[go: up one dir, main page]

JP6080094B2 - Winding core and magnetic component using the same - Google Patents

Winding core and magnetic component using the same Download PDF

Info

Publication number
JP6080094B2
JP6080094B2 JP2012168044A JP2012168044A JP6080094B2 JP 6080094 B2 JP6080094 B2 JP 6080094B2 JP 2012168044 A JP2012168044 A JP 2012168044A JP 2012168044 A JP2012168044 A JP 2012168044A JP 6080094 B2 JP6080094 B2 JP 6080094B2
Authority
JP
Japan
Prior art keywords
alloy
crystal grains
wound
magnetic
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012168044A
Other languages
Japanese (ja)
Other versions
JP2013065827A (en
Inventor
直輝 伊藤
直輝 伊藤
雄太郎 寺門
雄太郎 寺門
元基 太田
元基 太田
克仁 吉沢
克仁 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012168044A priority Critical patent/JP6080094B2/en
Publication of JP2013065827A publication Critical patent/JP2013065827A/en
Application granted granted Critical
Publication of JP6080094B2 publication Critical patent/JP6080094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、配電用トランス、高周波トランス、可飽和リアクトル、磁気スイッチ等に好適な巻磁心に関する。   The present invention relates to a wound magnetic core suitable for a distribution transformer, a high-frequency transformer, a saturable reactor, a magnetic switch, and the like.

各種のリアクトル、チョークコイル、パルスパワー磁性部品、トランス、モータ又は発電機の磁心、電流センサ、磁気センサ、アンテナ磁心、電磁波吸収シート等に用いる軟磁性材としては、珪素鋼、フェライト、Co基非晶質軟磁性合金、Fe基非晶質軟磁性合金及びFe基ナノ結晶軟磁性合金がある。珪素鋼は安価で磁束密度が高いが、高周波では損失が大きく、かつ薄くしにくい。フェライトは飽和磁束密度が低いので、動作磁束密度が大きなハイパワー用途では磁気飽和しやすい。Co基非晶質合金は高価な上に、飽和磁束密度が1 T以下と低いので、ハイパワー用に使用すると部品が大きくなり、また熱的に不安定であるため経時変化により損失が増加する。Fe基非晶質軟磁性合金は飽和磁束密度が1.5T程度とまだ低く、また保磁力も十分低いとは言えない。従って、下記するFe基ナノ結晶軟磁性合金が有望である。   Soft magnetic materials used for various reactors, choke coils, pulse power magnetic components, transformers, motor or generator magnetic cores, current sensors, magnetic sensors, antenna cores, electromagnetic wave absorbing sheets, etc. There are crystalline soft magnetic alloys, Fe-based amorphous soft magnetic alloys and Fe-based nanocrystalline soft magnetic alloys. Silicon steel is inexpensive and has a high magnetic flux density, but at high frequencies it has a large loss and is difficult to thin. Since ferrite has a low saturation magnetic flux density, magnetic saturation is likely to occur in high power applications where the operating magnetic flux density is large. Co-based amorphous alloys are expensive and have a low saturation magnetic flux density of 1 T or less, so the parts become large when used for high power, and the loss increases with time due to thermal instability. . The Fe-based amorphous soft magnetic alloy has a saturation magnetic flux density as low as about 1.5 T and cannot be said to have a sufficiently low coercive force. Therefore, the following Fe-based nanocrystalline soft magnetic alloy is promising.

特許文献1は、組成式:Fe100-x-y-zCuxByXz(但し、XはSi,S,C,P,Al,Ge,Ga,Beからなる群から選ばれた少なくとも一種の元素であり、x,y及びzはそれぞれ原子%で、0.1≦x≦3.0、10≦y≦20、0<z≦10.0、及び10<y+z≦24の条件を満たす数である。)により表され、組織の少なくとも一部が結晶粒径60 nm以下の結晶粒を非晶質母相中に30体積%以上有し、もって1.7 T以上の高い飽和磁束密度と低い保磁力を有するFe基ナノ結晶軟磁性合金を開示している。このFe基ナノ結晶軟磁性合金は、Fe基合金の溶湯を急冷することにより非晶質中に平均粒径30 nm以下の微結晶粒が30体積%未満の割合で分散した初期超微結晶合金を一旦作製し、この初期超微結晶合金に高温短時間又は低温長時間の熱処理を施すことにより製造される。 Patent Document 1 discloses a composition formula: Fe 100-xyz Cu x B y X z (where X is at least one element selected from the group consisting of Si, S, C, P, Al, Ge, Ga, and Be). X, y, and z are each atomic% and are represented by the following conditions: 0.1 ≦ x ≦ 3.0, 10 ≦ y ≦ 20, 0 <z ≦ 10.0, and 10 <y + z ≦ 24. Fe-based nanocrystalline soft particles with a high saturation magnetic flux density of 1.7 T or more and a low coercive force, with at least a part of the structure having 30% by volume or more of crystal grains with a crystal grain size of 60 nm or less in the amorphous matrix. A magnetic alloy is disclosed. This Fe-based nanocrystalline soft magnetic alloy is an initial ultra-microcrystalline alloy in which fine crystal grains with an average particle size of 30 nm or less are dispersed in an amorphous material at a rate of less than 30% by quenching the molten Fe-based alloy. Is produced by subjecting this initial ultrafine crystal alloy to heat treatment at high temperature for a short time or at low temperature for a long time.

特許文献2は、組成式:Fe100-x-yAxXy(ただし、AはCu及び/又はAuであり、XはB,Si,S,C,P,Al,Ge,Ga及びBeからなる群から選ばれた少なくとも一種の元素であり、x及びyはそれぞれ原子%で、0<x≦5、及び10≦y≦24の条件を満たす数である。)により表される組成を有し、薄帯の表面から120 nm超の深さに、平均粒径が60 nm以下の結晶粒が非晶質中に30体積%以上分散した母相組織を有し、かつ薄帯の表面から120 nm以下の深さに非晶質層を有するFe基ナノ結晶軟磁性合金薄帯を開示している。この合金薄帯では、薄帯の最表面にナノ結晶層が形成され、ナノ結晶層の内側に非晶質層が形成されること、また非晶質層と母相との間に粗大結晶粒層が形成され得ることが記載されている。尚、粗大結晶粒層の結晶粒径は母相の平均結晶粒径の2倍以下であることが望ましいとされている。 Patent Document 2 discloses a composition formula: Fe 100-xy A x X y (where A is Cu and / or Au, and X is composed of B, Si, S, C, P, Al, Ge, Ga, and Be). And at least one element selected from the group, wherein x and y are atomic%, each having a composition satisfying the conditions of 0 <x ≦ 5 and 10 ≦ y ≦ 24) And having a parent phase structure in which crystal grains having an average grain size of 60 nm or less are dispersed in an amorphous material at a depth of more than 120 nm from the surface of the ribbon, and 120% from the surface of the ribbon. An Fe-based nanocrystalline soft magnetic alloy ribbon having an amorphous layer at a depth of less than nm is disclosed. In this alloy ribbon, a nanocrystal layer is formed on the outermost surface of the ribbon, an amorphous layer is formed inside the nanocrystal layer, and coarse crystal grains are formed between the amorphous layer and the parent phase. It is described that a layer can be formed. The crystal grain size of the coarse crystal grain layer is desirably less than twice the average crystal grain size of the parent phase.

これらの合金薄帯は、一般に液相温度以上に加熱された合金溶湯を高速で回転する銅合金製冷却ロール上にノズルから噴出させ、急速冷却固化させて製造する。この液体急冷法には、両側からの冷却ロールと密着させる双ロール法も存在するが、一般には片側のみ接触させる片ロール法を用いて製造される。片ロール法により製造された合金薄帯では冷却ロールに接触して急速固化したロール接触面と、その反対側の自由面を有することになる。   These alloy ribbons are generally produced by jetting molten alloy heated to a temperature higher than the liquidus temperature from a nozzle onto a copper alloy cooling roll rotating at high speed, and rapidly cooling and solidifying. In this liquid quenching method, there is a twin roll method in which the cooling rolls are brought into close contact with both sides, but in general, it is manufactured using a single roll method in which only one side is brought into contact. An alloy ribbon manufactured by the one-roll method has a roll contact surface that rapidly solidifies in contact with a cooling roll and a free surface on the opposite side.

上記合金薄帯は、板厚が非常に薄く(数十μm〜数百μm)、これを巻いた巻磁心は曲げによる応力が熱処理後も残留し、単板試料とは異なる磁気特性を示すことが知られている。その為、薄帯の巻き方にも工夫が加えられてきた。例えば、特許文献3の巻磁心は、アモルファス合金薄帯について平滑度の高い面(ロール接触面)を内側にして巻くことにより、凹凸を有する自由面が外側に位置するので内側にかかる圧縮応力が小さくなる。その結果、応力に伴う異方性が小さくなり鉄損も小さくできるとしている。しかしながら、現在では製造装置や製造方法等の確立により、過去に見られた自由面の凹凸はほぼ消滅しており、自由面とロール面の表面粗さ(Ra)に顕著な差異はほとんど見られない。   The alloy ribbon has a very thin plate thickness (several tens to several hundreds of μm), and the wound magnetic core wound with it has a stress that remains after bending and exhibits magnetic properties different from those of a single plate sample. It has been known. For this reason, ingenuity has also been added to the method of winding the ribbon. For example, in the wound magnetic core of Patent Document 3, the amorphous alloy ribbon is wound with a highly smooth surface (roll contact surface) on the inside, and the free surface having irregularities is located on the outside, so that the compressive stress applied to the inside is reduced. Get smaller. As a result, the anisotropy associated with the stress is reduced and the iron loss can be reduced. However, due to the establishment of manufacturing equipment and manufacturing methods, the unevenness of the free surface seen in the past has almost disappeared, and there is almost no noticeable difference between the surface roughness (Ra) of the free surface and the roll surface. Absent.

また、特許文献4によれば、特許文献3とは逆に、ロール接触面を外側にして巻くことにより鉄損を小さく出来るとしている。これは、薄帯製造時の急冷速度が薄帯深さ方向で異なることにより深さ方向の密度に勾配が生じ、自由体積の大きいロール接触面を外側に巻いて熱処理を行うと、収縮量の差により圧縮力が生じ90°磁壁が生じることにより磁区が細分化され、渦電流が減少するからとしている。しかしながら、アモルファス合金薄帯においては深さ方向の密度勾配の差異はほとんど見られず、本文献で述べられたほどの特性の差異は確認できていない。   According to Patent Document 4, contrary to Patent Document 3, iron loss can be reduced by winding the roll contact surface outward. This is because the rapid cooling rate at the time of manufacturing the ribbon varies in the depth direction of the ribbon, resulting in a gradient in the density in the depth direction. This is because a compressive force is generated due to the difference and a 90 ° domain wall is generated, so that the magnetic domains are subdivided and eddy currents are reduced. However, almost no difference in the density gradient in the depth direction is observed in the amorphous alloy ribbon, and the difference in characteristics as described in this document cannot be confirmed.

国際公開WO2007/032531号公報International Publication WO2007 / 032531 国際公開WO2008/114605号公報International Publication WO2008 / 114605 特公昭58−41649号公報Japanese Patent Publication No.58-41649 特許第2817965号公報Japanese Patent No. 2817965

従来、特許文献3、4のようにアモルファス合金薄帯(Fe基非晶質軟磁性合金)を用いた巻磁心の検討はあるが、特許文献1、2のように初期超微結晶粒を有する薄帯を用いた巻磁心については検討されていない。例えば、このFe基ナノ結晶軟磁性合金は高い飽和磁束密度と低い保磁力を発現することから変圧器、可飽和リアクトル、磁気スイッチ等の磁性部品として有望であるが、巻磁心とした場合はさらに鉄損や励磁電力(皮相電力)が小さいことが望まれる。   Conventionally, there has been a study of a wound core using an amorphous alloy ribbon (Fe-based amorphous soft magnetic alloy) as in Patent Documents 3 and 4, but it has initial ultrafine crystal grains as in Patent Documents 1 and 2. A wound core using a thin ribbon has not been studied. For example, this Fe-based nanocrystalline soft magnetic alloy is promising as a magnetic component such as a transformer, a saturable reactor, and a magnetic switch because it exhibits a high saturation magnetic flux density and a low coercive force. Small iron loss and exciting power (apparent power) are desired.

以上のことより、本発明の目的は、特許文献1、2のFe基ナノ結晶軟磁性合金薄帯の結晶化の性状に改善を加え、この合金薄帯を用いた巻磁心について、巻き方の違いによる磁気特性に与える影響を解明し、もって低鉄損かつ低励磁電力である巻磁心を提供することにある。また、この巻磁心を用いた高効率かつ低騒音の磁性部品を提供することである。   In view of the above, the object of the present invention is to improve the crystallization properties of the Fe-based nanocrystalline soft magnetic alloy ribbons of Patent Documents 1 and 2, and for winding cores using this alloy ribbon, The purpose is to provide a wound core having low iron loss and low excitation power by elucidating the influence of the difference on magnetic characteristics. Another object of the present invention is to provide a highly efficient and low noise magnetic component using the wound magnetic core.

本発明は、一般式:Fe100−x−y−zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、4≦y≦22、0≦z≦15、及びx+y+z≦25の条件を満たす数である。)により表される組成を有し、薄帯厚さ16〜25μm、非晶質母相中に平均粒径60nm以下の微結晶粒が30体積%以上の割合で分散した組織を有し、ロール接触面表面から2.9μm以下の範囲に前記微結晶粒の平均粒径の2倍以上の平均粒径を有する粗大結晶粒を含む層が形成されたFe基ナノ結晶軟磁性合金薄帯からなる巻磁心であって、前記Fe基ナノ結晶軟磁性合金薄帯のロール接触面が外側に巻かれていることを特徴とする巻磁心である。ここで、上記した粗大結晶粒を含む層は自由面側にも形成され得るが、自由面側は微結晶粒の数密度が高く、粗大結晶粒層の深さはロール接触面側のそれよりも浅い。よって、粗大結晶粒層がある面でもより深く形成された面がロール接触面であることが特定される。 The present invention is a general formula: Fe100-x-y-AzByXz (where A is Cu and / or Au, and X is at least one selected from Si, S, C, P, Al, Ge, Ga and Be) And x, y, and z are numbers in atomic% that satisfy the conditions of 0 <x ≦ 5, 4 ≦ y ≦ 22, 0 ≦ z ≦ 15, and x + y + z ≦ 25, respectively. It has a composition, a ribbon thickness of 16 to 25 μm, a structure in which fine crystal grains having an average grain size of 60 nm or less are dispersed in an amorphous matrix at a ratio of 30% by volume or more, and 2 from the surface of the roll contact surface. A wound magnetic core comprising a Fe-based nanocrystalline soft magnetic alloy ribbon in which a layer containing coarse crystal grains having an average grain size of at least twice the average grain size of the fine crystal grains is formed in a range of .9 μm or less; The roll contact surface of the Fe-based nanocrystalline soft magnetic alloy ribbon is wound outward It is a wound magnetic core characterized by being. Here, the layer containing coarse crystal grains can be formed on the free surface side, but the free surface side has a higher number density of fine crystal grains, and the depth of the coarse crystal grain layer is larger than that on the roll contact surface side. Also shallow. Therefore, it is specified that the surface formed deeper than the surface having the coarse crystal grain layer is the roll contact surface.

もう一つの、本発明は、上記巻磁心を用いた磁性部品である。高効率、低騒音の磁性部品を実現することができる。   Another aspect of the present invention is a magnetic component using the wound magnetic core. High-efficiency, low-noise magnetic parts can be realized.

本発明によれば、Fe基ナノ結晶軟磁性合金薄帯の粗大結晶粒を含む層の形成深さが抑制されているので、安定した高飽和磁束密度と低保磁力を発現することができる。そして、この粗大結晶粒層を有するロール接触面を外側にして巻くことにより、鉄損が低減し、且つ励磁電力(皮相電力)を低減した巻磁心となる。
よって、この巻磁心を用いることにより、高飽和磁束密度且つ低鉄損であるため効率が良く、かつ低励磁電力のため騒音が少ない磁性部品を提供できる。
According to the present invention, since the formation depth of the layer containing coarse crystal grains of the Fe-based nanocrystalline soft magnetic alloy ribbon is suppressed, stable high saturation magnetic flux density and low coercive force can be expressed. And it rolls by making the roll contact surface which has this coarse crystal grain layer outside, and it becomes a wound core which reduced iron loss and reduced exciting power (apparent power).
Therefore, by using this wound magnetic core, it is possible to provide a magnetic component with high efficiency because it has a high saturation magnetic flux density and low iron loss and low noise due to low excitation power.

(a)低い冷却能力の冷却ロールを用いて製造された初期超微結晶合金のロール接触面近傍の断面を示す概略図、(b)高い冷却能力の冷却ロールを用いて製造された初期超微結晶合金のロール接触面近傍の断面を示す概略図である。(A) Schematic showing a cross section near the roll contact surface of an initial ultrafine crystal alloy manufactured using a cooling roll with a low cooling capacity, (b) Initial ultrafine manufactured using a cooling roll with a high cooling capacity It is the schematic which shows the cross section of the roll contact surface vicinity of a crystal alloy. 非晶質母相のナノ結晶化による第一の発熱ピーク及び化合物析出による第三の発熱ピークを有するDSC曲線を示すグラフである。It is a graph which shows the DSC curve which has the 1st exothermic peak by nanocrystallization of an amorphous mother phase, and the 3rd exothermic peak by compound precipitation. 粗大結晶粒の生成による第二の発熱ピークを有するDSC曲線を示すグラフである。It is a graph which shows the DSC curve which has the 2nd exothermic peak by the production | generation of a coarse crystal grain. (a)粗大結晶粒層が薄い場合のB-H曲線を示すグラフ、(b)粗大結晶粒層が厚い場合のB-H曲線を示すグラフである。(A) The graph which shows a BH curve when a coarse crystal grain layer is thin, (b) The graph which shows a BH curve when a coarse crystal grain layer is thick. (a)DSC曲線における第一の発熱ピーク及び第二の発熱ピークの総発熱量を求める方法を示す概略図、(b)DSC曲線における第二の発熱ピークの発熱量を求める方法を示す概略図である。(A) Schematic showing a method for obtaining the total calorific value of the first exothermic peak and the second exothermic peak in the DSC curve, (b) Schematic showing a method for obtaining the calorific value of the second exothermic peak in the DSC curve It is. 冷却水の入口温度が低い場合及び高い場合における薄帯の厚さ方向の冷却速度分布を示すグラフである。It is a graph which shows the cooling rate distribution of the thickness direction of a ribbon in the case where the inlet temperature of cooling water is low and high. 本発明を説明するための熱処理前後の初期超微結晶粒の変化を示した模式図である。It is the schematic diagram which showed the change of the initial ultrafine crystal grain before and behind heat processing for demonstrating this invention. (a)ロール接触面を外側に巻いた本発明例、(b)ロール接触面を内側に巻いた比較例のそれぞれの残留応力と磁歪の関係を示す模式図である。It is a schematic diagram which shows the relationship of each residual stress and magnetostriction of the example of this invention which wound the roll contact surface outside (b) and the comparative example which wound the roll contact surface inside. (a)試料1-8のナノ結晶軟磁性合金薄帯のロール接触面近傍の断面を示すTEM写真、(b)試料1-7のナノ結晶軟磁性合金薄帯のロール接触面近傍の断面を示すTEM写真である。(A) TEM photograph showing the cross section near the roll contact surface of the nanocrystalline soft magnetic alloy ribbon in sample 1-8, (b) Cross section near the roll contact surface of the nanocrystalline soft magnetic alloy ribbon in sample 1-7 It is a TEM photograph shown. ロール接触面を外側に巻いた本発明例の巻磁心の鉄損(P)、ヒステリシス損失(Ph)、渦電流損失(Pe)、励磁電力(S)の熱処理温度依存性を示すグラフである。6 is a graph showing the heat treatment temperature dependence of the core loss (P), hysteresis loss (Ph), eddy current loss (Pe), and excitation power (S) of the wound core of the present invention in which the roll contact surface is wound outward. ロール接触面を内側に巻いた比較例の巻磁心の鉄損(P)、ヒステリシス損失(Ph)、渦電流損失(Pe)、励磁電力(S)の熱処理温度依存性を示すグラフである。6 is a graph showing the heat treatment temperature dependence of iron loss (P), hysteresis loss (Ph), eddy current loss (Pe), and excitation power (S) of a wound core of a comparative example in which the roll contact surface is wound inward. ロール接触面を外側に巻いた本発明例の巻磁心の保磁力(Hc)、残留磁束密度(Br)、磁束密度(B80)の熱処理温度依存性を示すグラフである。6 is a graph showing the heat treatment temperature dependence of the coercive force (Hc), residual magnetic flux density (Br), and magnetic flux density (B 80 ) of the wound core of the present invention example in which the roll contact surface is wound outward. ロール接触面を内側に巻いた比較例の巻磁心の保磁力(Hc)、残留磁束密度(Br)、磁束密度(B80)の熱処理温度依存性を示すグラフである。6 is a graph showing the heat treatment temperature dependence of the coercive force (Hc), residual magnetic flux density (Br), and magnetic flux density (B 80 ) of a wound core of a comparative example in which the roll contact surface is wound inward. 巻磁心Bの1.55T、50Hzにおける鉄損(P)と励磁電力(S)の熱処理温度依存性を示すグラフである。It is a graph which shows the heat treatment temperature dependence of the iron loss (P) and excitation electric power (S) in 1.55T and 50Hz of the winding core B. 巻磁心Cの1.55T、50Hzにおける鉄損(P)と励磁電力(S)の熱処理温度依存性を示すグラフである。It is a graph which shows the heat treatment temperature dependence of the iron loss (P) and excitation electric power (S) in 1.55T and 50Hz of the winding core C. ロール接触面を外側に巻いた場合と内側に巻いた場合の巻内径と鉄損(P)の関係を示すグラフである。4 is a graph showing a relationship between a winding inner diameter and an iron loss (P) when the roll contact surface is wound outward and when wound inside. ロール接触面を外側に巻いた場合と内側に巻いた場合の巻内径と励磁電力(S)の関係を示すグラフである。6 is a graph showing a relationship between a winding inner diameter and excitation power (S) when the roll contact surface is wound outward and when wound inside.

先ず、本発明の巻磁心で用いるFe基ナノ結晶軟磁性合金薄帯(以下、ナノ結晶軟磁性合金薄帯あるいは単に合金薄帯と言うことがある。)を以下詳細に説明する。本明細書で使用する用語「初期超微結晶粒」は、合金溶湯を急冷してなる非晶質合金に析出した結晶核であって、熱処理により微結晶粒に成長するものを意味し、用語「微結晶粒」は前記初期超微結晶粒から熱処理により成長した微結晶粒を意味する。なお、前記非晶質合金を微結晶粒の核となる初期超微結晶粒が析出しているので、「初期超微結晶合金」と呼ぶ。   First, the Fe-based nanocrystalline soft magnetic alloy ribbon (hereinafter sometimes referred to as nanocrystalline soft magnetic alloy ribbon or simply alloy ribbon) used in the wound core of the present invention will be described in detail below. As used herein, the term “initial ultrafine crystal grains” means crystal nuclei that have precipitated in an amorphous alloy formed by rapidly cooling a molten alloy and grow into fine crystal grains by heat treatment. “Microcrystalline grains” mean microcrystalline grains grown from the initial ultrafine crystalline grains by heat treatment. The amorphous alloy is referred to as an “initial ultrafine crystal alloy” because initial ultrafine crystal grains that become the nuclei of fine crystal grains are precipitated.

[1] 初期超微結晶合金の結晶化と発熱ピーク
図1(a) は冷却能力が低い(冷却効率が悪い)冷却ロールを用いた場合の初期超微結晶合金の冷却ロール接触面近傍の組織を示し、図1(b) は冷却能力が高い(冷却効率が良い)冷却ロールを用いた場合の初期超微結晶合金の冷却ロール接触面近傍の組織を示す。ロール面から離れた位置では、冷却過程でCu原子の拡散により凝集してCuクラスター(数 nm程度の規則的な格子)が形成され、Cuクラスターを核として初期超微結晶粒が析出する。実験室レベルの冷却能力の低い冷却ロールの場合、初期超微結晶粒はロール接触面近傍の領域にも析出し、合金の断面方向に偏りなく比較的高密度で存在するので、粗大化が抑制され、また残留する非晶質相のFe含有量が大きく低減するので化合物析出温度TX3が高い。一方、冷却能力が高い量産用の冷却ロールの場合、ロール接触面近傍ではCuの拡散が抑えられてCuクラスターが形成されにくいので、初期超微結晶粒の数密度は著しく低い。この傾向は自由面側にもあるが、ロール接触面側により顕著に現れる。
[1] Crystallization and exothermic peak of initial microcrystalline alloy Fig. 1 (a) shows the microstructure of the contact surface of the initial microcrystalline alloy near the cooling roll when a cooling roll with low cooling capacity (low cooling efficiency) is used. FIG. 1 (b) shows the structure in the vicinity of the cooling roll contact surface of the initial microcrystalline alloy when a cooling roll having a high cooling capacity (high cooling efficiency) is used. At a position distant from the roll surface, Cu clusters are diffused by the diffusion of Cu atoms in the cooling process to form Cu clusters (regular lattices of several nm), and the initial ultrafine crystal grains are precipitated with the Cu clusters as nuclei. In the case of a chill roll with low laboratory-level cooling capacity, the initial ultrafine crystal grains are also deposited in the area near the roll contact surface and are present in a relatively high density without being biased in the cross-sectional direction of the alloy, thereby suppressing coarsening. In addition, since the Fe content of the remaining amorphous phase is greatly reduced, the compound precipitation temperature T X3 is high. On the other hand, in the case of a mass production cooling roll having a high cooling capacity, the number density of the initial ultrafine crystal grains is extremely low because Cu diffusion is suppressed near the roll contact surface and Cu clusters are not easily formed. Although this tendency is also on the free surface side, it appears more remarkably on the roll contact surface side.

初期超微結晶合金を熱処理すると、初期超微結晶粒から微結晶粒への成長(ナノ結晶化)速度は遅いので、ナノ結晶化開始温度TX1から化合物析出温度TX3までの100℃以上の範囲にわたって、ナノ結晶化はゆっくり進む。その結果、図2に示すように、DSC曲線には300℃〜500℃の間のナノ結晶化開始温度TX1と化合物析出温度TX3との間に、ナノ結晶化による発熱を表すブロードな第一の発熱ピークP1が現れる。 When the initial ultrafine crystal alloy is heat-treated, the growth rate from the initial ultrafine crystal grains to the fine crystal grains (nanocrystallization) is slow, so that the temperature of 100 ° C or higher from the nanocrystallization start temperature T X1 to the compound precipitation temperature T X3 Over a range, nanocrystallization proceeds slowly. As a result, as shown in FIG. 2, the DSC curve shows a broad first value indicating the exotherm due to nanocrystallization between the nanocrystallization initiation temperature T X1 and the compound precipitation temperature T X3 between 300 ° C. and 500 ° C. One exothermic peak P1 appears.

ナノ結晶化過程では、残留非晶質相はFeを奪われてボロン濃度が高くなるために安定化し、結晶粒の成長を抑制すると考えられていた。ところが初期超微結晶合金を連続的に製造すると、図3に示すように第一の発熱ピークP1の途中に、例えば約400〜460℃と狭い温度範囲の第二の発熱ピークP2が現れることがある。この第二の発熱ピークP2は、初期超微結晶粒が少ないロール接触面近傍領域(初期超微結晶粒欠乏領域)における非晶質相の結晶化に伴う発熱により発生することが分った。初期超微結晶粒欠乏領域では熱処理により非晶質相の結晶化が急激に起こるので、母相の微結晶粒より粗大な結晶粒に成長するだけでなく、初期超微結晶粒欠乏領域が深いと、それだけ深い粗大結晶粒層が形成され、実効結晶磁気異方性が大きくなり、磁気飽和性が悪化することが分った。   In the nanocrystallization process, it was thought that the residual amorphous phase was stabilized because Fe was deprived and the boron concentration was increased, thereby suppressing the growth of crystal grains. However, when the initial microcrystalline alloy is continuously produced, a second exothermic peak P2 having a narrow temperature range of about 400 to 460 ° C., for example, appears in the middle of the first exothermic peak P1 as shown in FIG. is there. This second exothermic peak P2 was found to be generated by heat generation accompanying crystallization of the amorphous phase in the region in the vicinity of the roll contact surface where there are few initial ultrafine crystal grains (initial ultrafine crystal grain deficient region). In the initial ultrafine crystal grain-deficient region, crystallization of the amorphous phase occurs rapidly by heat treatment, so that not only does the crystal grain grow coarser than the microcrystal grains of the parent phase, but the initial ultrafine crystal grain-deficient region is deep. Thus, it was found that a deep coarse crystal grain layer was formed, the effective magnetocrystalline anisotropy was increased, and the magnetic saturation was deteriorated.

[2] 軟磁気特性に対する粗大結晶粒層の影響
このナノ結晶軟磁性合金は、表面から順にナノ結晶層、非晶質層、及びナノ結晶粒層を有する複合組織を有しているが、この組織は必須ではない。尚、粗大結晶粒層は非晶質層の中に粗大結晶粒が析出したものと言えるので、非晶質層の存在が不明瞭になる場合もある。ここで使用する用語「層」は明瞭な境界で区分されたものではなく、所定の条件を満たす厚さ方向の範囲を意味する。例えば、ナノ結晶層は20 nm程度の微結晶粒が析出した極薄い範囲であり、粗大結晶粒層は母相中の微結晶粒の平均粒径の2倍以上の平均粒径を有する粗大結晶粒を含む厚さ方向の範囲である。具体的には、粗大結晶粒層の表面からの深さは2.9μm以下であり、好ましくは2.7μm以下であり、より好ましくは2.5μm以下(0を含む)である。尚、自由面側の粗大結晶粒層はロール接触面側よりも少なく、その深さは大きくても0.5μm以内に収まっている。
[2] Influence of Coarse Grain Layer on Soft Magnetic Properties This nanocrystalline soft magnetic alloy has a composite structure having a nanocrystalline layer, an amorphous layer, and a nanocrystalline layer in order from the surface. Organization is not essential. Note that the coarse crystal grain layer can be said to have coarse crystal grains precipitated in the amorphous layer, so the presence of the amorphous layer may be unclear. As used herein, the term “layer” is not divided by a clear boundary, but means a range in the thickness direction that satisfies a predetermined condition. For example, the nanocrystal layer is a very thin range where fine crystal grains of about 20 nm are deposited, and the coarse crystal grain layer is a coarse crystal having an average grain size that is at least twice the average grain size of the microcrystal grains in the parent phase. It is a range in the thickness direction including grains. Specifically, the depth from the surface of the coarse crystal grain layer is 2.9 μm or less, preferably 2.7 μm or less, more preferably 2.5 μm or less (including 0). Incidentally, the coarse crystal grain layer on the free surface side is smaller than the roll contact surface side, and the depth is within 0.5 μm at most.

粗大結晶粒層が薄い場合には、図4(a) に示すB-H曲線のように低磁場(80 A/m)での磁束密度B80と高磁場(8000 A/m)での磁束密度B8000(ほぼ飽和磁束密度Bsと同じ)との比B80/B8000が大きく、軟磁気特性が良好である。一方、粗大結晶粒層が厚い場合には、図4(b) に示すB-H曲線のようにB80/B8000が小さい。一般に、B80/B8000が大きいほど飽和磁化特性が良好である。B80/B8000は0.85以上が好ましく、0.88以上がより好ましい。 When the coarse grain layer is thin, the magnetic flux density B 80 at a low magnetic field (80 A / m) and the magnetic flux density B at a high magnetic field (8000 A / m) as shown in the BH curve in Fig. 4 (a). The ratio B 80 / B 8000 to 8000 (approximately the same as the saturation magnetic flux density B s ) is large, and the soft magnetic characteristics are good. On the other hand, when the coarse crystal grain layer is thick, B 80 / B 8000 is small as shown in the BH curve shown in FIG. 4 (b). In general, the larger B 80 / B 8000 is, the better the saturation magnetization characteristic is. B 80 / B 8000 is preferably 0.85 or more, and more preferably 0.88 or more.

保磁力Hcは、母相組織の平均結晶粒径だけでなく第二の発熱ピークの割合にも依存する。上記の通り、高い冷却能力の冷却ロールを用いて作製した初期超微結晶合金では急冷効果が合金のより深い部分まで届くので、初期超微結晶粒欠乏領域は広く、保磁力Hcは大きくなる。 The coercive force H c depends not only on the average crystal grain size of the matrix structure but also on the ratio of the second exothermic peak. As described above, in the initial microcrystalline alloy produced using a cooling roll having a high cooling capacity, the rapid cooling effect reaches a deeper part of the alloy, so that the initial microcrystalline grain deficient region is wide and the coercive force H c is increased. .

高いB80/B8000及び低い保磁力Hcの両方の条件を満たすには、粗大結晶粒層の形成が抑制された初期超微結晶合金を得る必要がある。このような初期超微結晶合金を熱処理することにより得られるDSC曲線では、ナノ結晶化総発熱量に対する第二の発熱ピークの割合が小さい。ナノ結晶化総発熱量は第一の発熱ピーク及び第二の発熱ピークの総発熱量であり、図5(a) に示すDSC曲線においてTX1からTX3までの曲線と両点を通る直線で囲まれた領域の面積Sに相当する。第二の発熱ピークP2の発熱量は、図5(b) に示すように第二の発熱ピークP2の開始温度TX2Sから終了温度TX2Eまでの曲線と両点を通る直線で囲まれた領域の面積S2に相当する。第一の発熱ピークP1の発熱量は面積S1(=S−S2)に相当する。従って、ナノ結晶化総発熱量に対する第二の発熱ピークの割合はS2/Sにより求められる。 In order to satisfy both the high B 80 / B 8000 and the low coercive force H c , it is necessary to obtain an initial ultrafine crystal alloy in which the formation of a coarse grain layer is suppressed. In the DSC curve obtained by heat-treating such an initial microcrystalline alloy, the ratio of the second exothermic peak with respect to the total heat generation amount of nanocrystallization is small. The total calorific value of the nanocrystallization is the total calorific value of the first exothermic peak and the second exothermic peak.The DSC curve shown in Fig. 5 (a) is a straight line that passes through the curve from T X1 to T X3. This corresponds to the area S of the enclosed region. The calorific value of the second exothermic peak P2, as shown in FIG. 5 (b), is a region surrounded by a curve from the start temperature T X2S to the end temperature T X2E of the second exothermic peak P2 and a straight line passing through both points. It corresponds to the area S 2. The calorific value of the first exothermic peak P1 corresponds to the area S 1 (= S−S 2 ). Therefore, the ratio of the second exothermic peak with respect to the total heat generation amount of nanocrystallization is obtained by S 2 / S.

具体的には、ナノ結晶化総発熱量に対する第二の発熱ピークP2の発熱量の割合が3%以下であるとB80/B8000は0.85以上であり、第二の発熱ピークの割合が低下するにつれてB80/B8000は増加する。第二の発熱ピークの割合が1.5%以下になると、保磁力Hcは十分に小さくなる。このため、第二の発熱ピークの割合は好ましくは0〜3%、より好ましくは0〜1.5%、特に好ましくは0〜1.3%である。 Specifically, when the ratio of the calorific value of the second exothermic peak P2 to the total calorific value of nanocrystallization is 3% or less, B 80 / B 8000 is 0.85 or more, and the ratio of the second exothermic peak decreases. As you do, B 80 / B 8000 increases. When the ratio of the second exothermic peak is 1.5% or less, the coercive force Hc is sufficiently small. For this reason, the ratio of the second exothermic peak is preferably 0 to 3%, more preferably 0 to 1.5%, and particularly preferably 0 to 1.3%.

粗大結晶粒の生成に伴って発生する第二の発熱ピークの大きさを左右する要因の一つに冷却ロールの冷却能力がある。冷却能力は、冷却ロールの表面温度及び周速、冷却ロールからの剥離温度等により決まる。一般に、冷却能力が高すぎると初期超微結晶粒が不足した領域が増え、熱処理により粗大結晶粒が増える。その上、第二の発熱ピークは長時間の連続運転により発現するので、冷却ロールの表面温度は長時間の連続運転中に変化していると推定される。そのため、冷却ロールの周速及び剥離温度の他に、冷却ロールの表面温度を決める冷却水の温度を調整する必要がある。   One of the factors that influence the size of the second exothermic peak generated with the formation of coarse crystal grains is the cooling capacity of the cooling roll. The cooling capacity is determined by the surface temperature and peripheral speed of the cooling roll, the peeling temperature from the cooling roll, and the like. In general, if the cooling capacity is too high, the region where the initial ultrafine crystal grains are insufficient increases, and coarse crystal grains increase due to heat treatment. In addition, since the second exothermic peak is expressed by continuous operation for a long time, it is estimated that the surface temperature of the cooling roll changes during the continuous operation for a long time. Therefore, in addition to the peripheral speed and peeling temperature of the cooling roll, it is necessary to adjust the temperature of the cooling water that determines the surface temperature of the cooling roll.

[3] 磁性合金
(1) 組成
本発明のナノ結晶磁性合金は、一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、4≦y≦22、0≦z≦15、及びx+y+z≦25の条件を満たす数である。)により表される組成を有する。
[3] magnetic alloys
(1) Composition The nanocrystalline magnetic alloy of the present invention has a general formula: Fe 100-xyz A x B y X z (where A is Cu and / or Au, and X is Si, S, C, P, Al , Ge, Ga, and Be, and x, y, and z are atomic percentages of 0 <x ≦ 5, 4 ≦ y ≦ 22, 0 ≦ z ≦ 15, and x + y + z ≦ 25, respectively. It is a number that satisfies the condition).

良好な軟磁気特性と高い飽和磁束密度Bsを両立させるために、この合金は、高いFe含有量でも安定的に非晶質相が得られる下記するFe-B-Si系を基本組成とし、これに核生成元素Aを含有する。具体的には、非晶質相を主相とする薄帯が安定的に得られるFeが88原子%以下のFe-B-Si系合金に、Feと非固溶であるCu及び/又はAu(核生成元素A)を添加する。AはCuおよび/またはAuであり初期超微結晶粒を析出させ、その後の熱処理により均質に微結晶粒に成長させる効果がある。   In order to achieve both good soft magnetic properties and high saturation magnetic flux density Bs, this alloy is based on the following Fe-B-Si system, which can stably produce an amorphous phase even with high Fe content. Contains nucleation element A. Specifically, Cu and / or Au, which is insoluble in Fe, is Fe-B-Si alloy with Fe content of 88 atomic% or less, which can stably obtain a ribbon with the amorphous phase as the main phase. Add (nucleating element A). A is Cu and / or Au, and has the effect of precipitating initial ultrafine crystal grains and growing them uniformly into fine crystal grains by subsequent heat treatment.

A元素の量xが5原子%を超えると溶湯の急冷により得られる非晶質相を主相とする薄帯が著しく脆化するため好ましくない。A元素の量xは0.3〜2原子%、好ましくは0.5〜1.6原子%、より好ましくは1〜1.6原子%、特に好ましくは1.2〜1.6原子%である。A元素としてはコスト的にCuが好ましい。   If the amount x of element A exceeds 5 atomic%, a ribbon having an amorphous phase as a main phase obtained by rapid cooling of the molten metal becomes extremely brittle, which is not preferable. The amount x of element A is 0.3 to 2 atomic%, preferably 0.5 to 1.6 atomic%, more preferably 1 to 1.6 atomic%, and particularly preferably 1.2 to 1.6 atomic%. As element A, Cu is preferable in terms of cost.

B(ボロン)は非晶質相の形成を促進する元素である。Bが4原子%未満であると非晶質相を主相とする薄帯を得るのが困難であり、22原子%を超えると飽和磁束密度が著しく低下し好ましくない。B量yは好ましくは10〜20原子%であり、より好ましくは12〜18原子%であり、特に好ましくは12〜16原子%である。   B (boron) is an element that promotes the formation of an amorphous phase. If B is less than 4 atomic%, it is difficult to obtain a ribbon having an amorphous phase as a main phase, and if it exceeds 22 atomic%, the saturation magnetic flux density is remarkably lowered. The B amount y is preferably 10 to 20 atomic%, more preferably 12 to 18 atomic%, and particularly preferably 12 to 16 atomic%.

X元素は、Si, S,C, P, Al, Ge, Ga及びBeから選ばれた少なくとも1種の元素であり、非晶質相を安定化し、磁気特性を改善する効果を有する。特にXがSiである場合結晶磁気異方性の大きいFe-B化合物やFe-P化合物が析出する温度が高くなるため、熱処理温度を高くでき、高温の熱処理を施すことが可能となり微結晶粒の割合が増え、Bsが増加し、B-H曲線の角形性が改善されるとともに、薄帯表面の変質又は変色を抑えることもできるため好ましい。X元素の量zの下限は0原子%でも良いが、1原子%以上であると薄帯の表面にX元素による酸化物層が形成され、内部の酸化を十分に抑制できる。また、X元素量zが15原子%を超えるとBsが著しく低下し好ましくない。X元素量zは好ましくは2〜13原子%であり、より好ましくは3〜10原子%であり、特に好ましくは4〜7原子%である。X元素としてはSiが好ましい。   The X element is at least one element selected from Si, S, C, P, Al, Ge, Ga, and Be, and has an effect of stabilizing the amorphous phase and improving magnetic properties. In particular, when X is Si, the temperature at which the Fe-B compound or Fe-P compound with large crystal magnetic anisotropy precipitates increases, so that the heat treatment temperature can be increased and high temperature heat treatment can be performed. The ratio is increased, Bs is increased, the squareness of the BH curve is improved, and alteration or discoloration of the ribbon surface can be suppressed, which is preferable. The lower limit of the amount z of X element may be 0 atomic%, but if it is 1 atomic% or more, an oxide layer of X element is formed on the surface of the ribbon and the internal oxidation can be sufficiently suppressed. Further, when the X element amount z exceeds 15 atomic%, Bs is remarkably lowered, which is not preferable. The X element amount z is preferably 2 to 13 atomic%, more preferably 3 to 10 atomic%, and particularly preferably 4 to 7 atomic%. Si is preferable as the X element.

X元素のうちPは非晶質相の形成能を向上させる元素であり、微結晶粒の成長を抑えるとともに、Bの酸化皮膜への偏析を抑える。そのため、Pは高靭性、高Bs及び良好な軟磁気特性の実現に好ましい。Pの含有により、例えば軟磁性合金薄帯を半径1 mmの丸棒に巻きつけても割れが発生しなくなる。この効果はナノ結晶化熱処理の昇温速度に係わらず得られる。X元素として他の元素C,Ge,Ga及びBeも用いることができる。これらの元素の含有により磁歪及び磁気特性を調整できる。X元素はまた表面に偏析しやすく、強固な酸化皮膜の形成に有効である。   Of the X elements, P is an element that improves the ability to form an amorphous phase, and suppresses the growth of microcrystalline grains and suppresses segregation of B into the oxide film. Therefore, P is preferable for realizing high toughness, high Bs, and good soft magnetic properties. By containing P, for example, even when a soft magnetic alloy ribbon is wound around a round bar having a radius of 1 mm, cracks do not occur. This effect can be obtained regardless of the heating rate of the nanocrystallization heat treatment. Other elements C, Ge, Ga and Be can also be used as the X element. Magnetostriction and magnetic properties can be adjusted by the inclusion of these elements. X element is also easily segregated on the surface and is effective in forming a strong oxide film.

B量yは、非晶質相中にCuクラスターを生成する為にも少なくとも4原子%は必要であるが、10原子%未満の場合、BとX元素(Si、P)の総量y+zは15≦y+z≦25とする。この範囲であれば10原子%以上の場合と同様の薄帯と軟磁気特性が得られる。このときy+zが15原子%未満では非晶質主相の合金薄帯製造が困難であり、y+zが25原子%を超えると磁束密度の著しい低下を招き好ましくない。   The B amount y needs to be at least 4 atomic% in order to form Cu clusters in the amorphous phase, but if it is less than 10 atomic%, the total amount y + z of B and X elements (Si, P) is 15 ≦ y + z ≦ 25. Within this range, the same ribbon and soft magnetic characteristics as in the case of 10 atomic% or more can be obtained. At this time, when y + z is less than 15 atomic%, it is difficult to produce an amorphous ribbon of an amorphous main phase.

Feの一部をNi,Mn,Co,V,Cr,Ti,Zr,Nb,Mo,Hf,Ta及びWから選ばれた少なくとも一種の元素で置換しても良い。これらの元素置換量は、好ましくは0.01〜10原子%、より好ましくは0.01〜3原子%、特に好ましくは0.01〜1.5原子%である。これらの元素のうち、Ni,Mn,Co,V及びCrはB濃度の高い領域を表面側に移動させる効果を有し、表面に近い領域からミクロ組織が内部の母相に近い組織と同様な組織となり、軟磁性合金薄帯の軟磁気特性(透磁率、保磁力等)を改善する。   A part of Fe may be substituted with at least one element selected from Ni, Mn, Co, V, Cr, Ti, Zr, Nb, Mo, Hf, Ta and W. These element substitution amounts are preferably 0.01 to 10 atomic%, more preferably 0.01 to 3 atomic%, and particularly preferably 0.01 to 1.5 atomic%. Among these elements, Ni, Mn, Co, V and Cr have the effect of moving the region with a high B concentration to the surface side, and the microstructure is similar to the structure close to the internal matrix from the region close to the surface. It becomes a structure and improves the soft magnetic properties (permeability, coercive force, etc.) of the soft magnetic alloy ribbon.

特にFeの一部をA元素とともにFeに固溶するCo又はNiで置換すると、添加し得るA元素の量を増加することができ、結晶組織の微細化が促進され、軟磁気特性が改善される。Ni置換量は0.1〜2原子%が好ましく、0.5〜1原子%がより好ましい。Ni置換量が0.1原子%未満ではハンドリング性の向上効果が不十分であり、2原子%を超えるとBs、B80及びHcが低下する。 In particular, when a part of Fe is replaced with Co or Ni that is dissolved in Fe together with A element, the amount of A element that can be added can be increased, the refinement of crystal structure is promoted, and soft magnetic properties are improved. The The Ni substitution amount is preferably 0.1 to 2 atom%, more preferably 0.5 to 1 atom%. When the Ni substitution amount is less than 0.1 atomic%, the effect of improving the handling property is insufficient, and when it exceeds 2 atomic%, B s , B 80 and H c decrease.

またTi,Zr,Nb,Mo,Hf,Ta及びWも同様にA元素及びメタロイド元素とともに熱処理後も残留する非晶質相に優先的に入るため、軟磁気特性の改善に寄与する。一方、原子量の大きいこれらの元素が多すぎると、単位重量当たりのFeの含有量が低下して磁束密度の低下を招き好ましくない。これらの元素は総量で3原子%以下とするのが好ましい。特にNb及びZrの場合、含有量は合計で2.5原子%以下が好ましく、1.5原子%以下がより好ましい。Ta及びHfの場合、含有量は合計で1.5原子%以下が好ましく、0.8原子%以下がより好ましい。
本発明合金において、OやNなどの不可避不純物を含んでも良い。
Similarly, Ti, Zr, Nb, Mo, Hf, Ta, and W, together with the A element and metalloid element, preferentially enter the amorphous phase remaining after the heat treatment, contributing to the improvement of the soft magnetic properties. On the other hand, if there are too many of these elements having a large atomic weight, the Fe content per unit weight is lowered, leading to a decrease in magnetic flux density, which is not preferable. The total amount of these elements is preferably 3 atomic% or less. Particularly in the case of Nb and Zr, the total content is preferably 2.5 atomic percent or less, and more preferably 1.5 atomic percent or less. In the case of Ta and Hf, the total content is preferably 1.5 atomic percent or less, and more preferably 0.8 atomic percent or less.
The alloy of the present invention may contain inevitable impurities such as O and N.

(2) 母相の組織
熱処理後の母相は、平均粒径60 nm以下の体心立方(bcc)構造の微結晶粒が30%以上の体積分率で非晶質相中に分散した組織を有する。微結晶粒の平均粒径が60 nmを超えると軟磁気特性が低下し好ましくない。微結晶粒の体積分率が30%未満では、非晶質の割合が多すぎ、飽和磁束密度が低く、磁歪も大きくなるため好ましくない。熱処理後の微結晶粒の平均粒径は40 nm以下がより好ましく、30 nm以下が特に好ましい。また熱処理後の微結晶粒の体積分率は40%以上が好ましく、50%以上がより好ましい。60 nm以下の平均粒径及び30%以上の体積分率で、Fe基非晶質合金より磁歪が低く軟磁性に優れた合金薄帯が得られる。同組成のFe基非晶質合金薄帯は磁気体積効果により比較的大きな磁歪を有するが、bcc-Feを主体とする微結晶粒が分散した本発明のFe基ナノ結晶軟磁性合金は磁気体積効果により生じる磁歪がはるかに小さく、騒音低減効果が大きい。
(2) Matrix structure After heat treatment, the matrix is a structure in which microcrystal grains with a body-centered cubic (bcc) structure with an average grain size of 60 nm or less are dispersed in the amorphous phase at a volume fraction of 30% or more. Have If the average grain size of the fine crystal grains exceeds 60 nm, the soft magnetic properties are undesirably lowered. A volume fraction of fine crystal grains of less than 30% is not preferable because the amorphous ratio is too high, the saturation magnetic flux density is low, and the magnetostriction is increased. The average grain size of the fine crystal grains after the heat treatment is more preferably 40 nm or less, and particularly preferably 30 nm or less. Further, the volume fraction of the fine crystal grains after the heat treatment is preferably 40% or more, more preferably 50% or more. With an average particle size of 60 nm or less and a volume fraction of 30% or more, an alloy ribbon having lower magnetostriction and superior soft magnetism than an Fe-based amorphous alloy can be obtained. The Fe-based amorphous alloy ribbon with the same composition has a relatively large magnetostriction due to the magnetovolume effect, but the Fe-based nanocrystalline soft magnetic alloy of the present invention in which fine crystal grains mainly composed of bcc-Fe are dispersed is magnetic volume. The magnetostriction caused by the effect is much smaller and the noise reduction effect is great.

[4] 製造方法
(1) 合金溶湯
合金溶湯は、一般式:Fe100-x-y-zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、4≦y≦22、0≦z≦15、及びx+y+z≦25の条件を満たす数である。)により表される組成を有する。A元素としてCuを使用した場合を例にとって、製造方法を説明する。
[4] Manufacturing method
(1) Alloy melt The alloy melt has the general formula: Fe 100-xyz A x B y X z (where A is Cu and / or Au, and X is Si, S, C, P, Al, Ge, Ga) And at least one element selected from Be, and x, y, and z are atomic percentages that satisfy the conditions of 0 <x ≦ 5, 4 ≦ y ≦ 22, 0 ≦ z ≦ 15, and x + y + z ≦ 25, respectively. It has a composition represented by. Taking the case of using Cu as the element A as an example, the manufacturing method will be described.

(2) 溶湯の急冷
合金溶湯の急冷は単ロール法により行うことができる。溶湯温度は合金の融点より50〜300℃高いのが好ましく、例えば初期超微結晶粒が析出した厚さ数十μmの薄帯を製造する場合、1200℃〜1350℃の溶湯をノズルから冷却ロール上に噴出させるのが好ましい。単ロール法における雰囲気は、合金が活性な金属を含まない場合は大気又は不活性ガス(Ar、窒素等)であり、活性な金属を含む場合は不活性ガス(Ar、He、窒素等)又は真空である。表面に酸化皮膜を形成するためには、溶湯の急冷を酸素含有雰囲気(例えば大気)中で行うのが好ましい。
(2) Quenching of molten metal Quenching of molten alloy can be performed by a single roll method. The molten metal temperature is preferably 50 to 300 ° C. higher than the melting point of the alloy. For example, when manufacturing a ribbon having a thickness of several tens of μm on which initial ultrafine crystal grains are precipitated, a molten roll of 1200 to 1350 ° C. is cooled from the nozzle It is preferable to eject it upward. The atmosphere in the single roll method is air or an inert gas (Ar, nitrogen, etc.) when the alloy does not contain an active metal, and an inert gas (Ar, He, nitrogen, etc.) It is a vacuum. In order to form an oxide film on the surface, it is preferable to quench the molten metal in an oxygen-containing atmosphere (for example, air).

初期超微結晶粒の生成は合金薄帯の冷却速度と時間に密接に関連する。冷却過程でCuは熱拡散により凝集してクラスターを形成し、初期超微結晶粒となる。従って、冷却速度が高い表面域では熱拡散が起きにくく、核となる初期超微結晶粒が生成しにくいので、熱処理後に形成する結晶粒は粗大化する。そのため、微細化のためには、初期超微結晶粒の体積分率(数密度、以下同様)を制御するのが重要である。初期超微結晶粒の体積分率を制御する手段の一つは、冷却ロールの周速の制御である。冷却ロールの周速が速くなると初期超微結晶粒の体積分率が減少し、遅くなると増加する。冷却ロールの周速は15〜50 m/sが好ましく、20〜40 m/sがより好ましく、25〜35
m/sが最も好ましい。冷却ロールの材質は、高熱伝導率の純銅、又はCu-Be、Cu-Cr、Cu-Zr、Cu-Zr-Cr、Cu-Ni-Si等の銅合金が適している。
The formation of initial ultrafine grains is closely related to the cooling rate and time of the alloy ribbon. During the cooling process, Cu agglomerates by thermal diffusion to form clusters, forming initial ultrafine crystal grains. Therefore, in the surface region where the cooling rate is high, thermal diffusion hardly occurs, and initial ultrafine crystal grains serving as nuclei are hardly generated, so that the crystal grains formed after the heat treatment become coarse. For this reason, it is important to control the volume fraction (number density, the same applies hereinafter) of the initial ultrafine crystal grains for miniaturization. One of the means for controlling the volume fraction of the initial ultrafine crystal grains is the control of the peripheral speed of the cooling roll. When the peripheral speed of the cooling roll increases, the volume fraction of the initial ultrafine crystal grains decreases, and increases when it decreases. The peripheral speed of the cooling roll is preferably 15 to 50 m / s, more preferably 20 to 40 m / s, and 25 to 35.
m / s is most preferred. As the material of the cooling roll, pure copper having high thermal conductivity or a copper alloy such as Cu—Be, Cu—Cr, Cu—Zr, Cu—Zr—Cr, Cu—Ni—Si is suitable.

大量生産の場合、又は厚い及び/又は広幅の薄帯を製造する場合、冷却ロールは水冷式が好ましい。冷却ロールの水冷は初期超微結晶粒の体積分率に大きな影響を有する。超微細結晶粒の体積分率および軟磁性を制御するには、冷却ロールの冷却能力(冷却速度と言っても良い)を維持することが有効である。量産ラインにおいては、冷却ロールの冷却能力は冷却水の温度と相関があり、冷却水を所定の温度以上に保つのが効果的である。   In the case of mass production, or when producing a thick and / or wide ribbon, the cooling roll is preferably water-cooled. Water cooling of the cooling roll has a great influence on the volume fraction of the initial ultrafine crystal grains. In order to control the volume fraction and soft magnetism of ultrafine crystal grains, it is effective to maintain the cooling capacity of the cooling roll (which may be referred to as a cooling rate). In a mass production line, the cooling capacity of the cooling roll has a correlation with the temperature of the cooling water, and it is effective to keep the cooling water at a predetermined temperature or higher.

図6は薄帯の厚さ方向の冷却速度の分布を示す。薄帯の冷却速度は冷却ロールの表面に接している部分で最も速く、内部に向かうにつれて低下し、自由(フリー)面で再び空冷により若干高い。曲線Bに示すように冷却水の入口温度が低いと冷却速度が高いため、深い初期超微結晶粒欠乏領域(初期超微結晶粒の数密度が低く、体積分率が不足している)が形成され、ナノ結晶軟磁性合金の軟磁気特性は悪化する。一方、曲線Aに示すように冷却水の入口温度が高いと冷却速度が低いために、浅い初期超微結晶粒欠乏領域が形成され、ナノ結晶軟磁性合金は優れた軟磁気特性を有する。このように冷却水の入口温度を調節することにより薄帯の冷却速度を制御することができ、初期超微結晶粒欠乏領域を低減し、得られるナノ結晶軟磁性合金の軟磁気特性を改善することができる。合金組成及び製造ライン条件に依存するが、冷却水の入口温度は30〜70℃が好ましく、40〜70℃がより好ましく、50〜70℃が特に好ましい。また冷却水の出口温度は40〜80℃が好ましく、50〜80℃がより好ましい。   FIG. 6 shows the cooling rate distribution in the thickness direction of the ribbon. The cooling rate of the ribbon is fastest at the part in contact with the surface of the cooling roll, decreases as it goes inward, and is slightly higher due to air cooling again on the free (free) surface. As shown in curve B, since the cooling rate is high when the cooling water inlet temperature is low, there is a deep initial ultrafine crystal grain-deficient region (the number density of the initial ultrafine crystal grains is low and the volume fraction is insufficient). As a result, the soft magnetic properties of the nanocrystalline soft magnetic alloy deteriorate. On the other hand, since the cooling rate is low when the inlet temperature of the cooling water is high as shown by the curve A, a shallow initial ultrafine crystal grain deficient region is formed, and the nanocrystalline soft magnetic alloy has excellent soft magnetic properties. By adjusting the cooling water inlet temperature in this way, the cooling rate of the ribbon can be controlled, the initial ultrafine crystal grain deficiency region is reduced, and the soft magnetic properties of the resulting nanocrystalline soft magnetic alloy are improved. be able to. Although depending on the alloy composition and production line conditions, the inlet temperature of the cooling water is preferably 30 to 70 ° C, more preferably 40 to 70 ° C, and particularly preferably 50 to 70 ° C. The outlet temperature of the cooling water is preferably 40 to 80 ° C, more preferably 50 to 80 ° C.

(3) 剥離温度
急冷した合金薄帯と冷却ロールとの間にノズルから不活性ガス(窒素等)を吹き付けることにより、合金薄帯を冷却ロールから剥離する。このときの合金薄帯の剥離温度も初期超微結晶粒の体積分率に影響を与えると考えられる。薄帯の剥離温度は不活性ガスを吹き付けるノズルの位置(剥離位置)を変えることにより調整できる。剥離温度は170〜350℃であり、好ましくは200〜340℃であり、より好ましくは250〜330℃である。剥離温度が170℃未満であると、急冷が進んで合金組織がほぼ非晶質となり、Cuの凝集、Cuクラスターの形成、及び初期超微結晶粒の析出に至らず、熱処理後結晶粒が粗大化して好ましくない。上記した冷却ロールでの冷却速度が適正な場合、薄帯の表面域は急冷によりCu量が減って初期超微結晶粒が生成されないが、内部では冷却速度が比較的遅く、不均一核生成サイトとして振る舞うCuクラスターの数密度も高いために初期超微結晶粒が表面域より多く分布し、初期超微結晶粒が均質に生成される。その結果、内部の母相より高いB濃度の(Feに対するBの割合が大きい)層が表面域(深さ30〜130 nm)に形成される。表面近傍の高B濃度の非晶質層により、初期超微結晶合金薄帯は比較的良好な靭性を示す。剥離温度が350℃超であると、結晶化が進み過ぎ、表面近傍に高B濃度非晶質層が形成されないので、十分な靭性が得られにくい。
(3) Peeling temperature The alloy ribbon is peeled from the cooling roll by blowing an inert gas (nitrogen, etc.) from the nozzle between the rapidly cooled alloy ribbon and the cooling roll. It is thought that the peeling temperature of the alloy ribbon at this time also affects the volume fraction of the initial ultrafine crystal grains. The stripping temperature of the ribbon can be adjusted by changing the position (peeling position) of the nozzle that sprays the inert gas. The peeling temperature is 170 to 350 ° C, preferably 200 to 340 ° C, and more preferably 250 to 330 ° C. When the peeling temperature is less than 170 ° C., rapid cooling progresses and the alloy structure becomes almost amorphous, Cu aggregation, Cu cluster formation, and precipitation of initial ultrafine crystal grains do not occur, and the crystal grains after heat treatment are coarse. This is not preferable. When the cooling rate of the above-described cooling roll is appropriate, the surface area of the ribbon is reduced in Cu content due to rapid cooling and the initial ultrafine crystal grains are not generated, but the cooling rate is relatively slow internally, and the heterogeneous nucleation site As the number density of Cu clusters behaving as is high, the initial ultrafine crystal grains are distributed more than the surface area, and the initial ultrafine crystal grains are generated homogeneously. As a result, a layer having a higher B concentration (a higher ratio of B to Fe) than the inner matrix is formed in the surface region (depth 30 to 130 nm). Due to the high B concentration amorphous layer in the vicinity of the surface, the initial ultracrystalline alloy ribbon exhibits relatively good toughness. When the peeling temperature is higher than 350 ° C., crystallization proceeds excessively, and a high B concentration amorphous layer is not formed in the vicinity of the surface, so that it is difficult to obtain sufficient toughness.

剥離した初期超微結晶合金薄帯の内部はまだ比較的高温であるので、さらなる結晶化を防止するために、巻き取る前に初期超微結晶合金薄帯を十分に冷却する。例えば、剥離した初期超微結晶合金薄帯に不活性ガス(窒素等)を吹き付けて、実質的に室温まで冷却した後巻き取る。   Since the inside of the peeled initial microcrystalline alloy ribbon is still relatively hot, the initial ultracrystalline alloy ribbon is sufficiently cooled before winding to prevent further crystallization. For example, an inert gas (nitrogen or the like) is sprayed on the peeled initial ultrafine crystal alloy ribbon, and after cooling to substantially room temperature, winding is performed.

(4) 初期超微結晶合金の薄帯
初期超微結晶合金の薄帯は、平均粒径が30 nm以下の初期超微結晶粒が非晶質母相中に5〜30体積%の割合で分散した組織を有する。初期超微結晶粒の平均粒径が30 nm超であると、下記する熱処理を施すと結晶粒が粗大化しすぎ、軟磁気特性が劣化するため好ましくない。優れた軟磁気特性を得るためには、初期超微結晶粒の平均粒径は25 nm以下が好ましく、20 nm以下がより好ましく、10 nm以下が最も好ましく、5 nm以下が特に好ましい。初期超微結晶粒の平均粒径は1 nm以上であるのが好ましく、2 nm以上であるのがより好ましい。初期超微結晶合金薄帯における初期超微結晶粒の体積分率は0を超え、好ましくは5〜30%の範囲内にある。初期超微結晶粒の体積分率が30%を超えると初期超微結晶粒の平均粒径が30 nm超となる傾向があり、合金薄帯は十分な靭性を有さず、後工程でのハンドリングが困難となる。一方、初期超微結晶粒が存在しないと(完全に非晶質であると)、熱処理により結晶粒が粗大化し好ましくない。初期超微結晶粒の体積分率は10〜30%が好ましく、15〜30%がより好ましい。
(4) The ribbon of the initial ultrafine crystal alloy The ribbon of the initial ultrafine crystal alloy consists of 5-30% by volume of initial ultrafine crystal grains with an average grain size of 30 nm or less in the amorphous matrix. Has a distributed organization. When the average grain size of the initial ultrafine crystal grains exceeds 30 nm, the heat treatment described below is not preferable because the crystal grains become too coarse and the soft magnetic properties deteriorate. In order to obtain excellent soft magnetic properties, the average grain size of the initial ultrafine crystal grains is preferably 25 nm or less, more preferably 20 nm or less, most preferably 10 nm or less, and particularly preferably 5 nm or less. The average grain size of the initial ultrafine crystal grains is preferably 1 nm or more, and more preferably 2 nm or more. The volume fraction of the initial ultrafine crystal grains in the initial ultracrystalline alloy ribbon is greater than 0, preferably in the range of 5 to 30%. If the volume fraction of the initial ultrafine crystal grains exceeds 30%, the average grain size of the initial ultrafine crystal grains tends to exceed 30 nm, and the alloy ribbon does not have sufficient toughness. Handling becomes difficult. On the other hand, if the initial ultrafine crystal grains do not exist (if they are completely amorphous), the crystal grains become coarse due to heat treatment, which is not preferable. The volume fraction of the initial ultrafine crystal grains is preferably 10 to 30%, more preferably 15 to 30%.

初期超微結晶粒間の平均距離が50 nm以下であると、微結晶粒の磁気異方性が平均化され、実効結晶磁気異方性が低下するので好ましい。平均距離が50 nmを超えると、磁気異方性の平均化効果が薄れ、実効結晶磁気異方性が高くなり、軟磁気特性が悪化する。   It is preferable that the average distance between the initial ultrafine crystal grains is 50 nm or less because the magnetic anisotropy of the fine crystal grains is averaged and the effective crystal magnetic anisotropy is reduced. When the average distance exceeds 50 nm, the effect of averaging the magnetic anisotropy decreases, the effective crystal magnetic anisotropy increases, and the soft magnetic properties deteriorate.

(5) 熱処理
初期超微結晶合金を高磁束密度の軟磁性合金とするために、結晶化温度以上で短時間熱処理するとより好ましい結果が得られる。初期超微結晶粒が少ない領域では結晶間距離が大きいために初期超微結晶粒が粗大化し易いが、高温短時間の熱処理では初期超微結晶粒の成長過程で熱処理が終了するため、初期超微結晶粒が粗大化しにくい。高温短時間の熱処理は、昇温速度、最高到達温度及び熱処理時間を調整することにより行うことができる。
(5) Heat treatment In order to make the initial ultrafine crystal alloy a soft magnetic alloy having a high magnetic flux density, a more preferable result can be obtained by performing a heat treatment at a temperature higher than the crystallization temperature for a short time. In the region where there are few initial ultrafine crystal grains, the initial ultrafine crystal grains are likely to be coarse because the inter-crystal distance is large, but in the heat treatment at high temperature and short time, the heat treatment is completed during the initial ultrafine crystal grain growth process. Microcrystal grains are difficult to coarsen. The heat treatment for a short time at high temperature can be performed by adjusting the rate of temperature rise, the maximum temperature reached, and the heat treatment time.

熱処理温度は結晶化開始温度TX1以上、化合物析出温度TX3以下である必要があり、例えば350〜500℃の範囲で5分から240分保持する。本発明では前記温度まで昇温し、前記時間保持後冷却する。熱処理時間を昇温時間を含めて5〜30分間と比較的短くすると80 A/mにおける磁束密度B80を向上できる。特に好ましい熱処理温度は430〜470℃である。昇温時間を含めた熱処理時間はより好ましくは10〜25分である。この範囲で特に低保磁力の特性が得られる。 The heat treatment temperature needs to be not less than the crystallization start temperature T X1 and not more than the compound precipitation temperature T X3 . In this invention, it heats up to the said temperature and it cools after holding | maintaining the said time. With relatively short and between the heat treatment time 5-30 minutes including heating time can improve magnetic flux density B 80 in the 80 A / m. A particularly preferable heat treatment temperature is 430 to 470 ° C. The heat treatment time including the temperature raising time is more preferably 10 to 25 minutes. In this range, particularly low coercive force characteristics can be obtained.

(a) 熱処理雰囲気
熱処理雰囲気は大気中でもよいが、所望の層構成を有する酸化皮膜を形成し、層間の絶縁性を確保するために、熱処理雰囲気の酸素濃度は6〜18%が好ましく、8〜15%がより好ましく、9〜13%が特に好ましい。熱処理雰囲気は窒素、Ar、ヘリウム等の不活性ガスと酸素との混合ガスが好ましい。熱処理雰囲気の露点は−30℃以下が好ましく、−60℃以下がより好ましい。
(a) Heat treatment atmosphere Although the heat treatment atmosphere may be in the air, the oxygen concentration in the heat treatment atmosphere is preferably 6 to 18%, in order to form an oxide film having a desired layer configuration and ensure insulation between layers, 15% is more preferable, and 9 to 13% is particularly preferable. The heat treatment atmosphere is preferably a mixed gas of an inert gas such as nitrogen, Ar, or helium and oxygen. The dew point of the heat treatment atmosphere is preferably −30 ° C. or lower, more preferably −60 ° C. or lower.

(b) 磁場中熱処理
磁場中熱処理により軟磁性合金薄帯に良好な誘導磁気異方性を付与する場合は、熱処理温度が200℃以上である間(20分以上が好ましい)、昇温中、最高温度の保持中及び冷却中の少なくとも一部の期間に、軟磁性合金薄帯や磁心を飽和させるのに十分な強さの磁場を印加するのが好ましい。薄帯の幅方向(環状磁心の場合、高さ方向)及び長手方向(環状磁心の場合、円周方向)に印加する磁場強度は軟磁性合金薄帯や磁心の形状により異なる。薄帯の幅方向(環状磁心の場合、高さ方向)に印加する場合8000A/m以上、長手方向(環状磁心の場合、円周方向)に印加する場合400 A/m以上印加することが好ましい。磁場は直流磁場、交流磁場、パルス磁場のいずれでも良い。磁場中熱処理により高角形比又は低角形比の直流ヒステリシスループを有する軟磁性合金薄帯が得られる。磁場を印加しない熱処理の場合、軟磁性合金薄帯は通常中程度の角形比の直流ヒステリシスループを有する。
(b) Heat treatment in a magnetic field When imparting good induced magnetic anisotropy to a soft magnetic alloy ribbon by heat treatment in a magnetic field, while the heat treatment temperature is 200 ° C. or higher (preferably 20 minutes or more), It is preferable to apply a magnetic field having a strength sufficient to saturate the soft magnetic alloy ribbon and the magnetic core during at least a part of the period of holding the maximum temperature and cooling. The strength of the magnetic field applied in the width direction of the ribbon (in the case of an annular magnetic core, the height direction) and in the longitudinal direction (in the case of an annular magnetic core, the circumferential direction) vary depending on the shape of the soft magnetic alloy ribbon and magnetic core. It is preferable to apply at least 8000 A / m when applied in the width direction of the ribbon (in the case of an annular magnetic core, the height direction) and at least 400 A / m when applied in the longitudinal direction (circumferential direction in the case of an annular magnetic core) . The magnetic field may be a direct magnetic field, an alternating magnetic field, or a pulsed magnetic field. A soft magnetic alloy ribbon having a DC hysteresis loop with a high squareness ratio or a low squareness ratio can be obtained by heat treatment in a magnetic field. In the case of heat treatment without applying a magnetic field, the soft magnetic alloy ribbon usually has a DC hysteresis loop with a medium squareness ratio.

(6) 表面処理
ナノ結晶軟磁性合金に、必要に応じてSiO2、MgO、Al2O3等の酸化物被膜を形成しても良い。表面処理を熱処理工程中に行うと酸化物の結合強度が上がる。必要に応じて軟磁性合金薄帯からなる磁心に樹脂を含浸させても良い。
(6) Surface treatment An oxide film such as SiO 2 , MgO, and Al 2 O 3 may be formed on the nanocrystalline soft magnetic alloy as necessary. When the surface treatment is performed during the heat treatment step, the bond strength of the oxide increases. If necessary, a magnetic core made of a soft magnetic alloy ribbon may be impregnated with resin.

[5]巻磁心
(1) ロール接触面と自由面の巻き方の差
まず、薄帯で巻磁心を作製した場合、薄帯は湾曲する。このとき薄帯内部では外側に引張(引張応力)が、内側に圧縮応力が生じる。この応力は熱処理後にもある程度残留し鉄損や励磁電力に影響する。本発明で用いる合金薄帯は、初期超微結晶粒欠乏領域が生じ易いロール接触面側と初期微結晶粒が高密度に分散している自由面側を有している。そこで、熱処理後に生じる粗大結晶粒層の深さを低減して飽和磁束密度や保磁力など薄帯自身の磁気特性を安定化させた。しかしながら、元々ロール接触面側と自由面側では初期超微結晶粒の生成量に差が生じているので、この合金薄帯の場合、巻き方の違いにより鉄損や励磁電力に違いが生じると考えられる。
[5] Winding core
(1) Difference in winding method between roll contact surface and free surface First, when a wound core is made of a ribbon, the ribbon is curved. At this time, inside the ribbon, tensile (tensile stress) is generated on the outside and compressive stress is generated on the inside. This stress remains to some extent even after heat treatment and affects the iron loss and excitation power. The alloy ribbon used in the present invention has a roll contact surface side where an initial ultrafine crystal grain-deficient region is likely to be formed and a free surface side where initial fine crystal grains are dispersed at a high density. Therefore, the depth of the coarse crystal grain layer generated after the heat treatment was reduced to stabilize the magnetic properties of the ribbon itself, such as saturation magnetic flux density and coercive force. However, since there is a difference in the amount of initial ultrafine crystal grains generated on the roll contact surface side and the free surface side, in the case of this alloy ribbon, there is a difference in iron loss and excitation power due to the difference in winding method. Conceivable.

図7は、非晶質母相中における熱処理前後のロール接触面側と自由面側の結晶粒の変化を示した模式図である。図8は、(a)ロール接触面を外側に巻いた本発明の場合、(b)自由面を外側に巻いた場合のそれぞれの残留応力と磁歪の関係を示す模式図である。
図7のように自由面側には初期超微結晶粒が多く析出し、ロール接触面側の析出は少ないという傾向にある。これを熱処理すると、自由面側は超微結晶粒が密であるため相互に粒成長が抑えられながら微結晶粒が存在することになる。一方、ロール接触面側は粗密である分、粒成長が進み結晶粒は大きくなり易くその量も少なめである。これを非晶質相の割合について置き換えると、自由面側は非晶質母相中に微結晶粒が多数生成されることにより非晶質(アモルファス)相の残留割合は少なくなる。一方のロール接触面側では粗大結晶粒層の深さは抑制されるにしても、初期超微結晶粒の数密度が基本的に少ないので微結晶粒は粗に存在し非晶質相の残留割合は多くなる。一般に、非晶質相の磁歪は正で大きく、結晶相の磁歪は負で小さい。よって、残留非晶質相が多いロール接触面側では磁歪が正で大きくなり、残留非晶質相が少ない自由面側では磁歪が小さくなる。
このような薄帯を図8(a)のようにロール接触面側を外側に巻いた場合、磁歪が正で大きいロール接触面側に張力が働く、磁歪が正のところに張力が存在すると長手方向(巻方向)へ磁化がそろう傾向を示す。ここで特に巻磁心の長手方向へ磁化が揃うように磁場中熱処理を行うと、180°壁を挟んで、磁区が長手方向へ互い違いにストライプ状に磁化の方向を変えて存在し易くなる。よって磁気飽和し易くなり、鉄損は低下し、励磁させるために必要な印可磁場が小さくなるため、励磁電力も低下する。
FIG. 7 is a schematic diagram showing changes in crystal grains on the roll contact surface side and the free surface side before and after heat treatment in the amorphous matrix. FIG. 8 is a schematic diagram showing the relationship between the residual stress and magnetostriction when (a) the roll contact surface is wound outward and (b) the free surface is wound outward.
As shown in FIG. 7, many initial ultrafine crystal grains are precipitated on the free surface side, and the precipitation on the roll contact surface side tends to be small. When this is heat-treated, since the ultrafine crystal grains are dense on the free surface side, the fine crystal grains exist while the grain growth is suppressed. On the other hand, since the roll contact surface side is dense, the grain growth proceeds and the crystal grains tend to be large, and the amount thereof is also small. If this is replaced with the ratio of the amorphous phase, the remaining ratio of the amorphous (amorphous) phase is reduced due to the generation of a large number of fine crystal grains in the amorphous matrix on the free surface side. On the one side of the roll contact surface, although the depth of the coarse crystal grain layer is suppressed, the number density of the initial ultrafine crystal grains is basically small, so that the fine crystal grains exist coarsely and the amorphous phase remains. The proportion increases. In general, the magnetostriction of the amorphous phase is positive and large, and the magnetostriction of the crystal phase is negative and small. Therefore, the magnetostriction is positive and large on the roll contact surface side with a large amount of residual amorphous phase, and the magnetostriction is small on the free surface side with a small amount of residual amorphous phase.
When such a thin ribbon is wound outward on the roll contact surface side as shown in FIG. 8 (a), tension acts on the roll contact surface side where the magnetostriction is positive and large. The magnetization tends to align in the direction (winding direction). Here, in particular, when heat treatment in a magnetic field is performed so that the magnetization is aligned in the longitudinal direction of the wound magnetic core, the magnetic domains are likely to exist by alternately changing the magnetization direction in a stripe shape in the longitudinal direction across the 180 ° wall. Therefore, magnetic saturation is likely to occur, the iron loss is reduced, and the applied magnetic field required for excitation is reduced, so that the excitation power is also reduced.

一方、図8(b)のようにロール接触面を内側に巻いた場合は、磁歪が正で大きいロール接触面側には圧縮応力が残留しているため、引張りの場合とは逆に磁化が長手方向を向きにくくなる。このため、飽和し難くなり、鉄損や励磁電力の向上が見込めず外側に巻いた場合よりは劣ることになる。このようにロール接触面側と自由面側で微結晶粒が占める割合に差がある本発明のような合金薄帯では、巻き方の違いによって磁気特性に違いが現われることを知見した。結果的に粗大結晶粒層の深さが他方の面よりも深いが、その深さを2.9μm以下に抑制したロール接触面を外側にして巻くことによって鉄損や励磁電力が低減される。   On the other hand, when the roll contact surface is wound inward as shown in FIG. 8B, since the compressive stress remains on the roll contact surface side where the magnetostriction is positive and large, the magnetization is opposite to the case of tension. It becomes difficult to face the longitudinal direction. For this reason, it becomes difficult to saturate, and an improvement in iron loss and excitation power cannot be expected, which is inferior to the case of winding outside. Thus, it has been found that in the alloy ribbon having the difference in the proportion of the fine crystal grains between the roll contact surface side and the free surface side, a difference in magnetic properties appears due to the difference in winding method. As a result, the depth of the coarse crystal grain layer is deeper than that of the other surface, but the iron loss and excitation power are reduced by winding the roll contact surface with the depth suppressed to 2.9 μm or less on the outside.

以下、本発明で用いるナノ結晶軟磁性合金薄帯の実施例を説明し、その後に巻磁心の実施例を説明する。ナノ結晶軟磁性合金薄帯の各実施例及び比較例において、初期超微結晶合金薄帯の剥離温度、第二の発熱ピークの割合、及び微結晶粒の平均粒径及び体積分率は下記の方法により求めた。   Hereinafter, examples of the nanocrystalline soft magnetic alloy ribbon used in the present invention will be described, and then examples of the wound magnetic core will be described. In each example and comparative example of the nanocrystalline soft magnetic alloy ribbon, the peeling temperature of the initial ultracrystalline alloy ribbon, the ratio of the second exothermic peak, and the average grain size and volume fraction of the microcrystalline grains are as follows: Determined by the method.

(1) 剥離温度の測定
ノズルから吹き付ける窒素ガスにより冷却ロールから剥離するときの初期超微結晶合金薄帯の温度を放射温度計(アピステ社製、型式:FSV-7000E)により測定し、剥離温度とした。
(1) Measurement of peeling temperature The temperature of the initial ultrafine crystal alloy ribbon when peeling from the cooling roll by nitrogen gas blown from the nozzle is measured with a radiation thermometer (Apiste, model: FSV-7000E), and the peeling temperature is measured. It was.

(2) 第二の発熱ピークの割合の測定
示差走査熱量計(株式会社リガク製DSC-8230)を用いて得た図5(a) に示すDSC曲線において、温度TX1,TX3,TX2S及びTX2Eを求めた。測定の際の昇温速度は10℃/minとした。各温度は、前後の曲線の変曲点から延ばした接線の交点における温度とした。ナノ結晶化に伴う第一の発熱ピークP1と第二の発熱ピークP2との総発熱量(図5(a) に示す面積S)に対する第二の発熱ピークの発熱量(図5(b) に示す面積S2)の割合を、S2/Sの式により求めた。
(2) Measurement of the ratio of the second exothermic peak In the DSC curve shown in Fig. 5 (a) obtained using a differential scanning calorimeter (DSC-8230, manufactured by Rigaku Corporation), the temperatures T X1 , T X3 , T X2S And T X2E were determined. The heating rate during the measurement was 10 ° C./min. Each temperature was a temperature at the intersection of tangent lines extending from the inflection points of the preceding and following curves. The calorific value of the second exothermic peak relative to the total calorific value (area S shown in Fig. 5 (a)) of the first exothermic peak P1 and the second exothermic peak P2 accompanying nanocrystallization (in Fig. 5 (b) The ratio of the indicated area S 2 ) was determined by the formula of S 2 / S.

(3) 微結晶粒の平均粒径及び体積分率の測定
微結晶粒(初期超微結晶粒も同じ)の平均粒径は、各試料のTEM写真から任意に選択したn個(30個以上)の微結晶粒の長径DL及び短径DSを測定し、Σ(DL+DS)/2nの式に従って平均することにより求めた。また各試料のTEM写真に長さLtの任意の直線を引き、各直線が微結晶粒と交差する部分の長さの合計Lcを求め、各直線に沿った結晶粒の割合LL=Lc/Ltを計算した。この操作を5回繰り返し、LLを平均することにより微結晶粒の体積分率を求めた。ここで、体積分率VL=Vc/Vt(Vcは微結晶粒の体積の総和であり、Vtは試料の体積である。)は、VL≒Lc3/Lt3=LL 3と近似的に扱った。
(3) Measurement of average grain size and volume fraction of microcrystal grains The average grain size of microcrystal grains (the same applies to the initial ultrafine crystal grains) was arbitrarily selected from TEM photographs of each sample (30 or more) ) Were measured by measuring the major axis D L and minor axis D S of the fine crystal grains and averaging them according to the formula of Σ (D L + D S ) / 2n. In addition, an arbitrary straight line of length Lt is drawn on the TEM photograph of each sample to obtain the total length Lc of the portion where each straight line intersects the fine crystal grains, and the ratio of crystal grains along each straight line L L = Lc / Lt was calculated. This operation was repeated 5 times, and the volume fraction of fine crystal grains was determined by averaging L L. Here, the volume fraction V L = Vc / Vt (Vc is the sum of the volume of the fine crystal grains and Vt is the volume of the sample) is approximated as V L ≒ Lc 3 / Lt 3 = L L 3 Treated.

(4) ハンドリング性の評価
幅25 mm及び長さ125 mmの薄帯状試料片の長手方向両端を固定し、張力をかけながら捻ったときの破壊の有無により、下記の基準でハンドリング性を評価した。実際のハンドリングでは、180°捻っても破壊しなければ良い。
◎:180°捻っても破壊しなかった。
○:90°捻っても破壊しなかったが、180°捻ったときには破壊した。
(4) Evaluation of handling properties Handling properties were evaluated according to the following criteria based on the presence or absence of fracture when fixing both ends in the longitudinal direction of a 25 mm wide and 125 mm long strip specimen and twisting it while applying tension. . In actual handling, even if it is twisted 180 °, it does not have to be destroyed.
(Double-circle): Even if it twisted 180 degrees, it did not destroy.
○: It did not break even when twisted by 90 °, but it broke when twisted by 180 °.

参照例1
銅合金製冷却ロール(周速:27〜32 m/s、冷却水の入口温度:25〜60℃、出口温度:33〜72℃)を用いて、表1に示す組成(原子%)を有する合金溶湯を大気中で急冷し、250℃の薄帯温度で冷却ロールから剥離し、幅25 mm及び厚さ16〜25μmの初期超微結晶合金薄帯を作製した。各初期超微結晶合金薄帯の合金組成、冷却水の入口温度及び出口温度、初期超微結晶粒の平均粒径及び体積分率、並びに第二の発熱ピークの割合を表1に示す。これらの初期超微結晶合金の非晶質母相中には、平均粒径1〜5 nmの初期超微結晶粒が3〜30%の体積分率で分散していた。ナノ結晶化総発熱量に対する第二の発熱ピークの割合を求めた。
Reference example 1
Using a copper alloy cooling roll (peripheral speed: 27 to 32 m / s, cooling water inlet temperature: 25 to 60 ° C., outlet temperature: 33 to 72 ° C.), the composition (atomic%) shown in Table 1 is provided. The molten alloy was rapidly cooled in the air and peeled off from the cooling roll at a ribbon temperature of 250 ° C. to produce an initial ultrafine alloy ribbon having a width of 25 mm and a thickness of 16 to 25 μm. Table 1 shows the alloy composition of each of the initial ultrafine crystal alloy ribbons, the inlet and outlet temperatures of the cooling water, the average particle diameter and volume fraction of the initial ultrafine crystal grains, and the ratio of the second exothermic peak. In the amorphous matrix of these initial ultrafine crystal alloys, initial ultrafine crystal grains having an average grain size of 1 to 5 nm were dispersed at a volume fraction of 3 to 30%. The ratio of the second exothermic peak to the total amount of heat generated by nanocrystallization was determined.

各初期超微結晶合金薄帯に対して最大のB80が得られるように400〜460℃の範囲内の温度で15〜30分間のナノ結晶化熱処理を施し、ナノ結晶軟磁性合金薄帯を作製した。各ナノ結晶軟磁性合金の微結晶粒の平均粒径及び体積分率、粗大結晶粒層[母相中の微結晶粒の平均粒径の2倍以上の平均粒径(約50〜100 nm)を有する粗大結晶粒を含む層]の深さ、保磁力、80A/mにおける磁束密度B80及び8000A/mにおける磁束密度B8000、並びにハンドリング性(巻き付け等の加工性)を測定した。測定結果を表2に示す。各軟磁性合金薄帯は、平均粒径15〜30 nmの微結晶粒が30〜50%の体積分率で分散した組織を有していた。尚、表1、表2において第二の発熱ピークの割合が3%超えの試料には括弧を付している。 The nanocrystalline soft magnetic alloy ribbon is subjected to a nanocrystallization heat treatment for 15 to 30 minutes at a temperature in the range of 400 to 460 ° C. so as to obtain the maximum B 80 for each initial microcrystalline alloy ribbon. Produced. Average crystal grain size and volume fraction of each nanocrystalline soft magnetic alloy, coarse crystal grain layer [average grain size more than twice the average grain size of microcrystal grains in the parent phase (about 50-100 nm) The depth of the layer containing coarse crystal grains], the coercive force, the magnetic flux density B 80 at 80 A / m and the magnetic flux density B 8000 at 8000 A / m, and handling properties (workability such as winding) were measured. The measurement results are shown in Table 2. Each soft magnetic alloy ribbon had a structure in which fine crystal grains having an average particle diameter of 15 to 30 nm were dispersed at a volume fraction of 30 to 50%. In Tables 1 and 2, parentheses are given to samples whose ratio of the second exothermic peak exceeds 3%.

大量生産では軟磁気特性とハンドリング性の両立を図ることは非常に重要であり、例えば180°まで捻じれても軟磁気特性(B80/B8000)が悪いと製品としては不的確であり、また軟磁気特性が良くても90°まで捻れないとハンドリングが困難で、生産性が低い。本実施例では、軟磁気特性とハンドリング性の両立が達成された。
In mass production, it is very important to achieve both soft magnetic properties and handling properties. For example, if the soft magnetic properties (B 80 / B 8000 ) are poor even if twisted to 180 °, the product is inaccurate. Moreover, even if the soft magnetic property is good, if it cannot be twisted to 90 °, handling is difficult and productivity is low. In this example, both soft magnetic characteristics and handling properties were achieved.

表1、表2から、ナノ結晶化総発熱量に対する第二の発熱ピークの発熱量の割合が減少すると粗大結晶粒層が浅くなり(粗大結晶粒が減少し)、また第二の発熱ピークの割合が増加するとB80/B8000が減少し、磁気的飽和特性が悪化することが分る。表1に示すように、第二の発熱ピークの割合は粗大結晶粒層の深さに対応し、粗大結晶粒層が深くなると磁気的に飽和しにくい成分の割合が増え、80 A/mという低磁場での磁束密度が低下する。第二の発熱ピークの割合が3%以下の場合、粗大結晶粒層は3μm未満となり、B80/B8000比はほぼ85%以上となる。保磁力Hcは軟磁気特性が良好な母相の性質を反映するため、母相の平均結晶粒径の大小で値が左右される。全体的な傾向としては、ロールの冷却能力を上げると、粗大結晶粒層の深さが深くなり、母相の平均結晶粒径は大きくなる。すなわち、B80が減少し、Hcが増加する傾向にあるが、Cu量を増やすと、初期超微結晶合金の母相の初期超微結晶粒を増やすことができ、Hcを減少させられることが分かった。一方、いずれの試料でも第二の発熱ピークが現れているが、ハンドリング性は概ね問題はなかった。第二の発熱ピークの割合が比較的大きくてもハンドリング特性は良好である。 From Table 1 and Table 2, when the ratio of the calorific value of the second exothermic peak to the total calorific value of nanocrystallization decreases, the coarse crystal grain layer becomes shallow (the coarse crystal grain decreases), and the second exothermic peak It can be seen that as the ratio increases, B 80 / B 8000 decreases and the magnetic saturation characteristics deteriorate. As shown in Table 1, the ratio of the second exothermic peak corresponds to the depth of the coarse crystal grain layer, and as the coarse crystal grain layer becomes deeper, the ratio of components that are hard to be magnetically saturated increases to 80 A / m. Magnetic flux density at low magnetic field is reduced. When the ratio of the second exothermic peak is 3% or less, the coarse crystal grain layer is less than 3 μm, and the B 80 / B 8000 ratio is almost 85% or more. Since the coercive force H c reflects the properties of the parent phase having good soft magnetic properties, the value depends on the average crystal grain size of the parent phase. As a general tendency, when the cooling capacity of the roll is increased, the depth of the coarse crystal grain layer is increased and the average crystal grain size of the parent phase is increased. In other words, B 80 tends to decrease and H c tends to increase, but if the amount of Cu is increased, the initial ultra fine crystal grains of the parent ultra fine crystal alloy can be increased, and H c can be reduced. I understood that. On the other hand, the second exothermic peak appeared in any sample, but the handling property was not a problem. Even if the ratio of the second exothermic peak is relatively large, the handling characteristics are good.

図9は、試料1-8と試料1-7の熱処理後のロール接触面側の表面近傍の断面を示す。母相の平均結晶粒径は15 nm程度であり、この2倍以上の平均粒径を有する粗大結晶粒を含む層の合金表面からの深さを両矢印で示す。なお、表面にある白い層はTEM写真を撮るために設けたカーボン系の表面保護膜である。図9(a) は試料1-8を示し、第二の発熱ピークの割合が0.7%であるとき粗大結晶粒層の深さは0.7μm程度であった。一方、図9(b)
の試料1-7では、第二の発熱ピークの割合が3.1%であるとき粗大結晶粒層は3.0μmであった。
FIG. 9 shows a cross section in the vicinity of the surface on the roll contact surface side of Sample 1-8 and Sample 1-7 after the heat treatment. The average crystal grain size of the parent phase is about 15 nm, and the depth from the alloy surface of the layer containing coarse crystal grains having an average grain size more than twice this is indicated by double arrows. The white layer on the surface is a carbon-based surface protective film provided for taking a TEM photograph. FIG. 9 (a) shows Sample 1-8. When the ratio of the second exothermic peak was 0.7%, the depth of the coarse crystal grain layer was about 0.7 μm. On the other hand, Fig. 9 (b)
In Sample 1-7, the coarse crystal grain layer was 3.0 μm when the ratio of the second exothermic peak was 3.1%.

尚、自由面側の表面近傍の組織は、ロール面と同様に表面から順にナノ結晶層、非晶質層(粗大結晶粒を含む層)、及びナノ結晶粒層を有する複合組織となっており、ロール接触面側よりもこの複合組織は明確に形成されていた。自由面側の粗大結晶粒層の深さは浅く、表1、表2ので粗大結晶粒層が3.0μm未満の試料について自由面側の粗大結晶粒層を観察したところ0〜0.5μm未満の深さであった。   The structure in the vicinity of the surface on the free surface side is a composite structure having a nanocrystal layer, an amorphous layer (a layer containing coarse crystal grains), and a nanocrystal grain layer in order from the surface in the same manner as the roll surface. The composite structure was clearly formed more than the roll contact surface side. The depth of the coarse crystal grain layer on the free surface side is shallow, and the coarse crystal grain layer on the free surface side was observed for samples with a coarse crystal grain layer of less than 3.0 μm as shown in Tables 1 and 2, and the depth of 0 to less than 0.5 μm was observed. That was it.

参照例2
ロールの冷却水の入口温度を35〜70℃として、出口温度を44〜82℃に制御し、Febal.Ni1Cu1.5Si4B14の組成を有する合金溶湯を28 m/sの冷却ロールの周速で大気中で急冷し、250℃の薄帯温度で冷却ロールから剥離し、幅25 mm及び厚さ20μmの初期超微結晶合金薄帯を作製した。各初期超微結晶合金薄帯の合金組成、冷却水の入口温度及び出口温度、初期超微結晶粒の平均粒径及び体積分率、並びに第二の発熱ピークの割合を表3に示す。初期超微結晶合金の非晶質母相中に平均粒径2〜5 nmの初期超微結晶粒が18〜26%の体積分率で分散していた。
Reference example 2
The inlet temperature of the cooling water of the roll is set to 35 to 70 ° C, the outlet temperature is controlled to 44 to 82 ° C, and the molten alloy having the composition of Fe bal. Ni 1 Cu 1.5 Si 4 B 14 is cooled at 28 m / s. Was rapidly cooled in the atmosphere at a peripheral speed of, and peeled off from the cooling roll at a ribbon temperature of 250 ° C. to produce an initial ultracrystalline alloy ribbon having a width of 25 mm and a thickness of 20 μm. Table 3 shows the alloy composition of each of the initial ultrafine crystal alloy ribbons, the cooling water inlet temperature and outlet temperature, the average ultrafine crystal grain size and volume fraction, and the ratio of the second exothermic peak. The initial ultrafine crystal grains having an average particle diameter of 2 to 5 nm were dispersed in the amorphous matrix of the initial ultrafine crystal alloy at a volume fraction of 18 to 26%.

各初期超微結晶合金に約15分で430℃まで昇温した後15分間保持する熱処理を施してナノ結晶軟磁性合金を得た。各ナノ結晶軟磁性合金の微結晶粒の平均粒径及び体積分率、粗大結晶粒層の深さ、保磁力、B80及びB8000、並びにハンドリング性を測定した。測定結果を表4に示す。 Each initial microcrystalline alloy was heated to 430 ° C. in about 15 minutes and then heat-treated for 15 minutes to obtain a nanocrystalline soft magnetic alloy. The average grain size and volume fraction of the fine crystal grains of each nanocrystalline soft magnetic alloy, the depth of the coarse crystal grain layer, the coercive force, B 80 and B 8000 , and handling properties were measured. Table 4 shows the measurement results.

表1に示すNiを含有しない参照例1の合金と比べて、第二の発熱ピークの割合が高い場合でも粗大結晶粒層が深くならず、保磁力Hcの増加が抑えられた。Niを含有することにより粗大結晶粒層の拡大が抑えられ、ハンドリング特性と軟磁気特性の両立が容易になることが分かる。以上より、適度な量のNiの含有により軟磁気特性の製造条件依存性を低減し、生産効率を改善できることが分る。 Compared with the reference example 1 alloy containing no Ni shown in Table 1, not deep coarse crystal grain layer even when the ratio of the second exothermic peak is high, the increase in the coercive force H c is suppressed. It can be seen that the inclusion of Ni suppresses the expansion of the coarse crystal grain layer, making it easy to achieve both handling characteristics and soft magnetic characteristics. From the above, it can be seen that inclusion of an appropriate amount of Ni can reduce the dependence of soft magnetic properties on manufacturing conditions and improve production efficiency.

参照例3
Feの一部を各種元素で置換した表5に示す組成を有する合金溶湯を、参照例1と同様に28 m/sの冷却ロールの周速で冷却水の入口温度を50℃として大気中で急冷し(出口温度:59〜63℃)、250℃の薄帯温度で冷却ロールから剥離し、幅25 mm及び厚さ20μmの初期超微結晶合金薄帯を作製した。初期超微結晶合金の非晶質母相中に平均粒径1〜10 nmの初期超微結晶粒が5〜30%の体積分率で分散していた。ロールの冷却水温度を変えて、各初期超微結晶合金の第二の発熱ピークの割合を測定した。合金組成、冷却水の入口温度及び出口温度、初期超微結晶粒の平均粒径及び体積分率、並びに第二の発熱ピークの割合を表5に示す。
Reference example 3
A molten alloy having the composition shown in Table 5 in which a part of Fe was replaced with various elements was set in the atmosphere with a cooling water inlet temperature of 50 ° C. at a peripheral speed of a cooling roll of 28 m / s as in Reference Example 1. It was quenched (exit temperature: 59 to 63 ° C.) and peeled from the cooling roll at a ribbon temperature of 250 ° C. to produce an initial ultracrystalline alloy ribbon having a width of 25 mm and a thickness of 20 μm. The initial ultrafine crystal grains having an average grain size of 1 to 10 nm were dispersed at a volume fraction of 5 to 30% in the amorphous matrix of the initial ultrafine crystal alloy. The ratio of the second exothermic peak of each initial microcrystalline alloy was measured while changing the cooling water temperature of the roll. Table 5 shows the alloy composition, the cooling water inlet temperature and outlet temperature, the average grain size and volume fraction of the initial ultrafine crystal grains, and the ratio of the second exothermic peak.

各初期超微結晶合金に、約15分で430℃まで昇温し後15分間保持する熱処理を施して、ナノ結晶軟磁性合金を得た。各ナノ結晶軟磁性合金の微結晶粒の平均粒径及び体積分率、粗大結晶粒層の深さ、保磁力、B80及びB8000、並びにハンドリング性を測定した。測定結果を表6に示す。 Each initial microcrystalline alloy was subjected to a heat treatment in which the temperature was raised to 430 ° C. in about 15 minutes and then held for 15 minutes to obtain a nanocrystalline soft magnetic alloy. The average grain size and volume fraction of the fine crystal grains of each nanocrystalline soft magnetic alloy, the depth of the coarse crystal grain layer, the coercive force, B 80 and B 8000 , and handling properties were measured. Table 6 shows the measurement results.

次に、上記したナノ結晶軟磁性合金薄帯を用いた巻磁心の実施例を説明する。各実施例及び比較例において、巻磁心の作製および磁気特性の測定は下記の方法により求めた。   Next, an example of a wound core using the nanocrystalline soft magnetic alloy ribbon described above will be described. In each of the examples and comparative examples, the production of the wound magnetic core and the measurement of the magnetic properties were obtained by the following methods.

(1)巻磁心の作製
幅25mmの合金薄帯をコア巻機(東武製作所製)を用いて以下の3種類の巻磁心を作製した。巻磁心A:外径19mm−内径15mm、巻磁心B:外径26.2mm−内径22.2mm、巻磁心C:外径74mm−内径70mm。巻磁心Aには一次側20ターン、二次側20ターン、巻磁心Bには一次側30ターン、二次側30ターン、巻磁心Cには一次側70ターン、二次側30ターンをそれぞれ行った。
(1) Fabrication of wound core The following three types of wound cores were fabricated from a 25 mm wide alloy ribbon using a core winding machine (manufactured by Tobu Seisakusho). Winding core A: outer diameter 19 mm—inner diameter 15 mm, winding core B: outer diameter 26.2 mm—inner diameter 22.2 mm, winding core C: outer diameter 74 mm—inner diameter 70 mm. The winding core A has 20 turns on the primary side, 20 turns on the secondary side, the winding core B has 30 turns on the primary side, 30 turns on the secondary side, and the winding core C has 70 turns on the primary side and 30 turns on the secondary side. It was.

(2)巻磁心の熱処理
巻き線後、熱処理炉(エスペック社製、型式:SSPH-101)により、N2ガス雰囲気中で1500A/mの磁場を磁路方向へ全期間印加しながら、昇温速度8℃/minで400℃まで昇温後、1時間保持し、降温速度10℃/minで100℃まで低下させた後、磁場印加を止め、炉から取り出した。
(2) after heat treatment winding of the winding core, the heat treatment furnace (Espec Corp., Model: SSPH-101) by, while a magnetic field of 1500A / m in an N 2 gas atmosphere the entire period applied to the magnetic path direction, heating The temperature was raised to 400 ° C. at a rate of 8 ° C./min, held for 1 hour, and lowered to 100 ° C. at a rate of temperature drop of 10 ° C./min.

(3)直流磁気特性の測定
120mm単板試料を直流磁化自動記録装置(メトロン技研社製)により測定した。
(3) DC magnetic characteristics measurement
A 120 mm single plate sample was measured with a DC magnetization automatic recording device (Metron Giken Co., Ltd.).

(4)交流磁気特性の測定
鉄損、励磁電力、交流ヒステリシスループ等の交流磁気特性を交流磁気測定器(東英工業社製、型式:TWM-18SR)により正弦波励磁で測定した。また、渦電流損失(Pe)は、直流ヒステリシスループの囲む面積からヒステリシス損失(Ph)を求め、鉄損(P)からヒステリシス損失(Ph)を差し引くことにより求めた。
尚、P=Ph+Pe=Ph+(Pae+Pce)
但し、Peは過電流損失、Paeは異常渦電流損失、Pceは古典的渦電流損失であり、この種合金薄帯では古典的渦電流損失Pceは無視できるほど小さい。
(4) Measurement of AC magnetic characteristics AC magnetic characteristics such as iron loss, excitation power, and AC hysteresis loop were measured with an AC magnetometer (manufactured by Toei Industry Co., Ltd., model: TWM-18SR) by sine wave excitation. The eddy current loss (Pe) was obtained by obtaining the hysteresis loss (Ph) from the area surrounded by the DC hysteresis loop and subtracting the hysteresis loss (Ph) from the iron loss (P).
P = Ph + Pe = Ph + (Pae + Pce)
However, Pe is an overcurrent loss, Pae is an abnormal eddy current loss, and Pce is a classic eddy current loss. In this kind of alloy ribbon, the classic eddy current loss Pce is negligibly small.

実施例1
上記試料2-1で作製したFebal.Ni1Cu1.5Si4B14の組成を有する幅25mm、厚さ20μmの合金薄帯を用いて巻磁心A(外径19mm−内径15mm)をロール接触面を外側に巻いた外巻き(本発明例)とロール接触面を内側に巻いた内巻き(比較例)の2種類を作製した。
これらの巻磁心について熱処理温度を変えた場合の1.55T、50Hzにおける鉄損(P)、ヒステリシス損失(Ph)、渦電流損失(Pe)と、励磁電力(S)の変化を測定した。励磁電力Sは、合金薄帯をある磁束密度まで励磁するために必要な外部磁場Hに関係し、騒音の大きさと密接に関係するので小さいことが望ましい。
Example 1
Rolled contact of the wound core A (outer diameter 19 mm-inner diameter 15 mm) using a 25 mm wide and 20 μm thick alloy ribbon with the composition of Fe bal. Ni 1 Cu 1.5 Si 4 B 14 prepared in Sample 2-1 above . Two types were prepared: an outer winding (invention example) with the surface wound outward, and an inner winding (comparative example) with the roll contact surface wound inward.
For these wound cores, changes in iron loss (P), hysteresis loss (Ph), eddy current loss (Pe), and excitation power (S) at 1.55 T and 50 Hz when the heat treatment temperature was changed were measured. The excitation power S is related to the external magnetic field H required to excite the alloy ribbon to a certain magnetic flux density, and is preferably closely related to the magnitude of noise.

図10にロール接触面を外側に巻いた本発明例を、図11にロール接触面を内側に巻いた比較例の結果を示す。渦電流損失(Pe)は、両者とも440℃以下で熱処理温度によらずほぼ一定の傾向と数値を示しているが、鉄損(P)、ヒステリシス損失(Ph)及び励磁電力(S)については、本発明の方が比較例よりも低減できており、何れも430℃で最低値を示している。比較例の場合は、鉄損(P)、ヒステリシス損失(Ph)及び励磁電力(S)の何れも440℃まで緩やかに上昇した後急上昇し、熱処理温度依存性はほとんど見られない。尚、450℃以上ではFe3B化合物の析出により軟磁気特性が失われると考えられる。 FIG. 10 shows the result of the present invention in which the roll contact surface is wound outward, and FIG. 11 shows the result of a comparative example in which the roll contact surface is wound inward. The eddy current loss (Pe) is both 440 ° C or less and shows an almost constant trend and value regardless of the heat treatment temperature, but the iron loss (P), hysteresis loss (Ph), and excitation power (S) The present invention can be reduced more than the comparative example, and all show the lowest value at 430 ° C. In the case of the comparative example, all of the iron loss (P), hysteresis loss (Ph), and excitation power (S) rise gradually after reaching 440 ° C., and then rise rapidly, and the heat treatment temperature dependence is hardly seen. In addition, it is thought that soft magnetic characteristics are lost due to precipitation of the Fe 3 B compound at 450 ° C. or higher.

次に、上記実施例1と同じ合金薄帯で直流磁気特性を測定し、保磁力(Hc)、残留磁束密度(Br)と外部磁場が80A/mのときの磁束密度(B80)の熱処理依存性を調べた。図12にロール接触面を外側に巻いた本発明例を、図13にロール接触面を内側に巻いた比較例の結果を示す。
図より直流磁気特性も巻き方の違いにより差が生じていることが分かる。残留磁束密度Brと磁束密度B80は本発明の場合、徐々に上昇するが430℃で低下傾向に変わっている。一方、比較例の場合は、430℃を超えると上昇傾向を示す。また、保磁力Hcについては、比較例の場合、徐々に上昇し430℃を超えると急激に上昇するが、本発明では、徐々に低減し430℃で最低値を示した後、上昇を示す。残留磁束密度Br、磁束密度B80、保磁力Hcと何れも本発明は、比較例よりも良い数値が得られており、430℃付近で高い磁束密度と低い保磁力が得られることが分かる。
Next, DC magnetic characteristics were measured with the same alloy ribbon as in Example 1 above, and the heat treatment of the coercive force (Hc), the residual magnetic flux density (Br), and the magnetic flux density (B 80 ) when the external magnetic field was 80 A / m. Dependency was examined. FIG. 12 shows an example of the present invention in which the roll contact surface is wound outward, and FIG. 13 shows the result of a comparative example in which the roll contact surface is wound inward.
From the figure, it can be seen that the DC magnetic characteristics are also different depending on the winding method. If the residual magnetic flux density Br and the magnetic flux density B 80 is the present invention, but gradually rises has changed to decline at 430 ° C.. On the other hand, in the case of a comparative example, when it exceeds 430 degreeC, an upward tendency is shown. In the comparative example, the coercive force Hc gradually increases and rapidly increases when the temperature exceeds 430 ° C., but in the present invention, the coercive force Hc gradually decreases and reaches a minimum value at 430 ° C., and then increases. The values of the residual magnetic flux density Br, the magnetic flux density B 80 and the coercive force Hc are all better than those of the comparative example, and it can be seen that a high magnetic flux density and a low coercive force are obtained around 430 ° C.

実施例2
Febal.Ni1Cu1.5Si4B14の組成を有する幅25mm、厚さ20μmの合金薄帯を用いて巻磁心B(外径26.2mm−内径22.2mm)と巻磁心C(外径74mm−内径70mm)について、それぞれロール接触面を外側に巻いた外巻き(本発明例)とロール接触面を内側に巻いた内巻き(比較例)の2種類を作製した。
これらの巻磁心について熱処理温度を変えた場合の1.55T、50Hzにおける鉄損(P)と励磁電力(S)の変化を測定した。図14に巻磁心B、図15に巻磁心Cの結果を示す。実線が外巻き。点線が内巻である。
図14、15より、鉄損Pと励磁電力Sと共に、ロール接触面を外巻きにした方が内巻よりも減少していることが分かる。ただし、巻磁心Aほどの効果は見られず、巻磁心の径が大きくなる程、低減効果は鈍くなると考えられる。
Example 2
Using an alloy ribbon having a composition of Fe bal. Ni 1 Cu 1.5 Si 4 B 14 and a width of 25 mm and a thickness of 20 μm, a wound core B (outer diameter 26.2 mm-inner diameter 22.2 mm) and a wound core C (outer diameter 74 mm- For the inner diameter of 70 mm, two types were prepared: an outer winding with the roll contact surface wound outward (invention example) and an inner winding with the roll contact surface wound inward (comparative example).
These cores were measured for changes in iron loss (P) and excitation power (S) at 1.55T and 50Hz when the heat treatment temperature was changed. FIG. 14 shows the result of the wound core B, and FIG. 15 shows the result of the wound core C. The solid line is the outer winding. The dotted line is the inner volume.
14 and 15, it can be seen that, along with the iron loss P and the excitation power S, the direction where the roll contact surface is externally wound is smaller than that of the internal volume. However, the effect as much as the wound core A is not seen, and it is considered that the reduction effect becomes dull as the diameter of the wound core increases.

実施例3
次に、巻磁心の巻径の違いによる鉄損P及び励磁電力Sの磁心径依存性を図16、図17に示す。
図より、鉄損、励磁電力ともに巻径によらず外巻きの方が数値は低減できており、ロール接触面を外巻きにした方が内巻きした場合よりも効果を期待できることが分かる。巻径が大きくなってもこの傾向は変わらないと考えるが、巻径が小さい方がより効果的であり、特に20mmで顕著な差が現われている。
Example 3
Next, FIG. 16 and FIG. 17 show the dependence of the iron loss P and the excitation power S on the magnetic core diameter depending on the winding diameter of the wound magnetic core.
From the figure, it can be seen that both the iron loss and the excitation power can be reduced in the number of the outer winding regardless of the winding diameter, and the effect can be expected more when the roll contact surface is the outer winding than when the inner winding is performed. Although it is considered that this tendency does not change even when the winding diameter increases, a smaller winding diameter is more effective, and a remarkable difference appears particularly at 20 mm.

次に、上記試料1-1で作製したFebal.Cu1.4Si4B14、試料1-22で作製したFebal.Cu1.7Si4B20、試料1-28で作製したFebal.Cu1.4B19を用いて、上記実施例1と同様の巻磁心を作製し測定を行った。その結果、同じ傾向の結果が得られた。 Next, Fe bal .Cu 1.4 Si 4 B 14 prepared in Sample 1-1, Fe bal .Cu 1.7 Si 4 B 20 prepared in Sample 1-22, and Fe bal .Cu 1.4 prepared in Sample 1-28. with B 19, it was measured to produce the same winding core as in example 1. As a result, the result of the same tendency was obtained.

実施例4
FebalCu1.5Si6B9P2の組成を有する幅25mm、厚さ22μmの合金薄帯を作製し、をロール接触面を外側に巻いた外巻き(本発明例)とロール接触面を内側に巻いた内巻き(比較例)の外径19mm−内径15mmの巻磁心 2種類を作製した。これらの巻磁心を室温から昇温し430℃で1時間保持後炉冷し磁界中熱処理を行った。磁界中熱処理の際、熱処理の全期間、磁路方向に1500A/mの磁界を印加した。熱処理後の巻磁心をフェノール樹脂性のコアケースに入れ、巻線を行い、1.55T、50Hzにおける鉄損(P)と励磁電力(S)を測定した。ロール接触面を外側に巻いた外巻きの本発明巻磁心のPは0.38W/kg、Sは0.48VA/kg、ロール接触面を内側に巻いた内巻きの巻磁心では、Pは0.43W/kg、Sは1.01VA/kgであり、本発明巻磁心の方がP、S共に低く優れていた。ミクロ組織観察の結果、熱処理後の合金のロール接触面から2.9μm以下の領域に平均粒径55nmの結晶粒層が存在しており、ロール接触面から2.9μmを超える内部は非晶質母相中に平均粒径23nmの結晶粒が分散した組織となっていることが確認された。
Example 4
An alloy ribbon having a composition of Fe bal Cu 1.5 Si 6 B 9 P 2 with a width of 25 mm and a thickness of 22 μm was prepared, and the outer surface of the roll contact surface was wound outward (invention example) and the roll contact surface was inward. Two types of wound cores with an outer diameter of 19 mm and an inner diameter of 15 mm were prepared. These wound cores were heated from room temperature, held at 430 ° C. for 1 hour, then cooled in a furnace and subjected to heat treatment in a magnetic field. During the heat treatment in a magnetic field, a 1500 A / m magnetic field was applied in the magnetic path direction during the entire heat treatment. The wound core after heat treatment was placed in a phenolic resin core case, wound, and measured for iron loss (P) and excitation power (S) at 1.55 T and 50 Hz. P of the presently wound core of the present invention wound outside the roll contact surface is 0.38 W / kg, S is 0.48 VA / kg, and P is 0.43 W / kg for the inner wound core wound inside the roll contact surface. kg and S were 1.01 VA / kg, and the wound core of the present invention was superior in both P and S. As a result of microstructural observation, a crystal grain layer with an average grain size of 55 nm exists in the region of 2.9 μm or less from the roll contact surface of the heat-treated alloy, and the interior exceeding 2.9 μm from the roll contact surface is an amorphous matrix It was confirmed that the crystal grains having an average grain size of 23 nm were dispersed therein.

本発明の巻磁心は、配電用トランス、高周波トランス、各種リアクトル、磁気スイッチ等の磁性部品に好適である。また、軟磁性合金薄帯を複数積層して積層体となし、これらの積層体をさらに積層して一旦積層構造としたのち、ステップラップやオーバラップ状に巻いた変圧器用の巻磁心にも好適である。
The wound magnetic core of the present invention is suitable for magnetic parts such as a distribution transformer, a high-frequency transformer, various reactors, and a magnetic switch. In addition, a plurality of soft magnetic alloy ribbons are laminated to form a laminated body, and these laminated bodies are further laminated to form a laminated structure, which is also suitable for a wound core for a transformer wound in a step wrap or overlap shape. It is.

Claims (2)

一般式:Fe100−x−y−zAxByXz(ただし、AはCu及び/又はAuであり、XはSi,S,C,P,Al,Ge,Ga及びBeから選ばれた少なくとも一種の元素であり、x、y及びzはそれぞれ原子%で0<x≦5、4≦y≦22、0≦z≦15、及びx+y+z≦25の条件を満たす数である。)により表される組成を有し、非晶質母相中に平均粒径60nm以下の微結晶粒が30体積%以上の割合で分散した組織を有し、薄帯厚さ16〜25μm、ロール接触面表面から2.9μm以下の範囲に前記微結晶粒の平均粒径の2倍以上の平均粒径を有する粗大結晶粒を含む層が形成されたFe基ナノ結晶軟磁性合金薄帯からなる巻磁心であって、前記Fe基ナノ結晶軟磁性合金薄帯のロール接触面が外側に巻かれていることを特徴とする巻磁心。 General formula: Fe100-xy-zAxByXz (where A is Cu and / or Au, and X is at least one element selected from Si, S, C, P, Al, Ge, Ga and Be) , X, y, and z are each a number that satisfies the following conditions: 0 <x ≦ 5, 4 ≦ y ≦ 22, 0 ≦ z ≦ 15, and x + y + z ≦ 25. , Having a structure in which fine crystal grains having an average grain size of 60 nm or less are dispersed in an amorphous matrix at a ratio of 30% by volume or more, a ribbon thickness of 16 to 25 μm, and 2.9 μm or less from the roll contact surface. A wound magnetic core comprising a Fe-based nanocrystalline soft magnetic alloy ribbon in which a layer containing coarse crystal grains having an average grain size that is at least twice the average grain size of the fine crystal grains is formed. Make sure that the roll contact surface of the nanocrystalline soft magnetic alloy ribbon is wound outward. Characteristic wound magnetic core. 請求項1に記載の巻磁心を用いたことを特徴とする磁性部品。
A magnetic component comprising the wound magnetic core according to claim 1.
JP2012168044A 2011-08-31 2012-07-30 Winding core and magnetic component using the same Active JP6080094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168044A JP6080094B2 (en) 2011-08-31 2012-07-30 Winding core and magnetic component using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011188827 2011-08-31
JP2011188827 2011-08-31
JP2012168044A JP6080094B2 (en) 2011-08-31 2012-07-30 Winding core and magnetic component using the same

Publications (2)

Publication Number Publication Date
JP2013065827A JP2013065827A (en) 2013-04-11
JP6080094B2 true JP6080094B2 (en) 2017-02-15

Family

ID=48189030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168044A Active JP6080094B2 (en) 2011-08-31 2012-07-30 Winding core and magnetic component using the same

Country Status (1)

Country Link
JP (1) JP6080094B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022904A1 (en) * 2013-08-13 2015-02-19 日立金属株式会社 Iron-based amorphous transformer core, production method therefor, and transformer
KR20150128031A (en) * 2014-05-08 2015-11-18 엘지이노텍 주식회사 Soft magnetic alloy, wireless power transmitting apparatus and wireless power receiving apparatus comprising the same
JP6554278B2 (en) * 2014-11-14 2019-07-31 株式会社リケン Soft magnetic alloys and magnetic parts
KR102333098B1 (en) * 2016-12-15 2021-12-02 삼성전기주식회사 Fe-based nonocrystalline alloy and electronic component using the smae
KR20180090091A (en) * 2017-02-02 2018-08-10 삼성전기주식회사 Magnetic Sheet and Electronic Device
KR101963291B1 (en) * 2017-09-04 2019-03-28 삼성전기주식회사 Magnetic Sheet and Electronic Device
JP7467329B2 (en) * 2018-03-02 2024-04-15 Tdk株式会社 Magnetic core, its manufacturing method, and coil component
CN115836365A (en) * 2020-09-09 2023-03-21 阿尔卑斯阿尔派株式会社 Magnetic core and magnetic component
CN112309686A (en) * 2020-11-05 2021-02-02 珠海菲森电力科技有限公司 Multifunctional current transformer
CN114496440B (en) * 2022-01-10 2023-04-18 中国科学院宁波材料技术与工程研究所 High-magnetic-induction high-frequency nanocrystalline magnetically soft alloy and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3374981B2 (en) * 1992-09-11 2003-02-10 日立金属株式会社 Nanocrystalline soft magnetic alloy and magnetic core with excellent short pulse characteristics
JPH08124731A (en) * 1994-10-24 1996-05-17 Nippon Steel Corp Multi-layer magnetic alloy ribbon
JP4257629B2 (en) * 2000-04-14 2009-04-22 日立金属株式会社 Fe-based amorphous alloy ribbon and magnetic component for nanocrystalline soft magnetic alloy
DE102006062269A1 (en) * 2006-12-22 2008-06-26 Eckart Gmbh & Co. Kg Use of spherical metal particle, that is free of antimony and/or antimony containing compounds, as laser marking or laser-weldable agent in plastics
US8287665B2 (en) * 2007-03-20 2012-10-16 Nec Tokin Corporation Soft magnetic alloy, magnetic part using soft magnetic alloy, and method of manufacturing same
US7935196B2 (en) * 2007-03-22 2011-05-03 Hitachi Metals, Ltd. Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
US9222145B2 (en) * 2009-01-20 2015-12-29 Hitachi Metals, Ltd. Soft magnetic alloy ribbon and its production method, and magnetic device having soft magnetic alloy ribbon
JP5720674B2 (en) * 2010-03-29 2015-05-20 日立金属株式会社 Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy

Also Published As

Publication number Publication date
JP2013065827A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
JP6080094B2 (en) Winding core and magnetic component using the same
JP6191908B2 (en) Nanocrystalline soft magnetic alloy and magnetic component using the same
JP5327074B2 (en) Soft magnetic alloy ribbon, method of manufacturing the same, and magnetic component having soft magnetic alloy ribbon
JP5327075B2 (en) Soft magnetic alloy ribbon, method of manufacturing the same, and magnetic component having soft magnetic alloy ribbon
KR101162080B1 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5316921B2 (en) Fe-based soft magnetic alloy and magnetic component using the same
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP6237630B2 (en) Ultracrystalline alloy ribbon, microcrystalline soft magnetic alloy ribbon and magnetic parts using the same
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP5429613B2 (en) Nanocrystalline soft magnetic alloys and magnetic cores
WO2007032531A1 (en) Nanocrystalline magnetic alloy, method for producing same, alloy thin band, and magnetic component
JP2018508978A (en) Magnetic cores based on nanocrystalline magnetic alloys
JP6041207B2 (en) Nanocrystalline soft magnetic alloy and magnetic component using the same
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP2021105212A (en) Soft magnetic alloy, soft magnetic alloy ribbon, method of manufacturing the same, magnetic core, and component
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP4217038B2 (en) Soft magnetic alloy
JP2008150637A (en) Magnetic alloy, amorphous alloy ribbon and magnetic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6080094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170108

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350