JP6054788B2 - Storage battery residual quantity estimation device and residual quantity estimation method - Google Patents
Storage battery residual quantity estimation device and residual quantity estimation method Download PDFInfo
- Publication number
- JP6054788B2 JP6054788B2 JP2013063960A JP2013063960A JP6054788B2 JP 6054788 B2 JP6054788 B2 JP 6054788B2 JP 2013063960 A JP2013063960 A JP 2013063960A JP 2013063960 A JP2013063960 A JP 2013063960A JP 6054788 B2 JP6054788 B2 JP 6054788B2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- storage
- storage amount
- value
- storage battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 60
- 230000007423 decrease Effects 0.000 claims description 20
- 230000003247 decreasing effect Effects 0.000 claims description 17
- 238000012544 monitoring process Methods 0.000 claims description 13
- 230000005611 electricity Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 description 13
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005293 physical law Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Description
本発明は、蓄電池の残量推定装置及び残量推定方法に関し、特に推定処理に関する。 The present invention relates to a storage battery remaining amount estimation device and a remaining amount estimation method, and more particularly to estimation processing.
近年、ユビキタス化に伴い、場所を選ばず必要な情報にアクセスすることのできるクラウドサービスなどが増加している。出先であっても必要なサービスを受けるために、モバイルPC(パーソナルコンピュータ)、ネットブック、スマートフォン、タブレット端末など、小型で携帯しやすい情報端末が普及してきている。 In recent years, with ubiquitous, cloud services that can access necessary information regardless of location are increasing. In order to receive necessary services even when they are away from home, small and easy-to-carry information terminals such as mobile PCs (personal computers), netbooks, smartphones, and tablet terminals have become widespread.
これら持ち運び可能な電化製品には、ニッケル水素系(Ni-H)、リチウムイオン系(Li-ion)などを筆頭に化学反応を利用して蓄電・放電ができ、再使用可能な二次蓄電池が内蔵もしくは取り付けられている。そのため、コンセントなどの系統電源に接続していない状態でも蓄電池からの電力供給で、移動しながらでも使用することができる。 These portable electrical appliances include rechargeable secondary storage batteries that can store and discharge using chemical reactions, including nickel-hydrogen (Ni-H) and lithium-ion (Li-ion). Built-in or attached. Therefore, even if it is not connected to a system power source such as an outlet, it can be used while being moved by power supply from the storage battery.
蓄電池は電池自体のサイズ・性質に依存して蓄電できる電荷量に限度があるため、可搬装置を使用するうちに電池内の電荷が放電していくと可搬装置が要求する電力を供給できなくなる。そこで、定期的に外部の電源に接続して充電する必要がある。 Storage batteries have a limit on the amount of charge that can be stored depending on the size and nature of the battery itself, so if the charge in the battery is discharged while using the portable device, the power required by the portable device can be supplied. Disappear. Therefore, it is necessary to charge by connecting to an external power source periodically.
これら蓄電池を使用して動作する製品のユーザービリティを向上する上で、その装置があとどの程度の時間だけ動作可能なのかを知ることは非常に重要であるため、これら蓄電池を利用した製品の大半には電池残量を計算し、表示する機能を有している。 In order to improve the usability of products that operate using these storage batteries, it is very important to know how long the device can operate, so the majority of products that use these storage batteries. Has a function of calculating and displaying the remaining battery level.
しかし蓄電池の特性は非常に複雑であり、蓄電残量を推定することは容易ではなく、推定精度によってはかなり高価・高度な検出装置が必要である。そこで、要求される性能により様々な推定方式が考案されている。 However, the characteristics of the storage battery are very complex, and it is not easy to estimate the remaining amount of storage, and a fairly expensive and sophisticated detection device is required depending on the estimation accuracy. Therefore, various estimation methods have been devised depending on the required performance.
蓄電池内の蓄電荷を推定する主な方法としては2つある。一つは電池の端子開放電圧(OCV:Open Circuit Voltage)をテーブル化する方法であり、もう一つは電池への電荷流出入を随時監視して、内部の電荷量を推定するクーロンカウンタ法である。 There are two main methods for estimating the stored charge in the storage battery. One is a method of tabulating the open circuit voltage (OCV) of the battery, and the other is a coulomb counter method that monitors the charge flow into and out of the battery as needed to estimate the internal charge. is there.
OCVのテーブルを用いる方法は、電池に負荷を繋がない状態での電池端子に出現する電圧値(OCV)は電池内に蓄電された電荷量に比例するという特性を利用して、無負荷時の電圧を計算から算出して、そこから蓄電量(SoC:State of Charge)を推定する方法である。この方法は、蓄電池の端子電圧を検出するだけでSoC値が一意に決まるが、実際にSoCを検出したい場合には電池からの電力を受ける負荷装置が無負荷であることは極めて稀である。そのため、電池自体の内部インピーダンスと負荷装置の負荷量を考慮してOCVの推定を行うことが必要となる。また、負荷装置の負荷量は一定ではないことが大半であるため、精度の高いSoCを算出するためには、電池への負荷を取得するために電流の検出装置も必要になるという課題がある。 The method using the OCV table is based on the characteristic that the voltage value (OCV) that appears at the battery terminal when no load is connected to the battery is proportional to the amount of charge stored in the battery. This is a method of calculating the voltage from the calculation and estimating the state of charge (SoC) therefrom. In this method, the SoC value is uniquely determined only by detecting the terminal voltage of the storage battery. However, when actually detecting the SoC, it is extremely rare that the load device receiving the power from the battery is unloaded. Therefore, it is necessary to estimate the OCV in consideration of the internal impedance of the battery itself and the load amount of the load device. In addition, since the load amount of the load device is not constant, in order to calculate a highly accurate SoC, there is a problem that a current detection device is also required to acquire the load on the battery. .
またOCVとSoCの関係は多くの電池の場合で非線形であり、OCVの少しの変化でSoCが大きく変わってしまうこともあり、SoCの線形性を保つためには高精度の電圧・電流検出器と、ノイズを除去するフィルタが必要となる。 In addition, the relationship between OCV and SoC is nonlinear in the case of many batteries, and a small change in OCV can change the SoC significantly. To maintain the linearity of the SoC, a highly accurate voltage / current detector Then, a filter for removing noise is required.
一方、クーロンカウンタを用いた方法は、蓄電池の電圧と流出・流入する電流を検出して、オームの法則を用いて蓄電池内で増減する電荷量を算出することにより、蓄電池のSoC値の増減を監視する方法である。この方法は、実際に電池を出入りする電荷を常に監視するため、高い精度でSoCの増減を算出することが可能であるが、計算式は時間的に相対的であるため、絶対的なSoC値を算出することができない。そのためクーロンカウンタ法ではSoCを算出する前に、測定する蓄電池の電荷が空の状態を初期値として、蓄電池に電荷が満たされた状態になるまでにどの程度の電荷が蓄電池内に流入するのかという情報をあらかじめ測定する、初期化動作が必要となる。 On the other hand, the method using the coulomb counter detects the voltage of the storage battery and the outflow / inflow current and calculates the amount of charge that increases or decreases in the storage battery using Ohm's law, thereby increasing or decreasing the SoC value of the storage battery. How to monitor. Since this method constantly monitors the charge that actually enters and exits the battery, it is possible to calculate the increase / decrease in SoC with high accuracy, but since the calculation formula is relative in time, the absolute SoC value Cannot be calculated. Therefore, in the Coulomb counter method, before calculating the SoC, the initial value is the state of charge of the storage battery to be measured, and how much charge will flow into the storage battery before the storage battery is fully charged An initialization operation that measures information in advance is required.
また、負荷装置側で監視周期よりも早い時間での負荷変動が発生してしまうと、そのときの電荷の移動量を検出できないため、算出したSoC値は実際のSoC値に対して少しずつオフセットが発生する。このオフセットを修正するために、クーロンカウンタ方式は定期的に初期化動作が必要になるという課題がある。 Also, if a load fluctuation occurs at a time earlier than the monitoring cycle on the load device side, the amount of charge movement at that time cannot be detected, so the calculated SoC value is slightly offset from the actual SoC value. Will occur. In order to correct this offset, the coulomb counter method has a problem that it needs to be initialized periodically.
特許文献1では、充放電電流検出値を積分して電池の残存容量を演算するとともに、電池の開放端子電圧に基づいて電池の残存容量を推定し、残存容量演算値と残存容量推定値の差の変化率に基づいて残存容量演算値の演算方法を補正し、これにより電池の残存容量を得ることが提案されている。 In Patent Document 1, the charge / discharge current detection value is integrated to calculate the remaining capacity of the battery, the remaining capacity of the battery is estimated based on the open terminal voltage of the battery, and the difference between the calculated remaining capacity value and the estimated remaining capacity value is calculated. It has been proposed to correct the calculation method of the remaining capacity calculation value based on the change rate of the battery, and thereby obtain the remaining capacity of the battery.
特許文献1では、所定の時間間隔で充放電電流をサンプリングして電流時間積を求め、これを前回の残存容量演算値に加算して残存容量を演算しているので、残存容量の演算精度は充放電電流のサンプリング時間間隔に強く影響される。高精度に残存容量を演算するためにはサンプリング時間間隔を短くしなければならず、演算処理数が増大する。 In Patent Document 1, the charge / discharge current is sampled at a predetermined time interval to obtain a current-time product, and this is added to the previous remaining capacity calculation value to calculate the remaining capacity. It is strongly influenced by the sampling time interval of charge / discharge current. In order to calculate the remaining capacity with high accuracy, the sampling time interval must be shortened, and the number of calculation processes increases.
本発明は、上述した課題である、精度高く蓄電量を算出するためには、演算処理数が増大する、という課題を解決する蓄電池の残量推定装置及び残量推定方法を提供することを目的とする。 An object of the present invention is to provide a storage battery remaining amount estimation device and a remaining amount estimation method that solves the problem of increasing the number of processing operations in order to calculate the storage amount with high accuracy, which is the problem described above. And
前記目的を達成するため、本発明に係る蓄電池の残量推定装置は、蓄電池を流れる電流値を検出する電流検出器と、前記蓄電池の出力端における電圧値を検出する電圧検出器と、前記蓄電池の蓄電量と前記蓄電池の開放電圧との関係と前記電流値及び前記電圧値とから蓄電量値を推定し、前記蓄電量の変化量である蓄電量変化量を算出し、前記算出された前記蓄電量変化量に基づいて、前記蓄電量値を増減する蓄電池残量推定部とを有する。 In order to achieve the object, a storage battery remaining amount estimation device according to the present invention includes a current detector that detects a current value flowing through a storage battery, a voltage detector that detects a voltage value at an output terminal of the storage battery, and the storage battery. The storage amount value is estimated from the relationship between the storage amount of the battery and the open-circuit voltage of the storage battery, the current value, and the voltage value, the storage amount change amount that is the change amount of the storage amount is calculated, and the calculated And a storage battery remaining amount estimation unit that increases or decreases the stored amount value based on the stored amount change amount.
本発明に係る蓄電池の残量推定方法は、蓄電池を流れる電流値と前記蓄電池の出力端における電圧値から開放電圧を算出し、前記蓄電池の蓄電量と前記開放電圧との関係とから蓄電量値を推定し、
前記電流値と前記電圧値から蓄電量変化量を算出し、前記蓄電量変化量に基づいて、前記蓄電量値を増減する。
The method for estimating the remaining amount of a storage battery according to the present invention calculates an open circuit voltage from a current value flowing through the storage battery and a voltage value at an output terminal of the storage battery, and stores a storage amount value from a relationship between the storage amount of the storage battery and the open circuit voltage. Estimate
A storage amount change amount is calculated from the current value and the voltage value, and the storage amount value is increased or decreased based on the storage amount change amount.
本発明の蓄電池の残量推定装置によれば、演算処理数を増大させずに、蓄電池の残量推定を高精度に行なうことができる。 According to the storage battery remaining amount estimation device of the present invention, it is possible to estimate the remaining amount of the storage battery with high accuracy without increasing the number of arithmetic processes.
本発明の好ましい実施形態について、図面を参照しながら詳細に説明する。図1は、本発明の一実施形態に係る、蓄電池の残量推定装置を示すブロック図である。図2は、SoCと端子開放電圧との関係を示すグラフである。図3は、蓄電池の内部構造を簡易的に模した構造図である。図4は、本発明の一実施形態に係る、蓄電池の残量推定方法の全体的動作を示すフローチャートである。図5は、本発明の一実施形態に係るSoC値推定処理の詳細を説明するためのフローチャートである。図6は、本発明の一実施形態に係る蓄電量増減処理の詳細を説明するためのフローチャートである。図7は、記憶装置107が記録するテーブルの一例を示す表である。 Preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a storage battery remaining amount estimation device according to an embodiment of the present invention. FIG. 2 is a graph showing the relationship between the SoC and the terminal open circuit voltage. FIG. 3 is a structural diagram schematically simulating the internal structure of the storage battery. FIG. 4 is a flowchart showing the overall operation of the storage battery remaining capacity estimation method according to the embodiment of the present invention. FIG. 5 is a flowchart for explaining details of the SoC value estimation processing according to the embodiment of the present invention. FIG. 6 is a flowchart for explaining details of the storage amount increasing / decreasing process according to the embodiment of the present invention. FIG. 7 is a table showing an example of a table recorded by the storage device 107.
本発明は上記課題を解決すべく、二次蓄電池の端子電圧と二次蓄電池を出入りする電流量を監視できる演算処理装置を備えた蓄電池の残量推定装置であって、OCVテーブルを使用した蓄電量推定方法を主体にして、クーロンカウンタを相補的に使用することを特徴とするものである。これにより、OCVテーブル方式の弱点であるSoC算出値の線形性を改善し、より精度の高い電池残量の推定を行うことが可能となる。 In order to solve the above-mentioned problem, the present invention is a storage battery remaining amount estimation device provided with an arithmetic processing device capable of monitoring the terminal voltage of a secondary storage battery and the amount of current flowing in and out of the secondary storage battery, and stores the power using an OCV table The coulomb counter is used in a complementary manner with the quantity estimation method as a main component. This improves the linearity of the calculated SoC value, which is a weak point of the OCV table method, and makes it possible to estimate the remaining battery level with higher accuracy.
本実施形態による蓄電池の残量推定装置は、二次蓄電池の電圧を検出する電圧検出装置と、二次蓄電池に対して流入・流出する電流を検出する電流検出装置と、検出した電圧値と電流値を用いて演算する演算処理装置とを備える。このような構成により、二次蓄電池に蓄電されている電荷量を推定し、出力することができる。 The storage battery remaining amount estimation device according to this embodiment includes a voltage detection device that detects the voltage of the secondary storage battery, a current detection device that detects current flowing into and out of the secondary storage battery, and the detected voltage value and current. And an arithmetic processing unit that calculates using values. With such a configuration, the amount of charge stored in the secondary storage battery can be estimated and output.
本発明の実施形態による蓄電池の残量推定装置1は、図1に示されるように、二次蓄電池101に接続して用いられる。ここで、二次蓄電池101は、外部から供給された電気エネルギーを化学エネルギーに変換して電荷として蓄えることができ、かつ蓄えた電荷を外部に放電して、他の負荷装置102に対して電力を供給することができる。 A storage battery remaining amount estimation device 1 according to an embodiment of the present invention is used by being connected to a secondary storage battery 101 as shown in FIG. Here, the secondary storage battery 101 can convert electric energy supplied from the outside into chemical energy and store it as a charge, and discharge the stored charge to the outside to supply power to other load devices 102. Can be supplied.
すなわち、蓄電池の残量推定装置1は、二次蓄電池101の入出力端子に出現している電圧を検出する電圧検出器103と、二次蓄電池101と負荷装置の間でやり取りされる電流の流れる方向と量を検出する電流検出器104と、蓄電池残量推定部100とを有する。蓄電池残量推定部100が算出した電池蓄電量を装置使用者に対して伝える表示器108を備えることとしてもよい。 That is, the storage battery remaining amount estimation device 1 has a voltage detector 103 that detects a voltage appearing at an input / output terminal of the secondary storage battery 101 and a current that is exchanged between the secondary storage battery 101 and the load device. It has a current detector 104 that detects the direction and amount, and a storage battery remaining amount estimation unit 100. It is good also as providing the indicator 108 which tells the apparatus user the battery storage amount which the storage battery residual amount estimation part 100 calculated.
蓄電池残量推定部100は、取得した電圧値と電流値から、二次蓄電池内の蓄電量を推定するための演算・計算を行う演算処理装置105と、演算処理装置105が電池の蓄電量を推定するのに必要となる事前情報を記録する記録装置107とを有する。さらに、電圧検出器103と電流検出器104から出力されたアナログ情報の電圧値と電流値を受けて、演算処理装置105が扱えるようにデジタル情報に変換して出力するA/D変換器106を備えた構成としてもよい。 The storage battery remaining amount estimation unit 100 includes an arithmetic processing unit 105 that performs calculation / calculation for estimating the amount of power stored in the secondary storage battery from the acquired voltage value and current value, and the arithmetic processing unit 105 calculates the amount of power stored in the battery. And a recording device 107 that records prior information necessary for estimation. Further, an A / D converter 106 that receives the voltage value and current value of the analog information output from the voltage detector 103 and the current detector 104, converts the analog information into digital information so that the arithmetic processing unit 105 can handle it, and outputs the digital information. It is good also as a structure provided.
二次蓄電池101は、図2に示すグラフのように、電池内部に存在するSoCに応じて、電池に負荷装置102などの負荷が接続されていない状態における出力端子の電圧値を示す端子開放電圧(OCV)が変化する特性を持つ。 As shown in the graph of FIG. 2, the secondary storage battery 101 has a terminal open voltage indicating a voltage value of an output terminal in a state where a load such as the load device 102 is not connected to the battery according to the SoC existing inside the battery. (OCV) has changing characteristics.
記憶装置107にはあらかじめ、図7(a)に示すような、接続された二次蓄電池のOCVと蓄電量の関係をポイント化した関係テーブルが備えられている。また、図7(b)に示すような、二次蓄電池の蓄電量が100%の時の蓄電量を電力量の単位で表した最大蓄電容量値が記憶されている。図7(c)に示すような、二次蓄電池を等価回路モデルで表したときの内部インピーダンスを簡易的に模したときの内部インピーダンスの値が記録されている。これら関係テーブルや、最大蓄電容量値、内部インピーダンス値は一例を示している。 The storage device 107 is previously provided with a relationship table as shown in FIG. 7A in which the relationship between the OCV of the connected secondary storage batteries and the storage amount is pointed out. Further, as shown in FIG. 7B, a maximum storage capacity value that represents the storage amount when the storage amount of the secondary storage battery is 100% in units of the amount of power is stored. As shown in FIG. 7C, a value of the internal impedance is recorded when the internal impedance is simply imitated when the secondary storage battery is represented by an equivalent circuit model. These relationship tables, maximum storage capacity values, and internal impedance values are examples.
図7(a)の関係テーブルは、図2のSoCと端子開放電圧との関係を示すグラフから、複数のポイントを抽出して作成されている。図7(a)では、16個のポイントを抽出した場合の関係テーブルを示している。より具体的には、図7(a)の関係テーブルの各数値は、図2の16個のポイント(×印の点)を抽出した場合を示している。ポイントの位置はあらかじめ同定された二次蓄電池101の特性を元に、それぞれのポイント同士の間を一次線形補間したときに誤差が少ないポイントを選ぶことが望ましい。 The relationship table in FIG. 7A is created by extracting a plurality of points from the graph showing the relationship between the SoC and the terminal open voltage in FIG. FIG. 7A shows a relationship table when 16 points are extracted. More specifically, each numerical value in the relational table in FIG. 7A indicates a case where the 16 points (points marked with X) in FIG. 2 are extracted. As for the position of the point, it is desirable to select a point having a small error when linearly interpolating between each point based on the characteristics of the secondary storage battery 101 identified in advance.
本発明の実施形態では図3に示すように、二次蓄電池の内部構造を、負極301を設置した場合に内部に蓄電された電荷量によって定まる端子開放電圧302と、端子開放電圧が二次蓄電池の正極303に接続された出力端子304に出力されるまでに存在する内部インピーダンス305で構成されるものとして想定している。そして記憶装置107に、図7(c)に示すような内部インピーダンス305の電気的な数値を記録する。 In the embodiment of the present invention, as shown in FIG. 3, the internal structure of the secondary storage battery includes a terminal open voltage 302 determined by the amount of charge stored inside when the negative electrode 301 is installed, and the terminal open voltage is the secondary storage battery. It is assumed that it is constituted by an internal impedance 305 that exists until it is output to the output terminal 304 connected to the positive electrode 303. Then, the electrical value of the internal impedance 305 as shown in FIG.
次に、本実施形態による蓄電池の残量推定装置の動作及び残量推定方法について、図4を用いて説明する。まず、推定処理を始めるために、装置に接続された蓄電池101にどの程度の電力が蓄電されているのかについて知る必要がある。 Next, the operation of the storage battery remaining amount estimation device and the remaining amount estimation method according to the present embodiment will be described with reference to FIG. First, in order to start the estimation process, it is necessary to know how much power is stored in the storage battery 101 connected to the apparatus.
そのため、SoC値推定処理を行なう。このSoC値推定処理は、予め記録装置107に記録されている、図7(c)に示す二次蓄電池101の内部インピーダンス値と、図7(a)に示すOCVテーブルを使用する。OCVテーブルと現時点の電圧値及び電流値とを比較して、現在のSoCを算出する(ステップS401)。このSoC値推定処理を実行すると、現在のSoC値SOCと、SOCを算出するためにOCVテーブルから選択されたSoCポイントである上限SoCポイントP_U、下限SoCポイントP_Dが定まる。 Therefore, SoC value estimation processing is performed. This SoC value estimation process uses the internal impedance value of the secondary storage battery 101 shown in FIG. 7C and the OCV table shown in FIG. The OCV table is compared with the current voltage value and current value to calculate the current SoC (step S401). When this SoC value estimation process is executed, the current SoC value SOC and the upper limit SoC point P_U and the lower limit SoC point P_D, which are SoC points selected from the OCV table for calculating the SOC, are determined.
上限SoCポイントP_Uとは、SOCが増加方向に動いた時にOCVテーブルのSoC値の中で次に達するテーブルのインデックスである。下限SoCポイントP_Dとは、SOCが減少方向に動いた時にOCVテーブルのSoC値の中で次に達するテーブルのインデックスである。 The upper limit SoC point P_U is an index of a table that reaches the next in the SoC value of the OCV table when the SOC moves in the increasing direction. The lower limit SoC point P_D is an index of a table that reaches the next in the SoC value of the OCV table when the SOC moves in a decreasing direction.
SoC値推定処理の終了後、予め決められた二次蓄電池の残量監視周期時間tに基づいて監視周期t待機処理(ステップS402)を行った後、SOCの値が上限SoCポイントP_Uと下限SoCポイントP_Dのインデックスが示すSoC値の間に存在するかを判断する(ステップS403)。ここでSOCの値が、上限SoCポイントP_Uと下限SoCポイントP_Dのインデックスが示すSoC値の間に存在しない場合、回帰点405に戻り、ステップS401のSoC値推定処理を再度行う。 After completion of the SoC value estimation process, after performing a monitoring cycle t standby process (step S402) based on a predetermined secondary battery remaining capacity monitoring cycle time t (step S402), the SOC value becomes the upper limit SoC point P_U and the lower limit SoC. It is determined whether there is an SoC value indicated by the index of the point P_D (step S403). If the SOC value does not exist between the SoC values indicated by the indexes of the upper limit SoC point P_U and the lower limit SoC point P_D, the process returns to the regression point 405 and the SoC value estimation process in step S401 is performed again.
ステップS403でSOC値が、上限SoCポイントP_Uと下限SoCポイントP_Dのインデックスが示すSoC値の間に存在する場合は、蓄電量増減処理を行う(ステップS404)。この蓄電量増減処理は、図7(b)のような記憶装置107に記録されている最大蓄電容量を使用して、測定した電圧量及び電流量から二次蓄電池から増減した電力量を算出して、SoCの増減処理を行うものである。この蓄電量増減処理を終えたら回帰点406に戻り、監視周期t待機処理(ステップS402)及びSOCの値が上限SoCポイントP_Uと下限SoCポイントP_Dのインデックスが示すSoC値の間に存在するかの判断(ステップS403)を繰り返す。 If the SOC value is present between the SoC values indicated by the indices of the upper limit SoC point P_U and the lower limit SoC point P_D in step S403, a storage amount increase / decrease process is performed (step S404). In this power storage amount increase / decrease process, the maximum power storage capacity recorded in the storage device 107 as shown in FIG. 7B is used to calculate the amount of power increased or decreased from the secondary storage battery from the measured voltage amount and current amount. The SoC increase / decrease processing is performed. When the storage amount increase / decrease process is completed, the process returns to the regression point 406, and whether the monitoring cycle t standby process (step S402) and the SOC value exist between the SoC values indicated by the indices of the upper limit SoC point P_U and the lower limit SoC point P_D. The determination (step S403) is repeated.
SoC値推定処理(図4のステップS401)の詳細な処理内容について、図5のフローチャートを参照しながら、説明する。まず演算処理装置105が、接続されたA/D変換器106を使って、二次蓄電池101のその時の端子電圧V[V]と二次蓄電池101と負荷装置202の間でやり取りされる電流量I[A]を取得する(ステップS501)。次に、演算処理装置105は、取得した電圧値V及び電流値Iに加えて、記録装置107に記録されている内部インピーダンス値を用いて、二次蓄電池の出力端子が無負荷だった場合の端子開放電圧OCVを算出する(ステップS502)。このときのOCVの算出式は電気的な物理法則、すなわちOCV=V+R*Iに則って行う。 The detailed processing content of the SoC value estimation processing (step S401 in FIG. 4) will be described with reference to the flowchart in FIG. First, the arithmetic processing unit 105 uses the connected A / D converter 106 and the terminal voltage V [V] of the secondary storage battery 101 at that time and the amount of current exchanged between the secondary storage battery 101 and the load device 202. I [A] is acquired (step S501). Next, the arithmetic processing unit 105 uses the internal impedance value recorded in the recording device 107 in addition to the acquired voltage value V and current value I, and when the output terminal of the secondary storage battery is unloaded. The terminal open circuit voltage OCV is calculated (step S502). The calculation formula of OCV at this time is performed in accordance with an electrical physical law, that is, OCV = V + R * I.
次に、演算処理装置105は、算出したOCVの値を、記録装置107に記録されているOCVテーブルを用いて、現在のOCV値がOCVテーブルのどのインデックスの間に存在するかを特定する(ステップS503)。そして、OCVを挟む2つのインデックスについて、OCV値が大きいほうを上限SoCポイントP_U、小さいほうを下限SoCポイントP_Dとして記録する。 Next, the arithmetic processing unit 105 uses the OCV table recorded in the recording unit 107 to determine the index of the OCV table between which the current OCV value exists, using the calculated OCV value ( Step S503). For the two indexes sandwiching the OCV, the larger OCV value is recorded as the upper limit SoC point P_U, and the smaller OCV value is recorded as the lower limit SoC point P_D.
例として、算出された端子開放電圧OCV=3.87[V]であった場合、図7(a)のOCVテーブルと比較して、現在のOCVはインデックス9とインデックス10の間の電圧であることが分かる。その場合に、上限SoCポイントP_Uはインデックス10、下限SoCポイントP_Dはインデックス9となる。 As an example, when the calculated terminal open circuit voltage OCV = 3.87 [V], the current OCV is a voltage between the index 9 and the index 10 as compared with the OCV table of FIG. I understand. In this case, the upper limit SoC point P_U is index 10, and the lower limit SoC point P_D is index 9.
次に、演算処理装置105は、算出したOCV値と、2つのインデックスP_U及びP_Dが持つOCVとSoC値の値から、線形代数的手法を用いて、算出したOCVに対応したSoC値を算出し、その値SOCを記録する(ステップS504)。 Next, the arithmetic processing unit 105 calculates a SoC value corresponding to the calculated OCV from the calculated OCV value and the OCV and SoC value values of the two indexes P_U and P_D using a linear algebraic method. The value SOC is recorded (step S504).
このとき、図7(a)に示すように、上限SoCポイントP_Uの持つ電圧値情報は3.900V、 SoC値情報は63%であり、下限SoCポイントP_Dの持つ電圧値情報は3.855V、SoC値情報は57%である。一般的な数学的手法である一次線形補完式を用いて、
SoC =63 - (63-57)/(3.9-3.855)*(3.9-3.87) = 59%のように求まる。これにより、SoC値推定処理は、その時点のOCV電圧からSoC値を推定できる。
At this time, as shown in FIG. 7A, the voltage value information of the upper limit SoC point P_U is 3.900V, the SoC value information is 63%, the voltage value information of the lower limit SoC point P_D is 3.855V, and the SoC value Information is 57%. Using a first-order linear interpolation formula, which is a general mathematical method,
SoC = 63-(63-57) / (3.9-3.855) * (3.9-3.87) = 59% Thereby, the SoC value estimation process can estimate the SoC value from the OCV voltage at that time.
蓄電量増減処理(図4のステップS404)の詳細な処理内容について、図6のフローチャートを参照しながら、説明する。まず演算処理装置105が、接続されたA/D変換器106を使って、二次蓄電池101のその時の端子電圧V[V]と二次蓄電池101と負荷装置102の間でやり取りされる電流量I[A]を取得する(ステップS601)。次に、演算処理装置105は、取得した電圧値V及び電流値Iに加えて、予め装置の仕様として決定されている二次蓄電池の監視周期時間t[秒]を用いて、前回の監視時間からどの程度の電力が二次蓄電池101で増減したのか、電力変化量ΔPを算出する(ステップS602)。 The detailed processing contents of the storage amount increase / decrease processing (step S404 in FIG. 4) will be described with reference to the flowchart in FIG. First, the arithmetic processing unit 105 uses the connected A / D converter 106 and the terminal voltage V [V] of the secondary storage battery 101 at that time and the amount of current exchanged between the secondary storage battery 101 and the load device 102. I [A] is acquired (step S601). Next, in addition to the acquired voltage value V and current value I, the arithmetic processing unit 105 uses the monitoring cycle time t [seconds] of the secondary storage battery that is determined in advance as the specifications of the device, so that the previous monitoring time Therefore, the amount of power change ΔP is calculated to determine how much power has increased or decreased in the secondary storage battery 101 (step S602).
例えば、監視周期時間t=2[秒]で、測定された電圧値V=3.91V、電流値I=0.3Aであった場合、2秒間で二次蓄電池101から流出した電力変化量ΔPは物理法則に基づき、ΔP=(3.91*0.3)*(2/3600)=0.65[mWh] として求まる。 For example, when the measured voltage value V = 3.91 V and the current value I = 0.3 A at the monitoring cycle time t = 2 [seconds], the power change ΔP flowing out from the secondary storage battery 101 in 2 seconds is the physical amount Based on the law, it is obtained as ΔP = (3.91 * 0.3) * (2/3600) = 0.65 [mWh].
演算処理装置105は、図7(b)の、記録装置107に記録された最大蓄電容量値P_ALLに基づき、先に求めた二次蓄電池101から流出した電力変化量ΔPがこの二次蓄電池101に対してどの程度の割合の変化量なのかについて求める。本実施形態では、最大蓄電容量は8.0Whであるから、先に求めたΔP=0.65mWhは二次蓄電池101に対しては、0.65/8000=0.008125[%]に相当する。このSoC変化量をΔSOCとする(ステップS603)。 Based on the maximum storage capacity value P_ALL recorded in the recording device 107 in FIG. 7B, the arithmetic processing unit 105 causes the power change amount ΔP flowing out from the secondary storage battery 101 previously obtained to the secondary storage battery 101. Find out how much the change amount is. In this embodiment, since the maximum storage capacity is 8.0 Wh, ΔP = 0.65 mWh obtained previously corresponds to 0.65 / 8000 = 0.008125 [%] for the secondary storage battery 101. This SoC change amount is set to ΔSOC (step S603).
演算処理装置105は、前回の蓄電量増減処理(ステップS402)若しくはSoC値推定処理(ステップS401)で求まったSoC値SOCに対して、先に求めたSoC変化量ΔSOCを加算し、算出したSoC値SOCとして記録する(ステップS604)。 The arithmetic processing unit 105 adds the previously calculated SoC change amount ΔSOC to the SoC value SOC obtained in the previous storage amount increase / decrease process (step S402) or SoC value estimation process (step S401), and calculates the calculated SoC. It is recorded as a value SOC (step S604).
例として、前回の算出結果SOCが59%で、変化量ΔSOCが0.008125%であった場合、SOC=58.991875%として更新される。 As an example, when the previous calculation result SOC is 59% and the change amount ΔSOC is 0.008125%, it is updated as SOC = 58.991875%.
こうして蓄電量増減処理は、その時点の二次蓄電池の端子電圧と出入りする電流値からSoC値の増減を行う。こうして、二次蓄電池の残量推定が行なわれる。蓄電量増減処理は、監視周期時間tに基づいて周期的に繰り返される。表示器108は、蓄電池残量推定部100が演算で得た電池蓄電量を表示して、装置使用者に対し伝える。 In this way, the storage amount increasing / decreasing process increases / decreases the SoC value from the terminal voltage of the secondary storage battery at that time and the current value that enters and exits. Thus, the remaining amount of the secondary storage battery is estimated. The power storage amount increase / decrease process is periodically repeated based on the monitoring cycle time t. The display 108 displays the amount of battery storage obtained by the calculation by the storage battery remaining amount estimation unit 100 and notifies the device user.
このように本発明の本実施形態によれば、二次蓄電池101の端子電圧と二次蓄電池101を出入りする電流量を監視できる演算処理装置105をもつ蓄電池の残量推定装置において、OCVテーブルを使用した蓄電量推定方法を主体にして、クーロンカウンタを相補的に使用している。これにより、OCVテーブル方式の弱点であるSoC算出値の線形性を改善し、より精度の高い蓄電池残量の推定を行うことができる。演算処理数を増大させずに、蓄電池の残量推定を高精度に行なうことができる。 As described above, according to the present embodiment of the present invention, in the storage battery remaining amount estimation apparatus having the arithmetic processing unit 105 that can monitor the terminal voltage of the secondary storage battery 101 and the amount of current flowing in and out of the secondary storage battery 101, the OCV table Coulomb counters are used in a complementary manner, mainly using the method for estimating the amount of stored electricity. As a result, the linearity of the calculated SoC value, which is a weak point of the OCV table method, can be improved, and the remaining battery level can be estimated with higher accuracy. The remaining amount of the storage battery can be estimated with high accuracy without increasing the number of arithmetic processes.
さらに、本発明の一実施形態による、蓄電池の残量推定方法及び残量推定装置を使用することで得られる効果としては、下記のものが挙げられる。 Further, the effects obtained by using the storage battery remaining amount estimating method and remaining amount estimating apparatus according to the embodiment of the present invention include the following.
第一に、クーロンカウンタを用いた場合に発生するオフセットが短時間のうちにOCVテーブルによって補正されるため、定期的な初期化処理動作が不要である。 First, since the offset generated when the coulomb counter is used is corrected by the OCV table within a short time, a periodic initialization processing operation is unnecessary.
第二に、OCVテーブルを用いた推定方法では検出した電圧値・電流値に混入するノイズ成分の影響で算出するSoC値が大きく上下に変動する可能性がある。これに対し、本発明の実施形態によれば、SoCの増減については電荷変動分の増減加算にて算出するので、急激な変化が発生しない。これにより、SoC値の線形性の向上が期待できる。 Second, in the estimation method using the OCV table, the calculated SoC value may fluctuate up and down greatly due to the influence of noise components mixed in the detected voltage value and current value. On the other hand, according to the embodiment of the present invention, since the increase / decrease in the SoC is calculated by the increase / decrease addition of the charge fluctuation, a sudden change does not occur. This can be expected to improve the linearity of the SoC value.
第三に、クーロンカウンタを用いた方法では、SoC監視を始めるために初期化処理が必要なため、二次蓄電池に対して負荷が繋がっている間はSoC算出の処理を止めることができない。これに対し、本発明の実施形態では初期化動作が不要であり、必要な場合にはいつでも推定処理動作を停止し、また再開することができる。 Third, since the method using the coulomb counter requires initialization processing to start SoC monitoring, the SoC calculation processing cannot be stopped while a load is connected to the secondary storage battery. On the other hand, in the embodiment of the present invention, the initialization operation is unnecessary, and the estimation processing operation can be stopped and restarted whenever necessary.
本発明は上記実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲に含まれるものであることはいうまでもない。 The present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention. Nor.
例えば、図1では二次蓄電池101の正極側に電流検出器104を配置したが、本発明は電流検出器の位置を限定するものではない。二次蓄電池101からの電流の出入りを監視できればよいので、例えば、図8の変形例に示すように二次蓄電池101の負極側に電流検出器101があってもよい。 For example, although the current detector 104 is arranged on the positive electrode side of the secondary storage battery 101 in FIG. 1, the present invention does not limit the position of the current detector. Since it is only necessary to monitor the current input / output from the secondary storage battery 101, for example, the current detector 101 may be provided on the negative electrode side of the secondary storage battery 101 as shown in the modification of FIG.
図1には、表示器108は演算処理装置105からの出力を受ける記載になっているが、本発明によって、表示器の制御を演算処理装置105に限定するものではない。よって、負荷装置102が演算処理装置105と何らかの方法に基づいて情報のやり取りが可能であれば、負荷装置側に表示器108を接続して、演算結果を表示する構成としてもよい。 In FIG. 1, the display unit 108 is described to receive an output from the arithmetic processing unit 105, but control of the display unit is not limited to the arithmetic processing unit 105 according to the present invention. Therefore, if the load device 102 can exchange information with the arithmetic processing device 105 based on some method, the display device 108 may be connected to the load device to display the calculation result.
また上述した実施形態では、記録装置107に記録されているOCVテーブルは電池容量値とOCVの関係のポイントを16個とした場合を説明したが、本発明はOCVテーブルのインデックスの数について限定するものではない。テーブルのインデックスの数は自由に変動可能である。上述したように、OCVとSoCの関係は多くの電池の場合で非線形であり、OCVの少しの変化でSoCが大きく変わってしまう。このような非線形特性へ対処するため、ポイントの位置は上述したように、あらかじめ同定された二次蓄電池101の特性を元に、それぞれのポイント同士の間を一次線形補間したときに誤差が少なくなるよう、選べばよい。 In the above-described embodiment, the OCV table recorded in the recording device 107 has been described as having 16 points of the relationship between the battery capacity value and the OCV. However, the present invention limits the number of indexes in the OCV table. It is not a thing. The number of indexes on the table can be freely changed. As described above, the relationship between the OCV and the SoC is non-linear in many batteries, and a small change in the OCV will significantly change the SoC. In order to cope with such non-linear characteristics, as described above, the position of the points is reduced in error when linear interpolation is performed between the points based on the characteristics of the secondary storage battery 101 identified in advance. Just choose.
また上述した実施形態では、二次蓄電池101自体の内部モデルを図3に示すような形としたが、本発明では二次蓄電池の内部モデルを限定するものではない。よって、使用する二次蓄電池に対応したモデルを自由に使用してよい。 Moreover, in embodiment mentioned above, although the internal model of secondary storage battery 101 itself was made into the form as shown in FIG. 3, in this invention, the internal model of a secondary storage battery is not limited. Therefore, you may use the model corresponding to the secondary storage battery to be used freely.
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)蓄電池の電流値及び電圧値と予め記録されている蓄電量テーブルとから蓄電量値を推定する工程と、算出した蓄電量変化量に基づいて、前記推定された蓄電量値を増減する工程とを、有する蓄電池の残量推定方法。
(付記2)前記蓄電量変化量は、前記蓄電池の最大蓄電容量値と電力変化量とから算出される、付記1に記載の蓄電池の残量推定方法。
(付記3)前記電力変化量は、前記蓄電池の前記電圧値及び前記電流値と監視周期とから算出される、付記2に記載の蓄電池の残量推定方法。
(付記4)前記蓄電量テーブルは、前記蓄電池に負荷を繋がない状態での電池端子に出現する電圧値と蓄電量値とを対にして記録した複数のインデックスを有する、付記1乃至付記3のいずれか一つに記載の蓄電池の残量推定方法。
(付記5)蓄電池の電流値を検出する電流検出器と、前記蓄電池の電圧値を検出する電圧検出器と、
予め記録されている蓄電量テーブルと前記検出された前記蓄電池の前記電流値及び前記電圧値とから蓄電量値を推定し、蓄電量変化量を算出し、前記算出された前記蓄電量変化量に基づいて、前記推定された蓄電量値を増減する電池残量推定部とを有する蓄電池の残量推定装置。
(付記6)前記電圧検出器は、前記蓄電池と前記蓄電池から電力供給を受ける負荷装置との間に接続されている、付記5に記載の蓄電池の残量推定装置。
(付記7)前記電流検出器は、前記蓄電池の正極側に配置されている、付記6に記載の蓄電池の残量推定装置。
(付記8)前記電流検出器は、前記蓄電池の負極側に配置されている、付記6に記載の蓄電池の残量推定装置。
(付記9)前記蓄電量テーブルは、前記蓄電池に負荷を繋がない状態での電池端子に出現する電圧値と蓄電量値とを対にして記録した複数のインデックスを有する、付記5乃至付記8のいずれか一つに記載の蓄電池の残量推定装置。
(付記10)蓄電池の電流値及び電圧値と予め記録されている蓄電量テーブルとから蓄電量値を推定する蓄電量値推定手段と、算出した蓄電量変化量に基づいて、前記推定された蓄電量値を増減する蓄電量値増減手段とを、有する蓄電池の残量推定装置。
(付記11)前記蓄電量変化量は、前記蓄電池の最大蓄電容量値と電力変化量とから算出される、付記10に記載の蓄電池の残量推定装置。
(付記12)前記電力変化量は、前記蓄電池の前記電圧値及び前記電流値と監視周期とから算出される、付記11に記載の蓄電池の残量推定装置。
(付記13)前記蓄電量テーブルは、前記蓄電池に負荷を繋がない状態での電池端子に出現する電圧値と蓄電量値とを対にして記録した複数のインデックスを有する、付記10乃至付記12のいずれか一つに記載の蓄電池の残量推定装置。
(付記14)蓄電池の電流値及び電圧値と予め記録されている蓄電量テーブルとから蓄電量値を推定する処理と、算出した蓄電量変化量に基づいて、前記推定された蓄電量値を増減する処理と、を実行させることを特徴とするプログラム。
(付記15)付記14に記載のプログラムを、演算処理装置が読み取り可能な形式で記録したことを特徴とする記録媒体。
A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
(Supplementary note 1) A step of estimating a storage amount value from a current value and a voltage value of a storage battery and a storage amount table recorded in advance, and the estimated storage amount value is increased or decreased based on the calculated storage amount change amount A method for estimating the remaining amount of the storage battery.
(Supplementary note 2) The storage battery remaining capacity estimation method according to supplementary note 1, wherein the storage amount change amount is calculated from a maximum storage capacity value of the storage battery and a power change amount.
(Supplementary note 3) The storage battery remaining capacity estimation method according to supplementary note 2, wherein the power change amount is calculated from the voltage value and the current value of the storage battery and a monitoring cycle.
(Additional remark 4) The said electrical storage amount table has the some index which recorded the voltage value and electrical storage amount value which appear in the battery terminal in the state which does not connect the load to the said storage battery by a pair, The additional statement 1 thru | or the additional statement 3 The remaining capacity estimation method of the storage battery as described in any one.
(Appendix 5) A current detector for detecting the current value of the storage battery, a voltage detector for detecting the voltage value of the storage battery,
A power storage amount value is estimated from the stored power storage amount table and the detected current value and voltage value of the storage battery, a power storage amount change amount is calculated, and the calculated power storage amount change amount is calculated. A remaining battery remaining amount estimating device comprising: a remaining battery amount estimating unit configured to increase or decrease the estimated stored electricity amount value.
(Supplementary note 6) The storage battery remaining capacity estimation device according to supplementary note 5, wherein the voltage detector is connected between the storage battery and a load device that receives power supply from the storage battery.
(Additional remark 7) The said electric current detector is a residual amount estimation apparatus of the storage battery of Additional remark 6 arrange | positioned at the positive electrode side of the said storage battery.
(Additional remark 8) The said electric current detector is a residual amount estimation apparatus of the storage battery of Additional remark 6 arrange | positioned at the negative electrode side of the said storage battery.
(Additional remark 9) The said electrical storage amount table has the some index which recorded the voltage value and electrical storage amount value which appear in the battery terminal in the state which does not connect the load to the said storage battery by a pair, The additional notes 5 thru | or appendix 8 The storage battery residual quantity estimation apparatus as described in any one.
(Supplementary Note 10) A storage amount value estimation means for estimating a storage amount value from a current value and a voltage value of a storage battery and a stored power storage amount table, and the estimated storage amount based on the calculated storage amount change amount An apparatus for estimating the remaining amount of a storage battery, comprising: a storage amount value increasing / decreasing means for increasing / decreasing a quantity value.
(Supplementary note 11) The storage battery remaining amount estimation device according to supplementary note 10, wherein the power storage amount change amount is calculated from a maximum power storage capacity value and a power change amount of the storage battery.
(Supplementary note 12) The storage battery remaining capacity estimation device according to supplementary note 11, wherein the power change amount is calculated from the voltage value and the current value of the storage battery and a monitoring cycle.
(Additional remark 13) The said electrical storage amount table has the some index which recorded the voltage value and electrical storage amount value which appear in the battery terminal in the state which does not connect the load to the said storage battery by a pair, The additional description 10 thru | or the additional statement 12 The storage battery residual quantity estimation apparatus as described in any one.
(Supplementary note 14) Based on the process of estimating the storage amount value from the current value and voltage value of the storage battery and the stored storage amount table in advance, and the calculated storage amount change amount, the estimated storage amount value is increased or decreased. And a process for executing the processing.
(Additional remark 15) The recording medium which recorded the program of Additional remark 14 in the format which an arithmetic processing unit can read.
1 残量推定装置
100 蓄電池残量推定部
101 二次蓄電池
102 負荷装置
103 電圧検出器
104 電流検出器
105 演算処理装置
106 A/D変換器
107 記憶装置
108 表示器
DESCRIPTION OF SYMBOLS 1 Remaining amount estimation apparatus 100 Storage battery remaining amount estimation part 101 Secondary storage battery 102 Load apparatus 103 Voltage detector 104 Current detector 105 Arithmetic processor 106 A / D converter 107 Memory | storage device 108 Indicator
Claims (10)
前記蓄電量値を推定した後で一定時間だけ待機し、蓄電量が増加方向に動いた時に前記蓄電量テーブルの蓄電量値の中で次に達するインデックスが示す蓄電量値と、蓄電量が減少方向に動いた時に前記蓄電量テーブルの蓄電量値の中で次に達するインデックスが示す蓄電量値との間に、前記推定した蓄電量値が存在するか判断し、この間に存在しないときは前記推定を再度行い、
この間に存在するときは前記電流値と前記電圧値から蓄電量変化量を算出し、前記蓄電量変化量に基づいて、前記蓄電量値を増減する蓄電池の残量推定方法。 The open-circuit voltage is calculated from the current value flowing through the storage battery and the voltage value at the output terminal of the storage battery, and the storage battery is stored with reference to a storage amount table having a plurality of indexes recorded by pairing the open-circuit voltage and the storage amount value. The amount of stored electricity is estimated from the relationship between the amount and the open circuit voltage,
Waiting for a certain period of time after estimating the storage amount value, and when the storage amount moves in the increasing direction, the storage amount value indicated by the next reaching index in the storage amount value of the storage amount table and the storage amount decrease It is determined whether or not the estimated storage amount value exists between the storage amount values indicated by the next reached index in the storage amount value of the storage amount table when moving in the direction. Perform the estimation again,
A method for estimating a remaining amount of a storage battery that, when present , calculates an amount of change in storage amount from the current value and the voltage value and increases or decreases the amount of storage amount based on the amount of change in storage amount.
前記蓄電池残量推定部は、開放電圧と蓄電量値とを対にして記録した複数のインデックスを有する蓄電量テーブルを参照して蓄電量値を推定し、蓄電量値を推定した後で一定時間だけ待機し、蓄電量が増加方向に動いた時に前記蓄電量テーブルの蓄電量値の中で次に達するインデックスが示す蓄電量値と、蓄電量が減少方向に動いた時に前記蓄電量テーブルの蓄電量値の中で次に達するインデックスが示す蓄電量値との間に、前記推定した蓄電量値が存在するか判断し、この間に存在しないときは前記推定を再度行い、この間に存在するときは前記蓄電量変化量を算出し、前記算出された前記蓄電量変化量に基づいて、前記蓄電量値を増減する、蓄電池の残量推定装置。 A current detector for detecting a current value flowing through the storage battery, a voltage detector for detecting a voltage value at an output terminal of the storage battery, a relationship between a storage amount of the storage battery and an open voltage of the storage battery, the current value and the voltage A storage amount estimation that estimates a storage amount value from the value, calculates a storage amount change amount that is a change amount of the storage amount, and increases or decreases the storage amount value based on the calculated storage amount change amount And
The storage battery remaining amount estimation unit estimates a storage amount value with reference to a storage amount table having a plurality of indexes recorded by pairing an open-circuit voltage and a storage amount value, and then estimates a storage amount value for a certain period of time. Only when the storage amount moves in the increasing direction, the storage amount value indicated by the next reached index in the storage amount value of the storage amount table, and the storage amount in the storage amount table when the storage amount moves in the decreasing direction. between the storage amount value indicated by the index to reach the next in the amount values, said determining whether the estimated storage amount value exists, have again the line the estimated when not in the meantime, when present during this time Is a storage battery remaining amount estimation device that calculates the amount of change in the amount of electricity stored and increases or decreases the amount of electricity stored based on the amount of change in the amount of electricity stored .
前記蓄電量が増加方向に動いた時に前記蓄電量テーブルの蓄電量値の中で次に達するインデックスは上限蓄電量ポイントであり、前記蓄電量が減少方向に動いた時に前記蓄電量テーブルの蓄電量値の中で次に達するインデックスは下限蓄電量ポイントである、請求項5乃至請求項8のいずれか一項に記載の蓄電池の残量推定装置。 Further comprising a recording device comprising the power storage amount table,
The next reached index of the storage amount values in the storage amount table when the storage amount moves in the increasing direction is the upper limit storage amount point, and the storage amount of the storage amount table when the storage amount moves in the decreasing direction The storage battery remaining amount estimation apparatus according to any one of claims 5 to 8, wherein an index that reaches next among the values is a lower limit charged amount point.
前記電流値と前記電圧値から蓄電量変化量を算出し、前記蓄電量変化量に基づいて、前記蓄電量値を増減する蓄電量値増減手段とを、有し、
前記蓄電量値推定手段は、蓄電量値を推定した後で一定時間だけ待機し、蓄電量が増加方向に動いた時に前記蓄電量テーブルの蓄電量値の中で次に達するインデックスが示す蓄電量値と、蓄電量が減少方向に動いた時に前記蓄電量テーブルの蓄電量値の中で次に達するインデックスが示す蓄電量値との間に、前記推定した蓄電量値が存在するか判断し、この間に存在しないときは前記推定を再度行い、この間に存在するときは前記蓄電量変化量を算出し、前記算出された前記蓄電量変化量に基づいて、前記蓄電量値を増減する、蓄電池の残量推定装置。 Calculate the open circuit voltage from the current value flowing through the storage battery and the voltage value at the output terminal of the storage battery, and refer to the storage amount table having a plurality of indexes recorded by pairing the open circuit voltage and the storage amount value. A power storage amount value estimating means for
A storage amount value increasing / decreasing means for calculating a storage amount change amount from the current value and the voltage value, and increasing or decreasing the storage amount value based on the storage amount change amount;
The storage amount value estimation means waits for a certain period of time after estimating the storage amount value, and when the storage amount moves in an increasing direction, the storage amount indicated by the next reaching storage amount value in the storage amount table Determining whether the estimated storage amount value exists between the value and the storage amount value indicated by the next reached index among the storage amount values of the storage amount table when the storage amount moves in a decreasing direction; there again the line the estimated when not in the meantime, calculate the storage amount change amount when present during this period, the calculated on the basis of the storage amount change amount increases or decreases the storage amount value, battery Remaining amount estimation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013063960A JP6054788B2 (en) | 2013-03-26 | 2013-03-26 | Storage battery residual quantity estimation device and residual quantity estimation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013063960A JP6054788B2 (en) | 2013-03-26 | 2013-03-26 | Storage battery residual quantity estimation device and residual quantity estimation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014190727A JP2014190727A (en) | 2014-10-06 |
JP6054788B2 true JP6054788B2 (en) | 2016-12-27 |
Family
ID=51837133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013063960A Active JP6054788B2 (en) | 2013-03-26 | 2013-03-26 | Storage battery residual quantity estimation device and residual quantity estimation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6054788B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019066294A1 (en) * | 2017-09-28 | 2019-04-04 | 주식회사 엘지화학 | Apparatus and method for acquiring degradation information of lithium-ion battery cell |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6707843B2 (en) | 2015-11-17 | 2020-06-10 | オムロン株式会社 | Battery residual quantity display device, battery system and battery residual quantity display method |
JP6623725B2 (en) | 2015-12-01 | 2019-12-25 | オムロン株式会社 | Battery remaining amount estimation system and battery remaining amount estimation method |
JP6402731B2 (en) | 2016-02-25 | 2018-10-10 | オムロン株式会社 | Electricity supply and demand prediction system, electric power supply and demand prediction method, and electric power supply and demand prediction program |
CN115508727B (en) * | 2022-09-29 | 2025-05-30 | 湖北亿纬动力有限公司 | A method, device and equipment for predicting battery cell capacity |
CN119596169B (en) * | 2025-02-07 | 2025-06-06 | 浙江大华技术股份有限公司 | A method, device, system, equipment and medium for determining battery power information |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6286316A (en) * | 1985-10-12 | 1987-04-20 | Minolta Camera Co Ltd | Focus detector |
JP3315513B2 (en) * | 1994-03-15 | 2002-08-19 | 浜松ホトニクス株式会社 | Positron emission CT system |
JP3582540B2 (en) * | 1995-04-14 | 2004-10-27 | 株式会社ルネサステクノロジ | Resolution conversion device and resolution conversion method |
JP4638251B2 (en) * | 2005-02-07 | 2011-02-23 | 富士重工業株式会社 | Battery management device |
JP2011095209A (en) * | 2009-11-02 | 2011-05-12 | Railway Technical Res Inst | Apparatus and program for estimating amount of discharge |
CN103392133A (en) * | 2011-03-07 | 2013-11-13 | 株式会社日立制作所 | Battery state estimating method and battery management system |
JP2012239357A (en) * | 2011-05-13 | 2012-12-06 | Sony Corp | Battery pack, electronic apparatus, electric power system and electric vehicle |
US20140184236A1 (en) * | 2011-06-10 | 2014-07-03 | Hitachi Vehicle Energy, Ltd. | Battery control apparatus and battery system |
JP5681072B2 (en) * | 2011-09-06 | 2015-03-04 | 日立オートモティブシステムズ株式会社 | Air flow measurement device |
-
2013
- 2013-03-26 JP JP2013063960A patent/JP6054788B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019066294A1 (en) * | 2017-09-28 | 2019-04-04 | 주식회사 엘지화학 | Apparatus and method for acquiring degradation information of lithium-ion battery cell |
US11187756B2 (en) | 2017-09-28 | 2021-11-30 | Lg Chem, Ltd. | Apparatus and method for acquiring degradation information of lithium-ion battery cell |
Also Published As
Publication number | Publication date |
---|---|
JP2014190727A (en) | 2014-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10712395B2 (en) | Apparatus and method for detecting battery state of health | |
JP6054788B2 (en) | Storage battery residual quantity estimation device and residual quantity estimation method | |
JP6012447B2 (en) | Semiconductor device, battery pack, and electronic device | |
CN104375085B (en) | A kind of method, apparatus and terminal detecting battery capacity | |
CN102375127B (en) | Method for displaying residual battery electricity quantity of mobile terminal | |
CN106461732B (en) | Method for estimating state of health of battery | |
EP2851700B1 (en) | Method and terminal for displaying capacity of battery | |
JP6214013B2 (en) | Battery coulometric system and battery coulometric method | |
CN104515955B (en) | Battery remaining capacity measuring method and system under steady temperature state | |
CN110383573B (en) | Monitoring system for series battery units | |
TWI420126B (en) | Device for battery capacity prediction and method for the same | |
CN104535933B (en) | Battery remaining capacity measuring method and system | |
CN103472400B (en) | A kind of acquisition methods of battery capacity of mobile terminal and system | |
CN102854471B (en) | Battery meter metering method and measuring apparatus | |
US9869723B2 (en) | Power management scheme for separately and accurately measuring battery information of each of multiple batteries | |
TWI528043B (en) | Battery SOC/SOH estimation circuit | |
JP6848475B2 (en) | Storage control device, server, storage control method and program | |
WO2019140956A1 (en) | Electricity quantity metering accuracy detection method, device and computer storage medium | |
WO2022047767A1 (en) | Battery power detection method and apparatus, and portable electronic device | |
JP2018169238A (en) | Power storage controller, power storage control system, server, power storage control method, and program | |
CN103197249A (en) | Low power consumption detection circuit for battery power | |
TW201608368A (en) | Electronic device and power detection method | |
JP3913206B2 (en) | Secondary battery deterioration judgment circuit | |
TW202124986A (en) | Battery controller and battery level measurement method thereof | |
CN111551867B (en) | Battery service life detection method and device, and battery replacement reminding method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140716 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20140807 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150703 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160923 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6054788 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |