[go: up one dir, main page]

JP6056518B2 - Rotating structure for rotating electrical machine - Google Patents

Rotating structure for rotating electrical machine Download PDF

Info

Publication number
JP6056518B2
JP6056518B2 JP2013020363A JP2013020363A JP6056518B2 JP 6056518 B2 JP6056518 B2 JP 6056518B2 JP 2013020363 A JP2013020363 A JP 2013020363A JP 2013020363 A JP2013020363 A JP 2013020363A JP 6056518 B2 JP6056518 B2 JP 6056518B2
Authority
JP
Japan
Prior art keywords
core
axial
rotor core
rotating
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013020363A
Other languages
Japanese (ja)
Other versions
JP2014155243A (en
Inventor
雅志 松本
雅志 松本
義忠 山岸
義忠 山岸
勝秀 北川
勝秀 北川
裕二 野村
裕二 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013020363A priority Critical patent/JP6056518B2/en
Publication of JP2014155243A publication Critical patent/JP2014155243A/en
Application granted granted Critical
Publication of JP6056518B2 publication Critical patent/JP6056518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

本発明は、回転軸と、回転軸の外側に配置されるロータコアとを備え、回転軸及びロータコアの冷媒通路の径方向通路同士が接続される回転電機用回転構造に関する。   The present invention relates to a rotating structure for a rotating electrical machine that includes a rotating shaft and a rotor core that is disposed outside the rotating shaft, and in which the rotating shaft and the radial passages of the refrigerant passages of the rotor core are connected to each other.

特許文献1には、複数の非磁性板及び電磁鋼板の積層体により形成される回転電機用ロータコアが記載されている。複数の非磁性板は、径方向の異なる位置に径方向のスリットが形成された複数種類の非磁性板を有する。軸方向に隣り合う非磁性板同士でスリットの端部同士が接続されて、ロータコアに径方向内側から径方向外側に冷却油を流す冷媒通路が形成される。   Patent Document 1 describes a rotor core for a rotating electrical machine formed by a laminate of a plurality of nonmagnetic plates and electromagnetic steel plates. The plurality of nonmagnetic plates have a plurality of types of nonmagnetic plates in which radial slits are formed at different radial positions. The end portions of the slits are connected to each other by the nonmagnetic plates adjacent in the axial direction, and a coolant passage is formed in the rotor core to flow cooling oil from the radially inner side to the radially outer side.

特開2008−228523号公報JP 2008-228523 A

特許文献1に記載された回転電機用ロータコアでは、非磁性板及び電磁鋼板の剛性が低く、回転軸の外径側に非磁性板及び電磁鋼板を大きい締め代の締り嵌めにより固定することが困難である。このため、積層型のロータコアで径方向通路を有する冷媒通路と、回転軸に設けられ別の径方向通路を有する冷媒通路とが、ロータコア及び回転軸の周面同士の間で接続される場合に、外部への冷却油の漏れを防止することが難しいという問題がある。   In the rotor core for rotating electrical machines described in Patent Document 1, the rigidity of the non-magnetic plate and the electromagnetic steel plate is low, and it is difficult to fix the non-magnetic plate and the electromagnetic steel plate to the outer diameter side of the rotating shaft by an interference fit with a large tightening allowance. It is. For this reason, when a refrigerant passage having a radial passage in a laminated rotor core and a refrigerant passage having another radial passage provided on the rotating shaft are connected between the peripheral surfaces of the rotor core and the rotating shaft. There is a problem that it is difficult to prevent leakage of cooling oil to the outside.

本発明の目的は、積層型のロータコア及び回転軸の冷媒通路の径方向通路同士が接続される構成で、液状冷媒の外部への漏れを防止できる回転電機用回転構造を提供することである。   An object of the present invention is to provide a rotating structure for a rotating electrical machine that can prevent leakage of liquid refrigerant to the outside with a configuration in which a radial rotor passage of a laminated rotor core and a refrigerant passage of a rotating shaft are connected to each other.

本発明に係る回転電機用回転構造は、径方向の軸側径方向通路を有する軸側冷媒通路を含む回転軸と、前記回転軸の外側に配置され、前記軸側径方向通路に接続される径方向のコア側径方向通路と、前記コア側径方向通路に接続される軸方向のコア側軸方向通路とを有するコア側冷媒通路を含み、複数のコア板の積層体により形成されるロータコアであって、前記コア側軸方向通路の一端はロータコアの軸方向一端面に開口するロータコアと、前記回転軸の外周面の全周にわたって密着固定され、前記回転軸の外周面との間での液状冷媒の通過を阻止する内周部と、前記ロータコアの軸方向端面にリング状に押し付けられ、前記ロータコアの軸方向端面との間での液状冷媒の通過を阻止するコア押し付け部とを含み、前記回転軸の外側に固定されて前記ロータコアを軸方向両側から挟む2つのコア固定部材と、を備え、前記コア側軸方向通路の一端は、前記ロータコアの軸方向一端に配置される前記コア固定部材の前記コア押し付け部よりも外径側に配置され、前記コア側軸方向通路を流れる冷媒は前記ロータコアの軸方向一端から外側に噴出されることを特徴とする。
A rotating structure for a rotating electrical machine according to the present invention includes a rotating shaft including a shaft-side refrigerant passage having a radial axial-side radial passage, an outer side of the rotating shaft, and is connected to the shaft-side radial passage. A rotor core including a core-side refrigerant passage having a radial core-side radial passage and an axial core-side axial passage connected to the core-side radial passage, and formed by a laminate of a plurality of core plates And one end of the core-side axial passage is closely fixed over the entire circumference of the outer peripheral surface of the rotating shaft and the outer surface of the rotating shaft between the rotor core that opens to one axial end surface of the rotor core . An inner peripheral portion that prevents passage of the liquid refrigerant, and a core pressing portion that is pressed in a ring shape against the axial end surface of the rotor core and prevents passage of the liquid refrigerant between the axial end surface of the rotor core, Fixed outside the rotating shaft It is provided with a two core fixing member sandwiching from both axial sides of the rotor core, one end of the core side axial passage, from the core pressing portion of the core fixing member arranged at one axial end of the rotor core Also, the refrigerant that is disposed on the outer diameter side and flows through the core-side axial passage is jetted outward from one axial end of the rotor core .

本発明に係る回転電機用回転構造において、好ましくは、前記2つのコア固定部材の少なくとも一方のコア固定部材の前記コア押し付け部は、前記内周部よりも径方向外側で、軸方向に関して前記内周部よりも前記ロータコアに近づいた位置に設けられる。   In the rotating structure for a rotating electrical machine according to the present invention, preferably, the core pressing portion of at least one core fixing member of the two core fixing members is radially outer than the inner peripheral portion and the inner portion with respect to the axial direction. It is provided at a position closer to the rotor core than the periphery.

本発明に係る回転電機用回転構造において、好ましくは、前記2つのコア固定部材の少なくとも一方のコア固定部材は、前記内周部を有する環状板部と、前記環状板部の軸方向片面の外周部に軸方向に突出して設けられた筒部とを含み、前記コア押し付け部は、前記筒部の先端面である。   In the rotating structure for a rotating electrical machine according to the present invention, preferably, at least one core fixing member of the two core fixing members includes an annular plate portion having the inner peripheral portion and an outer periphery of one axial surface of the annular plate portion. The core pressing part is a tip surface of the cylindrical part.

本発明に係る回転電機用回転構造において、好ましくは、前記回転軸と前記ロータコアとの互いに対向する周面のうち、一方の周面の周方向一部に軸方向に設けられた係合溝と、前記回転軸と前記ロータコアとの互いに対向する周面のうち、他方の周面の周方向一部に軸方向に設けられ、前記係合溝と係合する係合突部とを備え、前記各コア押し付け部は、前記係合溝及び前記係合突部よりも径方向外側に外れた部分で前記ロータコアの軸方向端面に押し付けられる。   In the rotating structure for a rotating electrical machine according to the present invention, preferably, an engaging groove provided in an axial direction on a part of the circumferential surface of one of the circumferential surfaces of the rotating shaft and the rotor core facing each other. An engagement protrusion that is provided in an axial direction at a part of the circumferential surface of the other of the circumferential surfaces of the rotating shaft and the rotor core and that engages with the engagement groove, Each core pressing portion is pressed against the end surface in the axial direction of the rotor core at a portion dislocated radially outward from the engagement groove and the engagement protrusion.

本発明に係る回転電機用回転構造において、好ましくは、前記2つのコア固定部材の少なくとも一方のコア固定部材において、前記内周部と前記回転軸の外周面との接触面積は、前記コア押し付け部と前記ロータコアの軸方向端面との接触面積よりも大きい。   In the rotating structure for a rotating electrical machine according to the present invention, preferably, in at least one core fixing member of the two core fixing members, a contact area between the inner peripheral portion and the outer peripheral surface of the rotating shaft is equal to the core pressing portion. Larger than the contact area between the rotor core and the axial end surface of the rotor core.

本発明の回転電機用回転構造によれば、積層型のロータコア及び回転軸の冷媒通路の径方向通路同士が接続される構成で、各コア固定部材の内周部が回転軸の外周面との間での液状冷媒の通過を阻止し、各コア固定部材のコア押し付け部がロータコアの軸方向端面との間での液状冷媒の通過を阻止する。このため、ロータコアの内周面と回転軸の外周面との間から外部への液状冷媒の漏れを、コア固定部材によって防止できる。   According to the rotating structure for a rotating electric machine of the present invention, the laminated rotor core and the radial passages of the refrigerant passages of the rotating shaft are connected to each other, and the inner peripheral portion of each core fixing member is connected to the outer peripheral surface of the rotating shaft. And the core pressing portion of each core fixing member prevents the liquid refrigerant from passing between the axial end surfaces of the rotor core. For this reason, leakage of the liquid refrigerant from between the inner peripheral surface of the rotor core and the outer peripheral surface of the rotating shaft to the outside can be prevented by the core fixing member.

本発明の実施形態の回転電機用回転構造を含む回転電機の断面図である。It is sectional drawing of the rotary electric machine containing the rotary structure for rotary electric machines of embodiment of this invention. 本発明の実施形態の回転電機用回転構造の断面図である。It is sectional drawing of the rotating structure for rotary electric machines of embodiment of this invention. 図2のA部拡大図である。It is the A section enlarged view of FIG. 図2の回転構造を左側から軸方向に見た図である。It is the figure which looked at the rotation structure of FIG. 2 to the axial direction from the left side. 図2のB−B断面図である。It is BB sectional drawing of FIG. 図3のC部について、周方向に関して回転軸の係合溝及びロータコアの係合突部と一致する部分に対応する拡大図である。FIG. 4 is an enlarged view corresponding to a portion that coincides with the engagement groove of the rotating shaft and the engagement protrusion of the rotor core in the circumferential direction with respect to part C of FIG. 3. コア固定部材の別例を示している図5に対応する図である。FIG. 6 is a view corresponding to FIG. 5 showing another example of the core fixing member.

以下、本発明の実施形態について、図面を用いて説明する。以下では、永久磁石型回転電機を構成する永久磁石付き回転構造の場合を説明するが、本発明はこれに限定するものではなく、永久磁石のない回転構造、例えばかご形回転構造や、コイル付回転構造でもよい。回転電機は、例えばハイブリッド車両または電気自動車を駆動するモータ、または発電機、またはモータ及び発電機の両方の機能を有するモータジェネレータとして使用される。以下では、すべての図面において同様の要素には同一の符号を付して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Hereinafter, the case of a rotating structure with a permanent magnet constituting a permanent magnet type rotating electric machine will be described. However, the present invention is not limited to this, and a rotating structure without a permanent magnet, for example, a cage-shaped rotating structure or a coiled structure. A rotating structure may be used. The rotating electric machine is used as, for example, a motor that drives a hybrid vehicle or an electric vehicle, or a generator, or a motor generator having both functions of a motor and a generator. Below, the same code | symbol is attached | subjected and demonstrated to the same element in all the drawings.

図1は、本実施形態の回転電機用回転構造14を含む回転電機10の断面図を示している。以下では回転電機用回転構造14は単に回転構造という。回転電機10は、ステータ12と、回転構造14とを備える。   FIG. 1 shows a cross-sectional view of a rotating electrical machine 10 including a rotating electrical machine rotating structure 14 of the present embodiment. Hereinafter, the rotating structure 14 for a rotating electrical machine is simply referred to as a rotating structure. The rotating electrical machine 10 includes a stator 12 and a rotating structure 14.

ステータ12は、ケース15に固定されたステータコア16と、ステータコア16の内周側の複数のティース18に巻回された複数相のステータコイル20とを含む。ステータコア16は、複数の電磁鋼板の積層体によって形成される。ステータ12では、複数相のステータコイル20に複数相の交流電流を流すことで、回転構造14に作用する磁界が回転する回転磁界が発生する。   The stator 12 includes a stator core 16 fixed to the case 15 and a multi-phase stator coil 20 wound around a plurality of teeth 18 on the inner peripheral side of the stator core 16. Stator core 16 is formed of a laminate of a plurality of electromagnetic steel plates. In the stator 12, a rotating magnetic field that rotates the magnetic field acting on the rotating structure 14 is generated by passing a plurality of phases of alternating current through the stator coil 20 of the plurality of phases.

回転構造14は、ケース15に回転可能に支持して設けられる回転軸22と、回転軸22の外径側に配置されるロータコア24と、ロータコア24に固定された後述の図4に示す複数の永久磁石25n、25sと、回転軸22に固定された2つのコア固定部材26とを含む。   The rotating structure 14 includes a rotating shaft 22 that is rotatably supported by the case 15, a rotor core 24 that is disposed on the outer diameter side of the rotating shaft 22, and a plurality of the rotating structures 14 shown in FIG. Permanent magnets 25n and 25s and two core fixing members 26 fixed to the rotating shaft 22 are included.

図2は、本実施形態の回転構造14の断面図を示している。図3は、図2のA部拡大図を示している。図2、図3に示すように、回転軸22は、内部に液状冷媒である冷却油を流す軸側冷媒通路28を含む。軸側冷媒通路28は、回転軸22の中心部に軸方向に沿って設けられた軸側軸方向通路30と、回転軸22の軸方向同位置の周方向複数個所に径方向に伸びるように設けられた軸側径方向通路32とにより形成される。各軸側径方向通路32の径方向内端は軸側軸方向通路30に接続され、各軸側径方向通路32の径方向外端は回転軸22の外周面に開口する。冷却油として、ATF(Automatic Transmission Fluid)を使用してもよい。液状冷媒は冷却水でもよい。   FIG. 2 shows a cross-sectional view of the rotating structure 14 of the present embodiment. FIG. 3 shows an enlarged view of part A of FIG. As shown in FIGS. 2 and 3, the rotating shaft 22 includes a shaft-side refrigerant passage 28 through which cooling oil that is a liquid refrigerant flows. The shaft-side refrigerant passage 28 extends in the radial direction at a plurality of axial-direction axial passages 30 provided along the axial direction in the central portion of the rotation shaft 22 and at a plurality of circumferential positions at the same position in the axial direction of the rotation shaft 22. It is formed by the provided axial side radial passage 32. The radially inner end of each shaft-side radial passage 32 is connected to the shaft-side axial passage 30, and the radially outer end of each shaft-side radial passage 32 opens on the outer peripheral surface of the rotating shaft 22. ATF (Automatic Transmission Fluid) may be used as the cooling oil. The liquid refrigerant may be cooling water.

回転軸22は、外周面の軸方向中間部に設けられた大径円筒部34と、大径円筒部34の軸方向両側に設けられて大径円筒部34よりも直径が小さい小径円筒部36とを含む。大径円筒部34は、径方向反対側2個所位置に軸方向に沿うように径方向内側に断面矩形状に窪んで形成された係合溝38を有する。係合溝38は、大径円筒部34の軸方向の全長にわたって設けられる。係合溝38には、後述する図5、図6に示すロータコア24の係合突部40が係合する。   The rotary shaft 22 includes a large-diameter cylindrical portion 34 provided at an axially intermediate portion of the outer peripheral surface, and a small-diameter cylindrical portion 36 provided on both axial sides of the large-diameter cylindrical portion 34 and having a smaller diameter than the large-diameter cylindrical portion 34. Including. The large-diameter cylindrical portion 34 has engagement grooves 38 that are recessed in a rectangular shape on the radially inner side so as to extend along the axial direction at two positions opposite to the radial direction. The engagement groove 38 is provided over the entire length of the large-diameter cylindrical portion 34 in the axial direction. Engaging grooves 40 engage with engaging protrusions 40 of the rotor core 24 shown in FIGS.

図4は、図2の回転構造14を左側から軸方向に見て示している。図5は、図2のB−B断面図を示している。ロータコア24は、複数の円板状のコア板である磁性鋼板44,46の積層体により形成される。磁性鋼板44,46として、典型的にはけい素鋼板が使用される。積層体は、非磁性金属板を含んでいてもよい。ロータコア24は、内部に設けられたコア側冷媒通路47と、複数の磁石孔48とを含む。   FIG. 4 shows the rotary structure 14 of FIG. 2 as viewed in the axial direction from the left side. FIG. 5 shows a cross-sectional view taken along the line BB of FIG. The rotor core 24 is formed by a laminated body of magnetic steel plates 44 and 46 that are a plurality of disk-shaped core plates. Typically, silicon steel plates are used as the magnetic steel plates 44 and 46. The laminate may include a nonmagnetic metal plate. The rotor core 24 includes a core-side refrigerant passage 47 provided inside and a plurality of magnet holes 48.

コア側冷媒通路47は、ロータコア24の径方向中間部で周方向の離れた位置に軸方向に貫通するように設けられた複数のコア側軸方向通路50と、後述する複数のコア側径方向通路52とを有する。複数のコア側軸方向通路50のそれぞれは、各磁性鋼板44,46の周方向複数個所に設けられた軸方向の孔部を、隣り合う磁性鋼板46同士で軸方向に連結することにより形成される。   The core-side refrigerant passage 47 includes a plurality of core-side axial passages 50 provided so as to penetrate in the axial direction at positions spaced apart from each other in the circumferential direction at the radial intermediate portion of the rotor core 24, and a plurality of core-side radial directions described later. And a passage 52. Each of the plurality of core-side axial passages 50 is formed by connecting axial holes provided in a plurality of locations in the circumferential direction of the respective magnetic steel plates 44 and 46 in the axial direction between adjacent magnetic steel plates 46. The

複数の磁石孔48は、ロータコア24の内部で各コア側軸方向通路50よりも径方向外側に設けられる。複数の磁石孔48のそれぞれは、各磁性鋼板44,46のコア側軸方向通路50用の孔部よりも径方向外側で周方向複数個所に設けられた軸方向の孔部を、隣り合う磁性鋼板44,46同士で軸方向に連結することにより形成される。各磁石孔48に永久磁石25n、25sが挿入配置される。永久磁石25nは、径方向外側がN極となるように配置され、永久磁石25sは、径方向外側がS極となるように配置される。この構成により、ロータコア24の外周面にN極とS極とが交互に配置される。   The plurality of magnet holes 48 are provided radially outside the core side axial passages 50 inside the rotor core 24. Each of the plurality of magnet holes 48 is formed by adjoining the magnetic holes adjacent to the axial holes provided at a plurality of positions in the circumferential direction outside the holes for the core-side axial passages 50 of the respective magnetic steel plates 44 and 46. It is formed by connecting the steel plates 44 and 46 in the axial direction. Permanent magnets 25n and 25s are inserted and arranged in the respective magnet holes 48. The permanent magnets 25n are arranged so that the radially outer side is the N pole, and the permanent magnets 25s are arranged so that the radially outer side is the S pole. With this configuration, the N pole and the S pole are alternately arranged on the outer peripheral surface of the rotor core 24.

図5では、複数の磁性鋼板44,46のうち、ロータコア24の軸方向中間部に配置される1枚の磁性鋼板46の断面を示している。磁性鋼板46に形成された放射状の溝部と、その両側に隣り合う2枚の磁性鋼板44とにより、ロータコア24の軸方向中間部の径方向内側部分に放射状の複数のコア側径方向通路52が形成される。複数のコア側径方向通路52は、回転軸22の複数の軸側径方向通路32と同数が、周方向に関して各軸側径方向通路32と同位置に形成される。各コア側径方向通路52の径方向内端はロータコア24の内周面に開口し、各コア側径方向通路52の径方向外端はコア側軸方向通路50に接続される。   In FIG. 5, the cross section of the one magnetic steel plate 46 arrange | positioned in the axial direction intermediate part of the rotor core 24 among several magnetic steel plates 44 and 46 is shown. A plurality of radial core-side radial passages 52 are formed in the radially inner portion of the intermediate portion in the axial direction of the rotor core 24 by the radial groove portions formed in the magnetic steel plate 46 and the two magnetic steel plates 44 adjacent to both sides thereof. It is formed. The same number of the plurality of core-side radial passages 52 as the plurality of shaft-side radial passages 32 of the rotating shaft 22 is formed at the same position as each shaft-side radial passage 32 in the circumferential direction. The radially inner end of each core-side radial passage 52 opens to the inner peripheral surface of the rotor core 24, and the radially outer end of each core-side radial passage 52 is connected to the core-side axial passage 50.

このようなロータコア24は、図5、図6に示す係合溝38と係合突部40との凹凸係合部により回転軸22に対する回転が阻止された状態で、回転軸22の外径側に嵌め合いで配置される。図6は、図3のC部について、周方向に関して回転軸22の係合溝38及びロータコア24の係合突部40と一致する部分に対応する拡大図を示している。凹凸係合部は、回転軸22の大径円筒部34の径方向反対側2個所位置に形成された軸方向の係合溝38と、ロータコア24の内周面に設けられて係合溝38に係合する係合突部40とにより形成される。係合突部40は、ロータコア24の内周面の径方向反対側2個所位置に軸方向に沿うように径方向に突出して設けられる。図2に戻って示すように、ロータコア24の軸方向長さは、係合溝38の軸方向長さよりも小さい。   Such a rotor core 24 is arranged on the outer diameter side of the rotating shaft 22 in a state where the rotation with respect to the rotating shaft 22 is prevented by the concave and convex engaging portions of the engaging grooves 38 and the engaging protrusions 40 shown in FIGS. It is arranged by fitting. FIG. 6 shows an enlarged view corresponding to a portion that coincides with the engagement groove 38 of the rotating shaft 22 and the engagement protrusion 40 of the rotor core 24 in the circumferential direction with respect to the portion C of FIG. 3. The concave and convex engaging portions are provided in two axial positions on the opposite side in the radial direction of the large-diameter cylindrical portion 34 of the rotating shaft 22, and on the inner peripheral surface of the rotor core 24. It is formed by the engaging protrusion 40 engaged with. The engagement protrusions 40 are provided to protrude in the radial direction so as to extend along the axial direction at two positions on the radially opposite side of the inner peripheral surface of the rotor core 24. As shown in FIG. 2, the axial length of the rotor core 24 is smaller than the axial length of the engagement groove 38.

回転軸22の複数の軸側径方向通路32の径方向外端開口と、ロータコア24の複数のコア側径方向通路52の径方向内端開口とは、回転軸22の外周面とロータコア24の内周面との間で接続されている。この場合に、「接続」とは、軸側径方向通路32の開口端部とコア側径方向通路52の開口端部とが突き合わされて直接接続される場合以外に、回転軸22の外周面とロータコア24の内周面との間に径方向の隙間が形成される場合に、軸側径方向通路32とコア側径方向通路52とがその隙間を介して接続される場合も含む。この場合、回転軸22の外周面とロータコア24の内周面との間に径方向の隙間が周方向に形成されて、複数の軸側径方向通路32と複数のコア側径方向通路52とが共通の径方向の隙間を介して接続されてもよい。また、ロータコア24と回転軸22との軸方向の複数個所にコア側径方向通路と軸側径方向通路とをそれぞれ形成し、軸方向に関して同位置のコア側径方向通路及び軸側径方向通路同士を接続してもよい。   The radially outer end openings of the plurality of axial radial passages 32 of the rotating shaft 22 and the radially inner end openings of the plurality of core side radial passages 52 of the rotor core 24 are the outer peripheral surface of the rotating shaft 22 and the rotor core 24. Connected to the inner peripheral surface. In this case, the term “connection” refers to the outer peripheral surface of the rotating shaft 22 except when the opening end of the axial radial passage 32 and the opening end of the core radial passage 52 are directly butted together. When the radial gap is formed between the inner circumferential surface of the rotor core 24 and the rotor core 24, the axial radial passage 32 and the core radial passage 52 are connected via the gap. In this case, a radial gap is formed in the circumferential direction between the outer peripheral surface of the rotating shaft 22 and the inner peripheral surface of the rotor core 24, so that the plurality of shaft-side radial passages 32 and the plurality of core-side radial passages 52 May be connected via a common radial gap. Further, a core side radial passage and an axial radial passage are respectively formed at a plurality of locations in the axial direction of the rotor core 24 and the rotary shaft 22, and the core side radial passage and the axial radial passage are located at the same position in the axial direction. You may connect each other.

2つのコア固定部材26は、回転軸22の小径円筒部36の外径側に締め代の大きい締まり嵌めで固定され、ロータコア24を軸方向両側から挟んでいる。回転軸22の外径側に各コア固定部材26を固定し、ロータコア24に各コア固定部材26を押し付けて密着させることで、ロータコア24から加わる軸方向のスラスト力を受けて、回転軸22に対するロータコア24の軸方向移動を阻止して、回転軸22にロータコア24を固定する。   The two core fixing members 26 are fixed to the outer diameter side of the small-diameter cylindrical portion 36 of the rotating shaft 22 with an interference fit with a large tightening margin, and sandwich the rotor core 24 from both sides in the axial direction. Each core fixing member 26 is fixed to the outer diameter side of the rotating shaft 22, and each core fixing member 26 is pressed and brought into close contact with the rotor core 24, so that the axial thrust force applied from the rotor core 24 is received and applied to the rotating shaft 22. The rotor core 24 is fixed to the rotating shaft 22 by preventing the rotor core 24 from moving in the axial direction.

図3に戻って示すように、各コア固定部材26は、内周面に円筒面状の軸固定内周部54を有する環状板部56と、環状板部56の軸方向片面の外周部に軸方向に突出するように設けられる円筒部58とを有し、全体で断面略L字形の環状に形成される。円筒部58は、軸方向に向いた先端面に円形の平坦面であるコア押し付け部60を有する。各コア固定部材26がこのように形成されるので、各コア固定部材26において、コア押し付け部60は、軸固定内周部54よりも径方向外側で、軸固定内周部54よりも軸方向に関してロータコア24に近づいた位置である図3の左側に設けられる。軸固定内周部54の内周面の面積は、コア押し付け部60の面積よりも大きい。各コア固定部材26は、磁性金属または非磁性金属のいずれによっても形成できる。各コア固定部材26を例えば剛性が高い鉄または鋼により形成してもよい。   As shown in FIG. 3, each core fixing member 26 has an annular plate portion 56 having a cylindrical surface-shaped axially fixed inner peripheral portion 54 on the inner peripheral surface, and an outer peripheral portion on one axial surface of the annular plate portion 56. And a cylindrical portion 58 provided so as to protrude in the axial direction, and is formed in an annular shape having a substantially L-shaped cross section as a whole. The cylindrical portion 58 has a core pressing portion 60 that is a circular flat surface on a tip surface facing in the axial direction. Since each core fixing member 26 is formed in this way, in each core fixing member 26, the core pressing portion 60 is radially outside of the shaft fixing inner peripheral portion 54 and more axial than the shaft fixing inner peripheral portion 54. Is provided on the left side of FIG. The area of the inner peripheral surface of the shaft fixing inner peripheral portion 54 is larger than the area of the core pressing portion 60. Each core fixing member 26 can be formed of either a magnetic metal or a nonmagnetic metal. Each core fixing member 26 may be formed of iron or steel having high rigidity, for example.

軸固定内周部54は、回転軸22の大径円筒部34の両側の小径円筒部36の周囲に、全周にわたって大きい締め代の嵌め合いで密着固定され、小径円筒部36との間での冷却油の通過を阻止する。回転軸22の軸側径方向通路32の径方向外端と、ロータコア24のコア側径方向通路52の径方向内端とは、回転軸22の外周面とロータコア24の内周面との間で接続されている。ロータコア24は、回転軸22の外周面に大きい締め代の締り嵌めによっては固定されない。このため、使用時に軸側軸方向通路30に供給された冷却油が、軸側径方向通路32を流れて、軸側径方向通路32とコア側径方向通路52との接続部から漏れ出す可能性がある。この場合に、凹凸係合部での隙間、または回転軸22の外周面及びロータコア24の内周面の間を通じて、図3の破線矢印αで示すように、ロータコア24の軸方向両端部からコア固定部材26の内側に入り込む可能性がある。軸固定内周部54は、図3の斜格子P1で示す部分で、小径円筒部36との間での冷却油の通過を全周にわたって阻止する。   The shaft fixing inner peripheral portion 54 is closely fixed to the periphery of the small diameter cylindrical portion 36 on both sides of the large diameter cylindrical portion 34 of the rotating shaft 22 with a large interference fit over the entire circumference, and between the small diameter cylindrical portion 36. Block the passage of cooling oil. The radial outer end of the axial radial passage 32 of the rotary shaft 22 and the radial inner end of the core side radial passage 52 of the rotor core 24 are between the outer peripheral surface of the rotary shaft 22 and the inner peripheral surface of the rotor core 24. Connected with. The rotor core 24 is not fixed to the outer peripheral surface of the rotary shaft 22 by a large interference fit. For this reason, the cooling oil supplied to the shaft-side axial passage 30 during use can flow through the shaft-side radial passage 32 and leak from the connecting portion between the shaft-side radial passage 32 and the core-side radial passage 52. There is sex. In this case, as shown by the broken arrow α in FIG. 3, the core from the both axial ends of the rotor core 24 passes through the gap at the concave-convex engaging portion or between the outer peripheral surface of the rotating shaft 22 and the inner peripheral surface of the rotor core 24. There is a possibility of entering the inside of the fixing member 26. The shaft-fixed inner peripheral portion 54 is a portion indicated by the oblique lattice P1 in FIG. 3 and prevents passage of the cooling oil between the small-diameter cylindrical portion 36 over the entire circumference.

また、コア押し付け部60は、係合溝38及び係合突部40よりも径方向外側に外れた部分で、ロータコア24の軸方向端面の全周にわたって密着して押し付けられ、すなわちこの軸方向端面にリング状に押し付けられ、ロータコア24との間での冷却油の通過を阻止する。コア押し付け部60は、図3の斜格子P2で示す部分で、ロータコア24の軸方向端面との間での冷却油の通過を全周にわたって阻止する。   Further, the core pressing portion 60 is a portion that is radially outward from the engaging groove 38 and the engaging protrusion 40, and is tightly pressed over the entire circumference of the axial end surface of the rotor core 24, that is, this axial end surface. To prevent the cooling oil from passing between the rotor core 24 and the rotor core 24. The core pressing portion 60 is a portion indicated by the oblique lattice P2 in FIG. 3 and blocks the passage of the cooling oil from the end surface in the axial direction of the rotor core 24 over the entire circumference.

各コア固定部材26において、軸固定内周部54と回転軸22との軸側接触面積は、コア押し付け部60とロータコア24とのコア側接触面積よりも大きい。   In each core fixing member 26, the shaft side contact area between the shaft fixing inner peripheral portion 54 and the rotary shaft 22 is larger than the core side contact area between the core pressing portion 60 and the rotor core 24.

次に図1に戻って、回転構造14の使用状態を説明する。ケース15にステータ12を固定し、ステータ12の径方向内側にロータコア24が対向するように回転構造14を配置して回転電機10を形成した状態で、回転構造14の内部に冷媒循環機構64によって冷却油を供給する。冷媒循環機構64は、ケース15の下部に溜まった冷却油を配管66を介して吸い上げる冷却油ポンプ68を有し、冷却油ポンプ68から配管70を介して軸側冷媒通路28の軸側軸方向通路30に冷却油を供給する。回転構造14が回転するのに応じて冷却油に遠心力が加わるので、冷却油が軸側径方向通路32及びコア側径方向通路52内を径方向外側に流れて、その後、複数のコア側軸方向通路50を軸方向に流れてロータコア24の軸方向両側から外側に噴出される。冷却油がロータコア24の内部を通過することでロータコア24が冷却される。冷却油はケース15の下部及び配管66,70で冷却される。なお、ケース15は、ステータ12及び回転構造14以外に歯車機構を内部に組み込んだ構成としてもよい。また、冷媒循環機構64の冷媒循環経路に冷却油を冷却するオイルクーラを設けてもよい。   Next, returning to FIG. 1, the use state of the rotating structure 14 will be described. The stator 12 is fixed to the case 15 and the rotating electrical machine 10 is formed by arranging the rotating structure 14 so that the rotor core 24 is opposed to the inner side of the stator 12 in the radial direction. Supply cooling oil. The refrigerant circulation mechanism 64 has a cooling oil pump 68 that sucks the cooling oil accumulated in the lower portion of the case 15 through the pipe 66, and the axial side axial direction of the shaft-side refrigerant passage 28 from the cooling oil pump 68 through the pipe 70. Cooling oil is supplied to the passage 30. Centrifugal force is applied to the cooling oil as the rotating structure 14 rotates, so that the cooling oil flows radially outward in the axial-side radial passage 32 and the core-side radial passage 52, and then a plurality of core sides It flows in the axial direction passage 50 in the axial direction, and is ejected to the outside from both axial directions of the rotor core 24. As the cooling oil passes through the interior of the rotor core 24, the rotor core 24 is cooled. The cooling oil is cooled by the lower part of the case 15 and the pipes 66 and 70. Note that the case 15 may have a configuration in which a gear mechanism is incorporated in addition to the stator 12 and the rotating structure 14. An oil cooler that cools the cooling oil may be provided in the refrigerant circulation path of the refrigerant circulation mechanism 64.

上記の回転構造14では、積層型のロータコア24が回転軸22の外径側に配置されるが、ロータコア24は回転軸22に大きい締め代の締まり嵌めでは固定されず、回転軸22の外径側に小さい締め代または締め代がない状態で配置される。このような構成では、回転軸22の軸側径方向通路32とロータコア24のコア側径方向通路52との接続部から冷却油が漏れ出る可能性があるが、各コア固定部材26の軸固定内周部54が回転軸22の外周面との間での冷却油の通過を阻止し、各コア固定部材26のコア押し付け部60がロータコア24の軸方向端面との間での冷却油の通過を阻止する。このため、回転軸22及びロータコア24の径方向通路32,52の接続部から冷却油が漏れ出る傾向となった場合でも、冷却油の外部への漏れをコア固定部材26によって防止できる。したがって、ロータコア24を冷却油によって効率よく冷却できる。   In the rotating structure 14, the laminated rotor core 24 is disposed on the outer diameter side of the rotating shaft 22, but the rotor core 24 is not fixed to the rotating shaft 22 with a large interference fit, and the outer diameter of the rotating shaft 22 is not fixed. It is arranged with small or no allowance on the side. In such a configuration, there is a possibility that the cooling oil leaks from the connecting portion between the axial-side radial passage 32 of the rotating shaft 22 and the core-side radial passage 52 of the rotor core 24, but the shaft fixing of each core fixing member 26 is possible. The inner peripheral portion 54 prevents the cooling oil from passing between the outer peripheral surface of the rotary shaft 22, and the core pressing portion 60 of each core fixing member 26 passes between the cooling oil and the axial end surface of the rotor core 24. To prevent. For this reason, even when the cooling oil tends to leak from the connecting portion of the radial passages 32 and 52 of the rotating shaft 22 and the rotor core 24, the leakage of the cooling oil to the outside can be prevented by the core fixing member 26. Therefore, the rotor core 24 can be efficiently cooled by the cooling oil.

また、ロータコア24は永久磁石25n、25sを備えるので、ロータコア24の内部に磁束が通過することで永久磁石25n、25sが温度上昇し、減磁量が大きくなる傾向となるが、上記のようにロータコア24を効率よく冷却できるので、永久磁石25n、25sの減磁を抑制できる。   Further, since the rotor core 24 includes the permanent magnets 25n and 25s, the temperature of the permanent magnets 25n and 25s increases as the magnetic flux passes through the rotor core 24, and the amount of demagnetization tends to increase. Since the rotor core 24 can be efficiently cooled, demagnetization of the permanent magnets 25n and 25s can be suppressed.

一方、本実施形態と同様の構成を有するが上記の図1〜3、図6に示したコア固定部材26を備えない比較例の回転構造が考えられる。この比較例では、例えば回転軸22の外周面の全周にわたって一体形成されたフランジ部と、回転軸22の外径側に配置されたかしめリングとの間でロータコア24を挟んで固定する。かしめリングは、回転軸22の外径側に隙間嵌めで配置した後、周方向一部または複数個所を内径側にかしめ変形させることで回転軸22に固定される。このような比較例では、回転軸22及びロータコア24の径方向の冷媒通路同士の接続部から漏れ出た冷却油が、回転軸22の外周面とかしめリングの内周面との間の周方向一部を通じて外部に漏れ出る可能性がある。本実施形態ではこのような問題をなくせる。   On the other hand, a rotation structure of a comparative example having the same configuration as that of the present embodiment but not including the core fixing member 26 shown in FIGS. In this comparative example, for example, the rotor core 24 is sandwiched and fixed between a flange portion integrally formed over the entire outer peripheral surface of the rotating shaft 22 and a caulking ring disposed on the outer diameter side of the rotating shaft 22. The caulking ring is fixed to the rotating shaft 22 by being caulked and deformed at one part or a plurality of locations in the circumferential direction on the inner diameter side after being arranged with a clearance fit on the outer diameter side of the rotating shaft 22. In such a comparative example, the cooling oil leaked from the connecting portion between the radial passages of the rotating shaft 22 and the rotor core 24 is the circumferential direction between the outer peripheral surface of the rotating shaft 22 and the inner peripheral surface of the caulking ring. There is a possibility of leaking outside through some parts. In this embodiment, such a problem can be eliminated.

また、各コア固定部材26において、コア押し付け部60は、軸固定内周部54よりも径方向外側で、軸固定内周部54よりも軸方向に関してロータコア24に近づいた位置に設けられるので、コア押し付け部60よりも径方向内側の全長の長い係合溝38を避けて、ロータコア24にコア押し付け部60を接触させることができる。また、コア押し付け部60の直径が大きいので、コア固定部材26と回転軸22との周方向の固定力を過度に大きくすることなく、回転軸22に対するロータコア24の周方向の変位を阻止できる。   Further, in each core fixing member 26, the core pressing portion 60 is provided at a position radially outside the shaft fixing inner peripheral portion 54 and closer to the rotor core 24 in the axial direction than the shaft fixing inner peripheral portion 54. The core pressing portion 60 can be brought into contact with the rotor core 24 while avoiding the engagement groove 38 having a long overall length radially inward of the core pressing portion 60. Moreover, since the diameter of the core pressing part 60 is large, the circumferential displacement of the rotor core 24 relative to the rotating shaft 22 can be prevented without excessively increasing the circumferential fixing force between the core fixing member 26 and the rotating shaft 22.

また、各コア固定部材26において、軸固定内周部54と回転軸22との軸側接触面積は、コア押し付け部60とロータコア24とのコア側接触面積よりも大きいので、軸側接触面積をコア側接触面積以下とする場合に比べて、回転軸22とコア固定部材26との固定力を大きくできる。このため、ロータコア24にばね定数の高い金属板を使用する場合でも、ロータコア24とコア固定部材26との間の隙間の発生による冷却油の漏れを効率よく防止できる。   Further, in each core fixing member 26, the shaft side contact area between the shaft fixing inner peripheral portion 54 and the rotary shaft 22 is larger than the core side contact area between the core pressing portion 60 and the rotor core 24. The fixing force between the rotating shaft 22 and the core fixing member 26 can be increased compared with the case where the contact area is equal to or smaller than the core side contact area. For this reason, even when a metal plate having a high spring constant is used for the rotor core 24, it is possible to efficiently prevent cooling oil from leaking due to the generation of a gap between the rotor core 24 and the core fixing member 26.

図7は、コア固定部材26の別例を示している図6に対応する図である。図7の構成では、コア固定部材26の軸方向片面である図7の左側面にコア押し付け部60よりも内側部分にテーパ面状の窪み部72が形成されている。このような構成でも、コア押し付け部60は、軸固定内周部54よりも径方向外側で、軸固定内周部54よりも軸方向に関してロータコア24に近づいた位置に設けられる。このため、効率よく冷却油の外部への漏れを防止できる。   FIG. 7 is a view corresponding to FIG. 6 showing another example of the core fixing member 26. In the configuration of FIG. 7, a concave portion 72 having a tapered surface shape is formed on the inner side of the core pressing portion 60 on the left side surface of FIG. Even in such a configuration, the core pressing portion 60 is provided on the outer side in the radial direction from the shaft fixing inner peripheral portion 54 and at a position closer to the rotor core 24 in the axial direction than the shaft fixing inner peripheral portion 54. For this reason, the leakage of cooling oil to the outside can be prevented efficiently.

なお、上記では、係合溝38及び大径円筒部34の軸方向長さがロータコア24の軸方向長さよりも大きくなる場合を説明したが、係合溝38及び大径円筒部34の軸方向長さをロータコア24の軸方向長さ以下としてもよい。また、上記では、回転軸22に係合溝38を形成し、ロータコア24に係合突部40を形成した場合を説明したが、回転軸22に係合突部を形成し、ロータコア24にその係合突部に係合する係合溝を形成してもよい。また、回転軸22及びロータコア24の両方に係合溝を形成し、両方の係合溝を別部材のキーを係合させるキー溝として、回転軸22に対するロータコア24の回転を阻止してもよい。   In the above description, the case where the axial lengths of the engaging groove 38 and the large diameter cylindrical portion 34 are larger than the axial length of the rotor core 24 has been described. The length may be equal to or less than the axial length of the rotor core 24. In the above description, the engaging groove 38 is formed on the rotating shaft 22 and the engaging protrusion 40 is formed on the rotor core 24. However, the engaging protrusion is formed on the rotating shaft 22 and the rotor core 24 An engagement groove that engages with the engagement protrusion may be formed. Further, an engaging groove may be formed in both the rotating shaft 22 and the rotor core 24, and both engaging grooves may be used as a key groove for engaging a key of another member to prevent the rotation of the rotor core 24 with respect to the rotating shaft 22. .

また、各コア固定部材26の少なくとも一方のコア固定部材26は、中心部に軸方向の円筒面状の貫通孔を有する単なる円板状に形成してもよい。この場合、円板状のコア固定部材26の軸方向片側面がコア押し付け部となる。また、各コア固定部材26の少なくとも一方のコア固定部材26は、内周面にねじ孔が形成された構成を使用してもよい。この場合、回転軸22の外周面に形成された雄ねじ部にコア固定部材26のねじ孔がねじ結合される。いずれの場合でも、コア固定部材26は、回転軸22の外周面との間での液状冷媒の通過を阻止するように全周にわたって密着固定される内周部と、ロータコア24の軸方向端面との間での液状冷媒の通過を阻止するように軸方向端面にリング状に押し付けられるコア押し付け部とを含む構成とする。   In addition, at least one core fixing member 26 of each core fixing member 26 may be formed in a simple disk shape having a cylindrical cylindrical through hole in the center. In this case, one axial side surface of the disk-shaped core fixing member 26 is a core pressing portion. Further, at least one core fixing member 26 of each core fixing member 26 may use a configuration in which a screw hole is formed on the inner peripheral surface. In this case, the screw hole of the core fixing member 26 is screwed to the male screw portion formed on the outer peripheral surface of the rotating shaft 22. In any case, the core fixing member 26 includes an inner peripheral portion that is closely fixed to the outer peripheral surface of the rotating shaft 22 so as to prevent passage of the liquid refrigerant, and an axial end surface of the rotor core 24. And a core pressing portion that is pressed against the axial end face in a ring shape so as to prevent passage of the liquid refrigerant between them.

また、上記では回転軸22とロータコア24との少なくとも一方に係合溝38を形成する場合を説明したが、回転軸22とロータコア24とのいずれにも係合溝38を形成しない構成を採用することもできる。例えば、回転軸22及びロータコア24として、互いに対向する周面に軸方向に沿った係合溝を有しない構造を使用する場合に、回転軸22の外径側に隙間嵌めで配置したロータコア24の軸方向両側から上記の図1〜3、図6、図7に示したコア固定部材26を押し付け、回転軸22に対するロータコア24の回転を阻止することもできる。   In the above description, the engaging groove 38 is formed in at least one of the rotating shaft 22 and the rotor core 24. However, a configuration in which the engaging groove 38 is not formed in either the rotating shaft 22 or the rotor core 24 is adopted. You can also. For example, when using the structure which does not have the engagement groove | channel along an axial direction in the surrounding surface which mutually opposes as the rotating shaft 22 and the rotor core 24, the rotor core 24 arrange | positioned by the clearance fit on the outer diameter side of the rotating shaft 22 The core fixing member 26 shown in FIGS. 1 to 3, 6, and 7 can be pressed from both sides in the axial direction to prevent the rotation of the rotor core 24 relative to the rotating shaft 22.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

10 回転電機、12 ステータ、14 回転電機用回転構造、15 ケース、16 ステータコア、18 ティース、20 ステータコイル、22 回転軸、24 ロータコア、25n,25s 永久磁石、26 コア固定部材、28 軸側冷媒通路、30 軸側軸方向通路、32 軸側径方向通路、34 大径円筒部、36 小径円筒部、38 係合溝、40 係合突部、44,46 磁性鋼板、47 コア側冷媒通路、48 磁石孔、50 コア側軸方向通路、52 コア側径方向通路、54 軸固定内周部、56 環状板部、58 円筒部、60 コア押し付け部、64 冷媒循環機構、66 配管、68 冷却油ポンプ、70 配管、72 窪み部。   DESCRIPTION OF SYMBOLS 10 Rotating electrical machine, 12 Stator, 14 Rotating structure for rotating electrical machine, 15 Case, 16 Stator core, 18 teeth, 20 Stator coil, 22 Rotating shaft, 24 Rotor core, 25n, 25s Permanent magnet, 26 Core fixing member, 28 Axis side refrigerant passage 30 axial side passage, 32 axial side passage, 34 large diameter cylindrical portion, 36 small diameter cylindrical portion, 38 engaging groove, 40 engaging protrusion, 44, 46 magnetic steel plate, 47 core side refrigerant passage, 48 Magnet hole, 50 core side axial passage, 52 core side radial passage, 54 shaft fixed inner peripheral portion, 56 annular plate portion, 58 cylindrical portion, 60 core pressing portion, 64 refrigerant circulation mechanism, 66 piping, 68 cooling oil pump , 70 piping, 72 depressions.

Claims (5)

径方向の軸側径方向通路を有する軸側冷媒通路を含む回転軸と、
前記回転軸の外側に配置され、前記軸側径方向通路に接続される径方向のコア側径方向通路と、前記コア側径方向通路に接続される軸方向のコア側軸方向通路とを有するコア側冷媒通路を含み、複数のコア板の積層体により形成されるロータコアであって、前記コア側軸方向通路の一端はロータコアの軸方向一端面に開口するロータコアと、
前記回転軸の外周面の全周にわたって密着固定され、前記回転軸の外周面との間での液状冷媒の通過を阻止する内周部と、前記ロータコアの軸方向端面にリング状に押し付けられ、前記ロータコアの軸方向端面との間での液状冷媒の通過を阻止するコア押し付け部とを含み、前記回転軸の外側に固定されて前記ロータコアを軸方向両側から挟む2つのコア固定部材と、
を備え
前記コア側軸方向通路の一端は、前記ロータコアの軸方向一端に配置される前記コア固定部材の前記コア押し付け部よりも外径側に配置され、前記コア側軸方向通路を流れる冷媒は前記ロータコアの軸方向一端から外側に噴出されることを特徴とする回転電機用回転構造。
A rotating shaft including an axial refrigerant passage having a radial axial radial passage;
A radial core-side radial passage disposed outside the rotating shaft and connected to the axial-side radial passage; and an axial core-side axial passage connected to the core-side radial passage. A rotor core that includes a core-side refrigerant passage and is formed of a stack of a plurality of core plates , wherein one end of the core-side axial passage is open to one axial end surface of the rotor core ;
The inner peripheral portion that is tightly fixed over the entire outer periphery of the rotary shaft, prevents passage of liquid refrigerant between the outer peripheral surface of the rotary shaft, and is pressed against the axial end surface of the rotor core in a ring shape, A core pressing portion that prevents passage of the liquid refrigerant between the axial end surfaces of the rotor core, and two core fixing members that are fixed to the outside of the rotating shaft and sandwich the rotor core from both sides in the axial direction;
Equipped with a,
One end of the core side axial passage is disposed on the outer diameter side of the core pressing portion of the core fixing member disposed at one axial end of the rotor core, and the refrigerant flowing through the core side axial passage is the rotor core. A rotating structure for a rotating electrical machine, wherein the rotating structure is ejected outward from one axial end of the rotating electric machine.
請求項1に記載の回転電機用回転構造において、
前記2つのコア固定部材の少なくとも一方のコア固定部材の前記コア押し付け部は、前記内周部よりも径方向外側で、軸方向に関して前記内周部よりも前記ロータコアに近づいた位置に設けられることを特徴とする回転電機用回転構造。
In the rotating structure for a rotating electrical machine according to claim 1,
The core pressing portion of at least one core fixing member of the two core fixing members is provided at a position radially outward from the inner peripheral portion and closer to the rotor core than the inner peripheral portion in the axial direction. A rotating structure for a rotating electrical machine.
請求項2に記載の回転電機用回転構造において、
前記2つのコア固定部材の少なくとも一方のコア固定部材は、
前記内周部を有する環状板部と、
前記環状板部の軸方向片面の外周部に軸方向に突出して設けられた筒部とを含み、
前記コア押し付け部は、前記筒部の先端面であることを特徴とする回転電機用回転構造。
The rotating structure for a rotating electrical machine according to claim 2,
At least one core fixing member of the two core fixing members is:
An annular plate having the inner periphery;
A cylindrical portion provided to project in the axial direction on the outer peripheral portion of one axial surface of the annular plate portion,
The rotating structure for a rotating electrical machine, wherein the core pressing portion is a tip surface of the cylindrical portion.
請求項2または請求項3に記載の回転電機用回転構造において、
前記回転軸と前記ロータコアとの互いに対向する周面のうち、一方の周面の周方向一部に軸方向に設けられた係合溝と、
前記回転軸と前記ロータコアとの互いに対向する周面のうち、他方の周面の周方向一部に軸方向に設けられ、前記係合溝と係合する係合突部とを備え、
前記各コア押し付け部は、前記係合溝及び前記係合突部よりも径方向外側に外れた部分で前記ロータコアの軸方向端面に押し付けられることを特徴とする回転電機用回転構造。
In the rotating structure for a rotating electrical machine according to claim 2 or 3,
Of the circumferential surfaces facing each other of the rotating shaft and the rotor core, an engagement groove provided in an axial direction in a part of the circumferential direction of one circumferential surface;
Of the circumferential surfaces of the rotating shaft and the rotor core facing each other, provided in the circumferential direction part of the other circumferential surface in the axial direction, and provided with an engaging protrusion that engages with the engaging groove,
The rotating structure for a rotating electrical machine, wherein each of the core pressing portions is pressed against an end surface in the axial direction of the rotor core at a portion that is radially outward from the engaging groove and the engaging protrusion.
請求項1から請求項4のいずれか1に記載の回転電機用回転構造において、
前記2つのコア固定部材の少なくとも一方のコア固定部材において、前記内周部と前記回転軸の外周面との接触面積は、前記コア押し付け部と前記ロータコアの軸方向端面との接触面積よりも大きいことを特徴とする回転電機用回転構造。
The rotating structure for a rotating electrical machine according to any one of claims 1 to 4,
In at least one of the two core fixing members, a contact area between the inner peripheral portion and the outer peripheral surface of the rotating shaft is larger than a contact area between the core pressing portion and the axial end surface of the rotor core. A rotating structure for a rotating electrical machine.
JP2013020363A 2013-02-05 2013-02-05 Rotating structure for rotating electrical machine Active JP6056518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013020363A JP6056518B2 (en) 2013-02-05 2013-02-05 Rotating structure for rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013020363A JP6056518B2 (en) 2013-02-05 2013-02-05 Rotating structure for rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2014155243A JP2014155243A (en) 2014-08-25
JP6056518B2 true JP6056518B2 (en) 2017-01-11

Family

ID=51576652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013020363A Active JP6056518B2 (en) 2013-02-05 2013-02-05 Rotating structure for rotating electrical machine

Country Status (1)

Country Link
JP (1) JP6056518B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6530170B2 (en) * 2014-09-03 2019-06-12 株式会社前川製作所 Permanent magnet embedded type rotor
JP6537613B2 (en) * 2015-08-05 2019-07-03 三菱電機株式会社 Motor rotor, motor, blower and refrigeration air conditioner
DE102016215423A1 (en) * 2016-08-17 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Electric machine and vehicle with the electric machine
JP6409837B2 (en) * 2016-09-08 2018-10-24 トヨタ自動車株式会社 Rotating electric machine rotor and method of manufacturing rotating electric machine rotor
JP7053381B2 (en) * 2018-06-13 2022-04-12 Ntn株式会社 Rotor unit, electric motor and electric actuator
JP6785278B2 (en) * 2018-10-10 2020-11-18 本田技研工業株式会社 Rotor
JP7260391B2 (en) * 2019-05-13 2023-04-18 東芝産業機器システム株式会社 rotor core
DE102020110168A1 (en) 2020-04-14 2021-10-14 Schaeffler Technologies AG & Co. KG Rotary electric machine rotor and rotary electric machine
JP7306336B2 (en) * 2020-06-23 2023-07-11 トヨタ自動車株式会社 Rotating electric machine
CN113890235A (en) * 2021-10-26 2022-01-04 山东博源精密机械有限公司 Cast aluminum rotor of new energy automobile and heat dissipation device thereof
DE112023000816T5 (en) * 2022-03-31 2024-11-21 Nidec Corporation ROTOR, ELECTRIC ROTARY MACHINE AND DRIVE DEVICE

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980747B2 (en) * 2007-02-28 2012-07-18 トヨタ自動車株式会社 Rotating electric machine
US9154006B2 (en) * 2010-03-24 2015-10-06 Aisin Aw Co., Ltd. Rotor for rotating electric machine
JP5483094B2 (en) * 2010-05-31 2014-05-07 アイシン精機株式会社 Rotating electrical machine rotor
JP5483095B2 (en) * 2010-05-31 2014-05-07 アイシン精機株式会社 Cooling structure of rotating electric machine
JP2013017297A (en) * 2011-07-04 2013-01-24 Toyota Motor Corp Rotor of rotary electric machine
JP2014045532A (en) * 2012-08-24 2014-03-13 Toyota Motor Corp Rotor of rotary electric machine

Also Published As

Publication number Publication date
JP2014155243A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
JP6056518B2 (en) Rotating structure for rotating electrical machine
JP5445675B2 (en) Rotating machine
JP2013017297A (en) Rotor of rotary electric machine
JPWO2010119556A1 (en) Rotating electric machine
JP2019149884A (en) Rotating electric machine rotor and rotating electric machine
JP2013183481A (en) Cooling structure of rotor for rotary electric machine and rotary electric machine
JPWO2019049394A1 (en) Rotating electric machine
JP2016220298A (en) Axial gap type rotary electric machine
CN113394937A (en) Axial flux electric machine including a system for circulating a coolant through an air gap
CN114982107A (en) Stator and rotating electric machine using the same
JP2013258889A (en) Induction motor
JP2013062926A (en) Rotary electric machine
WO2019049397A1 (en) Rotor cooling structure for dynamo-electric machine
JP2014064433A (en) Rotor shaft of rotary electric machine
JP5392012B2 (en) Electric motor
JP2012070585A (en) Rotor for rotary electric machine
JP5772415B2 (en) Rotor structure of rotating electrical machine
JP2019161999A (en) Rotary electric machine
JP2013021811A (en) Rotor of rotary electric machine
US10069360B2 (en) Electric rotary machine
CN110176822B (en) Cooling structure of rotating electrical machine and rotating electrical machine
JP2013220004A (en) Induction motor
JP6151668B2 (en) Rotor for rotating electrical machines
JP2013051805A (en) Cooling structure of rotating electric machine
JP2019170150A (en) Rotor of rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R151 Written notification of patent or utility model registration

Ref document number: 6056518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151