JP6058915B2 - Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same - Google Patents
Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same Download PDFInfo
- Publication number
- JP6058915B2 JP6058915B2 JP2012120851A JP2012120851A JP6058915B2 JP 6058915 B2 JP6058915 B2 JP 6058915B2 JP 2012120851 A JP2012120851 A JP 2012120851A JP 2012120851 A JP2012120851 A JP 2012120851A JP 6058915 B2 JP6058915 B2 JP 6058915B2
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- rolled copper
- negative electrode
- foil
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 93
- 239000011889 copper foil Substances 0.000 title claims description 61
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 26
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 26
- 239000011888 foil Substances 0.000 title claims description 20
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 16
- 239000007773 negative electrode material Substances 0.000 title claims description 13
- 239000010949 copper Substances 0.000 claims description 35
- 229910052802 copper Inorganic materials 0.000 claims description 32
- 239000013078 crystal Substances 0.000 claims description 17
- 238000005096 rolling process Methods 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 12
- 229910052749 magnesium Inorganic materials 0.000 claims description 11
- 229910052732 germanium Inorganic materials 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000000052 comparative effect Effects 0.000 description 12
- 238000005452 bending Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000001953 recrystallisation Methods 0.000 description 8
- 239000011149 active material Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 239000010731 rolling oil Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- -1 nickel metal hydride Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
Description
本発明は、二次電池負極集電体用圧延銅箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池に関する。 The present invention relates to a rolled copper foil for a secondary battery negative electrode current collector, a negative electrode material for a lithium ion secondary battery using the rolled copper foil, and a lithium ion secondary battery.
リチウムイオン二次電池はエネルギー密度が高く、比較的高い電圧を得ることができるという特徴を有し、ノートパソコン、ビデオカメラ、デジタルカメラ、携帯電話等の小型電子機器に多用されている。また、リチウムイオン二次電池は、電気自動車や一般家庭の分散分配型電源といった大型機器の電源としても利用が始められており、ニッケル水素電池等の他の二次電池と比較して軽量でエネルギー密度が高いことから、各種の電源を必要とする機器で広く使用されている。 Lithium ion secondary batteries have a high energy density and can obtain a relatively high voltage, and are widely used in small electronic devices such as notebook computers, video cameras, digital cameras, and mobile phones. Lithium ion secondary batteries have also begun to be used as power sources for large equipment such as electric vehicles and general household distributed power sources, and are lighter and more energy efficient than other secondary batteries such as nickel metal hydride batteries. Due to its high density, it is widely used in devices that require various power sources.
リチウムイオン二次電池の電極体は一般に、巻回構造又は各電極を積層されたスタック構造を有している。リチウムイオン二次電池の正極は、アルミニウム箔製の集電体とその表面に設けられたLiCoO2、LiNiO2及びLiMn2O4等のリチウム複合酸化物を材料とする正極活物質から構成され、負極は銅箔製の集電体とその表面に設けられたカーボン等を材料とする負極活物質から構成されるのが一般的である。 An electrode body of a lithium ion secondary battery generally has a winding structure or a stack structure in which electrodes are stacked. The positive electrode of the lithium ion secondary battery is composed of a current collector made of aluminum foil and a positive electrode active material made of a lithium composite oxide such as LiCoO 2 , LiNiO 2 and LiMn 2 O 4 provided on the surface thereof, The negative electrode is generally composed of a negative electrode active material made of a copper foil current collector and carbon or the like provided on the surface thereof.
ところで、電極体を巻回する構造の電池では、充放電に伴う活物質の膨張、収縮により、特に曲率半径が小さくなる巻回構造の内周部近傍や、活物質の未塗工部分と塗工部分の境界近傍などに応力が集中することで、集電体にクラックが生じたり、破断が発生しやすくなり、電池のサイクル特性を劣化させる原因となる。このような不具合を回避する方法としては、負極集電体である銅箔の伸びを2〜15%に調整することで、破断を防止する方法が開示されている(特許文献1)。 By the way, in a battery having a structure in which an electrode body is wound, the active material expands and contracts due to charge / discharge, and particularly near the inner peripheral portion of the wound structure in which the radius of curvature becomes small, or with an uncoated portion of the active material. When stress is concentrated near the boundary of the work part, the current collector is easily cracked or ruptured, which deteriorates the cycle characteristics of the battery. As a method of avoiding such a problem, a method of preventing breakage by adjusting the elongation of a copper foil as a negative electrode current collector to 2 to 15% is disclosed (Patent Document 1).
しかしながら、本発明者らが検討したところ、伸びの大きい銅箔を負極集電体に用いても、充放電によって銅箔にクラックや破断が発生する場合があることが判明した。詳細に調査した結果、充放電によって活物質が膨張、収縮することにより、集電体である銅箔が繰返し応力集中を受けて集電体が部分的に曲げ変形を起こすようになり、充放電によって曲げ変形が繰り返される。
曲げ変形は、活物質の膨張、収縮に伴うものであり、曲げ及び曲げ戻しが交互に繰り返される。このような過酷な条件では、集電体である銅箔にクラックや破断が発生し、通電抵抗が上昇して電池のサイクル特性が劣化する場合がある。
However, when the present inventors examined, even if it used the copper foil with large elongation for a negative electrode electrical power collector, it turned out that a crack and a fracture | rupture may occur in copper foil by charging / discharging. As a result of detailed investigation, the active material expands and contracts due to charge and discharge, and the current collector copper foil undergoes repeated stress concentration, causing the current collector to partially bend and deform. The bending deformation is repeated by.
Bending deformation is accompanied by expansion and contraction of the active material, and bending and unbending are repeated alternately. Under such harsh conditions, cracks and breaks may occur in the copper foil as a current collector, resulting in an increase in energization resistance and deterioration of the cycle characteristics of the battery.
そこで、本発明は、リチウムイオン二次電池の集電体として用いられたときに、充放電を繰り返してもクラックや破断の発生が良好に抑制されることで、サイクル特性に優れた二次電池負極集電体用圧延銅箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池を提供することを課題とする。 Therefore, when the present invention is used as a current collector of a lithium ion secondary battery, a secondary battery excellent in cycle characteristics can be obtained by suppressing the occurrence of cracks and breaks even when charging and discharging are repeated. It is an object of the present invention to provide a rolled copper foil for a negative electrode current collector, a negative electrode material for a lithium ion secondary battery using the rolled copper foil, and a lithium ion secondary battery.
本発明は、リチウムイオン二次電池の集電体として用いられる銅箔につき、充放電によって生じる繰返し曲げによるクラックや破断の発生しやすさが、当該銅箔の断面において結晶方位が001方向を中心に10°の範囲にある面積の割合と関係があることを見出した。そして、このような知見に基づき銅箔断面において結晶方位が001方向を中心に10°の範囲にある面積の割合を制御することで、サイクル特性に優れた二次電池負極集電体用圧延銅箔を提供することができることを見出した。 The present invention relates to a copper foil used as a current collector of a lithium ion secondary battery, and is susceptible to cracking and breakage due to repeated bending caused by charging and discharging, and the crystal orientation is centered on the 001 direction in the cross section of the copper foil. Has been found to be related to the proportion of the area in the range of 10 °. And based on such knowledge, by controlling the ratio of the area in which the crystal orientation is in the range of 10 ° centered on the 001 direction in the copper foil cross section, the rolled copper for secondary battery negative electrode current collector excellent in cycle characteristics It has been found that a foil can be provided.
以上の知見を基礎として完成した本発明は一側面において、圧延銅箔又は圧延銅合金箔であって、180℃で30分間の熱処理が行われたとき、前記圧延銅箔又は圧延銅合金箔の圧延平行方向の厚み方向に切断したときの断面を観察した場合に、前記観察断面における結晶粒の面積であって、前記断面において、001方位を中心に10°の範囲にある結晶方位を有する結晶粒の面積Aの割合が前記断面の観察面積の10%以上であり、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiが合計で20質量ppm以下であり、(1)JIS−H3100−C1100に規格するタフピッチ銅、又は、JIS−H3100−C1020に規格する無酸素銅である、または、(2)JIS−H3100−C1100に規格するタフピッチ銅、又は、JIS−H3100−C1020に規格する無酸素銅であって、Agを10〜500質量ppm含む、または、(3)JIS−H3100−C1020に規格する無酸素銅であって、Snを10〜100質量ppm含む、または、(4)JIS−H3100−C1020に規格する無酸素銅であって、Agを10〜500質量ppm含み、Snを10〜100質量ppm含む二次電池負極集電体用圧延銅箔又は圧延銅合金箔である。
The present invention completed on the basis of the above knowledge is, in one aspect, a rolled copper foil or a rolled copper alloy foil, and when the heat treatment is performed at 180 ° C. for 30 minutes, the rolled copper foil or the rolled copper alloy foil When observing a cross section when cut in the thickness direction of the rolling parallel direction, the crystal grain area in the observed cross section, and in the cross section, a crystal having a crystal orientation in a range of 10 ° centering on the 001 orientation The ratio of the area A of the grains is 10% or more of the observation area of the cross section, and P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities are 20 ppm by mass or less in total, (1) Tough pitch copper standardized to JIS-H3100-C1100, oxygen-free copper standardized to JIS-H3100-C1020, or (2) Tough standardized to JIS-H3100-C1100 Copper oxide or oxygen-free copper standardized to JIS-H3100-C1020, containing 10 to 500 ppm by mass of Ag, or (3) oxygen-free copper standardized to JIS-H3100-C1020, Secondary battery negative electrode containing 10 to 100 mass ppm of Sn or (4) oxygen-free copper standardized to JIS-H3100-C1020, containing 10 to 500 mass ppm of Ag and containing 10 to 100 mass ppm of Sn It is the rolled copper foil or rolled copper alloy foil for current collectors.
本発明に係る二次電池負極集電体用圧延銅箔又は圧延銅合金箔の一実施形態においては、前記断面における前記面積Aの割合が60%以上である。 In one embodiment of the rolled copper foil or rolled copper alloy foil for a secondary battery negative electrode current collector according to the present invention, the ratio of the area A in the cross section is 60% or more.
本発明に係る二次電池負極集電体用圧延銅箔の別の一実施形態においては、JIS−H3100−C1100に規格するタフピッチ銅、又は、JIS−H3100−C1020に規格する無酸素銅を用いて形成されている。 In another embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, tough pitch copper standardized to JIS-H3100-C1100 or oxygen-free copper standardized to JIS-H3100-C1020 is used. Is formed.
本発明に係る二次電池負極集電体用圧延銅箔の更に別の一実施形態においては、Agを10〜500質量ppm含む。 In still another embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, 10 to 500 ppm by mass of Ag is contained.
本発明に係る二次電池負極集電体用圧延銅箔の更に別の実施形態においては、さらにSnを10〜100質量ppm含む、JIS−H3100−C1020に規格する無酸素銅を用いて形成されている。 In yet another embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, the rolled copper foil further comprises 10 to 100 mass ppm of Sn, and is formed using oxygen-free copper standardized to JIS-H3100-C1020. ing.
本発明に係る二次電池負極集電体用圧延銅箔の更に別の実施形態においては、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が合計で20質量ppm以下である。 In yet another embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, 1 selected from the group consisting of P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities A seed or 2 or more types is 20 mass ppm or less in total.
本発明に係る二次電池負極集電体用圧延銅箔又は圧延銅合金箔の更に別の一実施形態においては、厚さが5〜20μmである。 In still another embodiment of the rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector according to the present invention, the thickness is 5 to 20 μm.
本発明は別の一側面において、本発明に係る圧延銅箔又は圧延銅合金箔を備えたリチウムイオン二次電池用負極材である。 Another aspect of the present invention is a negative electrode material for a lithium ion secondary battery including the rolled copper foil or the rolled copper alloy foil according to the present invention.
本発明は更に別の一側面において、本発明の負極材を備えたリチウムイオン二次電池である。 In still another aspect, the present invention is a lithium ion secondary battery including the negative electrode material of the present invention.
本発明によれば、リチウムイオン二次電池の集電体として用いられたときに、充放電を繰り返してもクラックや破断の発生が良好に抑制される二次電池負極集電体用圧延銅箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池を提供することができる。 According to the present invention, when used as a current collector of a lithium ion secondary battery, the rolled copper foil for a secondary battery negative electrode current collector is satisfactorily suppressed from generating cracks and breaks even after repeated charge and discharge. A negative electrode material for a lithium ion secondary battery and a lithium ion secondary battery using the same can be provided.
(圧延銅箔の組成)
本発明の二次電池負極集電体用圧延銅箔の材料としては、JIS−H3100−C1100に規格するタフピッチ銅、又は、JIS−H3100−C1020に規格する無酸素銅が好ましい。これらの組成は純銅に近いため、銅箔の導電率が低下せず、集電体に適する。銅箔に含まれる酸素濃度は、タフピッチ銅の場合は0.01〜0.02質量%、無酸素銅の場合は0.001質量%以下である。
本発明に係る銅箔は、工業的に使用される銅で形成されており、不可避的不純物を含んでいる。この不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiは、微少量存在していても、銅箔の曲げ変形によって結晶方位が回転し易くなり、剪断帯も入り易く、集電体が曲げ変形を繰返した時にクラックや破断が発生しやすくなるため好ましくない。このため、本発明に係る銅箔は、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上を合計で20質量ppm以下に制御することが好ましい。
また、材料の特性改善のためにAgを500質量ppm以下含んでもよく、Snを100質量ppm以下含んでもよい。銅箔にAg又はSnを添加すると、仕上げ圧延後の材料強度が高くなり、材料の取り扱い性が良好となるものの、Agの添加量が500質量ppm、Snの添加量が100質量ppmをそれぞれ超えると、導電率が低下すると共に再結晶温度が上昇し、銅合金の表面酸化を抑えつつ再結晶焼鈍することが困難、あるいは負極材の製造工程で、活物質塗工後の乾燥時に集電体である銅箔が再結晶し難くなることで、本発明の特性を発現できなくなる。従って、Agの添加量は500質量ppm以下、Snの添加量は100質量ppm以下がそれぞれ好ましい。なお、AgとSnの添加量の下限は特に限定されないが、通常、合計10ppm以上である。また、AgとSnを同時に添加しても良い。
ここで、AgはCuよりも酸化しにくいので、タフピッチ銅および無酸素銅のどちらの溶湯中でも添加可能である。ただし、酸素濃度については、500質量ppmを超えると酸化銅粒子が増大し、電池の充放電サイクル試験における銅箔の亀裂発生の起点となるなどの悪影響が考えられるため、500質量ppm以下に調整することが好ましい。
また、SnはCuよりも酸化しやすいので、銅箔中で酸化物を形成して電池の充放電サイクル試験における亀裂発生の起点となるなどの悪影響が考えられるため、無酸素銅の溶湯中に添加するのが一般的である。
なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとし、「タフピッチ銅及び無酸素銅」を単独で用いたときにはタフピッチ銅及び無酸素銅をベースとした銅合金箔を含むものとする。
(Composition of rolled copper foil)
As a material of the rolled copper foil for secondary battery negative electrode current collector of the present invention, tough pitch copper standardized to JIS-H3100-C1100 or oxygen-free copper standardized to JIS-H3100-C1020 is preferable. Since these compositions are close to pure copper, the conductivity of the copper foil does not decrease and is suitable for a current collector. The oxygen concentration contained in the copper foil is 0.01 to 0.02% by mass in the case of tough pitch copper, and 0.001% by mass or less in the case of oxygen-free copper.
The copper foil according to the present invention is made of industrially used copper and contains inevitable impurities. Even if a small amount of P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities is present, the crystal orientation is likely to rotate due to bending deformation of the copper foil, and a shear band is likely to enter. It is not preferable because cracks and breaks are likely to occur when the electric body repeatedly undergoes bending deformation. For this reason, the copper foil which concerns on this invention makes 1 mass or 2 types or more selected from the group which consists of P, Fe, Zr, Mg, S, Ge, and Ti as an unavoidable impurity to 20 mass ppm or less in total It is preferable to control.
Further, Ag may be contained in an amount of 500 ppm by mass or less, and Sn may be contained in an amount of 100 ppm by mass or less in order to improve material properties. When Ag or Sn is added to the copper foil, the material strength after finish rolling is increased, and the handleability of the material is improved, but the addition amount of Ag exceeds 500 mass ppm and the addition amount of Sn exceeds 100 mass ppm. And the conductivity decreases and the recrystallization temperature rises, it is difficult to recrystallize and suppress the surface oxidation of the copper alloy, or the current collector is dried after the active material coating in the negative electrode material manufacturing process When the copper foil is difficult to recrystallize, the characteristics of the present invention cannot be expressed. Therefore, the addition amount of Ag is preferably 500 ppm by mass or less, and the addition amount of Sn is preferably 100 ppm by mass or less. In addition, although the minimum of the addition amount of Ag and Sn is not specifically limited, Usually, it is 10 ppm or more in total. Moreover, you may add Ag and Sn simultaneously.
Here, since Ag is harder to oxidize than Cu, it can be added in either a tough pitch copper or oxygen-free copper melt. However, when the oxygen concentration exceeds 500 mass ppm, the copper oxide particles increase, and adverse effects such as the starting point of cracking of the copper foil in the battery charge / discharge cycle test can be considered. It is preferable to do.
In addition, since Sn is easier to oxidize than Cu, adverse effects such as the formation of an oxide in the copper foil and starting cracks in the charge / discharge cycle test of the battery can be considered. It is common to add.
In addition, when the term “copper foil” is used alone in this specification, the copper alloy foil is also included. When “tough pitch copper and oxygen-free copper” is used alone, copper alloy based on tough pitch copper and oxygen-free copper is used. Includes foil.
(銅箔の製造方法)
本発明の実施形態に係る銅箔は、例えば以下のようにして製造することができる。規定の組成で鋳造したインゴットを熱間圧延後、表面研削で酸化物を除去し、冷間圧延、焼鈍、酸洗を繰返して所定の厚みまで加工することで銅箔を製造する。結晶方位である001方位を中心に10°の範囲の割合を厚み方向の断面に対して10%以上に制御するために、最終圧延加工において、圧延1パスの最小加工度を15%以上、圧延油の動粘度を5mm2/s以下、圧延の歪速度を30〜800/sとする。ここで、最終圧延加工とは、再結晶焼鈍後に製品厚みまで圧延する加工を示す。また、圧延では、一対のロール間に材料を繰り返し通過させて厚みを仕上げていくが、この時、ロール間に1回材料を通過させることを1パスという。
(Manufacturing method of copper foil)
The copper foil which concerns on embodiment of this invention can be manufactured as follows, for example. After hot rolling an ingot cast with a specified composition, the oxide is removed by surface grinding, and cold rolling, annealing, and pickling are repeated to process to a predetermined thickness to produce a copper foil. In order to control the ratio of the range of 10 ° centered on the 001 orientation which is the crystal orientation to 10% or more with respect to the cross section in the thickness direction, in the final rolling process, the minimum degree of processing in one pass of rolling is 15% or more. The kinematic viscosity of the oil is 5 mm 2 / s or less, and the rolling strain rate is 30 to 800 / s. Here, the final rolling process refers to a process of rolling to product thickness after recrystallization annealing. In rolling, the material is repeatedly passed between a pair of rolls to finish the thickness. At this time, passing the material once between the rolls is called one pass.
(圧延銅箔の厚さ)
本発明に用いることのできる圧延銅箔の厚さとしては、5〜20μmが好ましい。銅箔の厚さに特に下限は無いが、5μm未満であると銅箔のハンドリングが悪くなるため、5μm以上が好ましい。箔の厚さの上限も特に無いが、厚みが増すほど電池の単位重量あたりのエネルギー密度が低下し、さらに材料のコストも上昇するため、20μm以下が好ましい。
(Rolled copper foil thickness)
As thickness of the rolled copper foil which can be used for this invention, 5-20 micrometers is preferable. There is no particular lower limit to the thickness of the copper foil, but if it is less than 5 μm, the handling of the copper foil becomes worse, and therefore it is preferably 5 μm or more. The upper limit of the thickness of the foil is not particularly limited, but the thickness is preferably 20 μm or less because the energy density per unit weight of the battery decreases as the thickness increases and the cost of the material also increases.
本発明に係る銅箔は、例えば180℃で30分間の熱処理による再結晶後に、結晶方位が001方位を中心に10°の範囲にある面積Aの割合が10%以上である断面を有する。銅箔は、折り曲げを数回繰り返すと結晶方位が回転する。この結晶方位の回転が亀裂発生の原因となる。結晶の001方位が銅箔の厚さ方向の断面にあり、その断面に平行な方向が曲げ方向であると結晶方位が回転し難くなり、繰り返し曲げ性が向上する。また、亀裂の原因の一つである剪断帯も入り難くなり、繰り返し曲げ性が向上する。本発明に係る銅箔は、001方位を中心に10°の範囲にある面積Aの割合が10%以上であるためこの折り曲げ加工性が良好であり、充放電によって生じる繰り返し曲げによるクラックや破断が発生しにくい。断面における面積Aの割合は、より好ましくは60%以上である。結晶方位は、EBSD(Electron Back Scattering Diffraction)法により測定することができる。 The copper foil according to the present invention has a cross section in which the ratio of the area A in the range of 10 ° centered on the 001 orientation is 10% or more after recrystallization by heat treatment at 180 ° C. for 30 minutes, for example. The crystal orientation of the copper foil rotates when the bending is repeated several times. This rotation of crystal orientation causes cracking. If the 001 orientation of the crystal is in the cross section in the thickness direction of the copper foil and the direction parallel to the cross section is the bending direction, the crystal orientation becomes difficult to rotate, and the repeated bendability improves. Moreover, it becomes difficult to enter a shear band which is one of the causes of cracks, and the bendability is improved repeatedly. The copper foil according to the present invention has good bending workability because the ratio of the area A in the range of 10 ° centered on the 001 orientation is 10% or more, and cracks and breaks due to repeated bending caused by charging and discharging are good. Hard to occur. The ratio of the area A in the cross section is more preferably 60% or more. The crystal orientation can be measured by an EBSD (Electron Back Scattering Diffraction) method.
以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。 EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.
実施例1〜18として、高純度電気銅(Cu濃度99.99%以上)に表1に記載の元素を添加してインゴットを作製した。また、このとき、坩堝、鋳型、耐火物からの不純物を混入させないように、さらに、脱酸素処理でP、Zr、Mgを混入させないようにすることで、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が、合計で20質量ppm以下となるように制御した。
続いて、このインゴットを熱間圧延で厚さ7mmの板に加工し、表面研削で酸化物を取り除いた後、冷間圧延、焼鈍、酸洗を繰り返し、最終圧延加工において、1パス当たりの最小加工度、歪速度、圧延油の動粘度につき、表1に示した条件で加工した。
As Examples 1 to 18, ingots were prepared by adding the elements shown in Table 1 to high-purity electrolytic copper (Cu concentration: 99.99% or more). At this time, P, Fe, and Zr as inevitable impurities are prevented by not mixing impurities from the crucible, the mold, and the refractory and further preventing P, Zr, and Mg from being mixed in the deoxidation treatment. , Mg, S, Ge and Ti were controlled so that one or more selected from the group consisting of Mg, S, Ge and Ti would be 20 ppm by mass or less in total.
Subsequently, this ingot is processed into a 7 mm thick plate by hot rolling, oxide is removed by surface grinding, and then cold rolling, annealing, and pickling are repeated, and in the final rolling process, the minimum per pass The degree of processing, strain rate, and kinematic viscosity of the rolling oil were processed under the conditions shown in Table 1.
一方、比較例1〜9として、高純度電気銅に表1に記載の元素を添加してインゴットを作製した。また、このとき、比較例1〜4については不可避的不純物の抑制は行わず、P、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が、合計で20質量ppm超となった。比較例5〜9は、実施例と同様にして不可避的不純物の抑制を行った。
比較例1〜9の上記インゴットの加工条件は実施例と同様であり、表1に示した条件で最終圧延加工を実施した。
On the other hand, as Comparative Examples 1 to 9, ingots were prepared by adding the elements shown in Table 1 to high-purity electrolytic copper. Further, at this time, inevitable impurities are not suppressed for Comparative Examples 1 to 4, and one or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge, and Ti are combined. It became more than 20 mass ppm. In Comparative Examples 5 to 9, inevitable impurities were suppressed in the same manner as in Examples.
The processing conditions of the ingots of Comparative Examples 1 to 9 were the same as those of the example, and the final rolling process was performed under the conditions shown in Table 1.
このようにして作製した実施例1〜18及び比較例1〜9の供試材をAr雰囲気中で180℃で30分間熱処理した後に、CP法(クロスセッションポリッシャー法)を用いて圧延平行方向の厚み方向に切断し、銅箔断面を得た。その後、すぐに「表1に記載の銅箔厚み」×「300μm幅」の面積においてJEOL社製の電子顕微鏡FE−SEMを用い、EBSD法により結晶方位を測定し、TSL社製の解析ソフトを用いてKAM値を算出し、結晶方位が001方位を中心に10°の範囲にある面積Aの割合を算出した。 The specimens of Examples 1 to 18 and Comparative Examples 1 to 9 thus produced were heat-treated at 180 ° C. for 30 minutes in an Ar atmosphere, and then subjected to the rolling parallel direction using the CP method (cross session polisher method). It cut | disconnected in the thickness direction and obtained the copper foil cross section. Immediately thereafter, the crystal orientation was measured by the EBSD method using the electron microscope FE-SEM manufactured by JEOL in an area of “copper foil thickness described in Table 1” × “300 μm width”, and analysis software manufactured by TSL was used. The KAM value was calculated by using this, and the ratio of the area A where the crystal orientation was in the range of 10 ° centered on the 001 orientation was calculated.
続いて、実施例及び比較例で得られた銅箔を負極集電体に用い、定格容量が1Ahの18650サイズの円筒電池型リチウムイオン二次電池を以下の手順で作製し、充放電サイクル寿命を測定した。
負極活物質として平均粒径15μmの天然黒鉛、バインダーとしてPVDFを重量比92:8の比率でNMP(N−メチル−2−ピロリドン)に分散させてスラリーを調整した。このスラリーを銅箔上に塗布後、90℃で30分間乾燥させ、更に120℃で10分乾燥させた。これを銅箔の片面ずつ実施することで、銅箔両面に負極活物質層を形成した。更に、加圧プレスにより電極密度を調整した後に、水分を蒸発させる目的で、真空中にて180℃で30分間、負極材を乾燥した。
正極活物質としてコバルト酸リチウム(LiCoO2)、バインダーとしてPVDF、導電助剤としてアセチレンブラックを重量比92:4:4の比率でNMPに分散させてスラリーを調整した。このスラリーを厚み20μmのアルミ箔上に塗布後、120℃で30分乾燥させた。これをアルミ箔の片面ずつ実施することで、アルミ箔両面に正極活物質層を形成した。さらに、加圧プレスにより、活物質の密度3.2g/cm3、活物質の厚み75μmの電極を作製した。
以上のように作製した正極と負極の間に、厚さ20μmの多孔質ポリエチレンフィルムからなるセパレータを介在させた状態で巻回し、電池ケースに収納した。
上記電池ケースの蓋に、正極の電極リードを接続した後、溶媒としてエチレンカーボネートとジエチルカーボネートを体積比2:3、電解質として1mol/LのLiPF6を溶解した非水電解液を電池ケース内に注液し、電池缶の蓋をかしめて封口して円筒型リチウムイオン二次電池を作製した。
Subsequently, the copper foils obtained in the examples and comparative examples were used for the negative electrode current collector, and a 18650 size cylindrical battery type lithium ion secondary battery having a rated capacity of 1 Ah was prepared by the following procedure, and the charge / discharge cycle life was obtained. Was measured.
A slurry was prepared by dispersing natural graphite having an average particle diameter of 15 μm as a negative electrode active material and PVDF as a binder in NMP (N-methyl-2-pyrrolidone) at a weight ratio of 92: 8. The slurry was applied on a copper foil, dried at 90 ° C. for 30 minutes, and further dried at 120 ° C. for 10 minutes. By carrying out this for each side of the copper foil, negative electrode active material layers were formed on both sides of the copper foil. Furthermore, after adjusting the electrode density by a pressure press, the negative electrode material was dried at 180 ° C. for 30 minutes in a vacuum for the purpose of evaporating water.
A slurry was prepared by dispersing lithium cobaltate (LiCoO 2 ) as a positive electrode active material, PVDF as a binder, and acetylene black as a conductive additive in NMP at a weight ratio of 92: 4: 4. The slurry was applied on an aluminum foil having a thickness of 20 μm and then dried at 120 ° C. for 30 minutes. By carrying out this on each side of the aluminum foil, positive electrode active material layers were formed on both sides of the aluminum foil. Further, an electrode having an active material density of 3.2 g / cm 3 and an active material thickness of 75 μm was produced by a pressure press.
The battery was wound with a separator made of a porous polyethylene film having a thickness of 20 μm interposed between the positive electrode and the negative electrode produced as described above, and stored in a battery case.
After the positive electrode lead is connected to the lid of the battery case, a non-aqueous electrolyte solution in which ethylene carbonate and diethyl carbonate as a solvent are dissolved in a volume ratio of 2: 3 and 1 mol / L LiPF 6 as an electrolyte is dissolved in the battery case. The solution was poured, and the lid of the battery can was crimped and sealed to produce a cylindrical lithium ion secondary battery.
作製した18650サイズの円筒型電池につき、25℃の環境下で充電と放電のサイクルを繰返し、容量維持率を調べた。2回目の充放電を初期容量とし、初期容量に対して放電容量が80%以下に低下するまでの充放電サイクル数につき、100回未満を「×」、100〜300回を「△」、300回を超えたものを「○」としてサイクル特性を評価した。サイクル寿命の評価が○、△であれば実用上問題ない。
充放電条件は、1A定電流で4.2Vまで充電してから4.2Vの定電流で、充電時間が2時間となるまでとし、放電は1Aの定電流で3.0Vまでとした。
The produced 18650 size cylindrical battery was repeatedly charged and discharged in an environment of 25 ° C., and the capacity retention rate was examined. With the second charge / discharge as the initial capacity, the number of charge / discharge cycles until the discharge capacity is reduced to 80% or less of the initial capacity is less than 100 “x”, 100 to 300 times “Δ”, 300 The cycle characteristics were evaluated with “○” as the number exceeding the number of times. If the cycle life evaluation is ○ or Δ, there is no practical problem.
The charging / discharging conditions were a constant current of 4.2 A and a charging time of 2 hours after charging to 4.2 V with a constant current of 1 A, and a discharging of 3.0 V with a constant current of 1 A.
得られた結果を表1に示す。なお、表1の組成において、「OFC」及び「TPC」は、それぞれ無酸素銅(JIS−H3100−C1020)及びタフピッチ銅(JIS−H3100−C1100)を示し、例えば「Ag100ppmTPC」は、タフピッチ銅にAgを100重量ppm添加したものを示す。
The obtained results are shown in Table 1. In the composition of Table 1, “OFC” and “TPC” represent oxygen-free copper (JIS-H3100-C1020) and tough pitch copper (JIS-H3100-C1100), respectively. For example, “Ag100 ppm TPC” represents tough pitch copper. It shows what added 100 weight ppm of Ag.
(評価)
実施例1〜18は、いずれも不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が合計で20質量ppm以下であり、面積Aの割合は10%以上であり、リチウムイオン二次電池のサイクル寿命が良好であった。
比較例1〜4は、いずれも不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が合計で20質量ppm超であり、面積Aの割合が10%未満であり、リチウムイオン二次電池のサイクル寿命が劣った。
比較例5は、Snの添加濃度が100質量ppmを超えており、180℃で30分間の熱処理では充分に再結晶が進んでおらず、面積Aの割合が10%未満であるため、リチウムイオン二次電池のサイクル寿命が劣った。
比較例6は、最終圧延における1パス加工度の最小値が15%未満となっており、再結晶後の面積Aの割合が10%未満であるため、リチウムイオン二次電池のサイクル寿命が劣った。
比較例7は、最終圧延における圧延油の動粘度が5.0mm2/sを超えており、再結晶後の面積Aの割合が10%未満であるため、リチウムイオン二次電池のサイクル寿命が劣った。
比較例8は、最終圧延における最終パスの歪速度が800/sを超えており、再結晶後の面積Aの割合が10%未満であるため、リチウムイオン二次電池のサイクル寿命が劣った。
比較例9は、最終圧延における1パス加工度の最小値及び圧延油の動粘度が規定値から外れており、再結晶後の面積Aの割合が10%未満であるため、リチウムイオン二次電池のサイクル寿命が劣った。
(Evaluation)
In Examples 1 to 18, one or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities are 20 ppm by mass or less in total. The ratio of area A was 10% or more, and the cycle life of the lithium ion secondary battery was good.
In Comparative Examples 1 to 4, one or two or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities are in total more than 20 mass ppm, The ratio of area A was less than 10%, and the cycle life of the lithium ion secondary battery was inferior.
In Comparative Example 5, the Sn addition concentration exceeds 100 ppm by mass, recrystallization does not proceed sufficiently in the heat treatment at 180 ° C. for 30 minutes, and the ratio of area A is less than 10%. The cycle life of the secondary battery was inferior.
In Comparative Example 6, the minimum value of the degree of one-pass processing in the final rolling is less than 15%, and the ratio of the area A after recrystallization is less than 10%. Therefore, the cycle life of the lithium ion secondary battery is inferior. It was.
In Comparative Example 7, since the kinematic viscosity of the rolling oil in the final rolling exceeds 5.0 mm 2 / s and the ratio of the area A after recrystallization is less than 10%, the cycle life of the lithium ion secondary battery is inferior.
In Comparative Example 8, the strain rate of the final pass in the final rolling exceeded 800 / s, and the ratio of the area A after recrystallization was less than 10%. Therefore, the cycle life of the lithium ion secondary battery was inferior.
In Comparative Example 9, the minimum value of the degree of one-pass processing in the final rolling and the kinematic viscosity of the rolling oil are out of the specified values, and the ratio of the area A after recrystallization is less than 10%. The cycle life of was poor.
Claims (5)
180℃で30分間の熱処理が行われたとき、前記圧延銅箔又は圧延銅合金箔の圧延平行方向の厚み方向に切断したときの断面を観察した場合に、前記観察断面における結晶粒の面積であって、前記断面において、001方位を中心に10°の範囲にある結晶方位を有する結晶粒の面積Aの割合が前記断面の観察面積の10%以上であり、
不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiが合計で20質量ppm以下であり、
(1)JIS−H3100−C1100に規格するタフピッチ銅、又は、JIS−H3100−C1020に規格する無酸素銅である、または、
(2)JIS−H3100−C1100に規格するタフピッチ銅、又は、JIS−H3100−C1020に規格する無酸素銅であって、Agを10〜500質量ppm含む、または、
(3)JIS−H3100−C1020に規格する無酸素銅であって、Snを10〜100質量ppm含む、または、
(4)JIS−H3100−C1020に規格する無酸素銅であって、Agを10〜500質量ppm含み、Snを10〜100質量ppm含む
二次電池負極集電体用圧延銅箔又は圧延銅合金箔。 Rolled copper foil or rolled copper alloy foil,
When heat treatment is performed at 180 ° C. for 30 minutes, when the cross-section of the rolled copper foil or the rolled copper alloy foil is cut in the thickness direction in the rolling parallel direction, the area of crystal grains in the observed cross-section In the cross section, the ratio of the area A of the crystal grains having a crystal orientation in the range of 10 ° centered on the 001 orientation is 10% or more of the observation area of the cross section.
P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities are 20 mass ppm or less in total,
(1) Tough pitch copper standardized to JIS-H3100-C1100 or oxygen-free copper standardized to JIS-H3100-C1020, or
(2) Tough pitch copper standardized to JIS-H3100-C1100, or oxygen-free copper standardized to JIS-H3100-C1020, containing 10 to 500 ppm by mass of Ag, or
(3) Oxygen-free copper standardized to JIS-H3100-C1020, containing 10 to 100 mass ppm of Sn, or
(4) Oxygen-free copper specified in JIS-H3100-C1020, containing 10 to 500 ppm by mass of Ag and rolled copper foil or rolled copper alloy for secondary battery negative electrode current collector containing 10 to 100 ppm by mass of Sn Foil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012120851A JP6058915B2 (en) | 2012-05-28 | 2012-05-28 | Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012120851A JP6058915B2 (en) | 2012-05-28 | 2012-05-28 | Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013247017A JP2013247017A (en) | 2013-12-09 |
JP6058915B2 true JP6058915B2 (en) | 2017-01-11 |
Family
ID=49846625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012120851A Active JP6058915B2 (en) | 2012-05-28 | 2012-05-28 | Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6058915B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6504868B2 (en) * | 2015-03-19 | 2019-04-24 | Jx金属株式会社 | Rolled copper foil and manufacturing method thereof, copper clad laminate, flexible printed circuit board and electronic device |
JP2018028120A (en) * | 2016-08-16 | 2018-02-22 | 古河電気工業株式会社 | Copper alloy foil |
CN109690846B (en) | 2016-09-16 | 2022-06-14 | 株式会社村田制作所 | Negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4354930B2 (en) * | 2005-04-28 | 2009-10-28 | 日鉱金属株式会社 | Low gloss rolled copper foil for copper-clad laminates |
JP4522972B2 (en) * | 2005-04-28 | 2010-08-11 | 日鉱金属株式会社 | High gloss rolled copper foil for copper-clad laminates |
JP4662834B2 (en) * | 2005-10-12 | 2011-03-30 | Jx日鉱日石金属株式会社 | Copper or copper alloy foil for circuit |
JP4716520B2 (en) * | 2007-03-30 | 2011-07-06 | Jx日鉱日石金属株式会社 | Rolled copper foil |
JP5320638B2 (en) * | 2008-01-08 | 2013-10-23 | 株式会社Shカッパープロダクツ | Rolled copper foil and method for producing the same |
JP5245813B2 (en) * | 2008-12-25 | 2013-07-24 | 日立電線株式会社 | Rolled copper foil |
KR101690491B1 (en) * | 2009-12-25 | 2016-12-28 | 신닛테츠 수미킨 가가쿠 가부시키가이샤 | Flexible circuit board and structure of bend section of flexible circuit board |
-
2012
- 2012-05-28 JP JP2012120851A patent/JP6058915B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013247017A (en) | 2013-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5571616B2 (en) | Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same | |
JP5856076B2 (en) | Aluminum alloy foil for electrode current collector and method for producing the same | |
JP5490673B2 (en) | Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same | |
US9698426B2 (en) | Aluminum alloy foil for electrode current collector, method for manufacturing same, and lithium ion secondary battery | |
JP6648088B2 (en) | Rolled copper foil for negative electrode current collector of secondary battery, secondary battery negative electrode and secondary battery using the same, and method of producing rolled copper foil for negative electrode current collector of secondary battery | |
KR20160075604A (en) | Aluminum alloy foil for electrode current collector, and method for producing same | |
JP5329372B2 (en) | Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same | |
WO2012086447A1 (en) | Aluminum alloy foil for electrode current collectors and manufacturing method thereof | |
JP5496139B2 (en) | Copper foil and secondary battery using the same | |
JP5345974B2 (en) | Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same | |
JP5416077B2 (en) | Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same | |
JP2013001982A (en) | Rolled copper foil | |
JP6058915B2 (en) | Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same | |
JP5490761B2 (en) | Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same | |
JP5143208B2 (en) | Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same | |
WO2020179515A1 (en) | Rolled copper foil for secondary battery negative electrode current collectors, secondary battery negative electrode current collector and secondary battery each using same, and method for manufacturing rolled copper foil for secondary battery negative electrode current collectors | |
JP5143923B2 (en) | Rolled copper foil and secondary battery using the same | |
JP7042961B1 (en) | Rolled copper foil for secondary batteries, and secondary battery negative electrodes and secondary batteries using it | |
JP2013221160A (en) | Copper alloy for negative electrode collector of secondary battery, copper alloy foil for negative electrode collector of secondary battery, and production method therefor | |
JP2023178071A (en) | Rolled copper foil for secondary batteries, and secondary battery negative electrode and method for producing secondary battery using the same | |
JP2023178067A (en) | Rolled copper foil for secondary batteries, and secondary battery negative electrode and method for producing secondary battery using the same | |
JP5555126B2 (en) | Copper alloy foil, electrode for lithium ion secondary battery using the same, and method for producing copper alloy foil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6058915 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |