[go: up one dir, main page]

JP6084198B2 - Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods - Google Patents

Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods Download PDF

Info

Publication number
JP6084198B2
JP6084198B2 JP2014258157A JP2014258157A JP6084198B2 JP 6084198 B2 JP6084198 B2 JP 6084198B2 JP 2014258157 A JP2014258157 A JP 2014258157A JP 2014258157 A JP2014258157 A JP 2014258157A JP 6084198 B2 JP6084198 B2 JP 6084198B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
xylose
electrodialysis
extraction
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014258157A
Other languages
Japanese (ja)
Other versions
JP2015083011A (en
Inventor
リー,ジョー−ハン
アン,ジュン−ガプ
パーク,セウン−ウォン
キム,タエク−ベオン
キム,セオン−ボ
リー,ドン−フーン
リー,ウン−ファ
ソン,デ−ホ
ジ,セウン−バエ
リー,カン−ピョー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CJ CheilJedang Corp
Original Assignee
CJ CheilJedang Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CJ CheilJedang Corp filed Critical CJ CheilJedang Corp
Priority to JP2014258157A priority Critical patent/JP6084198B2/en
Publication of JP2015083011A publication Critical patent/JP2015083011A/en
Application granted granted Critical
Publication of JP6084198B2 publication Critical patent/JP6084198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、既存のキシロースの製造工程から、中和およびイオン精製工程などの多量の廃水が発生する工程を除去して、環境にやさしいだけではなく、工程の単純化によって生産コストの節減が図れる、経済性に富んだキシロースの製造工程に関するものである。   The present invention eliminates processes that generate a large amount of wastewater such as neutralization and ion purification processes from the existing xylose production process, and is not only environmentally friendly, but also simplifies the process to reduce production costs. The present invention relates to an economical process for producing xylose.

従来、硫酸加水分解液からキシロースを含む有用糖成分を精製する方法としては、沈殿法とイオン交換樹脂法が最も汎用されている。中でも、イオン交換樹脂法は、施設費が低く、しかも、伝統的に用いられてきている工程であるというメリットがあるため、商業的に多用されている。しかし、イオン交換樹脂の再生中に高濃度の塩を含有している廃水が多量発生してしまい、廃水処理の負担の加重が避けられないのが現状であるため、化学物質の使用量と廃水の発生量を低減し得る代替技術の開発が望まれている。
近年、新たな分離技術として、電気透析によって糖蜜および発酵液などを脱塩し、資源を有効に利用する方法がよく知られている。例えば、下記の特許文献1には、熱帯果物バイオマスから加水分解、中和、沈殿、ろ過、電気透析およびイオン交換樹脂の段階を経てキシロースを製造する方法が開示されている。しかしながら、このような電気透析装置の問題点として、イオン交換膜の汚染が指摘されており、かような汚染現象は装置の効率低下の原因となるだけではなく、膜の寿命を短縮させるということがよく知られている。
このような問題点を回避するために、硬水軟化装置または陰イオン交換樹脂による処理などの前処理を試みたが(例えば、下記の特許文献2参照)、多段階の前処理を経なければならず、しかも、副材料を用いることを余儀なくされるため、費用が嵩んでしまうという欠点があり、産業的に適用するには限界がある。例えば、下記の特許文献3は、電気透析工程による乳酸回収方法に関するものであり、分離された一部の物質(硫酸アンモニウム)の再循環工程と、電気透析工程によるメリット(効率性、環境にやさしいこと)が記載されている。しかしながら、電気透析は、依然として、産業的な適用に際して、膜の費用、膜の汚染および長期運転の安定性などの問題点を有している。
Conventionally, precipitation methods and ion exchange resin methods are most commonly used as methods for purifying useful sugar components including xylose from sulfuric acid hydrolysates. Among them, the ion exchange resin method is widely used commercially because it has a low facility cost and has a merit that it is a process that has been used traditionally. However, since the amount of wastewater containing high-concentration salt is generated during the regeneration of ion exchange resin and the burden of wastewater treatment is unavoidable, the amount of chemical substances used and wastewater Development of an alternative technology that can reduce the amount of generation is desired.
In recent years, as a new separation technique, a method of desalting molasses and fermentation broth by electrodialysis and effectively utilizing resources is well known. For example, Patent Document 1 below discloses a method for producing xylose from tropical fruit biomass through hydrolysis, neutralization, precipitation, filtration, electrodialysis and ion exchange resin. However, ion exchange membrane contamination has been pointed out as a problem of such electrodialysis devices, and such a contamination phenomenon not only causes a reduction in the efficiency of the device, but also shortens the lifetime of the membrane. Is well known.
In order to avoid such problems, pretreatment such as treatment with a water softening device or an anion exchange resin has been tried (see, for example, Patent Document 2 below), but it must undergo multistage pretreatment. In addition, there is a drawback in that the use of sub-materials is unavoidable, which increases the cost, and there is a limit to industrial application. For example, Patent Document 3 below relates to a method for recovering lactic acid by an electrodialysis process, and a merit (efficiency and environmental friendliness) of a recirculation process of some separated substances (ammonium sulfate) and an electrodialysis process. ) Is described. However, electrodialysis still has problems in membrane applications such as membrane cost, membrane contamination and long-term stability.

大韓民国特許公開第2008−0074687号公報Korean Patent Publication No. 2008-0074687 特開昭54−67093号公報JP 54-67093 A 大韓民国特許公開第2001−0107331号公報Korean Patent Publication No. 2001-0107331

本発明者らは上記の問題点に着目して鋭意研究を重ねた結果、電気透析に際して、イオン交換膜の汚染源となるスケールを防止し得るpHの範囲を提供して膜の汚染による生産性の低下を防ぐことにより、膨大な初期投資コストおよび運転コストなどの負担を軽減して電気透析の産業的な適用の限界を克服することができた。また、高純度抽出の長所を極大化させた直接回収工程を通じてイオン交換樹脂工程を除去することにより、高濃度塩の廃水処理に対する負担を軽減して単純化したキシロースの製造工程を完成するに至った。
そこで、本発明の目的は、向流抽出(countercurrent extraction)を通じて熱帯果物バイオマスから可溶性成分をできる限り完全に抽出するとともに、高濃度の抽出液から硫酸イオンを選択的に分離し且つ回収して抽出工程に繰り返し再使用し、電気透析装置のイオン交換膜の汚染を防ぐことにより、化学的な洗浄なしに長時間運転することができ、硫酸の分離された有機物は濃縮して直接的に結晶として回収する工程を提供することである。
As a result of intensive studies focusing on the above-mentioned problems, the present inventors have provided a pH range capable of preventing a scale that becomes a source of contamination of an ion exchange membrane during electrodialysis, thereby improving productivity due to membrane contamination. By preventing the decrease, it was possible to reduce the burden of the huge initial investment cost and operation cost and overcome the limitations of the industrial application of electrodialysis. In addition, by removing the ion exchange resin process through a direct recovery process that maximizes the advantages of high-purity extraction, the burden on wastewater treatment of high-concentration salt is reduced and a simplified xylose production process is completed. It was.
Therefore, an object of the present invention is to extract as much as possible soluble components from tropical fruit biomass through countercurrent extraction, and to selectively separate and recover sulfate ions from a high concentration extract. By reusing it repeatedly in the process and preventing contamination of the ion exchange membrane of the electrodialyzer, it can be operated for a long time without chemical washing, and the organic matter separated from sulfuric acid is concentrated and directly converted into crystals. It is to provide a recovery step.

上記の目的を達成するために、本発明は、a)熱帯果物バイオマスを硫酸加水分解反応で向流抽出するステップと、b)前記抽出液のpHを1.5〜2.5に調整し、脱色およびろ過を行うステップと、c)前記ろ液を電気透析装置に投入して脱塩を行うステップと、d)前記ステップc)において回収された硫酸廃液は前記ステップa)に再循環させ、前記脱塩された有機物は濃縮させ、且つ、直接的に回収してキシロース結晶を得るステップと、を含むことを特徴とするキシロースの製造工程を提供する。   In order to achieve the above object, the present invention comprises: a) a step of countercurrent extraction of tropical fruit biomass by a sulfuric acid hydrolysis reaction; b) adjusting the pH of the extract to 1.5 to 2.5; A step of performing decolorization and filtration; c) a step of performing desalting by introducing the filtrate into an electrodialyzer; and d) recycling the sulfuric acid waste liquid recovered in step c) to the step a). And a step of concentrating and directly recovering the desalted organic matter to obtain xylose crystals, to provide a process for producing xylose.

本発明に係る、電気透析装置および直接回収工程を用いてキシロースを産生する場合、廃水処理に伴う環境への負担を低減することができるだけではなく、工程の単純化による生産コストの節減効果も期待することができる。これにより、本発明は、原料費の節減および環境汚染の防止に能動的に対応し得る低汚染・無公害のキシロースの製造工程を提供することができる。   When xylose is produced using an electrodialysis apparatus and a direct recovery process according to the present invention, not only can the burden on the environment associated with wastewater treatment be reduced, but also the production cost can be reduced by simplifying the process. can do. Thereby, this invention can provide the manufacturing process of the low pollution and pollution-free xylose which can respond | correspond actively to the reduction of raw material cost and prevention of environmental pollution.

図1は、従来の中和およびイオン交換法、電気透析工程を用いたキシロースの製造工程の系統図および本発明に係る電気透析および直接回収法を用いた単純化工程を通じたキシロースの製造工程の系統図の比較図を示すものである。FIG. 1 is a system diagram of a process for producing xylose using a conventional neutralization and ion exchange method and an electrodialysis process, and a process for producing xylose through a simplification process using electrodialysis and a direct recovery method according to the present invention. The comparison figure of a system diagram is shown. 図2は、本発明に係る電気透析工程を通じて有機物と硫酸を分離し、このときに回収された硫酸を繰り返し再使用すると共に、有機物は直接結晶化を行うことによりキシロースを製造する工程の詳細を示す図である。FIG. 2 shows the details of a process for producing xylose by separating organic substances and sulfuric acid through the electrodialysis process according to the present invention, reusing the collected sulfuric acid repeatedly, and directly crystallizing the organic substances. FIG. 図3は、本発明に用いられる向流多段抽出工程の流れの詳細を示す図である。FIG. 3 is a diagram showing the details of the flow of the countercurrent multistage extraction process used in the present invention. 図4は、本発明に用いられる電気透析装置における、処理時間による電気伝導度の変化を示すグラフである。FIG. 4 is a graph showing changes in electrical conductivity depending on processing time in the electrodialysis apparatus used in the present invention.

本発明は、a)熱帯果物バイオマスを硫酸加水分解反応で向流抽出するステップと、b)前記抽出液のpHを1.5〜2.5に調整し、脱色およびろ過を行うステップと、c)前記ろ液を電気透析装置に投入して脱塩を行うステップと、d)前記ステップc)において回収された硫酸廃液は前記ステップa)に再循環させ、前記脱塩された有機物は濃縮させ、且つ、直接的に回収してキシロース結晶を得るステップと、を含むことを特徴とするキシロースの製造工程を提供することを特徴とする。   The present invention includes a) a step of countercurrent extraction of tropical fruit biomass by sulfuric acid hydrolysis reaction, b) a step of adjusting the pH of the extract to 1.5 to 2.5, and performing decolorization and filtration; c ) A step in which the filtrate is introduced into an electrodialyzer to perform desalting; d) the sulfuric acid waste liquid recovered in step c) is recycled to step a), and the desalted organic matter is concentrated. And a step of directly recovering to obtain xylose crystals, and providing a process for producing xylose characterized by comprising:

前記本発明のキシロースの製造工程は図2に示されており、以下、添付図面に基づき、本発明のキシロースの製造工程を詳述する。   The production process of the xylose of the present invention is shown in FIG. 2, and the production process of the xylose of the present invention will be described below in detail with reference to the accompanying drawings.

前記熱帯果物バイオマス9は、乾いたココナット殻、パーム殻またはパーム空房(Oil Palm Empty Fruit Bunch;OPEFB)であってもよい。
前記加水分解は、前記熱帯果物バイオマス9に、2、000〜50、000ppmの硫酸溶液10を添加して、反応温度100〜200℃、反応圧力0〜10kgf/cmにて0.5〜10時間反応させることにより行われる。
The tropical fruit biomass 9 may be dried coconut shell, palm shell or palm empty bunch (OPEFB).
In the hydrolysis, a 2,000 to 50,000 ppm sulfuric acid solution 10 is added to the tropical fruit biomass 9, and the reaction temperature is 100 to 200 ° C. and the reaction pressure is 0 to 10 kgf / cm 2 . It is performed by reacting for a time.

前記加水分解反応の条件下で抽出が行われ、図2に示す抽出器1を用いて向流抽出を行うことができる。   Extraction is performed under the conditions of the hydrolysis reaction, and countercurrent extraction can be performed using the extractor 1 shown in FIG.

前記向流抽出工程によって得られた抽出液11の糖組成比は、分離された混合糖液の60〜90%、好ましくは、80〜90%であることが好ましい。   The sugar composition ratio of the extract 11 obtained by the countercurrent extraction step is 60 to 90%, preferably 80 to 90% of the separated mixed sugar solution.

前記抽出液11は、活性炭を用いて脱色を行い、フィルタープレス(filter press)2または限外ろ過装置2によってろ過して浮遊物質を除去する。本発明の具体例として、0.5μm網目のろ過布を用いたろ過、フィルタープレスによるろ過、限外ろ過装置によるろ過が挙げられる。   The extract 11 is decolorized using activated carbon and filtered by a filter press 2 or an ultrafiltration device 2 to remove suspended substances. Specific examples of the present invention include filtration using a 0.5 μm mesh filter cloth, filtration using a filter press, and filtration using an ultrafiltration device.

前記浮遊物質の除去されたろ液12のpHを1.5〜2.5に調整する。これは、タンパク質、色素およびフミン質など電気透析膜を汚染させる物質が含まれている加水分解液にスケールが形成されることを防ぐことにより、イオン交換膜が汚染されることを防ぐためである。   The pH of the filtrate 12 from which the suspended substances have been removed is adjusted to 1.5 to 2.5. This is to prevent contamination of the ion exchange membrane by preventing the formation of scales in the hydrolyzed solution containing substances that contaminate the electrodialysis membrane such as proteins, dyes and humic substances. .

前記ステップc)において、回収された硫酸廃液13は、前記ステップa)の抽出工程によって再循環させて、次の抽出に再使用することができる。前記回収された硫酸は、連続して繰り返し再使用することができ、好ましくは、回収された硫酸廃液に2、000〜4、000ppmの硫酸をさらに添加し、さらに好ましくは、抽出硫酸の最終濃度が25、000ppmになるように添加して再使用することができる。   In step c), the recovered sulfuric acid waste solution 13 can be recycled by the extraction process in step a) and reused for the next extraction. The recovered sulfuric acid can be reused continuously and repeatedly. Preferably, 2,000 to 4,000 ppm of sulfuric acid is further added to the recovered sulfuric acid waste solution, and more preferably the final concentration of the extracted sulfuric acid. Can be reused by adding 25,000 ppm.

前記ステップb)において、pHの調整された前記脱色ろ液12は、電気透析装置3の希釈槽に投入し、有機物14の電気伝導度(Conductivity)が1、500μS/cm以下、好ましくは、1、000μS/cm以下になるまで脱塩を行う。   In the step b), the decolored filtrate 12 whose pH has been adjusted is put into a diluting tank of the electrodialyzer 3, and the electrical conductivity (conductivity) of the organic substance 14 is 1,500 μS / cm or less, preferably 1 And desalting until 000 μS / cm or less.

前記脱塩された有機物14は、濃縮器4に送って糖濃度50〜70ブリックス(Bx)に濃縮した後、直接回収工程を通じて前記濃縮された濃縮液15を真空結晶または冷却結晶してキシロースを回収した。前記直接回収工程は、好ましくは、3ステップ5、6、7に亘って行うことができる。   The desalted organic substance 14 is sent to the concentrator 4 and concentrated to a sugar concentration of 50 to 70 Brix (Bx). Then, the concentrated concentrate 15 is vacuum crystallized or cooled crystallized through a direct recovery process to obtain xylose. It was collected. The direct recovery step can be preferably performed over 3 steps 5, 6, and 7.

下記の実施例は、本発明をより詳述するためのものであり、これらの実施例が本発明の技術的な範囲を限定するものではない。
実施例1

Figure 0006084198
The following examples are for explaining the present invention in more detail, and these examples do not limit the technical scope of the present invention.
Example 1
Figure 0006084198

実施例2 向流抽出による高濃度キシロースの産生
抽出方法のうち最も簡単な方法は、純粋な溶媒によって繰り返し抽出を行うことであるが、本発明においては、原料から可溶性成分をできる限り完全に抽出すると共に、高濃度の抽出液を得るために向流抽出を行った。
Example 2 Production of high-concentration xylose by countercurrent extraction The simplest extraction method is to perform repeated extraction with a pure solvent. In the present invention, soluble components are extracted as completely as possible from raw materials. At the same time, countercurrent extraction was performed to obtain a highly concentrated extract.

熱帯果物バイオマスと硫酸溶液を抽出機を用いて所定時間反応を行うと、上層の溶液と下層のスラリーとに分離されて順次に反対方向に移動する。すなわち、溶媒と溶質とからなる溶液の1次抽出液bおよび2次抽出液cは、固体相とは反対方向に各段を順次に移動し、各段を移動する間に溶質を溶解して抽出する。向流多段抽出の工程の流れは、図3に示す。   When a tropical fruit biomass and a sulfuric acid solution are reacted for a predetermined time using an extractor, they are separated into an upper layer solution and a lower layer slurry and sequentially move in opposite directions. That is, the primary extract b and the secondary extract c of a solution composed of a solvent and a solute move sequentially in the opposite direction to the solid phase and dissolve the solute while moving through each stage. Extract. The flow of the countercurrent multistage extraction process is shown in FIG.

具体的に、抽出器は、ステージ1抽出反応器とステージ2抽出反応器とから構成され、連続式の向流多段抽出工法は、下記のステップを含む:ステージ1抽出反応器から得られたBrix3〜7の低濃度の1次抽出液bをステージ2抽出反応器に送液するステップおよび送液された低濃度の1次抽出液bをステージ2抽出反応器に通させてBrix10〜20の高濃度および高純度のキシロース2次抽出液cを得るステップ。   Specifically, the extractor is composed of a stage 1 extraction reactor and a stage 2 extraction reactor, and the continuous countercurrent multistage extraction method includes the following steps: Brix 3 obtained from the stage 1 extraction reactor A step of feeding a low concentration primary extract b of ˜7 to the stage 2 extraction reactor, and passing the fed low concentration primary extract b through the stage 2 extraction reactor to increase the Brix 10-20 Obtaining a xylose secondary extract c of high concentration and high purity.

実施例1と同じ条件下で、純粋な溶媒によって繰り返し抽出を行う単純回分式抽出法と多段向流抽出法における抽出収率を比較した。多段向流抽出によって90〜80%といった高い抽出収率が得られた。   Under the same conditions as in Example 1, the extraction yields in the simple batch extraction method and the multi-stage countercurrent extraction method in which extraction was repeated with a pure solvent were compared. High extraction yields of 90-80% were obtained by multistage countercurrent extraction.

Figure 0006084198
Figure 0006084198

前記向流抽出によって得られたpH0.8〜1.2の酸加水分解液cを苛性ソーダでpH1.5〜2.5に調整した後、活性炭と共に0.5μm網目のろ過布を用いてフィルタープレスでろ過して脱色し、浮遊物質を除去した。   The pH 0.8-1.2 acid hydrolyzate c obtained by the countercurrent extraction is adjusted to pH 1.5-2.5 with caustic soda, and then filtered with activated carbon and a 0.5 μm mesh filter cloth. And filtered to remove suspended solids.

実施例3:脱塩電気透析(Electrodialysis)
向流抽出工程によって産生された酸加水分解液を脱塩電気透析装置を用いて精製した場合における、硫酸イオンの脱塩率および有機物(sugar)のロス率など、本発明による脱塩電気透析工程を用いた有機物(sugar)と硫酸の分離可能性と経済性を調べるために、電流効率、エネルギー消耗量を調べてみた。
脱塩およびろ過の行なわれた反応液の糖濃度は、Brix10〜15、pH1.5〜2.5であった。電圧は、DC電源(120V、30A)を用いて40〜70Vの定電圧にし、溶液の温度は、熱交換コイルを用いて約40〜70℃に一定に維持した。脱塩は、流速6〜8L/minにて、100〜150分間、電気伝導度が1、500μS/cm以下になるまで行った。
このとき、電気透析器としては、3−コンパートメント(3−compartment)型のものを用い、イオン膜は、強酸性陽イオン交換膜と強塩基性陰イオン交換膜とからなり、合計の有効膜面積は0.6mであった。電気透析の実施結果を表3に示す。
Example 3: Desalted electrodialysis (Electrodialysis)
The desalting electrodialysis process according to the present invention, such as the desalting rate of sulfate ions and the loss rate of organic substances (sugar) when the acid hydrolyzate produced by the countercurrent extraction process is purified using a desalting electrodialyzer. In order to investigate the separability and economic efficiency of organic substances (sugar) and sulfuric acid, the current efficiency and energy consumption were examined.
The sugar concentration of the reaction solution subjected to desalting and filtration was Brix 10 to 15, pH 1.5 to 2.5. The voltage was a constant voltage of 40 to 70 V using a DC power supply (120 V, 30 A), and the temperature of the solution was kept constant at about 40 to 70 ° C. using a heat exchange coil. Desalting was performed at a flow rate of 6 to 8 L / min for 100 to 150 minutes until the electrical conductivity reached 1,500 μS / cm or less.
At this time, a 3-compartment type electrodialyzer is used, and the ion membrane is composed of a strongly acidic cation exchange membrane and a strongly basic anion exchange membrane, and has a total effective membrane area. Was 0.6 m 2 . The results of electrodialysis are shown in Table 3.

Figure 0006084198
Figure 0006084198

硫酸脱塩率は、希釈槽の電気伝導度の値から求めることができ、有機物のロス率は、希釈槽のBrix値の変化によって確認することができる。   The sulfuric acid desalting rate can be obtained from the value of the electrical conductivity of the dilution tank, and the loss rate of the organic matter can be confirmed by the change in the Brix value of the dilution tank.

硫酸脱塩率=100−{(電気伝導度の終了値/電気伝導度の処理値)*100}
有機物のロス率=100−{(最終Brix値/最初Brix値)*100}
計算の結果、硫酸の脱塩率は98%であり、有機物(sugar)のロス率は3.4%であった。
Sulfuric acid desalination rate = 100 − {(end value of electrical conductivity / treated value of electrical conductivity) * 100}
Organic Loss Rate = 100 − {(Final Brix Value / First Brix Value) * 100}
As a result of the calculation, the desalting rate of sulfuric acid was 98%, and the loss rate of organic substance (sugar) was 3.4%.

実施例4:イオン交換膜の汚染指標の測定
実施例3と同じ条件下で、酸加水分解液のpHの調整によるイオン交換容量および性能を測定した。pH1.5〜2.5の場合には、膜のイオン交換容量および性能の低下があまり認められず、これは、膜の汚染がほとんど発生していないことを示唆する。その結果を表4に示す。
Example 4: Measurement of ion exchange membrane contamination index Under the same conditions as in Example 3, the ion exchange capacity and performance by adjusting the pH of the acid hydrolyzate were measured. In the case of pH 1.5 to 2.5, there is not much decrease in the ion exchange capacity and performance of the membrane, suggesting that little membrane contamination has occurred. The results are shown in Table 4.

Figure 0006084198
Figure 0006084198

実施例5:回収された硫酸の再使用
電気透析工程から回収された硫酸の再使用の可能性と経済性を調べるために、回収された硫酸を次の抽出工程に再使用した場合のキシロース抽出収率を測定した。
測定の結果、表5に示すように、回収された硫酸のみを用いた場合の抽出収率は10.61%であり、硫酸と回収硫酸を混合して濃度を高めた場合の抽出収率は12.80%であって、対照区とほとんど同じ実施結果を示した。なお、表4に、回収された硫酸に最小限の硫酸を添加して繰り返し再使用したときの抽出収率を示す。合計で6回繰り返し再使用した硫酸を用いた抽出実験において、平均収率は12.57%であり、これを表6に示す。これより、回収された硫酸を連続して繰り返し再使用することができるということが判る。
Example 5: Reuse of recovered sulfuric acid Xylose extraction when the recovered sulfuric acid is reused in the next extraction step in order to investigate the possibility of reusing sulfuric acid recovered from the electrodialysis step and the economics The yield was measured.
As a result of the measurement, as shown in Table 5, the extraction yield when only the recovered sulfuric acid is used is 10.61%, and the extraction yield when the concentration is increased by mixing sulfuric acid and recovered sulfuric acid is The result was 12.80%, which was almost the same as the control group. Table 4 shows the extraction yield when a minimum amount of sulfuric acid was added to the recovered sulfuric acid and reused repeatedly. In the extraction experiment using sulfuric acid which was reused six times in total, the average yield was 12.57%, which is shown in Table 6. From this, it can be seen that the recovered sulfuric acid can be reused continuously and repeatedly.

Figure 0006084198
Figure 0006084198

Figure 0006084198
Figure 0006084198

実施例6:直接回収工程を通じたキシロースの回収
電気透析工程からの脱塩された有機物の直接結晶回収率を調べるために、回収された有機物の糖濃度を10〜15Brixから50〜70Brixへと濃縮し、3ステップに亘っての直接回収工程を通じてキシロースの回収収率を測定した。
測定の結果、表6に示すように、回収されたキシロースの回収率(図2における5、6、7)は33.5%であり、2〜3次結晶母液(図2における16、17)を再回収結晶した場合のキシロースの総回収率は87%であって、既存のイオン精製工程を経た工程とほとんど同じキシロースの回収率を示していた。
Example 6: Recovery of xylose through a direct recovery process To examine the direct crystal recovery of desalted organics from the electrodialysis process, the sugar concentration of the recovered organics was concentrated from 10-15 Brix to 50-70 Brix. The recovery yield of xylose was measured through a direct recovery process over 3 steps.
As a result of the measurement, as shown in Table 6, the recovery rate of recovered xylose (5, 6, 7 in FIG. 2) was 33.5%, and the secondary crystal mother liquor (16, 17 in FIG. 2). The total recovery rate of xylose when re-recovered was crystallized was 87%, indicating almost the same recovery rate of xylose as that obtained through the existing ion purification step.

Figure 0006084198
Figure 0006084198

Claims (4)

熱帯果物バイオマスを硫酸加水分解してキシロースを製造する工程であって、
a)熱帯果物バイオマスを硫酸加水分解反応で向流抽出して、抽出液を得るステップと
b)前記抽出液のpHを1.5〜2.5に調整し、脱色およびろ過を行い、ろ液を得るステップであって、ここで前記ろ液のキシロース糖の組成比が、80%以上であり
c)前記ろ液を電気透析装置に投入して脱塩を行い、硫酸廃液及び脱塩された有機物を得るステップと、
d)前記ステップc)において回収された硫酸廃液は前記ステップa)に再循環させ、前記脱塩された有機物は濃縮させ、且つ、直接的に回収してキシロース結晶を得るステップと、
を含み、並びに、
前記ステップa)ないしc)は、沈殿法およびイオン精製工程なしで順次進行されることを特徴とするキシロースの製造方法。
A process for producing xylose by sulfuric acid hydrolysis of tropical fruit biomass,
a) a counter-current extraction of tropical fruit biomass by sulfuric acid hydrolysis reaction to obtain an extract; b) adjusting the pH of the extract to 1.5 to 2.5, decolorizing and filtering, filtrate Wherein the composition ratio of xylose sugar in the filtrate is 80% or more ,
c) adding the filtrate to an electrodialyzer to perform desalting to obtain a sulfuric acid waste solution and desalted organic matter;
d) recycling the sulfuric acid waste solution recovered in step c) to step a), concentrating the desalted organic matter and directly recovering to obtain xylose crystals;
As well as
The method of producing xylose, wherein the steps a) to c ) are sequentially performed without a precipitation method and an ion purification step.
前記ステップc)において回収された硫酸廃液に、2、000〜4、000ppmの硫酸をさらに添加して、前記ステップa)に再循環させることを特徴とする請求項1に記載のキシロースの製造方法。
The method for producing xylose according to claim 1, wherein 2,000 to 4,000 ppm of sulfuric acid is further added to the sulfuric acid waste solution recovered in step c) and recycled to step a). .
前記ステップc)において、前記ろ液の電気伝導度が1、000μS/cm以下になるまで脱塩を行うことを特徴とする請求項1に記載のキシロースの製造方法。
The method for producing xylose according to claim 1, wherein in the step c), desalting is performed until the electric conductivity of the filtrate becomes 1,000 µS / cm or less.
前記ステップa)において、前記抽出液の糖組成比は分離された混合糖液の60〜90重量%であることを特徴とする請求項1に記載のキシロースの製造方法。   The method for producing xylose according to claim 1, wherein in the step a), the sugar composition ratio of the extract is 60 to 90% by weight of the separated mixed sugar solution.
JP2014258157A 2014-12-21 2014-12-21 Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods Active JP6084198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014258157A JP6084198B2 (en) 2014-12-21 2014-12-21 Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014258157A JP6084198B2 (en) 2014-12-21 2014-12-21 Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012535100A Division JP2013507953A (en) 2009-10-30 2009-10-30 Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods

Publications (2)

Publication Number Publication Date
JP2015083011A JP2015083011A (en) 2015-04-30
JP6084198B2 true JP6084198B2 (en) 2017-02-22

Family

ID=53047017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258157A Active JP6084198B2 (en) 2014-12-21 2014-12-21 Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods

Country Status (1)

Country Link
JP (1) JP6084198B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115198037B (en) * 2021-04-08 2024-01-19 四川雅华生物有限公司 Washing water regeneration process of ion exchange resin in xylose production process

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423137A (en) * 1977-07-25 1979-02-21 Nissin Sugar Mfg Production of edible liquid sugar from molasses
JPS5467093A (en) * 1977-11-07 1979-05-30 Ajinomoto Co Inc Purification of amino acid
JPS59179099A (en) * 1983-03-31 1984-10-11 伊藤忠製糖株式会社 Desalting of sugar liquid
US4608245A (en) * 1985-10-17 1986-08-26 Gaddy James L Method of separation of sugars and concentrated sulfuric acid
US5084104A (en) * 1989-12-05 1992-01-28 Cultor, Ltd. Method for recovering xylose
JPH04197192A (en) * 1990-11-29 1992-07-16 Kirin Brewery Co Ltd Production of xylose and reduced xylose
JP4223579B2 (en) * 1996-11-18 2009-02-12 三菱商事フードテック株式会社 Method for producing xylose and xylitol
JP2005229822A (en) * 2004-02-17 2005-09-02 Jgc Corp Method for producing monosaccharide from biomass and apparatus for producing monosaccharide
JP2005229821A (en) * 2004-02-17 2005-09-02 Jgc Corp Method for producing monosaccharide from biomass and apparatus for producing monosaccharide
JP2006238728A (en) * 2005-03-01 2006-09-14 Nippon Paper Chemicals Co Ltd Method for producing sugar from papermaking wastewater
US7670813B2 (en) * 2006-10-25 2010-03-02 Iogen Energy Corporation Inorganic salt recovery during processing of lignocellulosic feedstocks
KR101108789B1 (en) * 2007-02-09 2012-03-13 씨제이제일제당 (주) A method for xylitol production using the hydrolysate containing xylose and arabinose prepared from byproduct of tropical fruit biomass
JP5322150B2 (en) * 2008-02-14 2013-10-23 独立行政法人農業・食品産業技術総合研究機構 Method for saccharification of biomass containing cellulose

Also Published As

Publication number Publication date
JP2015083011A (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP2013507953A (en) Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods
US8859808B2 (en) Method for obtaining lactic acid with a high degree of purity from fermentative liquor
CN102363594B (en) Method for separating and purifying succinic acid from fermentation broth
CN101085734A (en) Method for purifying itaconic acid fermentation liquor or extracting itaconic acid from itaconic acid mother liquid by film device
CN109231623A (en) A kind of new process of high salt high rigidity waste water reclaiming recycling soda acid
CN110423192A (en) A kind of recovery method of spandex DMAC/ acetic acid organic liquid waste
CN102452898A (en) Method for producing crystalline xylitol by using membrane technology and indirect electroreduction
CN108128826B (en) Nitric acid-containing wastewater treatment device and treatment method
CN101100437B (en) Method for preparing high-purity beta-alanine
CN101870639A (en) Method for producing kelp mannitol with low energy consumption
CN111235591A (en) A method for preparing monohydrate lithium hydroxide from spodumene sulfuric acid leaching solution
CN114195315A (en) Method for combined treatment of acidic and non-acidic copper-containing etching waste liquid, tin stripping waste liquid and copper nitrate waste liquid
JP6084198B2 (en) Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods
CN104291501B (en) A kind of Integrated Membrane Technology processes the method for ammonium nitrate wastewater
KR101073726B1 (en) Economical manufacturing process of xylose from biomass hydrolysate using electrodialysis and direct recovery method
CN214088113U (en) Landfill leachate's processing and separation extraction element of its salt
CN112591789B (en) Method for obtaining by-product ammonium fertilizer in process of purifying titanium liquid from olefin polymerization industrial waste acid sludge
CN101492369B (en) Separation purification method for benzoic anhydride sour water and production process for allomaleic acid
CN102874955A (en) Combined process for treating terephthalic acid refining wastewater
CN109231252B (en) Separation of SO from high-concentration brine in plasma flue gas treatment42-Preparation of CaSO4Method and system of
CN106117012B (en) A kind of separation and recovery method of the dense room liquid of zymotic fluid electrodialysis desalination
CN111977679A (en) Treatment method of wastewater containing sodium sulfate and sodium chloride
CN111115936A (en) Membrane method treatment process of gallic acid crystallization mother liquor
CN213865655U (en) Front-end equipment for waste salt separation and purification
CN110527751A (en) A kind of removal methods of ion liquid system small molecular sugar

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170124

R150 Certificate of patent or registration of utility model

Ref document number: 6084198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250