[go: up one dir, main page]

JP6069820B2 - Exhaust purification system for internal combustion engine, internal combustion engine, and exhaust purification method for internal combustion engine - Google Patents

Exhaust purification system for internal combustion engine, internal combustion engine, and exhaust purification method for internal combustion engine Download PDF

Info

Publication number
JP6069820B2
JP6069820B2 JP2011210928A JP2011210928A JP6069820B2 JP 6069820 B2 JP6069820 B2 JP 6069820B2 JP 2011210928 A JP2011210928 A JP 2011210928A JP 2011210928 A JP2011210928 A JP 2011210928A JP 6069820 B2 JP6069820 B2 JP 6069820B2
Authority
JP
Japan
Prior art keywords
nox
amount
control
exhaust gas
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011210928A
Other languages
Japanese (ja)
Other versions
JP2013072328A (en
Inventor
和広 榎
和広 榎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011210928A priority Critical patent/JP6069820B2/en
Publication of JP2013072328A publication Critical patent/JP2013072328A/en
Application granted granted Critical
Publication of JP6069820B2 publication Critical patent/JP6069820B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、エンジンの運転挙動の大きな変化を伴うことなく、DPFに捕集されるPMの酸化除去を促進できて、PM強制再生制御の頻度を減少できる内燃機関の排気浄化システム、内燃機関、及び内燃機関の排気浄化方法に関する。   The present invention relates to an exhaust gas purification system for an internal combustion engine, which can promote the oxidation removal of PM trapped in the DPF and reduce the frequency of the forced regeneration control of the PM without significant change in the operation behavior of the engine, the internal combustion engine, And an exhaust gas purification method for an internal combustion engine.

自動車搭載のディーゼルエンジン等の内燃機関においては、排気ガス中にPM(粒子状物質)やNOx(窒素酸化物)が含まれており、触媒担持フィルタやNOx浄化触媒を備えた排気浄化システムを用いて、これらの成分が大気中に放出されるのを防止している。   In an internal combustion engine such as a diesel engine mounted on an automobile, exhaust gas contains PM (particulate matter) and NOx (nitrogen oxide), and an exhaust purification system including a catalyst-carrying filter and a NOx purification catalyst is used. Thus, these components are prevented from being released into the atmosphere.

この排気浄化システムの一つに、図1に示すような、エンジン本体11の排気管12の途中に酸化触媒(DOC)13aと触媒担持フィルタ13bを組み合わせたDPF(ディーゼルパティキュレートフィルタ)装置13が備えられ、その後方にNO浄化用の選択還元型触媒(SCR)14が配置されている排気浄化システム10がある。   As one example of this exhaust purification system, there is a DPF (diesel particulate filter) device 13 that combines an oxidation catalyst (DOC) 13a and a catalyst-carrying filter 13b in the middle of an exhaust pipe 12 of an engine body 11 as shown in FIG. There is an exhaust purification system 10 that is provided and has a selective reduction catalyst (SCR) 14 for NO purification disposed behind it.

この排気浄化システム10では、エンジン本体11から排出されたPMは触媒を担持した触媒担持フィルタ13bに捕集される。この捕集され、触媒担持フィルタ13bに堆積したPMは、排気ガスG中の二酸化窒素(NO2)により、「2C+2NO2→2CO2+N2」又は「C+NO2→CO2+NO」の反応で、連続的に酸化除去される。この二酸化窒素の一部は排気ガスGに含まれているが、排気ガスG中の一酸化窒素(NO)が前段(上流側)の酸化触媒13aにより、図5に示される温度と一酸化窒素から二酸化窒素への変換率との関係に従って酸化されて二酸化窒素になる。 In this exhaust purification system 10, PM discharged from the engine body 11 is collected by a catalyst-carrying filter 13b carrying a catalyst. The PM collected and deposited on the catalyst-carrying filter 13b is continuously oxidized and removed by the reaction of “2C + 2NO2 → 2CO2 + N2” or “C + NO2 → CO2 + NO” by the nitrogen dioxide (NO2) in the exhaust gas G. A part of this nitrogen dioxide is contained in the exhaust gas G, but the nitrogen monoxide (NO) in the exhaust gas G is converted to the temperature and nitrogen monoxide shown in FIG. 5 by the oxidation catalyst 13a in the previous stage (upstream side). It is oxidized to nitrogen dioxide according to the relationship with the conversion rate from nitrogen to nitrogen dioxide.

しかしながら、排気ガス温度Tが酸化触媒13aの活性化温度より低い状況(T<Ta)、又は、活性の高い温度範囲よりも高い状況(T>Tb)が続くような条件では、二酸化窒素の生成が起こらないため、二酸化窒素によるPM酸化の連続再生が起こらずに、PMが触媒担持フィルタ13bに堆積し続けてしまう。   However, under conditions where the exhaust gas temperature T is lower than the activation temperature of the oxidation catalyst 13a (T <Ta) or higher than the high temperature range (T> Tb), nitrogen dioxide is generated. Therefore, PM continues to accumulate on the catalyst-carrying filter 13b without continuous regeneration of PM oxidation by nitrogen dioxide.

この対策としては、例えば、排気通路に、酸化触媒と、排ガスG中のPMを捕集するDPFと、排気ガス温度を検出する排気ガス温度センサーが配置され、排気ガス温度が所定の温度範囲になるよう吸気通路に配設された空気量調節機構を制御するコントローラを具備して、エンジンの全運転領域においてDPFに捕集されたPMを確実に燃焼してPMが堆積することが無いようにしたディーゼルエンジンの排気浄化装置が提案されている(例えば、特許文献1参照)。   As countermeasures, for example, an oxidation catalyst, a DPF that collects PM in the exhaust gas G, and an exhaust gas temperature sensor that detects the exhaust gas temperature are arranged in the exhaust passage so that the exhaust gas temperature falls within a predetermined temperature range. A controller for controlling the air amount adjusting mechanism disposed in the intake passage is provided so that the PM collected in the DPF is surely burned and PM is not deposited in the entire operation region of the engine. An exhaust emission control device for a diesel engine has been proposed (see, for example, Patent Document 1).

しかしながら、実際の車両運転においては内燃機関(エンジン)は種々の運転条件下で運転されており、上記のディーゼルエンジンの排気浄化装置のように、排気ガス温度を所定範囲内の温度に制御することは殆ど不可能であり、実際的ではない。例えば、この排気浄化装置では、設定温度より高い場合には過給機を駆動させて空気量を増やし、設定温度よりも低い場合は吸気スロットルを閉じて空気量を減らすことが提案されているが、ある条件下における運転中にそのような変化を起こすとエンジンの挙動に大きな変化が生じ、ドライバーが予期せぬエンジンの挙動により不快感を覚えることとなり、商品性を著しく損なうこととなる。   However, in actual vehicle operation, the internal combustion engine (engine) is operated under various operating conditions, and the exhaust gas temperature is controlled to a temperature within a predetermined range as in the exhaust purification device of the diesel engine described above. Is almost impossible and impractical. For example, in this exhaust purification device, it is proposed that when the temperature is higher than the set temperature, the turbocharger is driven to increase the air amount, and when the temperature is lower than the set temperature, the intake throttle is closed to reduce the air amount. If such a change occurs during driving under certain conditions, a large change in the engine behavior will occur, and the driver will feel uncomfortable due to the unexpected engine behavior, and the merchantability will be significantly impaired.

特開2002−004838号公報JP 2002-004838 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、PM強制再生制御でない場合において、エンジンの運転の挙動の大きな変化を伴わないNOx増加制御を行って、PMの酸化の向上を図ってPM強制再生制御の頻度を減少できて、排気浄化性能の向上と運転性の悪化の防止の両立を図ることができる内燃機関の排気浄化システム、内燃機関、及び内燃機関の排気浄化方法を提供することにある。   The present invention has been made in view of the above situation, and its purpose is to perform NOx increase control without significant change in the behavior of engine operation when PM forced regeneration control is not performed, and to oxidize PM. The internal combustion engine exhaust purification system, the internal combustion engine, and the exhaust purification of the internal combustion engine can improve both exhaust purification performance and prevent deterioration of operability by reducing the frequency of forced PM regeneration control It is to provide a method.

上記のような目的を達成するための本発明の内燃機関の排気浄化システムは、内燃機関の排気通路に、上流側から順に酸化触媒、触媒担持フィルタを備えると共に、内燃機関の運転を制御する内燃機関制御装置を備えた内燃機関の排気浄化システムにおいて、前記内燃機関制御装置は、前記触媒担持フィルタに堆積したPMの堆積量が予め設定した制御開始量以上と判定され、前記酸化触媒の入口の排気ガス温度が予め設定した第一の温度範囲内と判定された時に、排ガスの温度低下に基づいて設定された第一の所定時間の間NOx増加制御を行った後、前記排気ガス温度が、上限と下限が前記第一の温度範囲の上限と下限に対してNOx増加制御で低下すると見込まれる温度だけそれぞれ低い第二の温度範囲内であるか否かに基づいてNOx増加制御を行うか否かを判定し、NOx増加制御を行うと判定する毎に、前記排気ガス温度がNOx増加制御により予め予測した温度低下量の分が低下しきると予測される時間である第一の所定時間とは異なる前記排気ガス温度の判定のインターバルである第二の所定時間の間NOx増加制御を行うように構成する。 An exhaust gas purification system for an internal combustion engine according to the present invention for achieving the above object includes an oxidation catalyst and a catalyst-carrying filter in order from the upstream side in an exhaust passage of the internal combustion engine, and controls the operation of the internal combustion engine. In the exhaust gas purification system for an internal combustion engine provided with the engine control device, the internal combustion engine control device determines that the amount of PM deposited on the catalyst-carrying filter is equal to or greater than a preset control start amount, and When it is determined that the exhaust gas temperature is within a preset first temperature range, after performing NOx increase control for a first predetermined time set based on the temperature decrease of the exhaust gas, the exhaust gas temperature is NO based on whether the upper and lower limits are within the second temperature range, which is lower than the upper and lower limits of the first temperature range, respectively, by a temperature that is expected to decrease by NOx increase control. It is determined whether or not the increase control is performed, and every time it is determined that the NOx increase control is performed, the exhaust gas temperature is a time that is predicted to be reduced by the amount of the temperature decrease predicted in advance by the NOx increase control. The NOx increase control is performed for a second predetermined time which is an interval for determining the exhaust gas temperature different from the one predetermined time .

この構成によれば、PMの堆積量がある程度多くなった場合に、一酸化窒素(NO)から二酸化窒素(NO2)への転換率の高い温度範囲で、PMに対しての還元剤である窒素酸化物(NOx)を増加させるNOx増加制御を行うことにより、二酸化窒素によるPMの酸化を促進して効率良く触媒担持フィルタに堆積したPMを燃焼除去できるので、PMの堆積量の増加を抑制できてPM強制再生制御の頻度を減少することができる。 According to this configuration, when the deposition amount of PM increases to some extent, it is a reducing agent for PM in a temperature range in which the conversion rate from nitric oxide (NO) to nitrogen dioxide (NO 2 ) is high. By performing NOx increase control to increase nitrogen oxide (NOx), the oxidation of PM by nitrogen dioxide can be promoted and the PM deposited on the catalyst-carrying filter can be burned and removed efficiently, thereby suppressing the increase in the amount of accumulated PM. This can reduce the frequency of PM forced regeneration control.

また、NOx増加制御は、吸気空気量(酸素濃度)を変化させる方法に比べて、エンジンの運転の挙動の大きな変化を伴わないので、排気浄化性能の向上と運転性の悪化防止の両立を図ることができる。   In addition, since the NOx increase control does not involve a large change in the operation behavior of the engine as compared with the method of changing the intake air amount (oxygen concentration), both improvement of exhaust gas purification performance and prevention of deterioration of operability are achieved. be able to.

上記の内燃機関の排気浄化システムにおいて、前記触媒担持フィルタより下流側の前記排気通路に、上流側から順に、尿素水供給装置、選択還元型触媒を備えると共に、前記尿素水供給装置における尿素水の供給を制御する尿素水供給制御装置は、前記PMの堆積量が前記制御開始量より小さい場合には、内燃機関から排出されるNOx量に応じて前記尿素水供給装置から尿素水を供給してNOxを浄化する通常制御を行い、さらに、通常運転時のNOx量算出用マップデータに加えて、NOx増加制御をした場合に増加すると予測されるNOx増加量を予めマップデータ化してNOx増加量算出用マップデータを作成して記憶しておき、NOx増加制御時に、前記NOx量算出用マップデータに基づいて算出されるNOx量に、前記NOx増加量算出用マップデータに基づいて算出されるNOx増加量を加えたNOx排出量に対して、尿素水の供給量を増加する尿素水増加制御を行うように構成すると、NOx増加制御による、後段(下流側)の選択還元型触媒のNOx浄化率への悪影響を避けることができる。 In the exhaust gas purification system for an internal combustion engine, the exhaust passage downstream of the catalyst-carrying filter includes a urea water supply device and a selective reduction type catalyst in order from the upstream side, and urea water in the urea water supply device. The urea water supply control device that controls supply supplies urea water from the urea water supply device according to the amount of NOx discharged from the internal combustion engine when the PM accumulation amount is smaller than the control start amount. Perform normal control to purify NOx, and in addition to map data for NOx amount calculation during normal operation , NOx increase amount predicted to increase when NOx increase control is performed is converted into map data in advance to calculate NOx increase amount Map data is created and stored, and the NOx amount calculated based on the NOx amount calculation map data during NOx increase control is added to the NOx amount. When the urea water increase control for increasing the supply amount of urea water is performed on the NOx emission amount obtained by adding the NOx increase amount calculated based on the addition amount calculation map data, the latter stage by the NOx increase control is performed. An adverse effect on the NOx purification rate of the (downstream side) selective reduction catalyst can be avoided.

そして、上記の目的を達成するための本発明の内燃機関の排気浄化方法は、内燃機関の排気中のNOxとPMを、排気通路に上流側から順に酸化触媒、触媒担持フィルタを配置した排気浄化システムで浄化する内燃機関の排気浄化方法において、前記触媒担持フィルタに堆積したPMの堆積量が予め設定した制御開始量以上の場合には、前記酸化触媒の入口の排気ガス温度が予め設定した第一の温度範囲内に有るときに、排ガスの温度低下に基づいて設定された第一の所定時間の間NOx増加制御を行った後、前記排気ガス温度が、上限と下限が前記第一の温度範囲の上限と下限に対してNOx増加制御で低下すると見込まれる温度だけそれぞれ低い第二の温度範囲内であるか否かに基づいてNOx増加制御を行うか否かを判定し、NOx増加制御を行うと判定する毎に、前記排気ガス温度がNOx増加制御により予め予測した温度低下量の分が低下しきると予測される時間である第一の所定時間とは異なる前記排気ガス温度の判定のインターバルである第二の所定時間の間NOx増加制御を行うことを特徴とする方法である。
また、上記の内燃機関の排気浄化方法において、前記触媒担持フィルタより下流側の前記排気通路に、上流側から順に、尿素水供給装置、選択還元型触媒を備えると共に、前記PMの堆積量が前記制御開始量より小さい場合には、内燃機関から排出されるNOx量に応じて前記尿素水供給装置から尿素水を供給してNOxを浄化する通常制御を行い、さらに、通常運転時のNOx量算出用マップデータに加えて、NOx増加制御をした場合に増加すると予測されるNOx増加量を予めマップデータ化してNOx増加量算出用マップデータを作成して記憶しておき、NOx増加制御時に、前記NOx量算出用マップデータに基づいて算出されるNOx量に、前記NOx増加量算出用マップデータに基づいて算出されるNOx増加量を加えたNOx排出量に対して、尿素水の供給量を増加する尿素水増加制御を行うことを特徴とする方法である。
An exhaust gas purification method for an internal combustion engine according to the present invention for achieving the above object is an exhaust gas purification method in which NOx and PM in the exhaust gas of an internal combustion engine are disposed in the exhaust passage in order from the upstream side, an oxidation catalyst and a catalyst-carrying filter. In the exhaust gas purification method for an internal combustion engine that purifies by the system, when the accumulation amount of PM accumulated on the catalyst-carrying filter is equal to or greater than a preset control start amount, the exhaust gas temperature at the inlet of the oxidation catalyst is set to a preset value. When the NOx increase control is performed for a first predetermined time set based on the temperature decrease of the exhaust gas when the temperature is within one temperature range, the exhaust gas temperature has an upper limit and a lower limit of the first temperature. It is determined whether or not NOx increase control is to be performed based on whether or not the NOx increase control is within a second temperature range that is lower by the temperature that is expected to decrease with the NOx increase control than the upper limit and lower limit of the range. Each time it is determined that control is performed, the exhaust gas temperature is determined to be different from a first predetermined time, which is a time during which the amount of temperature decrease predicted in advance by NOx increase control is expected to be reduced. In this method, NOx increase control is performed for a second predetermined time that is an interval.
In the exhaust gas purification method for an internal combustion engine, the exhaust passage downstream of the catalyst-carrying filter includes a urea water supply device and a selective catalytic reduction catalyst in order from the upstream side, and the amount of PM accumulated is When the control start amount is smaller than the control start amount, normal control for purifying NOx by supplying urea water from the urea water supply device according to the NOx amount discharged from the internal combustion engine is performed, and further, the NOx amount calculation during normal operation is performed. In addition to the map data for use, the NOx increase amount predicted to increase when the NOx increase control is performed is converted into map data in advance to create and store the NOx increase amount calculation map data. NOx amount obtained by adding the NOx increase amount calculated based on the NOx increase amount calculation map data to the NOx amount calculated based on the NOx amount calculation map data Against emissions is a method which is characterized in that the urea water increasing control for increasing the supply amount of urea water.

この方法によれば、PMの堆積量がある程度多くなった場合に、一酸化窒素から二酸化窒素への転換率の高い温度範囲で、PMに対しての還元剤である窒素酸化物を増加させるNOx増加制御を行うことにより、二酸化窒素によるPMの酸化を促進して効率良く触媒担持フィルタに堆積したPMを燃焼除去できるので、PMの堆積量の増加を抑制できてPM強制再生制御の頻度を減少することができる。   According to this method, when the deposition amount of PM increases to some extent, NOx increases nitrogen oxide as a reducing agent for PM in a temperature range in which the conversion rate from nitric oxide to nitrogen dioxide is high. By controlling the increase, PM oxidation by nitrogen dioxide can be promoted and PM deposited on the catalyst-carrying filter can be burned and removed efficiently, so the increase in the amount of accumulated PM can be suppressed and the frequency of PM forced regeneration control decreased. can do.

また、NOx増加制御は、吸気空気量(酸素濃度)を変化させる方法に比べて、エンジンの運転の挙動の大きな変化を伴わないので、排気浄化性能の向上と運転性の悪化防止の両立を図ることができる。   In addition, since the NOx increase control does not involve a large change in the operation behavior of the engine as compared with the method of changing the intake air amount (oxygen concentration), both improvement of exhaust gas purification performance and prevention of deterioration of operability are achieved. be able to.

本発明に係る内燃機関の排気浄化システム、内燃機関、及び内燃機関の排気浄化方法によれば、PM強制再生制御でない場合において、エンジンの運転の挙動の大きな変化を伴わないNOx増加制御を行って、PMの酸化の向上を図ってPM強制再生制御の頻度を減少できて、排気浄化性能の向上と運転性の悪化の防止の両立を図ることができる。   According to the exhaust purification system for an internal combustion engine, the internal combustion engine, and the exhaust purification method for an internal combustion engine according to the present invention, NOx increase control without significant change in the behavior of the engine is performed in the case where the PM forced regeneration control is not performed. The frequency of PM forced regeneration control can be reduced by improving the oxidation of PM, and both improvement of exhaust purification performance and prevention of deterioration of drivability can be achieved.

本発明の実施の形態の内燃機関の排気浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust gas purification system of the internal combustion engine of embodiment of this invention. 本発明の実施の形態の内燃機関の排気浄化方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the exhaust gas purification method of the internal combustion engine of embodiment of this invention. 図2のNOx増加制御と尿素水増加制御の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of NOx increase control and urea water increase control of FIG. 図2のNOx増加制御と尿素水増加制御の制御フローの他の例を示す図である。It is a figure which shows the other example of the control flow of NOx increase control of FIG. 2, and urea water increase control. 温度と一酸化窒素(NO)から二酸化窒素(NO2)への変換率との関係と、高変換温度範囲を示す図である。And the relationship between the conversion to nitrogen dioxide (NO 2) from the temperature and the nitrogen monoxide (NO), shows a high conversion temperature range. 図2の温度を高温側にずらした温度と一酸化窒素(NO)から二酸化窒素(NO2)への変換率との関係と、制御開始用温度範囲を示す図である。The temperature in FIG. 2 from the temperature and the nitrogen monoxide (NO) which is shifted to the high temperature side to the relationship between conversion to nitrogen dioxide (NO 2), is a diagram illustrating a control start temperature range. NOx増加制御における制御用領域を示す図である。It is a figure which shows the area | region for control in NOx increase control. 本発明の内燃機関の排気浄化方法におけるDPF差圧の時間変化と各制御との関係を示す図である。It is a figure which shows the relationship between the time change of DPF differential pressure, and each control in the exhaust gas purification method of the internal combustion engine of this invention. 従来技術の内燃機関の排気浄化方法におけるDPF差圧の時間変化と各制御との関係を示す図である。It is a figure which shows the relationship between the time change of DPF differential pressure, and each control in the exhaust gas purification method of the internal combustion engine of a prior art.

以下、本発明に係る実施の形態の内燃機関の排気浄化システム、内燃機関、及び内燃機関の排気浄化方法について、図面を参照しながら説明する。   Hereinafter, an exhaust gas purification system, an internal combustion engine, and an exhaust gas purification method for an internal combustion engine according to embodiments of the present invention will be described with reference to the drawings.

図1に示すように、この実施の形態の内燃機関の排気浄化システム10は、エンジン本体11の排気通路(排気管)12の途中に、DPF装置13が備えられ、その後段(下流側)には、尿素水供給装置15と選択還元型触媒(SCR)14が順に配置されている。このDPF装置13は上流側(前段)の酸化触媒(DOC)13aと、下流側(後段)の触媒を担持した触媒担持フィルタ(フィルタ)13bを組み合わせて構成されている。   As shown in FIG. 1, an exhaust gas purification system 10 for an internal combustion engine according to this embodiment is provided with a DPF device 13 in the middle of an exhaust passage (exhaust pipe) 12 of an engine main body 11, and in a subsequent stage (downstream side). The urea water supply device 15 and the selective reduction catalyst (SCR) 14 are arranged in this order. The DPF device 13 is configured by combining an upstream (front-stage) oxidation catalyst (DOC) 13a and a catalyst-carrying filter (filter) 13b carrying a downstream (rear-stage) catalyst.

更に、酸化触媒13aの上流側に酸化触媒13aの入口の排気ガス温度Tを検出する第1温度センサー21を配置し、また、選択還元型触媒14の上流側に、選択還元型触媒14の入口の排気ガス温度Txを検出する第2温度センサー22を配置する。更に、選択還元型触媒14の入口側に選択還元型触媒14に流入するNOx量を測定できるNOxセンサー23を配置する。また触媒担持フィルタ13bの前後には差圧センサー(図示しない)を設けて、触媒担持フィルタ13bに溜まったPMの堆積量を監視(モニター)している。また、必要に応じて、選択還元型触媒14の下流側(後方)にアンモニア酸化用の触媒(図示しない)を配置する。   Further, a first temperature sensor 21 for detecting the exhaust gas temperature T at the inlet of the oxidation catalyst 13 a is disposed upstream of the oxidation catalyst 13 a, and the inlet of the selective reduction catalyst 14 is disposed upstream of the selective reduction catalyst 14. A second temperature sensor 22 for detecting the exhaust gas temperature Tx is arranged. Further, a NOx sensor 23 that can measure the amount of NOx flowing into the selective catalytic reduction catalyst 14 is disposed on the inlet side of the selective catalytic reduction catalyst 14. A differential pressure sensor (not shown) is provided before and after the catalyst-carrying filter 13b to monitor (monitor) the amount of PM accumulated in the catalyst-carrying filter 13b. Further, if necessary, a catalyst for ammonia oxidation (not shown) is disposed on the downstream side (rear side) of the selective catalytic reduction catalyst 14.

そして、ECU(エンジンコントロールユニット)と呼ばれる内燃機関制御装置30が設けられる。この内燃機関制御装置30は、上記のセンサー21、22、23からの情報のほかに、図1には示さないエンジンの運転状況を判断するエンジン運転状況判断手段からの情報を入手して、内燃機関(エンジン)の全般の制御を行う。 An internal combustion engine control device 30 called an ECU (engine control unit) is provided. In addition to the information from the sensors 21, 22, and 23, the internal combustion engine control device 30 obtains information from an engine operating state determination unit that determines the operating state of the engine (not shown in FIG. Performs overall control of the engine.

また、内燃機関制御装置30と繋がっている、DCU(ドージングユニット)と呼ばれる尿素水供給制御装置31が設置される。この尿素水供給制御装置31の指令を受けて、尿素水供給装置15が、選択還元型触媒14でNOxを浄化するために、尿素水タンク他の供給に必要な装置(図示しない)から排気通路12に尿素水を供給する。   Further, a urea water supply control device 31 called a DCU (dosing unit) connected to the internal combustion engine control device 30 is installed. In response to the command from the urea water supply control device 31, the urea water supply device 15 purifies NOx by the selective catalytic reduction catalyst 14, and the exhaust passage from an apparatus (not shown) necessary for the supply of the urea water tank and the like. 12 is supplied with urea water.

次に、この内燃機関の排気浄化システム10における内燃機関の排気浄化方法について説明する。この本発明に係る実施の形態の内燃機関の排気浄化方法では、触媒担持フィルタ13bに堆積したPMの堆積量が予め設定した制御開始量以下の場合、即ち、触媒担持フィルタ13bの前後差圧Pが制御開始差圧値Psより小さい通常制御時は、特段な制御を行なわない。   Next, an exhaust gas purification method for the internal combustion engine in the exhaust gas purification system 10 for the internal combustion engine will be described. In the exhaust gas purification method for an internal combustion engine according to the embodiment of the present invention, when the amount of PM deposited on the catalyst-carrying filter 13b is equal to or less than a preset control start amount, that is, the differential pressure P across the catalyst-carrying filter 13b. When the normal control is smaller than the control start differential pressure value Ps, no special control is performed.

この通常制御の状態では、触媒担持フィルタ13bに関しては、酸化触媒13aの温度を指標する、第1温度センサー21で検出される排気ガス温度Tが、図5に示す高変換温度範囲(Ta以上Tb以下)R1内であれば、この排気ガス温度Tに応じた一酸化窒素(NO)から二酸化窒素(NO2)への変換が、変換率の高い状態で行われ、この排気ガス中の二酸化窒素によってPMの酸化が促進されるが、排気ガス温度Tが図5に示す高変換温度範囲R1内から外れると、PMの堆積量が増加し前後差圧Pも増えていくこととなる。この高変換温度範囲R1は、酸化触媒13aに担持される触媒の活性温度範囲に密接に関係し、例えば、酸化触媒13aの入口の排気ガス温度Tに関して250℃〜400℃の温度範囲内とされる。つまり、Ta=250℃、Tb=400℃となる。 In this normal control state, with respect to the catalyst-carrying filter 13b, the exhaust gas temperature T detected by the first temperature sensor 21, which indicates the temperature of the oxidation catalyst 13a, is within the high conversion temperature range (Ta or higher Tb) shown in FIG. In the case of R1 below, the conversion from nitrogen monoxide (NO) to nitrogen dioxide (NO 2 ) corresponding to the exhaust gas temperature T is performed with a high conversion rate, and the nitrogen dioxide in the exhaust gas However, if the exhaust gas temperature T deviates from the high conversion temperature range R1 shown in FIG. 5, the PM deposition amount increases and the front-to-back differential pressure P also increases. This high conversion temperature range R1 is closely related to the activation temperature range of the catalyst supported on the oxidation catalyst 13a, and is, for example, within a temperature range of 250 ° C. to 400 ° C. with respect to the exhaust gas temperature T at the inlet of the oxidation catalyst 13a. The That is, Ta = 250 ° C. and Tb = 400 ° C.

このとき、選択還元型触媒14に関しては、排出されるNOX量に応じた通常制御でNOXを浄化している。つまり、エンジン運転状況判断手段からエンジン運転状態(エンジン回転数、トルク又はエンジン負荷)の情報を入手して、このエンジン運転状態に対応するNOx排出量を、予め設定され、尿素水供給制御装置31(又は内燃機関制御装置30)に記憶された通常運転時のNOx量算出用マップデータを参照して算出し、この算出されたNOx排出量を還元できる尿素水の供給量を、尿素水供給装置15から供給して、この尿素水から発生するアンモニアを用いて、DPF装置13から流出してくるNOxを選択還元型触媒14で還元している。なお、還元で消費しきれなかったアンモニアは、下流側のアンモニア酸化用の触媒(図示しない)で酸化して無害化する。 At this time, with respect to the selective catalytic reduction catalyst 14, NOx is purified by normal control according to the amount of exhausted NOx. That is, information on the engine operating state (engine speed, torque or engine load) is obtained from the engine operating state determining means, and the NOx emission amount corresponding to the engine operating state is set in advance, and the urea water supply control device 31. The urea water supply device calculates the urea water supply amount that can be calculated by referring to the map data for calculating the NOx amount during normal operation stored in the internal combustion engine control device 30 and can reduce the calculated NOx emission amount. 15, NOx flowing out from the DPF device 13 is reduced by the selective reduction catalyst 14 using ammonia generated from the urea water. The ammonia that cannot be consumed in the reduction is oxidized and rendered harmless by a downstream ammonia oxidation catalyst (not shown).

そして、時間の経過又は走行距離の増加と共に、触媒担持フィルタ13bに堆積したPMの量が増加して前後差圧Pが増加する。従来技術における、前後差圧(DPF差圧)の増加の概略の様子を図9に示す。前後差圧Pが、予め設定した限界差圧値Pkに到達すると、触媒担持フィルタ13bの圧損を下げるためにPM強制再生制御(強制再生)を行う。図9に示すように、触媒担持フィルタ13bにPMが全く溜まっていないときの前後差圧Pの初期圧力をP0とすると、強制再生後の前後差圧値P0kは、P0≦P0kの関係にある。最初の強制再生後は、この前後差圧値P0kから前後差圧Pは増加して限界差圧値Pkに到達するとPM強制再生制御を行うことを繰り返す。   As the time elapses or the travel distance increases, the amount of PM accumulated on the catalyst-carrying filter 13b increases and the front-rear differential pressure P increases. FIG. 9 shows an outline of an increase in front-to-back differential pressure (DPF differential pressure) in the prior art. When the front-rear differential pressure P reaches the preset limit differential pressure value Pk, PM forced regeneration control (forced regeneration) is performed to reduce the pressure loss of the catalyst-carrying filter 13b. As shown in FIG. 9, when the initial pressure of the front-rear differential pressure P when no PM is accumulated in the catalyst-carrying filter 13b is P0, the front-rear differential pressure value P0k after the forced regeneration has a relationship of P0 ≦ P0k. . After the first forced regeneration, when the front-rear differential pressure value P0k increases from the front-rear differential pressure value P0k and reaches the limit differential pressure value Pk, the PM forced regeneration control is repeated.

一方、本発明の内燃機関の排気浄化方法の制御では、図8に示すように、強制再生後の前後差圧P0kを上回る制御開始差圧値Psに前後差圧Pが到達した後に、状況に応じてNOx増加制御を行う。つまり、触媒担持フィルタ13bに堆積したPMの堆積量が予め設定した制御開始量を超えた場合に、状況に応じてNOx増加制御を行い、更に、PMの堆積量が捕集限界量(限界堆積量)に到達するとPM強制再生制御を行うように構成される。   On the other hand, in the control of the exhaust gas purification method for an internal combustion engine of the present invention, as shown in FIG. 8, after the front-rear differential pressure P reaches the control start differential pressure value Ps exceeding the front-rear differential pressure P0k after forced regeneration, Accordingly, NOx increase control is performed. That is, when the amount of PM deposited on the catalyst-carrying filter 13b exceeds a preset control start amount, NOx increase control is performed according to the situation, and further, the amount of PM deposited is the collection limit amount (limit deposition). (PM) is configured to perform PM forced regeneration control.

この本発明の内燃機関の排気浄化方法に関して、図2の制御フローを参照しながら説明する。この図2の制御フローは、内燃機関の運転開始と共に上級の制御フローより呼ばれて実施され、実施後に上位の制御フローに戻っては、繰り返し呼ばれて実施され、内燃機関の運転の終了時には、上位の制御フローと共に終了するものとして示してある。   The exhaust gas purification method for an internal combustion engine of the present invention will be described with reference to the control flow of FIG. The control flow of FIG. 2 is called and executed from the upper control flow when the internal combustion engine is started, and is repeatedly called and executed after returning to the upper control flow, and at the end of the operation of the internal combustion engine. , Shown as ending with the upper control flow.

この図2の制御フローが呼ばれてスタートすると、ステップS11で、触媒担持フィルタ13bに堆積したPMの堆積量が予め設定した制御開始量を超えたか否かを、触媒担持フィルタ13bの前後差圧Pが、制御開始差圧値Ps以上になったか否かで判定する。   When the control flow of FIG. 2 is called and started, in step S11, whether or not the amount of PM deposited on the catalyst-carrying filter 13b has exceeded a preset control start amount is determined. Judgment is made based on whether or not P is equal to or greater than the control start differential pressure value Ps.

このステップS11で、前後差圧Pが制御開始差圧値Psよりも小さい場合には(NO)、ステップS30で、通常制御を、予め設定した所定の時間(ステップS11の判定のインターバルに関係する時間)Δt1の間行った後、ステップS11に戻り、前後差圧Pが制御開始差圧値Ps以上になるのを待つ。   If the front-rear differential pressure P is smaller than the control start differential pressure value Ps in step S11 (NO), in step S30, the normal control is related to a predetermined time set in advance (the determination interval in step S11). After the time) Δt1, the process returns to step S11 and waits for the front-rear differential pressure P to be equal to or greater than the control start differential pressure value Ps.

ステップS11の判定で、前後差圧Pが制御開始差圧値Ps以上に達した場合には(YES)、ステップS12に行き、酸化触媒13aの温度を指標する、第1温度センサー21で検出される排気ガス温度Tが、図6に示すような制御開始温度範囲(T1以上、T2以下)R2内にあるか否かを判定する。   If it is determined in step S11 that the front-rear differential pressure P has reached the control start differential pressure value Ps or more (YES), the process goes to step S12 and is detected by the first temperature sensor 21 that indicates the temperature of the oxidation catalyst 13a. It is determined whether or not the exhaust gas temperature T is within a control start temperature range (T1 or more, T2 or less) R2 as shown in FIG.

この制御開始温度範囲R2は、NOx増加制御を行った場合に排気ガス温度Tが低下するので、予めどの程度低下するかを実験などで把握しておき、エンジンの運転状態に応じて、予め低下する温度ΔTa、ΔTbを予測して、T1=Ta+ΔTa、T2=Tb+ΔTbとすることが好ましい。 The control start temperature range R2, since the exhaust gas temperature T in the case of performing NOx increase control decreases, keep track whether to advance degree drop experiment or the like, according to the operating state of the engine, previously reduced It is preferable to predict the temperatures ΔTa and ΔTb to be T1 = Ta + ΔTa and T2 = Tb + ΔTb.

これにより、NOx増加制御で低下する温度ΔTa、ΔTbを予め見込んで、高変換温度範囲R1より高いほうに移動した制御開始温度範囲R2を用いて、転換率のピークに近いところで、PMに対する還元剤であるNO2を増やすことにより、触媒担持フィルタ13bにおけるPMの酸化をより促進させることができる。 Thereby, the temperatures ΔTa and ΔTb that decrease in the NOx increase control are estimated in advance, and the reducing agent for PM is located near the peak of the conversion rate using the control start temperature range R2 that has moved higher than the high conversion temperature range R1. By increasing NO 2 , PM oxidation in the catalyst-carrying filter 13b can be further promoted.

このステップS12の判定で、排気ガス温度Tが、制御開始温度範囲R2内にない場合は、予め設定した所定の時間(ステップS11の判定のインターバル、及び、ステップS12の判定のインターバルに関係する時間)Δt2を経過した後、ステップS11に戻り、排気ガス温度Tが制御開始温度範囲R2内になるのを待つ。ステップS12の判定で、排気ガス温度Tが制御開始温度範囲R2内に入った場合は、ステップS13に行き、NOx増加制御と尿素水増加制御(NOx増加対応制御)を並行して行う。   If it is determined in step S12 that the exhaust gas temperature T is not within the control start temperature range R2, a predetermined time set in advance (the time related to the determination interval in step S11 and the determination interval in step S12). ) After Δt2, the process returns to step S11 and waits for the exhaust gas temperature T to fall within the control start temperature range R2. If it is determined in step S12 that the exhaust gas temperature T falls within the control start temperature range R2, the process proceeds to step S13, and NOx increase control and urea water increase control (NOx increase control) are performed in parallel.

このNOx増加制御は、図2の制御フローのステップS13で呼ばれて、図3の制御フローがスタートすると、ステップS21で、ステップS12の判断と同じT1≦T≦T2の判定で、NOx増加制御を開始してよいか(ONであるか)否かを判定し、開始してよくない(制御OFF)ならば(NO)、ステップS32で、通常制御を予め設定した所定の時間(ステップS21の判定のインターバルに関係する時間)Δt3の間行った後、ステップS21に戻り、NOx増加制御を開始してよい状態になるまで待つ。   This NOx increase control is called in step S13 of the control flow of FIG. 2, and when the control flow of FIG. 3 starts, in step S21, NOx increase control is performed by the same determination of T1 ≦ T ≦ T2 as in step S12. Is determined to be started (ON) or not (control OFF) (NO), in step S32, normal control is set in advance for a predetermined time (in step S21). After a period of time (Δt3 related to the determination interval), the process returns to step S21 and waits until the NOx increase control can be started.

ステップS21で、NOx増加制御を開始してもよい(制御ON)と判断されると(YES)、次のステップS22で、エンジン運転状況検出手段から得られるエンジン回転数NeとトルクTrq(又はエンジン負荷)に基づいて、これらをパラメータとした図7に示される制御用領域(ゾーン)A、B、Cのどの制御用領域にあるかの判断を行い、次のステップS23〜S25で、それぞれの制御用領域A、B、Cに対応した制御が行われる。この制御用領域A、B、Cは、排気ガス温度Tと密接な関係を有する酸化触媒13aの一酸化窒素から二酸化窒素への変換率との関連により区分されている。   If it is determined in step S21 that the NOx increase control may be started (control ON) (YES), in the next step S22, the engine speed Ne and the torque Trq (or engine Trq) obtained from the engine operating state detecting means are determined. Based on the load), it is determined which of the control areas (zones) A, B, and C shown in FIG. 7 is used as a parameter, and in each of the following steps S23 to S25, Control corresponding to the control areas A, B, and C is performed. The control regions A, B, and C are divided according to the relationship with the conversion rate of nitrogen monoxide to nitrogen dioxide, which is closely related to the exhaust gas temperature T.

制御用領域Aの場合は、低温側で一酸化窒素が二酸化窒素に変換する変換率がやや低い領域であるため、ステップS23でシリンダ内での燃料噴射のタイミングを進角させるタイミング進角によりエンジン本体11から排出されるNOxを増加する。また、制御用領域Bの場合は、一酸化窒素が二酸化窒素に変換する変換率も高い領域であるため、ステップS24でタイミング進角と、EGRを停止するEGRカットとの両方によりエンジン本体11から排出されるNOxを大幅に増加する。また、制御用領域Cの場合は、高温側で必要とされるトルクも大きくなる(エンジン負荷も上がる)領域であるため、ステップS25で、タイミング進角でなく、EGRカットによりエンジン本体11から排出されるNOxを増加する。   In the case of the control region A, the conversion rate at which nitric oxide is converted to nitrogen dioxide on the low temperature side is a slightly low region, and therefore the engine is driven by the timing advance that advances the fuel injection timing in the cylinder in step S23. The NOx discharged from the main body 11 is increased. Further, in the case of the control region B, since the conversion rate at which nitric oxide is converted into nitrogen dioxide is also a high region, it is determined from the engine body 11 by both the timing advance angle and the EGR cut that stops EGR in step S24. Significantly increases NOx emissions. Further, in the control region C, the torque required on the high temperature side increases (engine load also increases), so in step S25, the engine main body 11 is discharged by EGR cut instead of timing advance. NOx to be increased.

なお、図7では、制御用領域を温度領域と関連させて各領域(ゾーン)A、B、Cを全て直線で囲まれた形で示しているが、この図7の表示はイメージ的な図であり、実際の場合は、事前に決定された、タイミング進角やEGRカット等の各制御がマップデータに書き込まれ内燃機関制御装置30に記憶して、制御にそのマップデータを参照して、タイミング進角やEGRカット等を選択して制御することになる。   In FIG. 7, the control region is related to the temperature region, and each region (zone) A, B, C is shown in a form surrounded by a straight line. However, the display in FIG. In the actual case, each control such as timing advance angle and EGR cut, which is determined in advance, is written in the map data and stored in the internal combustion engine control device 30, and the map data is referred to for control. Timing advance angle, EGR cut, etc. are selected and controlled.

このNOx増加制御により、エンジン本体11から排気通路12に排出される排気ガスG中のNOxが増加し、酸化触媒13aに流入する排気ガス温度Tに応じた変換率で一酸化窒素から二酸化窒素への変換が酸化触媒13aで行われ、この排気ガス中の二酸化窒素が増加する。この二酸化窒素によって触媒担持フィルタ13bに堆積されたPMの酸化が促進される。   By this NOx increase control, NOx in the exhaust gas G discharged from the engine body 11 to the exhaust passage 12 increases, and from nitric oxide to nitrogen dioxide at a conversion rate according to the exhaust gas temperature T flowing into the oxidation catalyst 13a. Is converted by the oxidation catalyst 13a, and the nitrogen dioxide in the exhaust gas increases. This nitrogen dioxide promotes the oxidation of PM deposited on the catalyst-carrying filter 13b.

また、ステップS23〜S25では、このNOx増加制御と共に、尿素水増加制御を行う。この尿素水増加制御は、NOx増加制御により、選択還元型触媒14に流入するNOxの量が、NOx増加制御を行わない通常制御の場合よりも増加するため、この増加したNOxを処理する必要があるため行われる。   In steps S23 to S25, urea water increase control is performed together with the NOx increase control. In this urea water increase control, the amount of NOx flowing into the selective catalytic reduction catalyst 14 is increased by the NOx increase control as compared with the normal control in which the NOx increase control is not performed. Therefore, it is necessary to process this increased NOx. Because there is.

この尿素水増加制御は、NOxの増加に見合う分の尿素水を増加する制御であり、NOx増加制御によるNOxの増加量が、図7の各制御用領域A、B、Cに対応した処理によって異なるため、その制御用領域でNOx増加制御した場合に排出されるであろうNOxを事前に把握して、通常運転時のNOx量算出用マップデータに加えて、NOx増加制御をした場合に増加すると予測されるNOx増加量を予めマップデータ化してNOx増加量算出用マップデータを作成して、尿素水供給制御装置31(又は内燃機関制御装置30)に記憶しておき、NOx増加制御時に、NOx増加量算出用マップデータに基づいて尿素水の供給量を増加する尿素水増加制御を行う。   This urea water increase control is a control to increase the urea water corresponding to the increase in NOx, and the amount of increase in NOx by the NOx increase control is performed by the processing corresponding to each control region A, B, C in FIG. Because it is different, NOx that will be discharged when NOx increase control is performed in that control region is known in advance, and it increases when NOx increase control is performed in addition to the map data for NOx amount calculation during normal operation Then, the predicted NOx increase amount is converted into map data in advance to create NOx increase amount calculation map data, which is stored in the urea water supply control device 31 (or the internal combustion engine control device 30), and during NOx increase control, Based on the NOx increase amount calculation map data, urea water increase control for increasing the supply amount of urea water is performed.

つまり、尿素水供給制御装置31に記憶されたNOx増加制御時のNOx増加量算出用マップデータを参照してNOxの増加量を算出し、この算出されたNOx増加量を還元できる尿素水の供給量を増加して、尿素水供給装置15から供給して、この尿素水から発生するアンモニアを用いて、DPF装置13から流出してくるNOxを選択還元型触媒14で還元する。なお、この還元で消費しきれなかったアンモニアは、下流側のアンモニア酸化用の触媒(図示しない)で酸化して無害化する。これにより、NOx増加制御の選択還元型触媒14におけるNOx浄化率への悪影響を避けることができる。 That is, referring to the NOx increase amount calculation map data during NOx increase control stored in the urea water supply control device 31, the NOx increase amount is calculated, and the urea water supply capable of reducing the calculated NOx increase amount The amount is increased and supplied from the urea water supply device 15, and NOx flowing out from the DPF device 13 is reduced by the selective reduction catalyst 14 using ammonia generated from the urea water. The ammonia that cannot be consumed by the reduction is oxidized and rendered harmless by a downstream ammonia oxidation catalyst (not shown). Thereby, it is possible to avoid an adverse effect on the NOx purification rate in the selective reduction catalyst 14 of the NOx increase control.

このNOx増加制御と尿素水増加制御を予め設定された所定時間Δt4の間行い、リターンして、図2のステップS13に戻り、次のステップS14に行く。   This NOx increase control and urea water increase control are performed for a predetermined time Δt4 set in advance, the process returns, the process returns to step S13 in FIG. 2, and the process proceeds to the next step S14.

このステップS14では、触媒担持フィルタ13bに堆積したPMが捕集限界量に達したか否かを前後差圧Pが限界差圧値Pk以上になったか否かで判定する。この判定で、前後差圧Pが限界差圧値Pk以上になった場合には(YES)、ステップS40で、PM強制再生制御を行い、リターンする。また、ステップS14の判定で前後差圧Pが限界差圧値Pk以上になっていない場合は(NO)、ステップS15に行く。   In this step S14, it is determined whether or not the PM deposited on the catalyst-carrying filter 13b has reached the collection limit amount based on whether or not the differential pressure P before and after becomes equal to or greater than the limit differential pressure value Pk. If it is determined that the front-rear differential pressure P is greater than or equal to the limit differential pressure value Pk (YES), PM forced regeneration control is performed in step S40, and the process returns. If it is determined in step S14 that the front-rear differential pressure P is not greater than or equal to the limit differential pressure value Pk (NO), the process goes to step S15.

ステップS15では、排気ガス温度Tが、高変換温度範囲R1内にあるか否かを判定する。ステップS15の判定で、排気ガス温度Tが高変換温度範囲R1内にある場合には、ステップS16で、ステップS13と同じNOx増加制御と尿素水増加制御を予め設定された所定時間(ステップS13の所定時間Δt4とは異なる時間)Δt5の間行い、ステップS14に戻る。   In step S15, it is determined whether or not the exhaust gas temperature T is within the high conversion temperature range R1. If it is determined in step S15 that the exhaust gas temperature T is within the high conversion temperature range R1, in step S16, the same NOx increase control and urea water increase control as in step S13 are set for a predetermined time (in step S13). For a period of time (t different from the predetermined time Δt4) Δt5 and the process returns to step S14.

このステップS13の所定時間Δt4は、排気ガス温度TがNOx増加制御により予め予測した温度低下量ΔTの分が低下しきると予測される時間であり、一方、ステップS16の所定時間Δt5は、排気ガス温度Tが低下した後の、ステップS15の温度範囲のチェックのインターバルに関係する時間である。   The predetermined time Δt4 in step S13 is a time when the exhaust gas temperature T is predicted to be reduced by the amount of temperature decrease ΔT previously predicted by the NOx increase control, while the predetermined time Δt5 in step S16 is the exhaust gas. This is the time related to the temperature range check interval in step S15 after the temperature T decreases.

ステップS15の判定で、排気ガス温度Tが高変換温度範囲R1内にない場合には、ステップS31に行き、NOx増加制御と尿素水増加制御をしない通常制御をステップS16の所定時間Δt4と同じ時間の間行って、ステップS14に戻る。   If it is determined in step S15 that the exhaust gas temperature T is not within the high conversion temperature range R1, the process goes to step S31, where normal control without NOx increase control and urea water increase control is performed for the same time as the predetermined time Δt4 in step S16. And return to step S14.

このステップS15、S16により、ステップS11で、前後差圧Pが制御開始差圧値Ps以上になった以後で、かつ、排気ガス温度Tが制御開始温度範囲R2内に入った後で、かつ、前後差圧Pが限界差圧値Pk以上になってPM強制再生制御を開始するまでの間、排気ガス温度Tが高変換温度範囲R1内にある場合のみ、言い換えれば、状況に応じて、NOx増加制御と尿素水増加制御を行って、二酸化窒素により、触媒担持フィルタ13bに堆積したPMの酸化を促進して、効率よくPMを燃焼除去する。これにより、図9の通常制御とPM強制再生制御を繰り返す場合に比べて、図8に示すように、PM強制再生制御までの時間を長くすることができるので、強制再生制御の頻度を少なくすることができる。 By steps S15 and S16 , after the differential pressure P before and after the control differential pressure value Ps becomes equal to or higher than the control start differential pressure value Ps in step S11, and after the exhaust gas temperature T enters the control start temperature range R2, and Only when the exhaust gas temperature T is within the high conversion temperature range R1 until the front-rear differential pressure P becomes equal to or higher than the limit differential pressure value Pk and the PM forced regeneration control is started, in other words, depending on the situation, the NOx The increase control and the urea water increase control are performed, and the oxidation of PM deposited on the catalyst-carrying filter 13b is promoted by nitrogen dioxide, so that PM is efficiently burned and removed. As a result, as shown in FIG. 8, it is possible to lengthen the time until the PM forced regeneration control as compared with the case where the normal control and the PM forced regeneration control in FIG. 9 are repeated, thereby reducing the frequency of the forced regeneration control. be able to.

更に、図3の制御フローの代わりに、ステップS26とステップS27を加えた図4の制御フローを用いて、内燃機関制御装置30が、NOx増加制御時に、ステップS26で、選択還元型触媒14に流入するNOx量をNOxセンサー23で計測し、計測によるNOx量と、通常運転時のNOx量算出用マップデータから算出されるNOx量とNOx増加量算出用マップデータにより算出されたNOx増加量の和を比較して、両者の差が予め設定した補正用値内であるか否かを判定する。この判定で両者の差が補正用値を越えない場合には(YES)、そのままリターンし、ステップS26の判定で両者の差が補正用値を越えた場合には(NO)、ステップS27で、NOx増加量算出用マップデータを書き直して補正してから、リターンする。 Further, instead of the control flow of FIG. 3, the internal combustion engine controller 30 uses the control flow of FIG. 4 to which step S26 and step S27 are added to perform the selective reduction catalyst 14 in step S26 during NOx increase control. The inflow NOx amount is measured by the NOx sensor 23, and the NOx amount by measurement, the NOx amount calculated from the NOx amount calculation map data during normal operation, and the NOx increase amount calculated by the NOx increase amount calculation map data are calculated. The sums are compared to determine whether or not the difference between the two is within a preset correction value. If the difference between the two does not exceed the correction value in this determination (YES), the process directly returns. If the difference between the two exceeds the correction value in the determination in step S26 (NO), in step S27, After the NOx increase amount calculation map data is rewritten and corrected, the process returns.

この図4の制御フローを用いると、このNOx量のモニターとの比較、及び、マップデータの書き換えにより、選択還元型触媒14のNOx浄化率を維持でき、また、選択還元型触媒14から流出する、還元できなかったNOxや余剰のアンモニアを減少することができる。   When the control flow of FIG. 4 is used, the NOx purification rate of the selective catalytic reduction catalyst 14 can be maintained by comparing with the monitoring of the NOx amount and rewriting of the map data, and it flows out of the selective catalytic reduction catalyst 14. NOx that cannot be reduced and excess ammonia can be reduced.

そして、本発明に係る実施の形態の内燃機関は、上記の内燃機関の排気浄化システム10を備えて構成される。   And the internal combustion engine of embodiment which concerns on this invention is provided with the exhaust gas purification system 10 of said internal combustion engine.

従って、上記の構成の内燃機関の排気浄化システム10、内燃機関、及び内燃機関の排気浄化方法では、尿素水供給制御装置31は、触媒担持フィルタ13bに堆積したPMの堆積量が予め設定した制御開始量以下の場合には、即ち、前後差圧Pが制御開始差圧Psより小さい場合には、内燃機関から排出されるNOx量に応じて尿素水供給装置15から尿素水を供給してNOxを浄化する通常制御を行い、内燃機関制御装置30は、PMの堆積量が制御開始量を超えた場合には、即ち、前後差圧Pが制御開始差圧Ps以上の場合には、酸化触媒13aの入口の排気ガス温度Tが予め設定した温度範囲R1(又はR2)内に有るときに、NOx増加制御を行って触媒担持フィルタ13bに堆積したPMの燃焼除去を促進し、PMの量が制御開始量より大きい捕集限界量を超えた場合には、即ち、前後差圧Pが限界差圧値Pk以上の場合には、PMを強制的に燃焼除去するPM強制再生制御を行って触媒担持フィルタ13bを再生する。   Therefore, in the exhaust gas purification system 10 for an internal combustion engine, the internal combustion engine, and the exhaust gas purification method for the internal combustion engine configured as described above, the urea water supply control device 31 performs control in which the amount of PM deposited on the catalyst-carrying filter 13b is set in advance. In the case where it is equal to or less than the start amount, that is, when the front-rear differential pressure P is smaller than the control start differential pressure Ps, urea water is supplied from the urea water supply device 15 according to the amount of NOx discharged from the internal combustion engine, and NOx. The internal combustion engine control device 30 performs the normal control to purify the catalyst, and the internal combustion engine control device 30 performs the oxidation catalyst when the PM accumulation amount exceeds the control start amount, that is, when the front-rear differential pressure P is equal to or greater than the control start differential pressure Ps. When the exhaust gas temperature T at the inlet of 13a is within a preset temperature range R1 (or R2), NOx increase control is performed to promote combustion removal of PM deposited on the catalyst-carrying filter 13b, and the amount of PM is increased. Control open When the collection limit amount larger than the amount is exceeded, that is, when the front-rear differential pressure P is greater than or equal to the limit differential pressure value Pk, PM forced regeneration control for forcibly burning and removing PM is performed to perform catalyst-carrying filter Play 13b.

従って、PMの堆積量がある程度多くなった場合に、一酸化窒素(NO)から二酸化窒素(NO2)への転換率の高い温度範囲R1又はR2で、PMに対しての還元剤である窒素酸化物(NOx)を増加させるNOx増加制御を行うことにより、二酸化窒素によるPMの酸化を促進して効率良く触媒担持フィルタ13bに堆積したPMを燃焼除去できるので、PMの堆積量の増加を抑制できてPM強制再生制御の頻度を減少することができる。 Therefore, when the amount of PM deposited increases to some extent, nitrogen is a reducing agent for PM in the temperature range R1 or R2 where the conversion rate from nitrogen monoxide (NO) to nitrogen dioxide (NO 2 ) is high. By performing NOx increase control to increase oxide (NOx), it is possible to promote the oxidation of PM by nitrogen dioxide and efficiently burn and remove the PM deposited on the catalyst-carrying filter 13b, thereby suppressing an increase in the amount of accumulated PM. This can reduce the frequency of PM forced regeneration control.

また、NOx増加制御は、吸気空気量(酸素濃度)を変化させる方法に比べて、エンジンの運転の挙動の大きな変化を伴わないので、排気浄化性能の向上と運転性の悪化防止の両立を図ることができる。   In addition, since the NOx increase control does not involve a large change in the operation behavior of the engine as compared with the method of changing the intake air amount (oxygen concentration), both improvement of exhaust gas purification performance and prevention of deterioration of operability are achieved. be able to.

また、内燃機関制御装置30は、エンジン回転数Neと、トルクTrq(又はエンジン負荷)とをパラメータとする制御用領域A、B、C別に、シリンダ内における燃料噴射のタイミングの進角、EGRカット、及びこれらの組み合わせを用いてNOx増加制御を行う。   Further, the internal combustion engine control device 30 determines the advance angle of the fuel injection timing in the cylinder, EGR cut, for each of the control areas A, B, and C using the engine speed Ne and the torque Trq (or engine load) as parameters. , And combinations thereof, NOx increase control is performed.

従って、酸素量を増加してPMの酸化を促進するために、過給機により空気量を増加したり、吸気スロットルにより吸気量を減少したりする方法を採用する場合に比較して、エンジンの挙動の変化を小さくすることができ、運転性の悪化を防止することができる。   Therefore, in order to increase the amount of oxygen and promote the oxidation of PM, the engine is increased as compared with the case where the method of increasing the amount of air by the supercharger or decreasing the amount of intake by the intake throttle is adopted. A change in behavior can be reduced, and deterioration in drivability can be prevented.

更に、尿素水供給制御装置31は、通常運転時のNOx量算出用マップデータに加えて、NOx増加制御をした場合に増加すると予測されるNOx増加量を予めマップデータ化してNOx増加量算出用マップデータを作成して記憶しておき、NOx増加制御時に、前記NOx量算出用マップデータに基づいて算出されるNOx量に、NOx増加量算出用マップデータに基づいて算出されるNOx増加量を加えたNOx排出量に対して、尿素水の供給量を増加する尿素水増加制御を行う。従って、NOx増加制御による、後段(下流側)の選択還元型触媒14のNOX浄化率への悪影響を避けることができる。 Further, the urea water supply control device 31 pre-maps the NOx increase amount predicted to increase when the NOx increase control is performed in addition to the map data for NOx amount calculation during the normal operation to calculate the NOx increase amount. Map data is created and stored, and during NOx increase control, the NOx increase amount calculated based on the NOx increase amount calculation map data is added to the NOx amount calculated based on the NOx amount calculation map data. The urea water increase control for increasing the supply amount of urea water is performed with respect to the added NOx discharge amount. Accordingly, it is possible to avoid an adverse effect on the NO x purification rate of the selective reduction catalyst 14 in the subsequent stage (downstream side) due to the NOx increase control.

また、内燃機関制御装置30は、NOx増加制御時に、選択還元型触媒14に流入するNOx量をNOxセンサー23で計測し、計測によるNOx量と、算出された前記NOx排出量を比較して、両者の差異が予め設定した値を越えた場合には、NOx増加量算出用マップデータを補正する。従って、選択還元型触媒14のNOx浄化率を維持でき、また、尿素水の供給量が的確な量となるので、選択還元型触媒14の下流側に排出される、還元できなかったNOxの量や余剰のアンモニアの量を減少することができる。   Further, the internal combustion engine control device 30 measures the NOx amount flowing into the selective catalytic reduction catalyst 14 with the NOx sensor 23 during the NOx increase control, and compares the measured NOx amount with the calculated NOx emission amount, When the difference between the two exceeds a preset value, the NOx increase amount calculation map data is corrected. Accordingly, the NOx purification rate of the selective catalytic reduction catalyst 14 can be maintained, and the amount of urea water supplied is an appropriate amount, so the amount of NOx that cannot be reduced and is discharged downstream of the selective catalytic reduction catalyst 14. And the amount of excess ammonia can be reduced.

本発明の内燃機関の排気浄化システム、内燃機関、及び内燃機関の排気浄化方法によれば、PM強制再生制御でない場合において、エンジンの運転の挙動の大きな変化を伴わないNOx増加制御を行って、PMの酸化の向上を図ってPM強制再生制御の頻度を減少できて、排気浄化性能の向上と運転性の悪化の防止の両立を図ることができるので、数多くの車両に搭載する内燃機関等に利用できる。   According to the exhaust purification system of an internal combustion engine, the internal combustion engine, and the exhaust purification method of the internal combustion engine of the present invention, when it is not PM forced regeneration control, NOx increase control without significant change in the behavior of the engine is performed, By improving the oxidation of PM and reducing the frequency of PM forced regeneration control, it is possible to achieve both improvement of exhaust purification performance and prevention of deterioration of drivability. Available.

10 内燃機関の排気浄化システム
11 エンジン本体
12 排気通路(排気管)
13 DPF装置
13a 酸化触媒(DOC)
13b 触媒担持フィルタ
14 選択還元型触媒(SCR触媒)
15 尿素水供給装置
21 第1温度センサー
22 第2温度センサー
23 NOxセンサー
30 内燃機関制御装置
31 尿素水供給制御装置
DESCRIPTION OF SYMBOLS 10 Exhaust gas purification system 11 Internal combustion engine 12 Exhaust passage (exhaust pipe)
13 DPF device 13a Oxidation catalyst (DOC)
13b Catalyst support filter 14 Selective reduction type catalyst (SCR catalyst)
15 urea water supply device 21 first temperature sensor 22 second temperature sensor 23 NOx sensor 30 internal combustion engine control device 31 urea water supply control device

Claims (4)

内燃機関の排気通路に、上流側から順に酸化触媒、触媒担持フィルタを備えると共に、内燃機関の運転を制御する内燃機関制御装置を備えた内燃機関の排気浄化システムにおいて、
前記内燃機関制御装置は、前記触媒担持フィルタに堆積したPMの堆積量が予め設定した制御開始量以上と判定され、前記酸化触媒の入口の排気ガス温度が予め設定した第一の温度範囲内と判定された時に、排ガスの温度低下に基づいて設定された第一の所定時間の間NOx増加制御を行った後、前記排気ガス温度が、上限と下限が前記第一の温度範囲の上限と下限に対してNOx増加制御で低下すると見込まれる温度だけそれぞれ低い第二の温度範囲内であるか否かに基づいてNOx増加制御を行うか否かを判定し、NOx増加制御を行うと判定する毎に、前記排気ガス温度がNOx増加制御により予め予測した温度低下量の分が低下しきると予測される時間である第一の所定時間とは異なる前記排気ガス温度の判定のインターバルである第二の所定時間の間NOx増加制御を行うことを特徴とする内燃機関の排気浄化システム。
In the exhaust gas purification system for an internal combustion engine, which includes an oxidation catalyst and a catalyst-carrying filter in order from the upstream side in the exhaust passage of the internal combustion engine, and an internal combustion engine control device that controls the operation of the internal combustion engine ,
The internal combustion engine controller determines that the amount of PM deposited on the catalyst-carrying filter is equal to or greater than a preset control start amount, and the exhaust gas temperature at the inlet of the oxidation catalyst is within a preset first temperature range. When it is determined, after performing NOx increase control for a first predetermined time set based on the temperature drop of the exhaust gas, the upper and lower limits of the exhaust gas temperature are the upper and lower limits of the first temperature range. Each time it is determined whether or not NOx increase control is to be performed based on whether or not NOx increase control is to be performed based on whether or not the temperature is within a second temperature range that is lower by a temperature that is expected to be decreased by NOx increase control. In addition, the exhaust gas temperature determination interval is different from the first predetermined time, which is the time when the exhaust gas temperature is predicted to be reduced by the amount of temperature decrease predicted in advance by the NOx increase control. Internal combustion engine exhaust gas purification system for which it is characterized in that between NOx increase control of second predetermined time.
前記触媒担持フィルタより下流側の前記排気通路に、上流側から順に、尿素水供給装置、選択還元型触媒を備えると共に、
前記尿素水供給装置における尿素水の供給を制御する尿素水供給制御装置は、
前記PMの堆積量が前記制御開始量より小さい場合には、内燃機関から排出されるNOx量に応じて前記尿素水供給装置から尿素水を供給してNOxを浄化する通常制御を行い、
さらに、通常運転時のNOx量算出用マップデータに加えて、NOx増加制御をした場合に増加すると予測されるNOx増加量を予めマップデータ化してNOx増加量算出用マップデータを作成して記憶しておき、NOx増加制御時に、前記NOx量算出用マップデータに基づいて算出されるNOx量に、前記NOx増加量算出用マップデータに基づいて算出されるNOx増加量を加えたNOx排出量に対して、尿素水の供給量を増加する尿素水増加制御を行うことを特徴とする請求項1に記載の内燃機関の排気浄化システム。
In the exhaust passage downstream of the catalyst-carrying filter, in order from the upstream side, a urea water supply device and a selective reduction catalyst are provided,
The urea water supply control device that controls the supply of urea water in the urea water supply device,
When the PM accumulation amount is smaller than the control start amount, normal control is performed to purify NOx by supplying urea water from the urea water supply device in accordance with the NOx amount discharged from the internal combustion engine,
Further, in addition to the NOx amount calculation map data during normal operation, the NOx increase amount predicted to increase when NOx increase control is performed is converted into map data in advance to create and store NOx increase amount calculation map data. In addition, during NOx increase control, a NOx emission amount obtained by adding a NOx increase amount calculated based on the NOx increase amount calculation map data to a NOx amount calculated based on the NOx amount calculation map data. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein urea water increase control for increasing the supply amount of urea water is performed .
内燃機関の排気中のNOxとPMを、排気通路に上流側から順に酸化触媒、触媒担持フィルタを配置した排気浄化システムで浄化する内燃機関の排気浄化方法において、In an exhaust gas purification method for an internal combustion engine that purifies NOx and PM in the exhaust gas of the internal combustion engine by an exhaust gas purification system in which an oxidation catalyst and a catalyst-carrying filter are sequentially arranged in the exhaust passage from the upstream side.
前記触媒担持フィルタに堆積したPMの堆積量が予め設定した制御開始量以上の場合には、前記酸化触媒の入口の排気ガス温度が予め設定した第一の温度範囲内に有るときに、排ガスの温度低下に基づいて設定された第一の所定時間の間NOx増加制御を行った後、前記排気ガス温度が、上限と下限が前記第一の温度範囲の上限と下限に対してNOx増加制御で低下すると見込まれる温度だけそれぞれ低い第二の温度範囲内であるか否かに基づいてNOx増加制御を行うか否かを判定し、NOx増加制御を行うと判定する毎に、前記排気ガス温度がNOx増加制御により予め予測した温度低下量の分が低下しきると予測される時間である第一の所定時間とは異なる前記排気ガス温度の判定のインターバルである第二の所定時間の間NOx増加制御を行うことを特徴とする内燃機関の排気浄化方法。If the amount of PM deposited on the catalyst-carrying filter is equal to or greater than a preset control start amount, the exhaust gas temperature is reduced when the exhaust gas temperature at the inlet of the oxidation catalyst is within a preset first temperature range. After performing NOx increase control for a first predetermined time set based on the temperature decrease, the exhaust gas temperature is controlled by NOx increase control with respect to the upper limit and lower limit of the upper limit and lower limit of the first temperature range. It is determined whether or not to perform NOx increase control based on whether or not the temperature is within a second temperature range that is lower by a temperature that is expected to decrease. NOx increase during a second predetermined time, which is an interval for determining the exhaust gas temperature, which is different from the first predetermined time, which is the time when the amount of temperature decrease predicted in advance by NOx increase control is expected to decrease. Exhaust gas purifying method for an internal combustion engine and performing control.
前記触媒担持フィルタより下流側の前記排気通路に、上流側から順に、尿素水供給装置、選択還元型触媒を備えると共に、
前記PMの堆積量が前記制御開始量より小さい場合には、内燃機関から排出されるNOx量に応じて前記尿素水供給装置から尿素水を供給してNOxを浄化する通常制御を行い、
さらに、通常運転時のNOx量算出用マップデータに加えて、NOx増加制御をした場合に増加すると予測されるNOx増加量を予めマップデータ化してNOx増加量算出用マップデータを作成して記憶しておき、NOx増加制御時に、前記NOx量算出用マップデータに基づいて算出されるNOx量に、前記NOx増加量算出用マップデータに基づいて算出されるNOx増加量を加えたNOx排出量に対して、尿素水の供給量を増加する尿素水増加制御を行うことを特徴とする請求項3に記載の内燃機関の排気浄化方法。
In the exhaust passage downstream of the catalyst-carrying filter, in order from the upstream side, a urea water supply device and a selective reduction catalyst are provided,
When the PM accumulation amount is smaller than the control start amount, normal control is performed to purify NOx by supplying urea water from the urea water supply device in accordance with the NOx amount discharged from the internal combustion engine,
Further, in addition to the NOx amount calculation map data during normal operation, the NOx increase amount predicted to increase when NOx increase control is performed is converted into map data in advance to create and store NOx increase amount calculation map data. In addition, during NOx increase control, a NOx emission amount obtained by adding a NOx increase amount calculated based on the NOx increase amount calculation map data to a NOx amount calculated based on the NOx amount calculation map data. 4. The exhaust gas purification method for an internal combustion engine according to claim 3, wherein urea water increase control for increasing the supply amount of urea water is performed .
JP2011210928A 2011-09-27 2011-09-27 Exhaust purification system for internal combustion engine, internal combustion engine, and exhaust purification method for internal combustion engine Expired - Fee Related JP6069820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011210928A JP6069820B2 (en) 2011-09-27 2011-09-27 Exhaust purification system for internal combustion engine, internal combustion engine, and exhaust purification method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011210928A JP6069820B2 (en) 2011-09-27 2011-09-27 Exhaust purification system for internal combustion engine, internal combustion engine, and exhaust purification method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013072328A JP2013072328A (en) 2013-04-22
JP6069820B2 true JP6069820B2 (en) 2017-02-01

Family

ID=48477048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011210928A Expired - Fee Related JP6069820B2 (en) 2011-09-27 2011-09-27 Exhaust purification system for internal combustion engine, internal combustion engine, and exhaust purification method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6069820B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136470A1 (en) * 2012-03-14 2013-09-19 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US10125647B2 (en) * 2013-11-27 2018-11-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
DE102014015786A1 (en) * 2014-10-24 2016-04-28 Man Diesel & Turbo Se Device for removing solid fractions from the flue gas of internal combustion engines or industrial gas turbines

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271697A (en) * 2000-03-29 2001-10-05 Isuzu Motors Ltd Exhaust emission control device
JP2001280118A (en) * 2000-03-31 2001-10-10 Isuzu Motors Ltd Exhaust emission control device for internal combustion engine
JP2001295631A (en) * 2000-04-12 2001-10-26 Toyota Industries Corp Exhaust emission control device for engine, and exhaust emission control method
JP3598961B2 (en) * 2000-09-26 2004-12-08 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4715581B2 (en) * 2006-03-24 2011-07-06 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system

Also Published As

Publication number Publication date
JP2013072328A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP4710564B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP5087836B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP5118331B2 (en) Exhaust purification device
JP3979437B1 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4140640B2 (en) Exhaust gas purification method and exhaust gas purification system
US8146351B2 (en) Regeneration systems and methods for particulate filters using virtual brick temperature sensors
JP2008274835A (en) Deterioration diagnosis device for oxidation catalyst
EP2737192B1 (en) Exhaust gas control apparatus for internal combustion engines, and control method for exhaust gas control apparatus for internal combustion engines
JP4986915B2 (en) Exhaust purification device
JP2013002283A (en) Exhaust emission control device
WO2011129358A1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
JP2009203898A (en) Exhaust emission control system
US20040139738A1 (en) Exhaust gas purification system of internal combustion engine
EP2581569B1 (en) Dpf system
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
JP2010261331A (en) Exhaust purification device
JP2008138619A (en) Exhaust emission control device of internal combustion engine
JP2011220158A (en) Exhaust emission control device for engine
JP2010038034A (en) Control method of exhaust emission control device
JP5720135B2 (en) Exhaust gas purification system
JP6069820B2 (en) Exhaust purification system for internal combustion engine, internal combustion engine, and exhaust purification method for internal combustion engine
JP4661452B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP2010249076A (en) Exhaust gas purification device for internal combustion engine
JP2016006311A (en) Diesel engine exhaust emission control system and diesel engine exhaust emission control method
JP4730198B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6069820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees