-28 | Lallemand Hungary Liquidity Management Llc | TOLERANCE TO ACETATE TOXICITY IN RECOMBINANT MICROBIAL HOST CELLS |
JP2019068788A (ja) * | 2017-10-11 | 2019-05-09 | トヨタ自動車株式会社 | 組換え酵母及びこれを用いたエタノールの製造方法 |
JP7298673B2 (ja) * | 2017-11-06 | 2023-06-27 | トヨタ自動車株式会社 | エタノール発酵によるエタノール生産性の向上に関与する変異遺伝子及びこれを用いたエタノールの製造方法 |
JP7298674B2 (ja) * | 2017-11-06 | 2023-06-27 | トヨタ自動車株式会社 | エタノール発酵によるエタノール生産性の向上に関与する変異遺伝子及びこれを用いたエタノールの製造方法 |
JP7078887B2 (ja) * | 2017-11-06 | 2022-06-01 | トヨタ自動車株式会社 | エタノール発酵によるエタノール生産性の向上に関与する変異遺伝子及びこれを用いたエタノールの製造方法 |
WO2019188839A1 (ja) | 2018-03-27 | 2019-10-03 | 積水化学工業株式会社 | エタノールの製造方法及びエタノール組成物 |
EP3775219A1 (en) | 2018-03-27 | 2021-02-17 | Basf Se | Xylose metabolizing yeast |
JP2020025493A (ja) * | 2018-08-10 | 2020-02-20 | トヨタ自動車株式会社 | 組換え酵母、及びそれを用いたエタノールの製造方法 |
CN113046252B (zh) * | 2021-03-23 | 2022-07-05 | 江南大学 | 一株乙醛脱氢酶高产菌株的分离与鉴定 |
CN114107368B (zh) * | 2021-11-29 | 2023-05-26 | 重庆大学 | 表达反式菊酸的联合表达载体及其在调控番茄vi型腺体腺毛合成反式菊酸中的应用 |
CN117384871B (zh) * | 2023-12-13 | 2024-03-01 | 北京科为博生物科技有限公司 | 一种热稳定性提高的乙醛脱氢酶及其基因和应用 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989001520A1 (en) * | 1987-08-11 | 1989-02-23 | Cetus Corporation | Procaryotic xylose isomerase muteins and method to increase protein stability |
JP5091523B2 (ja) * | 2007-03-30 | 2012-12-05 | 三井造船株式会社 | アルコール生産方法 |
WO2009013157A1 (en) * | 2007-07-23 | 2009-01-29 | Dsm Ip Assets B.V. | Butanol production in a eukaryotic cell |
JP5608999B2 (ja) * | 2009-04-08 | 2014-10-22 | 株式会社豊田中央研究所 | キシロースを利用して有用物質を生産する方法 |
US20120184007A1 (en) * | 2009-07-09 | 2012-07-19 | Stephen Picataggio | Engineered microorganisms with enhanced fermentation activity |
EP2277989A1 (en) * | 2009-07-24 | 2011-01-26 | Technische Universiteit Delft | Fermentative glycerol-free ethanol production |
JP5321320B2 (ja) * | 2009-07-27 | 2013-10-23 | 株式会社豊田中央研究所 | 発酵能力が向上された酵母及びその利用 |
WO2011078262A1 (ja) * | 2009-12-22 | 2011-06-30 | 株式会社豊田中央研究所 | キシロースイソメラーゼ及びその利用 |
CA2798452C (en) * | 2010-05-05 | 2019-09-03 | Mascoma Corporation | Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate |
CN103314100A (zh) * | 2010-10-29 | 2013-09-18 | 诺维信公司 | 重组正丙醇和异丙醇产生 |
CA2834053C (en) * | 2010-11-18 | 2019-03-26 | Dsm Ip Assets B.V. | Yeast strains engineered to produce ethanol from glycerol |
EP3498829A1 (en) * | 2012-11-09 | 2019-06-19 | Lallemand Hungary Liquidity Management LLC | Method for acetate consumption during ethanolic fermentation of cellulosic feedstocks |
-
2014
- 2014-02-27 CA CA2901974A patent/CA2901974C/en active Active
- 2014-02-27 BR BR112015019777-9A patent/BR112015019777B1/pt active IP Right Grant
- 2014-02-27 CN CN202111253587.3A patent/CN114774477B/zh active Active
- 2014-02-27 WO PCT/JP2014/054915 patent/WO2014133092A1/ja active Application Filing
- 2014-02-27 JP JP2014036652A patent/JP6087854B2/ja active Active
- 2014-02-27 CN CN201480010549.7A patent/CN105073990A/zh active Pending
- 2014-02-27 US US14/767,821 patent/US20160002674A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
CA2901974A1 (en) | 2014-09-04 |
BR112015019777A2 (ja) | 2017-08-22 |
BR112015019777B1 (pt) | 2022-12-06 |
WO2014133092A1 (ja) | 2014-09-04 |
US20160002674A1 (en) | 2016-01-07 |
JP2014193152A (ja) | 2014-10-09 |
CN105073990A (zh) | 2015-11-18 |
CN114774477B (zh) | 2024-04-09 |
CN114774477A (zh) | 2022-07-22 |
CA2901974C (en) | 2020-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6087854B2 (ja) | 組換え酵母を用いたエタノールの製造方法 | |
JP5817836B2 (ja) | 組換え酵母を用いたエタノールの製造方法 | |
JP5590140B2 (ja) | 組換え酵母を用いたエタノールの製造方法 | |
JP6447583B2 (ja) | 組換え酵母、及びそれを用いたエタノールの製造方法 | |
JP6879111B2 (ja) | 組換え酵母及びこれを用いたエタノールの製造方法 | |
JP5845210B2 (ja) | 組換え酵母、及びそれを用いたエタノールの製造方法 | |
WO2020032233A1 (ja) | 組換え酵母、及びそれを用いたエタノールの製造方法 | |
WO2014021163A1 (ja) | 組換え酵母を用いたエタノールの製造方法 | |
WO2020138020A1 (ja) | 組換え酵母及びこれを用いたエタノールの製造方法 | |
CA3020447A1 (en) | Recombinant yeast and method for producing ethanol using the same | |
US11193113B2 (en) | Transgenic yeast and method for producing ethanol using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150817 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20151130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20151130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170202 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6087854 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |