JP6066119B2 - Liquid lead-acid battery - Google Patents
Liquid lead-acid battery Download PDFInfo
- Publication number
- JP6066119B2 JP6066119B2 JP2014509045A JP2014509045A JP6066119B2 JP 6066119 B2 JP6066119 B2 JP 6066119B2 JP 2014509045 A JP2014509045 A JP 2014509045A JP 2014509045 A JP2014509045 A JP 2014509045A JP 6066119 B2 JP6066119 B2 JP 6066119B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- active material
- electrode active
- acid
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/627—Expanders for lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
- H01M4/16—Processes of manufacture
- H01M4/20—Processes of manufacture of pasted electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/56—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
- H01M4/57—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead of "grey lead", i.e. powders containing lead and lead oxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Description
この発明は液式鉛蓄電池に関し、特に正極活物質の軟化の防止に関する。 The present invention relates to a liquid lead-acid battery, and particularly to prevention of softening of a positive electrode active material.
液式鉛蓄電池を充電が不完全な状態で使用することにより、自動車のエネルギー効率を向上させることが行われている。例えばアイドリングストップ車では、停車の都度エンジンを停止することにより燃料消費量を小さくし、発進時に蓄電池からの電力でエンジンを起動する。このため蓄電池は充電不足の状態で使用される。アイドリングストップ車に限らず、エネルギー効率を向上させるため蓄電池への過充電を避け、しかも蓄電池から取り出す電力が増しているので、蓄電池は充電不足な状態に置かれることが多い。 The use of liquid lead-acid batteries in an incompletely charged state improves the energy efficiency of automobiles. For example, in an idling stop vehicle, the fuel consumption is reduced by stopping the engine each time the vehicle is stopped, and the engine is started with the electric power from the storage battery when starting. For this reason, the storage battery is used in a state of insufficient charge. Not only idling stop vehicles, but avoiding overcharging of the storage battery in order to improve energy efficiency, and since the electric power taken out from the storage battery is increasing, the storage battery is often placed in an insufficiently charged state.
鉛蓄電池を充電不足の状態で使用する場合、還元が困難な硫酸鉛が負極活物質中に蓄積するため、耐久性が低下する。硫酸鉛の蓄積は、カーボンブラックを負極活物質に多量に含有させることにより抑制できることが知られている。 When the lead storage battery is used in an insufficiently charged state, lead sulfate, which is difficult to reduce, accumulates in the negative electrode active material, resulting in a decrease in durability. It is known that the accumulation of lead sulfate can be suppressed by containing a large amount of carbon black in the negative electrode active material.
液式鉛蓄電池の寿命因子の一つとして、正極活物質の軟化がある。正極活物質の軟化は、深い放電と充電を繰り返すことにより発生しやすい。この点に関して特許文献1(特開2010-67522)は、鉛粉と低鉛丹化率の鉛丹とアンチモン化合物とを用いて正極活物質を製造することを開示している。そして正極活物質中のアンチモン化合物が活物質結晶中に取り込まれることにより、正極活物質の軟化を抑制できることを開示している。 One of the life factors of a liquid lead acid battery is softening of the positive electrode active material. Softening of the positive electrode active material is likely to occur by repeating deep discharge and charging. In this regard, Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-67522) discloses that a positive electrode active material is manufactured using lead powder, a low lead tanning rate, and an antimony compound. It is disclosed that the softening of the positive electrode active material can be suppressed by incorporating the antimony compound in the positive electrode active material into the active material crystal.
特許文献2(特開2003-338285)は、鉛蓄電池の負極活物質にビスフェノール系縮合物とカーボンブラックとを含有させることにより、負極活物質のサルフェーションを抑制できることを開示している。ところで負極活物質に多量のカーボンブラックを含有させると、カーボンブラックが電解液中に流出し、電解液の液面が視認できなくなる。また液面センサを設けて液面レベルを監視する場合でも、カーボンブラックにより液面センサが汚染され、液面レベルの検出が困難になる。すると鉛蓄電池への補水が難しくなる。しかしながら特許文献2は制御弁式の鉛蓄電池に適用することが好ましいとして、液面レベルの検出を検討していない。そして発明者の実験によると、負極活物質に例えばカーボンブラックを1.5mass%含有させると、電解液中のカーボンブラック濃度は60massppm程度となり、液面を視認できなかった。 Patent Document 2 (Japanese Patent Laid-Open No. 2003-338285) discloses that sulfation of a negative electrode active material can be suppressed by including a bisphenol-based condensate and carbon black in the negative electrode active material of a lead storage battery. By the way, when a large amount of carbon black is contained in the negative electrode active material, the carbon black flows out into the electrolytic solution, and the liquid level of the electrolytic solution becomes invisible. Even when a liquid level sensor is provided to monitor the liquid level, the liquid level sensor is contaminated by carbon black, and it becomes difficult to detect the liquid level. Then, it becomes difficult to replenish the lead storage battery. However, Patent Document 2 does not consider the detection of the liquid level because it is preferably applied to a control valve type lead-acid battery. According to the inventor's experiment, when, for example, 1.5 mass% of carbon black was contained in the negative electrode active material, the carbon black concentration in the electrolytic solution was about 60 massppm, and the liquid level could not be visually recognized.
特許文献3(特開2010-123402)は、活性炭とカーボンブラックとカルボキシメチルセルロース(以下CMCという)とラテックスとを含有するスラリーを、負極活物質の表面に塗布することを開示している。しかしながら特許文献3は、鉛粉とカーボンブラックとCMCとを混合することは、検討していない。また発明者の実験によると、カーボンブラックとCMCとを鉛粉に混合した負極活物質では、CMCを含有しない場合に比べて、カーボンブラックの流出量を数分の1程度にできた。しかし電解液の濁りを充分に少なくすることはできなかった。 Patent Document 3 (Japanese Patent Application Laid-Open No. 2010-123402) discloses that a slurry containing activated carbon, carbon black, carboxymethyl cellulose (hereinafter referred to as CMC) and latex is applied to the surface of the negative electrode active material. However, Patent Document 3 does not consider mixing lead powder, carbon black, and CMC. Further, according to the experiment by the inventors, the outflow amount of carbon black can be reduced to a fraction of that in the case where the negative electrode active material in which carbon black and CMC are mixed with lead powder does not contain CMC. However, the turbidity of the electrolyte could not be reduced sufficiently.
この発明の課題は、正極活物質の軟化と負極活物質のサルフェーションとを抑制でき、さらに電解液の濁りが少ない液式鉛蓄電池を提供することにある。 An object of the present invention is to provide a liquid lead-acid battery that can suppress softening of the positive electrode active material and sulfation of the negative electrode active material, and further reduces the turbidity of the electrolyte.
この発明は、海綿状鉛を主成分とする負極活物質と、二酸化鉛を主成分とする正極活物質と、硫酸を含有し流動自在な電解液とを備えた液式鉛蓄電池において、前記負極活物質は、海綿状鉛100mass%当たり、0.5mass%以上2.5mass%以下のカーボンブラックと、0.01mass%以上0.25mass%以下のカルボキシメチルセルロース、あるいは酸型に換算して、0.01mass%以上0.3mass%以下の、ポリアクリル酸またはその塩、ポリメタクリル酸またはその塩、ポリマレイン酸またはその塩、及びそれらと他のオレフィンとの共重合体、中の少なくとも一つの物質と、0.1mass%以上0.9mass%以下の、スルホン酸基を有する直鎖状のビスフェノール系縮合物から成る水溶性高分子、を含有し、前記正極活物質はアンチモンを金属換算で0.02mass%以上0.30mass%以下含有することを特徴とする。 The present invention relates to a liquid lead-acid battery comprising a negative electrode active material mainly composed of spongy lead, a positive electrode active material mainly composed of lead dioxide, and a flowable electrolyte containing sulfuric acid. Active material is 0.5 mass% or more and 2.5 mass% or less carbon black, and 0.01 mass% or more and 0.25 mass% or less of carboxymethylcellulose, or acid form, and 0.01 mass% or more and 0.3 mass% per 100 mass% of spongy lead % Of polyacrylic acid or a salt thereof, polymethacrylic acid or a salt thereof, polymaleic acid or a salt thereof, and a copolymer thereof with another olefin, and 0.1 mass% or more and 0.9 mass % Of a water-soluble polymer composed of a linear bisphenol-based condensate having a sulfonic acid group, and the positive electrode active material contains 0.02 mass% or more and 0.30 mass% or less of antimony in terms of metal. Features.
この明細書において、負極活物質中のカーボンブラック等の含有量は、負極活物質中の海綿状鉛を100mass%として示す。負極活物質が硫酸鉛を含有している場合、硫酸鉛を海綿状鉛に還元して海綿状鉛の量を定める。また正極活物質中のアンチモン含有量は金属アンチモンに換算し、化成済みの正極活物質の質量を基準として定める。なお正極活物質が硫酸鉛を含む場合は二酸化鉛に変換する。正極活物質を正極板から取り出して、水洗及び乾燥により水と硫酸とを除いて、正極活物質の質量を測定する。好ましくは、正極活物質は、化成済みの状態において、金属に換算してアンチモンを0.04 mass%以上0.25 mass%以下含有する。なおこの発明では、負極活物質は、カルボキシメチルセルロース、あるいはポリアクリル酸またはその塩、ポリメタクリル酸またはその塩、ポリマレイン酸またはその塩、及びそれらと他のオレフィンとの共重合体、中の少なくとも一つの物質を含有し、これらの双方を含有する必要はない。カルボキシメチルセルロースを含有する場合、含有量は海綿状鉛100mass%当たり、0.01mass%以上0.25mass%以下である。ポリアクリル酸またはその塩、ポリメタクリル酸またはその塩、ポリマレイン酸またはその塩、及びそれらと他のオレフィンとの共重合体を総称してポリカルボン酸ということがある。ポリカルボン酸を含有する場合、含有量は海綿状鉛100mass%当たり、酸型に換算して0.01mass%以上0.3mass%以下である。
負極活物質中の添加物の含有量は、化成済みの段階での含有量である。化成は、塩基性硫酸鉛及び酸化鉛を、硫酸水溶液中で酸化することにより正極活物質の二酸化鉛とし、同じく硫酸水溶液中で還元することにより負極活物質の金属鉛とする、工程を意味する。
In this specification, the content of carbon black or the like in the negative electrode active material indicates the amount of spongy lead in the negative electrode active material as 100 mass%. When the negative electrode active material contains lead sulfate, lead sulfate is reduced to spongy lead to determine the amount of spongy lead. The antimony content in the positive electrode active material is converted to metal antimony and determined based on the mass of the formed positive electrode active material. If the positive electrode active material contains lead sulfate, it is converted to lead dioxide. The positive electrode active material is taken out from the positive electrode plate, washed with water and dried to remove water and sulfuric acid, and the mass of the positive electrode active material is measured. Preferably, the positive electrode active material contains 0.04 mass% or more and 0.25 mass% or less of antimony converted to metal in the already formed state. In the present invention, the negative electrode active material is at least one of carboxymethyl cellulose, polyacrylic acid or a salt thereof, polymethacrylic acid or a salt thereof, polymaleic acid or a salt thereof, and a copolymer of these with another olefin. Contain one substance and do not need to contain both. When carboxymethyl cellulose is contained, the content is 0.01 mass% or more and 0.25 mass% or less per 100 mass% of spongy lead. Polyacrylic acid or a salt thereof, polymethacrylic acid or a salt thereof, polymaleic acid or a salt thereof, and a copolymer of these with another olefin may be collectively referred to as a polycarboxylic acid. When polycarboxylic acid is contained, the content is 0.01 mass% or more and 0.3 mass% or less in terms of acid type per 100 mass% of spongy lead.
The content of the additive in the negative electrode active material is the content at the stage of chemical conversion . Chemical conversion means a process in which basic lead sulfate and lead oxide are oxidized in a sulfuric acid aqueous solution to be converted into a positive electrode active material lead dioxide, and similarly reduced in a sulfuric acid aqueous solution to be converted into a negative electrode active material metal lead. .
負極活物質は、セルロースエーテル、ポリカルボン酸及びそれらの塩から成る群の少なくとも一つの物質と、スルホン酸基を有するビスフェノール系縮合物から成る水溶性高分子(以下単にビスフェノール系縮合物という)を含有する。ビスフェノール系縮合物は、
(-(OH)(RSO3H)Ph-X-Ph(OH)(R'SO3H)CH2-)n
(1)
(-(OH)(RSO3H)Ph-X-Ph(OH)CH2-)n
(2)
等の化学式で表され、XはSO2基、アルキル基等で、Xを含まずに2個のフェニル基が直接結合していても良い。(1),(2)ではビスフェノール系縮合物の主鎖にモノマー当たり2個のフェニル基が共に組み込まれているが、2個のフェニル基の一方が主鎖に、他方が側鎖に組み込まれていても良い。さらにビスフェノールとフェノールスルホン酸ナトリウムとがモノマーに含まれていても良い。また上の例では、ホルムアルデヒドCH2Oとの脱水縮合が用いられ、メチレン基 -CH2-を介してモノマーが重合しているが、縮合反応の相手方は任意である。The negative electrode active material is a water-soluble polymer (hereinafter simply referred to as bisphenol-based condensate) composed of at least one member of the group consisting of cellulose ether, polycarboxylic acid and salts thereof and a bisphenol-based condensate having a sulfonic acid group. contains. Bisphenol condensate
(-(OH) (RSO3H) Ph-X-Ph (OH) (R'SO3H) CH2-) n
(1)
(-(OH) (RSO3H) Ph-X-Ph (OH) CH2-) n
(2)
X is a SO2 group, an alkyl group or the like, and two phenyl groups may be directly bonded without containing X. In (1) and (2), two phenyl groups per monomer are incorporated into the main chain of the bisphenol-based condensate, but one of the two phenyl groups is incorporated into the main chain and the other is incorporated into the side chain. May be. Furthermore, bisphenol and sodium phenolsulfonate may be contained in the monomer. In the above example, dehydration condensation with formaldehyde CH2O is used, and the monomer is polymerized via the methylene group -CH2-, but the other party of the condensation reaction is arbitrary.
XがSO2基の場合がビスフェノールS、Xが -C(CH3)2- の場合がビスフェノールA、Xが -CH2- の場合がビスフェノールFで、実施例ではビスフェノールSのものを用いるが、ビスフェノールA,ビスフェノールFのものを用いても結果は同等、また(1)式のタイプのものを用いても(2)式のタイプのもの等を用いても良い。ビスフェノール系縮合物の分子量は任意で、例えば4,000〜250,000程度とし、分子量の影響は小さい。ビスフェノール系縮合物は、芳香族環を含む水溶性高分子である点で、負極活物質にしばしば添加されるリグニンスルホン酸と類似しているが、ビスフェノール系縮合物はカルボキシ基とエーテル基及びアルコール性水酸基を持たない点と、網状ではなく直鎖状の高分子である点でリグニンスルホン酸と異なる。 Bisphenol S when X is SO2 group, bisphenol A when X is -C (CH3) 2-, bisphenol F when X is -CH2-, and bisphenol S are used in the examples. , Bisphenol F may be used with the same result, or the type of formula (1) or the type of formula (2) may be used. The molecular weight of the bisphenol-based condensate is arbitrary, for example, about 4,000 to 250,000, and the influence of the molecular weight is small. Bisphenol condensates are similar to lignin sulfonic acids often added to negative electrode active materials in that they are water-soluble polymers containing aromatic rings, but bisphenol condensates are carboxy groups, ether groups and alcohols. It differs from lignin sulfonic acid in that it does not have a functional hydroxyl group and is a linear polymer rather than a network.
R,R'はメチレン基等の適宜のアルキル基であるが、アルキル基を介さずにスルホン酸基 -SO3Hが直接フェニル基に結合していても良い。さらにスルホン酸基は重合体の水溶性を高めるための置換基で、スルホン酸基を持たないビスフェノールSとフェノールメチレンスルホン酸ナトリウム等との共重合体を用いても良い。また-SO3H基の水素は、負極活物質中でNa+イオン等の適宜の陽イオン、特にアルカリ金属イオンにより置換されていても良い。さらに
-RSO3H基、 -R'SO3H基、-CH2-基はフェニル基(Ph)の -OH基に対して例えばオルソの位置にあり、ビスフェノールモノマーは脱水縮合の相手方である-CH2-基を介して互いに接続されている。市販のビスフェノール系縮合物はモノマー当たり2個のスルホン酸基を有するものが多いが、モノマー当たりのスルホン酸基の数は任意である。R and R ′ are appropriate alkyl groups such as a methylene group, but the sulfonic acid group —SO 3 H may be directly bonded to the phenyl group without using an alkyl group. Furthermore, the sulfonic acid group is a substituent for enhancing the water solubility of the polymer, and a copolymer of bisphenol S and sodium phenolmethylene sulfonate having no sulfonic acid group may be used. The hydrogen of the —SO 3 H group may be replaced with an appropriate cation such as Na + ion, particularly an alkali metal ion, in the negative electrode active material. further
The -RSO3H group, -R'SO3H group, -CH2- group are located, for example, in the ortho position relative to the -OH group of the phenyl group (Ph), and the bisphenol monomer is passed through the -CH2- group which is the partner of dehydration condensation. Are connected to each other. Many commercially available bisphenol-based condensates have two sulfonic acid groups per monomer, but the number of sulfonic acid groups per monomer is arbitrary.
セルロースエーテルは水溶性の形態と水に不溶な形態との間で変化するので、例えばセルロースエーテルをNa塩等の水溶性塩として添加し、電解液中のH+イオンと反応させることにより、水に不溶な酸型として負極活物質中に存在させることが好ましい。
ポリカルボン酸は、ポリアクリル酸(-(CH2=CHCOOH)-n)、ポリメタクリル酸(-(CHCH3=CHCOOH)-n)、ポリマレイン酸(-(CHCOOH=CHCOOH)-n)等の化合物で、Na塩等の水溶性塩として添加した場合でも、電解液中のH+イオンと反応させて水に不溶な酸型の形態で負極活物質中に存在させることが好ましい。またポリカルボン酸は他のオレフィンとの共重合体であっても良い。セルロースエーテル及びポリカルボン酸の含有量は酸型に換算して示す。Cellulose ether changes between a water-soluble form and a water-insoluble form. For example, cellulose ether is added as a water-soluble salt such as Na salt, and reacted with H + ions in the electrolyte solution. It is preferably present in the negative electrode active material as an insoluble acid type.
The polycarboxylic acid is a compound such as polyacrylic acid (-(CH2 = CHCOOH) -n), polymethacrylic acid (-(CHCH3 = CHCOOH) -n), polymaleic acid (-(CHCOOH = CHCOOH) -n), Even when it is added as a water-soluble salt such as Na salt, it is preferably reacted with H + ions in the electrolytic solution and present in the negative electrode active material in the form of an acid form insoluble in water. The polycarboxylic acid may be a copolymer with another olefin. The cellulose ether and polycarboxylic acid contents are shown in terms of acid type.
好ましくは、負極活物質は、セルロースエーテル、またはポリカルボン酸から成る群の少なくとも一つの物質を含有し、化成済みの状態において、海綿状鉛100mass%当たりで、セルロースエーテルは0.01mass%以上0.25mass%以下、ポリカルボン酸は0.01mass%以上0.3mass%以下であり、ビスフェノール系縮合物から成る水溶性高分子を0.1mass%以上0.9mass%以下含有する。
セルロースエーテルとしては、CMC(カルボキシメチルセルロース)を用いることがより好ましい。ポリカルボン酸としては、ポリアクリル酸を用いることがより好ましい。Preferably, the negative electrode active material contains at least one member of the group consisting of cellulose ethers or polycarboxylic acids, and in an already formed state, per 100 mass% of spongy lead, cellulose ether is 0.01 mass% or more and 0.25 mass%. The polycarboxylic acid is 0.01 mass% or more and 0.3 mass% or less and contains a water-soluble polymer composed of a bisphenol-based condensate in an amount of 0.1 mass% or more and 0.9 mass% or less.
As the cellulose ether, it is more preferable to use CMC (carboxymethylcellulose). As the polycarboxylic acid, it is more preferable to use polyacrylic acid.
正極活物質にアンチモンを含有させることにより、軟化を防止できる。
なお軟化の防止に有効で、かつ補水頻度の増加を抑制するため、電解液の減液速度を許容範囲内に留めることを考えると、正極活物質のアンチモンを含有量は、アンチモンを金属に換算して、化成済みの状態の正極活物質に対して、0.04 mass%以上0.25 mass%以下が好ましい。ところで発明者は、正極活物質の軟化は正極板の上部で著しく、中部と下部とでは軟化は緩やかに進行することを確認した。また負極板の中部と下部とではサルフェーションが進行していることが多かった。このことは、負極板の中部と下部でサルフェーションが進行するため、蓄電池の充放電は正負の極板の上部に集中し、これが正極板上部での活物質の軟化を促進することを示唆している。そこでこの発明では、化成済みの状態の負極活物質を基準として、海綿状鉛100mass%当たりでカーボンブラックを0.5mass%以上2.5mass%以下含有させ、サルフェーションを防止する。そしてこの発明では、サルフェーションの抑制は負極の耐久性の向上と、正極活物質の軟化の防止の二重の意味を持つ。なお0.5mass%未満のカーボンブラックではサルフェーションの抑制には不十分で、2.5mass%を越えるカーボンブラックでは後述のように電解液の濁りが著しくなる。
また、正極活物質へのアンチモンの添加によって、負極からのガス発生が全面で均一になる。その結果、充放電の繰り返しにおける充電時のガス発生で促進されるカーボン流出も抑制され、さらには液濁りも抑制される。
なお電解液中のカーボンブラック濃度を3massppm以下にすると、液面レベルを容易に視認あるいは検出できる。Softening can be prevented by including antimony in the positive electrode active material.
In addition, in order to prevent softening and to suppress the increase in the frequency of water replenishment, the content of antimony in the positive electrode active material is converted to metal by converting antimony into the allowable range, considering the rate of decrease in electrolyte solution within the allowable range. Thus, it is preferably 0.04 mass% or more and 0.25 mass% or less with respect to the positive electrode active material in a chemically-formed state. By the way, the inventor confirmed that the softening of the positive electrode active material is remarkable at the upper part of the positive electrode plate, and that the softening gradually proceeds between the middle part and the lower part. Further, sulfation often progressed in the middle and lower parts of the negative electrode plate. This suggests that since sulfation proceeds in the middle and lower part of the negative electrode plate, the charge / discharge of the storage battery concentrates on the upper part of the positive and negative electrode plates, which promotes softening of the active material in the upper part of the positive electrode plate. Yes. Therefore, in the present invention, sulfation is prevented by containing 0.5 mass% to 2.5 mass% of carbon black per 100 mass% of spongy lead based on the negative electrode active material in a state of being formed. In the present invention, suppression of sulfation has the dual meaning of improving the durability of the negative electrode and preventing softening of the positive electrode active material. Note that carbon black of less than 0.5 mass% is insufficient to suppress sulfation, and carbon black of more than 2.5 mass% causes significant turbidity of the electrolyte as described later.
Further, the addition of antimony to the positive electrode active material makes the gas generation from the negative electrode uniform over the entire surface. As a result, carbon outflow promoted by gas generation at the time of charge and discharge is suppressed, and liquid turbidity is also suppressed.
When the carbon black concentration in the electrolytic solution is 3 mass ppm or less, the liquid level can be easily visually recognized or detected.
電解液の濁りを防止するには、セルロースエーテル、あるいはポリカルボン酸を負極活物質に含有させることが有効である。そしてセルロースエーテル、あるいはポリカルボン酸に加えて、ビスフェノール系縮合物を加えると、電解液の濁りを特に少なくできる。なおビスフェノール系縮合物を単独で含有させても、カーボンブラックの流出は抑制できない。さらにビスフェノール系縮合物には、低温ハイレート放電性能を向上させる効果もある。そしてセルロースエーテルはアルカリ金属塩として添加するのが好ましい。ポリカルボン酸としてはポリアクリル酸が最も好ましく、同様に例えばアルカリ金属塩として添加する。ビスフェノール系縮合物を0.1mass%以上含有させることにより、カーボンブラックの流出を有効に抑制でき、0.9mass%を越えると電解液の濁りが増すと共に、低温ハイレート放電性能も低下する。セルロースエーテルもポリカルボン酸も0.01mass%未満では電解液の濁りを防止する効果が低く、セルロースエーテルは0.25mass%、ポリカルボン酸は0.3mass%を越えると回生充電受入性能が低下する。 In order to prevent turbidity of the electrolytic solution, it is effective to contain cellulose ether or polycarboxylic acid in the negative electrode active material. When the bisphenol condensate is added in addition to cellulose ether or polycarboxylic acid, the turbidity of the electrolytic solution can be particularly reduced. Even if the bisphenol-based condensate is contained alone, the outflow of carbon black cannot be suppressed. Furthermore, the bisphenol-based condensate has an effect of improving the low-temperature high-rate discharge performance. The cellulose ether is preferably added as an alkali metal salt. The polycarboxylic acid is most preferably polyacrylic acid, and is similarly added as an alkali metal salt, for example. By containing 0.1 mass% or more of the bisphenol-based condensate, the outflow of carbon black can be effectively suppressed, and when it exceeds 0.9 mass%, the turbidity of the electrolyte increases and the low-temperature high-rate discharge performance also decreases. When the cellulose ether and polycarboxylic acid are less than 0.01 mass%, the effect of preventing the turbidity of the electrolyte solution is low. When the cellulose ether exceeds 0.25 mass% and the polycarboxylic acid exceeds 0.3 mass%, the regenerative charge acceptance performance decreases.
以上のようにすると、正極活物質の軟化を抑制すると共に、負極活物質のサルフェーションを抑制し、さらに電解液の濁りを少なくして、アイドリングストップ車等に適した液式鉛蓄電池が得られる。
If it does as mentioned above, while suppressing softening of a positive electrode active material, suppressing sulfation of a negative electrode active material, and also reducing turbidity of electrolyte solution, the liquid lead acid battery suitable for an idling stop vehicle etc. is obtained.
以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。 Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.
負極活物質ペーストの製造
図1に負極活物質ペーストの製造工程を示し、以下、負極活物質への添加物の量は化成済みの負極活物質での海綿状鉛100mass%当たりの含有量で示す。CMCのナトリウム塩あるいはポリアクリル酸を水に溶解または分散させ、次いでアセチレンブラックから成るカーボンブラックと練合した。CMCは、ナトリウム塩の形態で水に溶解させたが、カリウム塩、リチウム塩等でも良く、ポリアクリル酸に代えて、ポリメタクリル酸、ポリマレイン酸等を用いても良く、これらのポリマーをオレフィンとの共重合体とすることにより分子量当たりのカルボキシ基の数を減らしても良い。ポリカルボン酸は、酸として水に分散させたが、ナトリウム塩、カリウム塩、リチウム塩等の形態で水に溶解させても良い。アセチレンブラックに代えてオイルファーネスブラック、ケッチェンブラック等の他のカーボンブラックを用いても良い。次いで、分散剤としてビスフェノールSの縮合物(分子量約100,000)と、海綿状鉛100mass%に対して例えば0.6mass%の硫酸Baと、海綿状鉛100mass%に対して補強剤として例えば0.1mass%の合成繊維とを加えて練合した。ビスフェノールS縮合物に変えて、ビスフェノールA縮合物を用いてもほぼ同等の結果が得られ、さらにビスフェノールS縮合物の分子量を10,000に変えても、結果は同等であった。また硫酸Ba及び合成繊維は加えなくても良い。以上のようにして得られたペーストをカーボンペーストと呼ぶ。Production of Negative Electrode Active Material Paste FIG. 1 shows the production process of the negative electrode active material paste. The amount of additive to the negative electrode active material is shown as the content per 100 mass% of spongy lead in the formed negative electrode active material. . CMC sodium salt or polyacrylic acid was dissolved or dispersed in water and then kneaded with carbon black comprising acetylene black. CMC was dissolved in water in the form of a sodium salt, but may be a potassium salt, a lithium salt, or the like. Instead of polyacrylic acid, polymethacrylic acid, polymaleic acid, or the like may be used. The number of carboxy groups per molecular weight may be reduced by using a copolymer of The polycarboxylic acid is dispersed in water as an acid, but may be dissolved in water in the form of sodium salt, potassium salt, lithium salt or the like. Instead of acetylene black, other carbon blacks such as oil furnace black and ketjen black may be used. Next, a condensate of bisphenol S as a dispersant (molecular weight of about 100,000), 0.6 mass% Ba sulfate for example with 100 mass% spongy lead, and 0.1 mass% with reinforcing agent for 100 mass% spongy lead, for example. Synthetic fiber was added and kneaded. Even when the bisphenol A condensate was used instead of the bisphenol S condensate, almost the same results were obtained, and even when the molecular weight of the bisphenol S condensate was changed to 10,000, the results were the same. Further, Ba sulfate and synthetic fiber may not be added. The paste obtained as described above is called a carbon paste.
ボールミル法で製造した鉛粉と、防縮剤としてのリグニンスルホン酸(以下単にリグニンという)を0.2mass%と、水と、硫酸とを、カーボンペーストに加えて練合し、負極活物質ペーストとした。鉛粉の種類及び製造方法は任意で、材料の練合の順序は任意であるが、鉛粉との練合前に、カーボンブラックとビスフェノール系縮合物と、CMCあるいはポリアクリル酸を予め練合しておくことが好ましい。 Lead powder produced by the ball mill method, 0.2 mass% of lignin sulfonic acid (hereinafter simply referred to as lignin) as a shrink-preventing agent, water and sulfuric acid are added to the carbon paste and kneaded to obtain a negative electrode active material paste. . The type and manufacturing method of the lead powder is arbitrary, and the order of kneading the materials is arbitrary, but before kneading with lead powder, carbon black, bisphenol-based condensate, CMC or polyacrylic acid are kneaded in advance. It is preferable to keep it.
上記の負極活物質に対する従来例及び比較例として、CMCもポリアクリル酸も加えないもの、ビスフェノール系縮合物を加えないもの、さらにビスフェノール系縮合物の代わりに、リグニンスルホン酸を用いたものを調製した。カーボンブラック量は0.3mass%から3mass%の範囲で、ビスフェノール系縮合物の量は0.05mass%から1.0mass%の範囲で、CMC及びポリアクリル酸の量は、0.005mass%から0.4mass%の範囲で変化させた。 As conventional examples and comparative examples for the above negative electrode active materials, those that do not add CMC or polyacrylic acid, those that do not add bisphenol-based condensates, and those that use lignin sulfonic acid instead of bisphenol-based condensates did. The amount of carbon black ranges from 0.3 mass% to 3 mass%, the amount of bisphenol condensate ranges from 0.05 mass% to 1.0 mass%, and the amount of CMC and polyacrylic acid ranges from 0.005 mass% to 0.4 mass% It was changed with.
正極活物質ペーストの製造
図2に正極活物質ペーストの製造工程を示し、以下、添加物の量は化成済みの正極活物質100mass%当たりの含有量で示す。鉛粉100kgにSb2O3としてアンチモンを0.02mass%〜0.30mass%加えると共に、水と、補強剤のアクリル繊維0.1mass%とを加えて練合し、硫酸を加えて再度練合することにより、正極活物質ペーストを調製した。アンチモンは硫酸アンチモン(Sb2(SO4)3)等の形態で添加しても良い。Production of Positive Electrode Active Material Paste FIG. 2 shows a production process of the positive electrode active material paste, and the amount of the additive is shown as a content per 100 mass% of the formed positive electrode active material. By adding 0.02 mass% to 0.30 mass% of antimony as Sb2O3 to 100 kg of lead powder, adding water and 0.1 mass% of acrylic fiber as a reinforcing agent, kneading, adding sulfuric acid and kneading again, positive electrode active A substance paste was prepared. Antimony may be added in the form of antimony sulfate (Sb2 (SO4) 3).
鉛蓄電池の組立
負極活物質ペーストをPb-Ca-Sn合金系でエキスパンドタイプの負極格子に充填して負極板とした。負極板は幅が137mm、高さが115mm、厚さが1.3mmで、負極格子の組成、製法等は任意である。正極活物質ペーストをPb-Ca-Sn合金系でエキスパンドタイプの正極格子に充填して正極板とした。正極板は幅が137mm、高さが115mm、厚さが1.6mmで、正極格子の組成、製法等は任意である。なお正極格子にPb-Sb合金箔を貼り付ける等により、正極活物質以外の箇所にさらにアンチモンを含有させても良い。Assembly of lead-acid battery
The negative electrode active material paste was filled into an expandable negative electrode grid using a Pb—Ca—Sn alloy system to obtain a negative electrode plate. The negative electrode plate has a width of 137 mm, a height of 115 mm, and a thickness of 1.3 mm, and the composition and manufacturing method of the negative electrode grid are arbitrary. The positive electrode active material paste was filled in an expandable positive electrode grid with a Pb—Ca—Sn alloy system to obtain a positive electrode plate. The positive electrode plate has a width of 137 mm, a height of 115 mm, and a thickness of 1.6 mm, and the composition and manufacturing method of the positive electrode grid are arbitrary. It should be noted that antimony may be further contained in a portion other than the positive electrode active material by attaching a Pb—Sb alloy foil to the positive electrode lattice.
負極板と正極板とを35℃で熟成及び乾燥させ、負極板をポリエチレンセパレーターで包み、電解液の濁りと初期性能の評価用に、並列な2枚の正極板と1枚の負極板とを、電槽内にセットした。また耐久性能の評価用に、並列な8枚の負極板と並列な7枚の正極板とを電槽内にセットした。電解液としての希硫酸(25℃での比重1.285)を電槽に注いだ後に電槽化成することにより、液式鉛蓄電池とした。 The negative electrode plate and the positive electrode plate are aged and dried at 35 ° C., the negative electrode plate is wrapped in a polyethylene separator, and two positive electrode plates and one negative electrode plate in parallel are used for evaluation of turbidity of the electrolyte and initial performance. And set in the battery case. For evaluation of durability performance, eight parallel negative electrode plates and seven parallel positive electrode plates were set in the battery case. A liquid lead-acid battery was obtained by pouring dilute sulfuric acid (specific gravity 1.285 at 25 ° C.) as an electrolytic solution into the battery case and then forming the battery case.
電解液濁りの測定
電解液へ1massppmから300massppmの濃度でアセチレンブラックを分散させた標準試料を作成し、化成後30分での電解液の濁りの程度を標準試料の濁りの程度と比較し、各液式鉛蓄電池での電解液中のアセチレンブラック含有量を求めた。電解液中のカーボンブラック含有量が3massppmでは液面の視認に支障をきたさないが、6massppmを超えると視認が難しくなった。Measurement of electrolyte turbidity Make a standard sample in which acetylene black is dispersed in the electrolyte at a concentration of 1massppm to 300massppm, compare the degree of turbidity of the electrolyte 30 minutes after formation with the degree of turbidity of the standard sample, The acetylene black content in the electrolytic solution in the liquid lead-acid battery was determined. When the content of carbon black in the electrolyte is 3 massppm, it does not hinder the visual recognition of the liquid level, but when it exceeds 6 massppm, the visual recognition becomes difficult.
初期性能の測定
低温ハイレート放電性能として、室温が-15℃の環境で、37.5Aの放電電流により蓄電池の端子電圧が1.0Vまで低下するまでの時間(秒単位)を測定した。また回生充電受入性能として、充電状態が90%の蓄電池を室温が25℃の環境に置き、2.4Vの定電圧で最大12.5Aの充電電流により10秒間充電し、この間に蓄電池が受け入れた電気量(A・s単位)を測定した。なお初期性能は3個の蓄電池の結果の平均値で表す。Measurement of initial performance As low-temperature high-rate discharge performance, the time (seconds) until the terminal voltage of the storage battery dropped to 1.0 V due to the discharge current of 37.5 A was measured in an environment where the room temperature was -15 ° C. In addition, as a regenerative charge acceptance performance, a storage battery with 90% charge is placed in an environment with a room temperature of 25 ° C, charged at a constant voltage of 2.4V for 10 seconds with a maximum charging current of 12.5A, and the amount of electricity received by the storage battery during this time (A · s unit) was measured. The initial performance is expressed as an average value of the results of three storage batteries.
耐久性能の測定
耐久性能の測定前に電槽化成後の電解液の濁りを測定した。
20Aで1時間の放電と5.15Aで4時間の充電から成るサイクルを4サイクル行う毎に、20Aで蓄電池の端子電圧が1.7Vに低下するまで放電する判定放電を行った。判定放電後に5Aで5時間の充電を行い、次いで20Aで1時間の放電と5.15Aで4時間の充電から成るサイクルを実行する。環境温度は40℃とし、判定放電での放電量が24Ahを下回ると寿命とした。なお耐久性能は3個の蓄電池の結果の平均値で表す。Measurement of endurance performance Before measuring the endurance performance, the turbidity of the electrolytic solution after the formation of the battery case was measured.
Every time four cycles consisting of a discharge of 1 hour at 20 A and a charge of 4 hours at 5.15 A were performed, a judgment discharge was performed at 20 A until the terminal voltage of the storage battery dropped to 1.7 V. After the judgment discharge, 5A is charged for 5 hours, and then a cycle consisting of 20A for 1 hour discharge and 5.15A for 4 hours is executed. The ambient temperature was 40 ° C., and the life was determined when the discharge amount in the judgment discharge was less than 24 Ah. The durability performance is expressed as an average value of the results of three storage batteries.
負極活物質の硫酸鉛蓄積速度
負極活物質のサルフェーションの状況を確認するため、寿命到達時点での負極に蓄積した硫酸鉛を測定し、サイクル数で除した硫酸鉛蓄積速度を算出した。この結果、負極活物質が海綿状鉛100mass%に対し0.5mass%以上のカーボンブラックを含有する場合、硫酸鉛蓄積速度が小さく、サルフェーションは僅かで、0.3mass%のカーボンブラックを含有する場合、負極板の中部から下部に渡って硫酸鉛蓄積速度が大きく、サルフェーションが進行しやすくなることを確認した。
尚、硫酸鉛の測定は、電池から取り出した極板を水洗し、活物質が中性になってから乾燥した状態で、格子から活物質を全部取り出し、粉砕したものをサンプルとして行った。Lead sulfate accumulation rate of the negative electrode active material In order to confirm the state of sulfation of the negative electrode active material, lead sulfate accumulated in the negative electrode at the end of its life was measured, and the lead sulfate accumulation rate divided by the number of cycles was calculated. As a result, when the negative electrode active material contains carbon black of 0.5 mass% or more with respect to 100 mass% of spongy lead, the lead sulfate accumulation rate is small, sulfation is slight, and when containing 0.3 mass% carbon black, the negative electrode It was confirmed that the lead sulfate accumulation rate was large from the middle to the lower part of the plate, and sulfation proceeded easily.
In addition, the measurement of lead sulfate was performed by washing the electrode plate taken out of the battery with water, taking out all of the active material from the lattice in a dried state after the active material became neutral, and pulverizing it as a sample.
CMCを用いた試験例
負極活物質にCMCナトリウム塩を加えた試験例の結果を表1,表2に示す。なおナトリウム塩の代わりに他の金属塩を含有させても良い。また表1での含有量の単位は負極活物質中の海綿状鉛を100mass%とするmass%あるいはmassppmで、表2では化成済みの正極活物質を100mass%とするmass%である。Test Examples using CMC Tables 1 and 2 show the results of test examples in which CMC sodium salt was added to the negative electrode active material. Other metal salts may be included instead of sodium salts. The unit of the content in Table 1 is mass% or massppm in which the spongy lead in the negative electrode active material is 100 mass%, and in Table 2 is mass% in which the formed positive electrode active material is 100 mass%.
表1は電解液の濁りと初期性能とを示し、0.01mass%以上0.25mass%のCMCと、0.1mass%以上0.9mass%以下のビスフェノール系縮合物との組み合わせにより、電解液の濁りを3massppm以下にできることが分かる。またこの組み合わせで、低温ハイレート放電性能を200s以上に、回生充電受入性能を 104A・s以上にできることが分かる。過剰量のビスフェノール系縮合物は電解液の濁りを発生させ、0.1mass%未満のビスフェノール系縮合物では効果が小さい。さらにビスフェノール系縮合物には、低温ハイレート放電性能を向上させる効果もある。ビスフェノール系縮合物に代えて、硫酸バリウム等と共に硫酸リグニンを加えても電解液の濁りを小さくできるが、ビスフェノール系縮合物ほど有効ではなく、初期性能もビスフェノール系縮合物に劣る。
また、耐久性能を評価するセルにおいては、全セルとも液中のカーボンブラックは、3massppm以下であり液濁りの評価は十分であった。Table 1 shows the turbidity and initial performance of the electrolyte. The combination of CMC between 0.01 mass% and 0.25 mass% and the bisphenol condensate between 0.1 mass% and 0.9 mass% reduces the turbidity of the electrolyte to 3 massppm or less. You can see that This combination also shows that the low-temperature high-rate discharge performance can be over 200 s and the regenerative charge acceptance performance can be over 104 A · s. An excessive amount of bisphenol-based condensate causes turbidity of the electrolytic solution, and a bisphenol-based condensate having a mass of less than 0.1 mass% is less effective. Furthermore, the bisphenol-based condensate has an effect of improving the low-temperature high-rate discharge performance. The turbidity of the electrolyte can be reduced by adding lignin sulfate together with barium sulfate or the like instead of the bisphenol condensate, but it is not as effective as the bisphenol condensate and the initial performance is inferior to that of the bisphenol condensate.
In the cells for evaluating the durability performance, the carbon black in the liquid in all the cells was 3 mass ppm or less, and the evaluation of liquid turbidity was sufficient.
表2は耐久性能を寿命サイクル数で示すと共に、電解液の減液速度を示す。なお蓄電池の寿命は正極活物質上部の軟化により生じていた。そして負極活物質のカーボンブラック含有量が0.3mass%では負極活物質の中部から下部でサルフェーションが進行し、カーボンブラック含有量が0.5mass%以上では負極活物質のサルフェーションは僅かであった。寿命サイクル数は、0.5mass%以上のカーボンブラックと0.04 mass%以上のアンチモンとの組み合わせで著しく向上するが、アンチモンを0.30
mass%含有させると減液速度が著しく大きくなった。なお表1に示したように、カーボンブラック含有量を3mass%とすると電解液の濁りが増加するので、カーボンブラック含有量は0.5mass%以上2.5mass%以下とする。Table 2 shows the durability performance in terms of the number of life cycles, and also shows the rate of liquid reduction of the electrolyte. The life of the storage battery was caused by softening of the upper part of the positive electrode active material. When the carbon black content of the negative electrode active material was 0.3 mass%, sulfation progressed from the middle to the lower portion of the negative electrode active material, and when the carbon black content was 0.5 mass% or more, the sulfation of the negative electrode active material was slight. The number of life cycles is significantly improved by combining carbon black of 0.5 mass% or more and antimony of 0.04 mass% or more, but antimony is 0.30.
When mass% was added, the liquid reduction rate was remarkably increased. As shown in Table 1, since the turbidity of the electrolyte increases when the carbon black content is 3 mass%, the carbon black content is 0.5 mass% or more and 2.5 mass% or less.
充電が充分に行われにくい負極板の中部から下部ではサルフェーションが進行しやすい。負極のサルフェーションが進行すると、正極の向かい合った部分が充放電に寄与しにくくなり、充放電は正極の上部に集中する。従って正極活物質の軟化はサルフェーションにより加速され、正極活物質にアンチモンを含有させることの他に、負極活物質に0.5mass%以上のカーボンブラックを含有させることにより、正極活物質の軟化を効果的に防止できる。 Sulfation is likely to proceed from the middle to the bottom of the negative electrode plate, where it is difficult to fully charge. As the sulfation of the negative electrode proceeds, the opposing portions of the positive electrode are less likely to contribute to charge / discharge, and the charge / discharge concentrates on the upper part of the positive electrode. Accordingly, softening of the positive electrode active material is accelerated by sulfation, and in addition to containing antimony in the positive electrode active material, softening of the positive electrode active material can be effectively performed by adding 0.5 mass% or more of carbon black to the negative electrode active material. Can be prevented.
ポリアクリル酸を用いた試験例
ポリアクリル酸を用いた際の結果を表3,表4に示す。結果はCMCを用いた場合と同様で、負極活物質へのCMCとポリアクリル酸の効果は同等である。単位は表1,表2の場合と同様である。Test example using polyacrylic acid Tables 3 and 4 show the results when polyacrylic acid was used. The results are the same as when CMC is used, and the effects of CMC and polyacrylic acid on the negative electrode active material are equivalent. The unit is the same as in Tables 1 and 2.
セルロースエーテルとカルボン酸の効果を確認するため、バインダーを類似の水溶性高分子に変更した液式鉛蓄電池を試作した。カルボキシメチルセルロース(CMC)のNa塩、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、あるいはヒドロキシエチルセルロース、ポリアクリル酸を水に溶解あるいは分散させた。この溶液あるいは分散液に、カーボンブラックの例としてのケッチェンブラックを加えて5分間練合し、次いでビスフェノール縮合物(分子量100,000)と海綿状鉛100mass%に対して0.6mass%の硫酸バリウムとアクリル繊維0.1mass%を加え、10分間練合してカーボンペーストとした。カーボンペーストに鉛粉を加えて5分間練合し、海綿状鉛100mass%に対して0.2mass%のリグニンスルホン酸と水とを加えて練合し、硫酸を滴下した後に、さらに10分間練合した。 In order to confirm the effects of cellulose ether and carboxylic acid, a liquid lead-acid battery in which the binder was changed to a similar water-soluble polymer was prototyped. Sodium salt of carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), polyvinyl alcohol (PVA), hydroxyethyl cellulose, and polyacrylic acid were dissolved or dispersed in water. Add ketjen black as an example of carbon black to this solution or dispersion, knead for 5 minutes, and then 0.6 mass% barium sulfate and acrylic for bisphenol condensate (molecular weight 100,000) and 100 mass% spongy lead. A 0.1 mass% fiber was added and kneaded for 10 minutes to obtain a carbon paste. Lead powder is added to carbon paste and kneaded for 5 minutes. After adding 0.2 mass% lignin sulfonic acid and water to 100 mass% of spongy lead, kneaded, and after adding sulfuric acid dropwise, kneaded for another 10 minutes. did.
これらの負極活物質ペーストに対し、ペースト塊となることができるか否かと、負極格子に充填できるか否かを調査した。ペースト化と負極格子への充填とができるものについて、表1の各試料と同様にして液式鉛蓄電池を試作し、化成後30分程度で蓄電池から電解液を採取し、液濁りの程度からカーボン濃度を推定した。結果を表5に示す。スチレンブタジエンゴムではペースト化も充填もできず、ポリビニルアルコールではペースト化できるが充填できなかった。ヒドロキシエチルセルロースでは液濁りは60massppmで、液面の視認性に欠けた。 With respect to these negative electrode active material pastes, it was investigated whether or not a paste lump could be formed and whether or not the negative electrode grid could be filled. For those that can be pasted and filled into the anode grid, liquid lead-acid batteries are prototyped in the same manner as the samples in Table 1, and the electrolyte is collected from the batteries approximately 30 minutes after the formation. The carbon concentration was estimated. The results are shown in Table 5. Styrene butadiene rubber could not be pasted or filled, and polyvinyl alcohol could be pasted but could not be filled. Hydroxyethyl cellulose had a liquid turbidity of 60 massppm and lacked visibility of the liquid level.
Claims (3)
有し流動自在な電解液とを備えた液式鉛蓄電池において、
前記負極活物質は、化成済みの状態において、海綿状鉛100mass%当たり、
0.5mass%以上2.5mass%以下のカーボンブラックと、
0.01mass%以上0.25mass%以下のカルボキシメチルセルロース、あるいは酸型に換算して、0.01mass%以上0.3mass%以下の、ポリアクリル酸またはその塩、ポリメタクリル酸またはその塩、ポリマレイン酸またはその塩、及びそれらと他のオレフィンとの共重合体、中の少なくとも一つの物質と、
0.1mass%以上0.9mass%以下の、スルホン酸基を有する直鎖状のビスフェノール系縮合物から成る水溶性高分子、を含有し、
前記正極活物質はアンチモンを金属換算で0.02mass%以上0.30mass%以下含有することを特徴とする、液式鉛蓄電池。 In a liquid lead acid battery comprising a negative electrode active material mainly composed of spongy lead, a positive electrode active material mainly composed of lead dioxide, and a free flowing electrolyte containing sulfuric acid,
The negative electrode active material is in a formed state, per 100 mass% of spongy lead,
Carbon black of 0.5mass% or more and 2.5mass% or less,
0.01 mass% or more and 0.25 mass% or less of carboxymethyl cellulose, or in terms of acid form, 0.01 mass% or more and 0.3 mass% or less of polyacrylic acid or a salt thereof, polymethacrylic acid or a salt thereof, polymaleic acid or a salt thereof, And copolymers thereof with other olefins, and at least one substance therein,
Containing 0.1 mass% or more and 0.9 mass% or less of a water-soluble polymer comprising a linear bisphenol-based condensate having a sulfonic acid group,
The positive electrode active material contains 0.02 mass% or more and 0.30 mass% or less of antimony in terms of metal.
The lead acid battery according to claim 1, wherein the lead acid battery is used for an idling stop vehicle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014509045A JP6066119B2 (en) | 2012-04-06 | 2013-03-29 | Liquid lead-acid battery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012087330 | 2012-04-06 | ||
JP2012087330 | 2012-04-06 | ||
JP2014509045A JP6066119B2 (en) | 2012-04-06 | 2013-03-29 | Liquid lead-acid battery |
PCT/JP2013/002166 WO2013150754A1 (en) | 2012-04-06 | 2013-03-29 | Flooded lead-acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013150754A1 JPWO2013150754A1 (en) | 2015-12-17 |
JP6066119B2 true JP6066119B2 (en) | 2017-01-25 |
Family
ID=49300257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014509045A Active JP6066119B2 (en) | 2012-04-06 | 2013-03-29 | Liquid lead-acid battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6066119B2 (en) |
WO (1) | WO2013150754A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11670757B2 (en) | 2018-04-12 | 2023-06-06 | Gs Yuasa International Ltd. | Negative electrode plate containing organic expander in negative electrode material and lead-acid battery comprising the negative electrode plate |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105794038B (en) * | 2013-11-29 | 2019-04-30 | 株式会社杰士汤浅国际 | Lead storage battery |
JP2015128053A (en) * | 2013-11-29 | 2015-07-09 | 株式会社Gsユアサ | Lead storage battery |
JP6432609B2 (en) * | 2015-01-14 | 2018-12-05 | 日立化成株式会社 | Lead acid battery, micro hybrid vehicle and idling stop system vehicle |
JP6515935B2 (en) * | 2015-01-14 | 2019-05-22 | 日立化成株式会社 | Lead storage battery, micro hybrid car and idling stop system car |
JP6519945B2 (en) * | 2015-03-30 | 2019-05-29 | 株式会社Gsユアサ | Lead storage battery |
JP2016189297A (en) * | 2015-03-30 | 2016-11-04 | 株式会社Gsユアサ | Lead acid storage battery |
JP6566193B2 (en) * | 2015-05-29 | 2019-08-28 | 株式会社Gsユアサ | Lead acid battery |
WO2019087678A1 (en) * | 2017-10-31 | 2019-05-09 | 株式会社Gsユアサ | Lead storage battery |
CN109616666A (en) * | 2018-09-12 | 2019-04-12 | 骆驼集团襄阳蓄电池有限公司 | Improve the lead plaster and preparation method of active substance for positive electrode of lead-acid accumulator utilization rate |
CN114450837A (en) | 2019-09-27 | 2022-05-06 | 株式会社杰士汤浅国际 | Lead-acid battery |
TWI859325B (en) | 2019-09-27 | 2024-10-21 | 日商傑士湯淺國際股份有限公司 | Lead storage battery |
CN114521304A (en) | 2019-09-27 | 2022-05-20 | 株式会社杰士汤浅国际 | Lead storage battery, power supply device, and method for using power supply device |
TW202114286A (en) | 2019-09-27 | 2021-04-01 | 日商傑士湯淺國際股份有限公司 | Lead-acid battery |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02201872A (en) * | 1989-01-31 | 1990-08-10 | Matsushita Electric Ind Co Ltd | Plate for lead-acid battery |
JP3186071B2 (en) * | 1990-12-27 | 2001-07-11 | 新神戸電機株式会社 | Method for producing electrode plate for lead-acid battery and aggregated particles |
JP4492024B2 (en) * | 2002-05-21 | 2010-06-30 | パナソニック株式会社 | Lead acid battery |
JP5299672B2 (en) * | 2008-09-11 | 2013-09-25 | 株式会社Gsユアサ | Lead acid battery |
WO2011052438A1 (en) * | 2009-10-26 | 2011-05-05 | 株式会社Gsユアサ | Lead acid storage battery |
MX2012010082A (en) * | 2010-03-01 | 2012-09-12 | Shin Kobe Electric Machinery | Lead storage battery. |
JP5892429B2 (en) * | 2011-07-05 | 2016-03-23 | 株式会社Gsユアサ | Liquid lead-acid battery |
-
2013
- 2013-03-29 WO PCT/JP2013/002166 patent/WO2013150754A1/en active Application Filing
- 2013-03-29 JP JP2014509045A patent/JP6066119B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11670757B2 (en) | 2018-04-12 | 2023-06-06 | Gs Yuasa International Ltd. | Negative electrode plate containing organic expander in negative electrode material and lead-acid battery comprising the negative electrode plate |
Also Published As
Publication number | Publication date |
---|---|
WO2013150754A1 (en) | 2013-10-10 |
JPWO2013150754A1 (en) | 2015-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6066119B2 (en) | Liquid lead-acid battery | |
JP5884528B2 (en) | Liquid lead-acid battery | |
JP5892429B2 (en) | Liquid lead-acid battery | |
JP6153073B2 (en) | Lead acid battery | |
CN110061187B (en) | Binder composition for negative electrode of lithium ion secondary battery, slurry composition for negative electrode, and lithium ion secondary battery | |
CN103137955B (en) | A kind of storage battery lead/carbon composite and preparation method thereof | |
JP6153074B2 (en) | Liquid lead-acid battery | |
JP6168138B2 (en) | Liquid lead-acid battery | |
JP6660072B2 (en) | Positive electrode plate for lead-acid battery, lead-acid battery using the positive electrode plate, and method of manufacturing positive electrode plate for lead-acid battery | |
JP6400016B2 (en) | Composition for enhancing deep cycle performance of sealed lead-acid battery filled with gel electrolyte | |
JP6202477B1 (en) | Lead acid battery | |
JP6153072B2 (en) | Liquid lead-acid battery | |
JP5748091B2 (en) | Lead acid battery | |
Zhao et al. | Hydrogen evolution behavior of electrochemically active carbon modified with indium and its effects on the cycle performance of valve-regulated lead-acid batteries | |
JP2015128053A (en) | Lead storage battery | |
WO2016141861A1 (en) | Battery, battery pack and uninterruptible power supply | |
CN104681879B (en) | Lead-acid battery | |
JP2008243493A (en) | Lead acid storage battery | |
CN103904352B (en) | Zinc electrolyte for flow battery and preparation method thereof | |
JP6153071B2 (en) | Control valve type lead acid battery | |
JP6041221B2 (en) | Liquid lead-acid battery | |
JP2016119294A (en) | Lead-acid battery | |
JP5637503B2 (en) | Lead acid battery | |
CN104852031B (en) | Preparation method of nickel-zinc secondary battery composite cathode material | |
JP5708959B2 (en) | Lead acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150914 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6066119 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |