JP6052078B2 - Manufacturing method of cold rolled steel sheet with high strength and low yield ratio - Google Patents
Manufacturing method of cold rolled steel sheet with high strength and low yield ratio Download PDFInfo
- Publication number
- JP6052078B2 JP6052078B2 JP2013137841A JP2013137841A JP6052078B2 JP 6052078 B2 JP6052078 B2 JP 6052078B2 JP 2013137841 A JP2013137841 A JP 2013137841A JP 2013137841 A JP2013137841 A JP 2013137841A JP 6052078 B2 JP6052078 B2 JP 6052078B2
- Authority
- JP
- Japan
- Prior art keywords
- strength
- cold
- rolled
- steel sheet
- yield ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車の骨格部品や補強部品などに用いられる、引張強度TSが980MPa以上の高強度低降伏比冷延鋼板の製造方法に関する。 The present invention relates to a method for producing a high-strength, low-yield ratio cold-rolled steel sheet having a tensile strength TS of 980 MPa or more, which is used for automobile frame parts and reinforcing parts.
近年、自動車車体には、軽量化による燃費向上や衝突時における安全性確保のため、従来にも増して高い強度を有する薄鋼板の必要性が高まり、TSが980MPa以上の高強度鋼板が骨格部品や補強部品に使用される機会が多くなっている。これらの部品はプレス成形により製造されるため、日本鉄鋼連盟規格では低降伏比型鋼板としてTSが980MPa級(板厚1.0〜1.2mm)の冷延鋼板で、590〜930MPaの降伏強度YS、10%以上の伸びElが規定されている。さらに近年ではさらに良好な形状凍結性と加工性を確保する観点から980MPa級の強度TSで、800MPa以下の降伏強度YSで、15%以上の伸びElを有する鋼板も必要とされている。 In recent years, the need for thin steel sheets with higher strength than ever has been increasing for automobile bodies in order to improve fuel economy by reducing weight and to ensure safety in the event of a collision. There are more opportunities to be used for reinforced parts. Since these parts are manufactured by press forming, TS is a cold-rolled steel sheet with TS of 980 MPa class (thickness 1.0-1.2 mm) as a low yield ratio steel sheet according to the Japan Iron and Steel Federation standard, yield strength YS of 590-930 MPa, 10 An elongation El of more than% is specified. Further, in recent years, a steel sheet having a strength TS of 980 MPa class, a yield strength YS of 800 MPa or less, and an elongation El of 15% or more is required from the viewpoint of securing better shape freezing property and workability.
このような高強度低降伏比冷延鋼板としては、軟質のフェライト相の中に硬質のマルテンサイト相を分散させて組織強化により高強度化を図ったDP(Dual Phase)鋼板がよく知られている。しかし、上記のようなTS、El、YSを達成しようとすると、CやMnの含有量を多くせざるを得ず、溶接性の低下を招くという問題点があった。 As such a high-strength, low-yield-ratio cold-rolled steel sheet, a DP (Dual Phase) steel sheet that has a hard martensite phase dispersed in a soft ferrite phase and has been strengthened by strengthening the structure is well known. Yes. However, when trying to achieve TS, El, and YS as described above, there is a problem that the content of C and Mn must be increased, resulting in a decrease in weldability.
そこで、組織強化とTi、Nb、Vなどの微細析出物による析出強化を併用して高強度化を図った高強度低降伏比冷延鋼板が提案されている。例えば、特許文献1には、質量%で、C:0.04〜0.14%、Si:0.4〜2.2%、Mn:1.2〜2.4%、P:0.02%以下、S:0.01%以下、Al:0.002〜0.5%、Ti:0.005〜0.1%、N:0.006%以下を含有し、(%Ti)/(%S)≧5 [(%M)は元素Mの含有量を表す。以下、同様。] を満足し、残部Feおよび不可避的不純物からなる組成のスラブを、(900+50×(%Si))℃以下の仕上温度で熱間圧延し、50〜85%の圧下率で冷間圧延後、700〜900℃のフェライト相とオーステナイト相の二相共存温度域で10s〜5min焼鈍し、700〜500℃の温度域を平均冷却速度1〜120/sで250〜500℃に冷却し、必要に応じて再加熱した後、250〜600℃の温度域で30s〜10min保持してから常温まで冷却する、マルテンサイト相および残留オーステナイト相の体積率が合計で6%以上で、かつマルテンサイト相、残留オーステナイト相およびベイナイト相の硬質相組織の体積率をα%としたとき、α≦50000×(%Ti)/48であることを特徴とする穴拡げ性に優れた低降伏比高強度冷延鋼板の製造方法が開示されている。特許文献2には、質量%で、C:0.02〜0.3%、Mn:0.05〜3%を含み、SiおよびAlを合計で0.05〜3%含み、さらにTi、Nbの一種または二種を合計で0.01〜0.40%含有し、残部がFeおよび不可避的不純物からなる熱延鋼板を、熱延鋼板の集合組織に応じた圧下率で冷間圧延した後、3〜100℃/sで加熱し、Ac1変態温度〜(Ac3変態温度+150)℃の焼鈍温度にて焼鈍後、焼鈍温度から500℃以下まで1〜250℃/sの冷却速度で冷却することを特徴とする加工性と形状凍結性に優れた低降伏比型高強度冷延鋼板の製造方法が開示されている。特許文献3には、質量%で、C:0.02〜0.3%を含み、Mn:0.05〜3%、Ni:3%以下、Cr:3%以下、Cu:3%以下、Mo:1%以下、Co:3%以下、Sn:0.2%以下で、かつ、これらの一種または二種以上を、合計で0.1〜3.5%含み、Si:3%以下、Al:3%以下で、かつ、これらの一方または双方を、合計で0.02〜3%含み、さらにTi:0.4%以下、Nb:0.4%以下で、かつ、これらの一方または双方を、合計で0.01〜0.4%を含み、残部がFeおよび不可避的不純物の組成になるスラブを、Ar3変態温度〜(Ar3変態温度+150)℃における圧下率と仕上開始・終了温度を制御して熱間圧延後、ランアウトテーブルにおいて600〜700℃の温度域に0.2〜15s滞在するように冷却し、化学成分で決まる臨界温度以下で、かつ550℃以下で巻き取り、酸洗し、20〜70%の圧下率で冷間圧延した後、加熱速度3〜100℃/sで加熱し、Ac1変態温度〜Ac3変態温度の焼鈍温度にて焼鈍後、焼鈍温度から500℃以下まで1〜250℃/sの冷却速度で冷却することを特徴とする形状凍結性に極めて優れた低降伏比型高強度冷延鋼板の製造方法が開示されている。 In view of this, a high strength low yield ratio cold-rolled steel sheet has been proposed in which a high strength is achieved by using a combination of structure strengthening and precipitation strengthening by fine precipitates such as Ti, Nb, and V. For example, Patent Document 1 includes mass%, C: 0.04 to 0.14%, Si: 0.4 to 2.2%, Mn: 1.2 to 2.4%, P: 0.02% or less, S: 0.01% or less, Al: 0.002 to 0.5. %, Ti: 0.005 to 0.1%, N: 0.006% or less, and (% Ti) / (% S) ≧ 5 [(% M) represents the content of element M. The same applies hereinafter. The slab having the composition consisting of the balance Fe and inevitable impurities is hot-rolled at a finishing temperature of (900 + 50 × (% Si)) ° C. or lower, and cold-rolled at a reduction rate of 50 to 85%. After that, annealing is performed for 10 s to 5 min in the two-phase coexistence temperature range of 700 to 900 ° C. ferrite phase and austenite phase, and the 700 to 500 ° C. temperature range is cooled to 250 to 500 ° C. at an average cooling rate of 1 to 120 / s, After reheating as necessary, hold for 30 s to 10 min in the temperature range of 250 to 600 ° C and then cool to room temperature. The volume ratio of martensite phase and residual austenite phase is 6% or more in total, and martensite Low yield ratio high strength with excellent hole expansibility, characterized by α ≦ 50000 × (% Ti) / 48, where α% is the volume fraction of the hard phase structure of the phase, residual austenite phase and bainite phase A method for manufacturing a cold-rolled steel sheet is disclosed. Patent Document 2 includes, in mass%, C: 0.02 to 0.3%, Mn: 0.05 to 3%, Si and Al in total of 0.05 to 3%, and further, one or two of Ti and Nb in total. A hot-rolled steel sheet containing 0.01 to 0.40% and the balance consisting of Fe and inevitable impurities is cold-rolled at a reduction rate corresponding to the texture of the hot-rolled steel sheet, and then heated at 3 to 100 ° C./s, Ac Workability and shape freezing characterized by cooling from 1 transformation temperature to (Ac 3 transformation temperature +150) ° C annealing temperature and then cooling from annealing temperature to 500 ° C or less at a cooling rate of 1 to 250 ° C / s A method for producing a low-yield ratio type high-strength cold-rolled steel sheet having excellent properties is disclosed. Patent Document 3 includes, in mass%, C: 0.02 to 0.3%, Mn: 0.05 to 3%, Ni: 3% or less, Cr: 3% or less, Cu: 3% or less, Mo: 1% or less, Co: 3% or less, Sn: 0.2% or less, and one or more of these, including 0.1 to 3.5% in total, Si: 3% or less, Al: 3% or less, and one of these Or, both include 0.02 to 3% in total, further Ti: 0.4% or less, Nb: 0.4% or less, and one or both of these include 0.01 to 0.4% in total, the balance being Fe and inevitable The slab with the impurity composition is hot-rolled by controlling the reduction rate and finishing start / end temperature from Ar 3 transformation temperature to (Ar 3 transformation temperature +150) ° C, and then the temperature range of 600 to 700 ° C on the runout table. After cooling to 0.2 to 15 seconds at a temperature below the critical temperature determined by the chemical composition and at 550 ° C. or less, pickling, cold rolling at a rolling reduction of 20 to 70%, heating rate 3 to Heat at 100 ° C / s, Ac 1 transformation temperature to Ac 3 transformation temperature Of low yield ratio type high strength cold-rolled steel sheet with excellent shape freezing property, characterized by cooling at an annealing temperature of 1 degree to 250 ° C / s from annealing temperature to 500 ° C or less A manufacturing method is disclosed.
しかしながら、特許文献1に記載の方法で製造された低降伏比高強度冷延鋼板では、980MPa以上のTS、15%以上のEl、590〜800MPaのYSを同時に満たす鋼板は得られない。また、特許文献2や特許文献3に記載の方法で製造された低降伏比型高強度冷延鋼板では、980MPa以上のTSが得られない。 However, the low yield ratio high-strength cold-rolled steel sheet manufactured by the method described in Patent Document 1 cannot provide a steel sheet that simultaneously satisfies TS of 980 MPa or more, El of 15% or more, and YS of 590 to 800 MPa. In addition, TS of 980 MPa or more cannot be obtained with the low yield ratio type high strength cold-rolled steel sheets manufactured by the methods described in Patent Document 2 and Patent Document 3.
本発明は、溶接性に優れ、980MPa以上のTS、15%以上のEl、590〜800MPaのYS、を有する高強度低降伏比冷延鋼板を製造できる方法を提供することを目的とする。 An object of the present invention is to provide a method capable of producing a high-strength, low-yield ratio cold-rolled steel sheet having excellent weldability and having TS of 980 MPa or more, El of 15% or more, and YS of 590 to 800 MPa.
本発明者らは、上記目的とする高強度低降伏比冷延鋼板の製造方法について検討したところ、次の知見を得た。
i) C量を0.12質量%以下、Mn量を3.3質量%以下にすれば、溶接性の低下を防止できる。
ii) 0.36≧(%C)×(%Mn)≧0.13とし、Tiを0.025質量%以上添加し、かつ連続焼鈍時の昇温速度と冷却速度をTi量に応じて制御すれば、目標とするTS、El、YSを達成できる。
When the present inventors examined the manufacturing method of the said high strength low yield ratio cold-rolled steel plate made into the said objective, the following knowledge was acquired.
i) If the C content is 0.12% by mass or less and the Mn content is 3.3% by mass or less, it is possible to prevent deterioration of weldability.
ii) Set 0.36 ≧ (% C) × (% Mn) ≧ 0.13, add 0.025 mass% or more of Ti, and control the heating rate and cooling rate during continuous annealing according to the amount of Ti. Achieve TS, El, and YS.
本発明は、このような知見に基づいてなされたものであり、質量%で、C:0.05〜0.12%、Si:0.2〜2.5%、Mn:2.0〜3.3%、Al:0.1%以下およびTi:0.025〜0.100%を含有し、CとMnの含有量が下記の式(1)を満たし、残部がFeおよび不可避的不純物からなる組成を有する鋼スラブを、加熱後、熱間圧延し、次いで酸洗後、冷間圧延して冷延板とした後、該冷延板に、下記の式(2)を満たす平均昇温速度で300〜700℃の温度域を昇温し、750〜900℃の温度域に5〜600s加熱後、下記の式(3)を満たす平均冷却速度で750〜500℃の温度域を冷却する条件で、連続焼鈍を施すことを特徴とする高強度低降伏比冷延鋼板の製造方法を提供する。
0.36≧(%C)×(%Mn)≧0.13 ・・・(1)
平均昇温速度(℃/s)≧0.24/(%Ti) ・・・(2)
75≧平均冷却速度(℃/s)≧100×(%Ti)+13・・・(3)
ただし、(%M)は、上記で定義したように、元素Mの含有量(質量%)を表す。
The present invention has been made based on such findings, and in mass%, C: 0.05 to 0.12%, Si: 0.2 to 2.5%, Mn: 2.0 to 3.3%, Al: 0.1% or less, and Ti: A steel slab containing 0.025 to 0.100%, the content of C and Mn satisfies the following formula (1), and the balance is composed of Fe and inevitable impurities, is heated and then hot-rolled, and then acid After washing and cold rolling into a cold-rolled sheet, the cold-rolled sheet is heated to a temperature range of 300 to 700 ° C. at an average temperature increase rate that satisfies the following formula (2), and 750 to 900 ° C. A high-strength, low-yield specific cooling, characterized in that after annealing for 5 to 600 s in a temperature range of 750 to 500 ° C at an average cooling rate satisfying the following formula (3), continuous annealing is performed. A method for producing a rolled steel sheet is provided.
0.36 ≧ (% C) × (% Mn) ≧ 0.13 (1)
Average heating rate (℃ / s) ≧ 0.24 / (% Ti) (2)
75 ≧ Average cooling rate (℃ / s) ≧ 100 × (% Ti) +13 ... (3)
However, (% M) represents the content (mass%) of the element M as defined above.
本発明の製造方法では、さらに、質量%で、B:0.0005〜0.0050%を含有する組成の鋼スラブを用いることが好ましい。 In the production method of the present invention, it is further preferable to use a steel slab having a composition containing B: 0.0005 to 0.0050% by mass.
また、さらに、質量%で、Nb:0.008〜0.5%、Cr:0.05〜2%、Mo:0.05〜2%、P:0.05〜0.5%、V:0.05〜0.5%の中から選ばれる少なくとも1種以上を含有する組成の鋼スラブを用いることが好ましい。 Further, at least one selected from the group consisting of Nb: 0.008 to 0.5%, Cr: 0.05 to 2%, Mo: 0.05 to 2%, P: 0.05 to 0.5%, and V: 0.05 to 0.5% in mass%. It is preferable to use a steel slab having a composition containing the above.
また、下記の式(4)を満たす平均昇温速度で300〜700℃の温度域を昇温することが好ましい。
平均昇温速度(℃/s)≧0.5/(%Ti) ・・・(4)
さらに、連続焼鈍の加熱時の最高温度をTM(℃)としたとき、TM〜0.98×TM℃の温度域を平均冷却速度0.2〜5℃/sで冷却することが好ましい。
Moreover, it is preferable to heat up the temperature range of 300-700 degreeC with the average temperature increase rate which satisfy | fills following formula (4).
Average heating rate (℃ / s) ≧ 0.5 / (% Ti) (4)
Furthermore, when the maximum temperature during continuous annealing is T M (° C.), it is preferable to cool the temperature range of T M to 0.98 × T M ° C. at an average cooling rate of 0.2 to 5 ° C./s.
本発明により、溶接性に優れ、980MPa以上のTS、15%以上のEl、590〜800MPaのYSを有する高強度低降伏比冷延鋼板を製造できるようになった。例えばTSが980MPaの場合、0.59〜0.82の降伏比(YR)を達成できる高強度低降伏比冷延鋼板を製造できるようになった。本発明により製造された高強度低降伏比冷延鋼板は、自動車の骨格部品や補強部品などに好適である。 According to the present invention, it is possible to produce a high-strength, low-yield ratio cold-rolled steel sheet having excellent weldability, TS of 980 MPa or more, El of 15% or more, and YS of 590 to 800 MPa. For example, when TS is 980 MPa, it has become possible to produce a cold rolled steel sheet having a high strength and a low yield ratio that can achieve a yield ratio (YR) of 0.59 to 0.82. The high-strength, low-yield ratio cold-rolled steel sheet produced according to the present invention is suitable for automobile frame parts and reinforcing parts.
以下に、本発明の詳細を説明する。 Details of the present invention will be described below.
1) 組成
以下、成分元素の含有量の単位である%は、質量%を意味するものとする。
1) Composition In the following,%, which is a unit of content of component elements, means mass%.
C:0.05〜0.12%
Cは、鋼中にマルテンサイト相や残留オーステナイト相を形成させて組織強化を図るために必須の元素である。C量を増加させることで強度を高め、残留オーステナイトの形成を促進して伸びを向上させることが可能であるが、その量が0.05%に満たないとこのような効果が発現しない。一方、C量が0.12%を超えると溶接部の強度が低下し、溶接性の低下を招く。したがって、C量は0.05〜0.12%とする。
C: 0.05-0.12%
C is an essential element for strengthening the structure by forming a martensite phase and a retained austenite phase in steel. It is possible to increase the strength by increasing the amount of C and promote the formation of retained austenite to improve the elongation. However, if the amount is less than 0.05%, such an effect does not appear. On the other hand, when the C content exceeds 0.12%, the strength of the welded portion is lowered, resulting in a decrease in weldability. Therefore, the C content is 0.05 to 0.12%.
Si:0.2〜2.5%
Siの添加により延性の低下を抑制しつつ強度を高めることが可能である。Siは、また、オーステナイト相中のC濃度を増やしてマルテンサイト相の強度を高め、低降伏比化を促進する。本発明のようにC量を制限した上で強度を確保するには、Si量を0.2%以上にする必要がある。一方、Si量が2.5%を超えるとYSが800MPaを超えるとともに、化成処理性の劣化を招く。したがって、Si量は0.2〜2.5%とする。
Si: 0.2-2.5%
By adding Si, it is possible to increase the strength while suppressing a decrease in ductility. Si also increases the C concentration in the austenite phase to increase the strength of the martensite phase and promote a lower yield ratio. In order to secure strength while limiting the amount of C as in the present invention, the amount of Si needs to be 0.2% or more. On the other hand, when the Si content exceeds 2.5%, YS exceeds 800 MPa and chemical conversion processability deteriorates. Therefore, the Si content is 0.2 to 2.5%.
Mn:2.0〜3.3%
Mnは、Cとともに鋼の焼入れ性を向上させる元素であり、含有量に応じてマルテンサイト相の量を増加して高強度化を図れる。980MPa以上のTSと590〜800MPaのYSを確保する観点から、少なくとも2.0%のMn量が必要である。一方、Mn量が3.3%を超えると溶接性の低下やYSの過度の上昇を招く。したがって、Mn量は2.0〜3.3%、望ましくは2.3〜3.3%とする。
Mn: 2.0-3.3%
Mn is an element that improves the hardenability of steel together with C, and can increase the strength by increasing the amount of martensite phase according to the content. From the viewpoint of securing TS of 980 MPa or more and YS of 590 to 800 MPa, at least 2.0% of Mn content is necessary. On the other hand, if the amount of Mn exceeds 3.3%, weldability is deteriorated and YS is excessively increased. Therefore, the Mn content is 2.0 to 3.3%, preferably 2.3 to 3.3%.
0.36≧(%C)×(%Mn)≧0.13
本発明では溶接性の確保の観点からCとMn量を制限しているため、上記の範囲にC量とMn量を制御しても、(%C)×(%Mn)が0.13未満では980MPa以上のTSが得られない。また、(%C)×(%Mn)が0.36を超えるとYSを590〜800MPaに制御できなくなる。したがって、0.36≧(%C)×(%Mn)≧0.13とする。
0.36 ≧ (% C) × (% Mn) ≧ 0.13
In the present invention, the amount of C and Mn is limited from the viewpoint of ensuring weldability. Therefore, even if the amount of C and Mn is controlled within the above range, if (% C) × (% Mn) is less than 0.13, 980 MPa The above TS cannot be obtained. If (% C) × (% Mn) exceeds 0.36, YS cannot be controlled to 590 to 800 MPa. Therefore, 0.36 ≧ (% C) × (% Mn) ≧ 0.13.
Al:0.1%以下
Alは、鋼の脱酸のために必要であるとともに、フェライト相を強化する。この効果を利用するにはAl量は0.01%以上とすることが好ましい。しかし、その量が0.1%を超えると粗大な介在物が増加して成形性の劣化を招く。したがって、Al量は0.1%以下とする必要がある。
Al: 0.1% or less
Al is necessary for deoxidation of steel and strengthens the ferrite phase. In order to utilize this effect, the Al content is preferably 0.01% or more. However, if the amount exceeds 0.1%, coarse inclusions increase and formability deteriorates. Therefore, the Al amount needs to be 0.1% or less.
Ti:0.025〜0.100%
Tiは、溶接性を低下させる作用が小さいので、溶接性確保の観点からCやMn量を制限したことによる強度不足を補強するために有効な元素である。詳細は後述するが、本発明においては、Ti量に応じて連続焼鈍時の昇温速度や冷却速度を制御することにより目標とするTS、El、YSが達成される。このような効果を得るために、Ti量は0.025%以上にする必要がある。一方、Ti量が0.100%を超えるとYSが過度に上昇し、低降伏比を達成することが困難になる。したがって、Ti量は0.025〜0.100%とする。
Ti: 0.025-0.100%
Since Ti has a small effect on reducing weldability, Ti is an effective element to reinforce strength deficiencies caused by limiting the amount of C and Mn from the viewpoint of securing weldability. Although details will be described later, in the present invention, the target TS, El, and YS are achieved by controlling the heating rate and cooling rate during continuous annealing according to the Ti amount. In order to obtain such an effect, the Ti amount needs to be 0.025% or more. On the other hand, if the Ti content exceeds 0.100%, YS increases excessively, making it difficult to achieve a low yield ratio. Therefore, the Ti amount is 0.025 to 0.100%.
残部はFeおよび不可避的不純物であるが、以下の理由でB:0.0005〜0.0050%を含有させることが好ましく、また、Nb:0.008〜0.5%、Cr:0.05〜2%、Mo:0.05〜2%、P:0.05〜0.5%、V:0.05〜0.5%の中から選ばれる少なくとも1種以上を含有させることが好ましい。 The balance is Fe and inevitable impurities, but it is preferable to contain B: 0.0005 to 0.0050% for the following reasons, and Nb: 0.008 to 0.5%, Cr: 0.05 to 2%, Mo: 0.05 to 2% , P: 0.05 to 0.5%, V: 0.05 to 0.5%, preferably at least one selected from the group consisting of 0.05 to 0.5%.
B:0.0005〜0.0050%
Bは、結晶粒界に偏析して強度を高めるが、溶接性に対する影響が小さいので、鋼の高強度化には有効な元素である。しかし、B量が0.0005%に満たないと高強度化の作用に乏しく、0.0050%を超えるとその作用が飽和するだけでなく、成形性の劣化を招く。したがって、B量は0.0005〜0.0050%とすることが好ましい。
B: 0.0005-0.0050%
B segregates at the grain boundaries to increase the strength, but has a small effect on weldability and is therefore an effective element for increasing the strength of steel. However, if the amount of B is less than 0.0005%, the effect of increasing the strength is poor, and if it exceeds 0.0050%, the effect is not only saturated but also the moldability is deteriorated. Therefore, the B amount is preferably 0.0005 to 0.0050%.
Nb:0.008〜0.5%、Cr:0.05〜2%、Mo:0.05〜2%、P:0.05〜0.5%、V:0.05〜0.5%の中から選ばれる少なくとも1種以上
Nb、Cr、Mo、P、Vは、鋼の高強度化に有効な元素である。このような作用を得る上で、各々、Nb量は0.008%以上、Cr量は0.05%以上、Mo量は0.05%以上、P量は0.05%以上、V量は0.05%以上とすることが好ましい。しかしながら、Nb量が0.5%超え、Cr量が2%超え、Mo量が2%超え、P量が0.5%超え、V量が0.5%超えとなると、鋼中に粗大な析出物が生じて伸びが低下する。従って、Nb量は0.008〜0.5%、Cr量は0.05〜2%、Mo量は0.05〜2%、P量は0.05〜0.5%、V:量は0.05〜0.5%とし、少なくとも一種以上含有させることが好ましい。
At least one selected from Nb: 0.008 to 0.5%, Cr: 0.05 to 2%, Mo: 0.05 to 2%, P: 0.05 to 0.5%, V: 0.05 to 0.5%
Nb, Cr, Mo, P and V are effective elements for increasing the strength of steel. In obtaining such actions, the Nb content is preferably 0.008% or more, the Cr content is 0.05% or more, the Mo content is 0.05% or more, the P content is 0.05% or more, and the V content is preferably 0.05% or more. . However, when the Nb content exceeds 0.5%, the Cr content exceeds 2%, the Mo content exceeds 2%, the P content exceeds 0.5%, and the V content exceeds 0.5%, coarse precipitates are formed in the steel and the elongation is increased. Decreases. Therefore, the Nb amount is 0.008 to 0.5%, the Cr amount is 0.05 to 2%, the Mo amount is 0.05 to 2%, the P amount is 0.05 to 0.5%, and the V: amount is 0.05 to 0.5%. Is preferred.
なお、不可避的不純物としては、S:0.008%以下、N:0.008%以下や、P、Crを積極的に含有させない場合は、P:0.04%以下、Cr:0.04%以下も挙げることができる。 Inevitable impurities include S: 0.008% or less, N: 0.008% or less, or P: 0.04% or less and Cr: 0.04% or less when P and Cr are not actively contained.
2) 連続焼鈍条件
本発明では、上記組成を有する鋼スラブを、通常行われている条件で、加熱後、熱間圧延し、次いで酸洗後、冷間圧延して冷延板とし、以下の条件で連続焼鈍を施す。
2) Continuous annealing conditions In the present invention, the steel slab having the above composition is heated, hot-rolled under normal conditions, then pickled, then cold-rolled into a cold-rolled sheet, and the following Continuous annealing is performed under conditions.
2-1) 昇温条件:300〜700℃の温度域において、平均昇温速度(℃/s)≧0.24/(%Ti) [式(2)]
目標とするTSとYSを得るために、300〜700℃の平均昇温速度を式(2)のようにTi量に応じて制御する必要がある。
2-1) Temperature increase condition: Average temperature increase rate (° C / s) ≧ 0.24 / (% Ti) in the temperature range of 300 to 700 ° C [Formula (2)]
In order to obtain the target TS and YS, it is necessary to control the average heating rate of 300 to 700 ° C. according to the amount of Ti as shown in Equation (2).
この理由は以下のように考えられる。一般に、昇温過程においては、転位を多く含む未再結晶組織はオーステナイト変態を促進する作用を有するが、フェライト/オーステナイト変態温度以下の温度域の滞留時間が長くなると、転位の解放が進む結果、オーステナイト変態量が低下し、冷却時に生成するマルテンサイト相が減少して最終的な強度が低下する。これに対して、本発明のようにTiを添加すると、Tiは微細析出物を形成し、再結晶を抑制する作用を有するため、未再結晶組織を高温まで残存させやすくするため、オーステナイト変態量を増加させることが可能になり、最終的な強度を安定して高めることができる。したがって、変態温度以下で転位の解放が進行する300〜700℃間の温度域の昇温速度を、Ti量が少なくなって析出物の量が少なくなる場合には速くする、すなわち式(2)のように制御することにより、オーステナイト変態量を増加でき、目標とするTSとYSが得られることになる。一方、平均昇温速度(℃/s)<0.24/(%Ti)では、フェライト/オーステナイト変態温度以下の温度域の滞留時間が長くなり、オーステナイト変態量が低下して目標とするTSとYSが得られない。 The reason is considered as follows. In general, in the temperature rising process, an unrecrystallized structure containing a lot of dislocations has an action of promoting austenite transformation, but when the residence time in the temperature range below the ferrite / austenite transformation temperature is increased, dislocation release proceeds, The austenite transformation amount decreases, the martensite phase generated during cooling decreases, and the final strength decreases. On the other hand, when Ti is added as in the present invention, Ti forms fine precipitates and has the action of suppressing recrystallization, so that the unrecrystallized structure can easily remain up to a high temperature. Can be increased, and the final strength can be stably increased. Therefore, the temperature increase rate in the temperature range between 300 to 700 ° C. where dislocation release proceeds below the transformation temperature is increased when the amount of Ti decreases and the amount of precipitates decreases, that is, the formula (2) By controlling in this way, the amount of austenite transformation can be increased, and target TS and YS can be obtained. On the other hand, when the average heating rate (° C / s) <0.24 / (% Ti), the residence time in the temperature range below the ferrite / austenite transformation temperature becomes longer, the austenite transformation amount decreases, and the target TS and YS are reduced. I can't get it.
なお、より高いTSで、低YSを達成するには、平均昇温速度(℃/s)≧0.5/(%Ti) [式(4)] とすることが好ましい。 In order to achieve low YS with a higher TS, it is preferable to satisfy the average rate of temperature increase (° C./s)≧0.5/(% Ti) [Formula (4)].
2-2) 加熱条件:750〜900℃の温度域で5〜600s
本発明では、高強度化と低降伏比のためにフェライト相中にマルテンサイト相を分散させた二相組織の形成が必要である。そのため、加熱温度は、フェライト相とオーステナイト相の二相が共存する750〜900℃の温度域に加熱する必要がある。しかし、加熱時間が5sに満たないとオーステナイト変態が十分に進行せず、マルテンサイト相が生成されなくなり、また、600sを超えるとオーステナイト組織が粗大化し、粗いフェライト相とマルテンサイト相の二相組織となりElが低下するので、加熱時間は5〜600sとする。
2-2) Heating conditions: 5 to 600 s in the temperature range of 750 to 900 ° C
In the present invention, it is necessary to form a two-phase structure in which the martensite phase is dispersed in the ferrite phase in order to increase the strength and reduce the yield ratio. Therefore, the heating temperature needs to be heated to a temperature range of 750 to 900 ° C. where two phases of the ferrite phase and the austenite phase coexist. However, if the heating time is less than 5 s, the austenite transformation does not proceed sufficiently and the martensite phase is not generated, and if it exceeds 600 s, the austenite structure becomes coarse and the two-phase structure of the coarse ferrite phase and the martensite phase Since El decreases, the heating time is 5 to 600 s.
2-3) 冷却条件:750〜500℃の温度域において、75≧平均冷却速度(℃/s)≧100×(%Ti)+13 [式(3)]
図1にC:0.090%、Si:1.0%、Mn:2.0%、Al:0.04%、B:0.0008%を含有し、Ti添加量を種々変化させた鋼塊を熱間圧延後、冷間圧延(冷延率50%)して板厚1.2mmとしてから、300℃〜700℃の昇温速度を10℃/s、750〜900℃の保持時間を100秒とした焼鈍において、冷却過程の750〜500℃間の冷却速度を17℃/sしたときのTi添加量とYS、TSの関係を示す。
2-3) Cooling condition: 75 ≧ average cooling rate (℃ / s) ≧ 100 × (% Ti) +13 in the temperature range of 750 to 500 ℃ [Formula (3)]
Fig. 1 shows C: 0.090%, Si: 1.0%, Mn: 2.0%, Al: 0.04%, B: 0.0008%, steel ingots with various additions of Ti, after hot rolling, cold rolling (Annealing rate of 50%) After setting the sheet thickness to 1.2 mm, annealing was performed at 750 to 700 ° C. during annealing at a heating rate of 300 ° C. to 700 ° C. at 10 ° C./s and a holding time of 750 to 900 ° C. for 100 seconds. The relationship between Ti addition amount, YS, and TS when the cooling rate between ~ 500 ° C is 17 ° C / s is shown.
図1に示すように、Ti量の増加に応じて降伏強度と引張強度が増加するが、TS、YSの両方が目標範囲に入るTi添加量はごく限られた範囲であり、実質的に安定的な製造は不可能である。一方、図2は冷却過程の750〜500℃間の冷却速度を本発明に適合するようにTi添加量に応じて19℃/sおよび25℃/sとした場合の結果である。この図に示すように、750〜500℃の冷却速度をTi添加量に応じて適正に制御することにより適正な引張強度と降伏強度を得ることが可能になる。したがって、Ti量に応じて式(3)のように750〜500℃の冷却速度を100×(%Ti)+13(℃/s)以上に制御することにより、適正な引張強度と降伏強度が得られることになる。 As shown in Fig. 1, the yield strength and tensile strength increase as the Ti content increases, but the amount of Ti added for both TS and YS to be in the target range is very limited and practically stable. Production is impossible. On the other hand, FIG. 2 shows the results when the cooling rate between 750 and 500 ° C. in the cooling process is set to 19 ° C./s and 25 ° C./s according to the amount of added Ti so as to conform to the present invention. As shown in this figure, it is possible to obtain appropriate tensile strength and yield strength by appropriately controlling the cooling rate of 750 to 500 ° C. according to the amount of added Ti. Therefore, by controlling the cooling rate of 750-500 ° C to 100 × (% Ti) +13 (° C / s) or more according to the amount of Ti, proper tensile strength and yield strength can be achieved. Will be obtained.
この理由は以下のように推定される。すなわち、フェライト/オーステナイト2相域に加熱した後に冷却して鋼中に分散したマルテンサイト組織を得る際、高温域でCが濃化しているオーステナイト相からフェライト相へのCの拡散を極力抑制することでマルテンサイトとフェライトの硬度差が大きくなり、降伏強度が低下すると考えられる。一方、Ti添加量の増加に従って高温域でのフェライト/オーステナイト組織が微細になるので、冷却過程ではオーステナイト相からのCの拡散をより強く抑制する必要が生じ、高い冷却速度が適正となると考えられる。このような効果をえるために、オーステナイト相が生成している750℃付近からCの拡散速度が十分低下する500℃程度の温度域の冷却速度を100×(%Ti)+13(℃/s)以上に制御するのがよい。 The reason for this is estimated as follows. In other words, when obtaining a martensite structure dispersed in steel after being heated to a ferrite / austenite two-phase region and then cooled, the diffusion of C from the austenite phase, where C is concentrated in the high temperature range, to the ferrite phase is minimized. Therefore, it is considered that the hardness difference between martensite and ferrite increases and the yield strength decreases. On the other hand, since the ferrite / austenite structure becomes finer in the high temperature region as the Ti content increases, it is necessary to suppress the diffusion of C from the austenite phase more strongly in the cooling process, and a high cooling rate is considered appropriate. . In order to obtain such an effect, the cooling rate in the temperature range of about 500 ° C where the diffusion rate of C decreases sufficiently from around 750 ° C where the austenite phase is generated is 100 × (% Ti) + 13 (° C / s It is better to control as above.
本発明には、特許文献1〜3の実施例にみられるほどに冷却速度を速くしなくても目標とするTS、El、YSが得られるという利点がある。冷却速度が速くなりすぎると、目標とするYSが得られないばかりか、鋼板の形状が不良となるので、冷却速度は75℃/s以下にする必要がある。 The present invention has an advantage that the target TS, El, and YS can be obtained without increasing the cooling rate as seen in Examples of Patent Documents 1 to 3. If the cooling rate becomes too fast, the target YS cannot be obtained, and the shape of the steel sheet becomes poor, so the cooling rate needs to be 75 ° C./s or less.
よって、750〜500℃の温度域における平均冷却速度(℃/s)は、100×(%Ti)+13(℃/s)以上、75(℃/s)以下とする。 Therefore, the average cooling rate (° C./s) in the temperature range of 750 to 500 ° C. is set to 100 × (% Ti) +13 (° C./s) or more and 75 (° C./s) or less.
また、より高いElを確保するためには、加熱時に最高温度TM℃から0.98×TM℃までの温度域を平均冷却速度0.2〜5℃/sで冷却することが好ましい。この理由は、加熱時に再固溶されたTiが冷却時に析出し始める時点で徐冷することで、析出物の分散が均一になり、より高いElが得られるためと考えられる。 Moreover, in order to ensure higher El, it is preferable to cool the temperature range from the maximum temperature T M ° C to 0.98 × T M ° C during heating at an average cooling rate of 0.2 to 5 ° C / s. The reason for this is thought to be that when Ti re-dissolved during heating begins to precipitate at the time of cooling, the precipitate is uniformly dispersed and higher El is obtained.
なお、上記の連続焼鈍時の冷却後、250〜450℃で50〜800sの熱処理(焼戻し処理)を加えるとマルテンサイト相が焼き戻され、Elのさらなる向上や穴広げ性の改善を図ることができる。 In addition, if the heat treatment (tempering treatment) is performed at 250 to 450 ° C. for 50 to 800 s after cooling during the above-described continuous annealing, the martensite phase is tempered, and further improvement of El and improvement of hole expandability can be achieved. it can.
また、連続焼鈍後の鋼板には、耐食性を向上さるために、溶融亜鉛めっき、合金化亜鉛めっき、電気亜鉛めっきなどのめっきを施すことも可能である。 Moreover, in order to improve corrosion resistance, the steel plate after continuous annealing can be subjected to plating such as hot dip galvanizing, alloying galvanizing, and electrogalvanizing.
また、連続焼鈍後の鋼板には、形状矯正などのため、常法に従いスキンパス圧延を行ってもよい。 Further, the steel plate after continuous annealing may be subjected to skin pass rolling according to a conventional method for shape correction or the like.
表1に示す組成の鋼スラブA〜AIを1250℃に加熱後、熱間圧延して3.5mmの熱延板とし、酸洗後、冷間圧延により1.4mmの冷延板とした。次いで、冷延板を、表2に示す焼鈍条件にて連続焼鈍後、250℃まで冷却した時点で同温度で240sの熱処理(焼戻し処理)を施し、スキンパス圧延を行って冷延鋼板No.1〜72を作製した。なお、一部は焼戻し処理を行わなかった。そして、冷延鋼板から圧延方向と直角方向のJIS 5号試験片を採取し、JIS Z 2241に準拠して引張試験を行い、YS、TS、Elを求めた。 Steel slabs A to AI having the composition shown in Table 1 were heated to 1250 ° C. and hot-rolled to give a 3.5 mm hot-rolled sheet, and after pickling, cold-rolled to a 1.4 mm cold-rolled sheet. Next, the cold-rolled sheet was continuously annealed under the annealing conditions shown in Table 2, and when it was cooled to 250 ° C., it was subjected to a heat treatment (tempering process) for 240 s at the same temperature, subjected to skin pass rolling, and cold-rolled steel sheet No. 1 ~ 72 were made. In addition, a part of the tempering treatment was not performed. Then, JIS No. 5 test pieces in the direction perpendicular to the rolling direction were taken from the cold-rolled steel sheet and subjected to a tensile test according to JIS Z 2241 to obtain YS, TS, and El.
結果を表2〜4に示す。 The results are shown in Tables 2-4.
本発明例は、いずれもTSが980MPa以上、Elが15%以上、YSが590〜800MPaである高強度低降伏比冷延鋼板であることがわかる。特に、上記式(4)を満たす平均昇温速度で昇温するとより高いTSが得られ、TSの割に低いYSとなっていることがわかる。 It can be seen that all of the inventive examples are high strength and low yield ratio cold rolled steel sheets having TS of 980 MPa or more, El of 15% or more, and YS of 590 to 800 MPa. In particular, it can be seen that when the temperature is increased at an average temperature increase rate that satisfies the above formula (4), a higher TS is obtained and the YS is lower than the TS.
表1のWの鋼スラブを1250℃に加熱後、熱間圧延して3.0mmの熱延板とし、酸洗後、冷間圧延により1.0mmの冷延板とした。次いで、冷延板を、表5に示す焼鈍条件にて連続焼鈍後、450℃で60秒保持する焼戻し処理を施し、亜鉛めっき浴に浸漬させた後、550℃で30sのめっき層の合金化処理を施し、スキンパス圧延して亜鉛めっき鋼板No.w1〜w21を作製した。これら亜鉛めっき鋼板について、実施例1と同様な方法でYS、TS、Elを求めた。 A steel slab of W in Table 1 was heated to 1250 ° C. and hot-rolled to obtain a 3.0 mm hot-rolled sheet, and after pickling, a cold-rolled sheet having a thickness of 1.0 mm was obtained. Next, the cold-rolled sheet is continuously annealed under the annealing conditions shown in Table 5, and then subjected to a tempering treatment that is held at 450 ° C. for 60 seconds, immersed in a galvanizing bath, and then alloyed with a plating layer of 30 s at 550 ° C. The galvanized steel sheets No. w1 to w21 were prepared by performing the treatment and performing the skin pass rolling. For these galvanized steel sheets, YS, TS, and El were determined in the same manner as in Example 1.
結果を表5に示す。 The results are shown in Table 5.
本発明例は、いずれもTSが980MPa以上、Elが15%以上、YSが590〜800MPaである高強度低降伏比亜鉛めっき鋼板であることがわかる。特に、上記式(4)を満たす平均昇温速度で昇温するとより高いTSが得られ、TSの割に低いYSとなっており、なかでも、TM℃から0.98×TM℃までの温度域を平均冷却速度0.2〜5℃/sで冷却するとより高いElが得られることがわかる。 It can be seen that all the inventive examples are high strength and low yield ratio galvanized steel sheets having TS of 980 MPa or more, El of 15% or more, and YS of 590 to 800 MPa. In particular, when the temperature is increased at an average temperature increase rate that satisfies the above formula (4), a higher TS is obtained, which is YS lower than TS, and in particular, temperatures from T M ° C to 0.98 × T M ° C It can be seen that higher El is obtained when the zone is cooled at an average cooling rate of 0.2 to 5 ° C./s.
Claims (5)
0.36≧(%C)×(%Mn)≧0.13 ・・・(1)
平均昇温速度(℃/s)≧0.24/(%Ti) ・・・(2)
75≧平均冷却速度(℃/s)≧100×(%Ti)+13・・・(3)
ただし、(%M)は元素Mの含有量(質量%)を表す。 In mass%, C: 0.05-0.090%, Si: 0.5-2.5%, Mn: 2.3-3.3%, Al: 0.1% or less and Ti: 0.025-0.100%, and the contents of C and Mn are as follows: A steel slab satisfying the formula (1) and having the balance consisting of Fe and inevitable impurities is heated, hot-rolled, then pickled, cold-rolled into a cold-rolled sheet, After heating the temperature range of 300-700 ° C at an average temperature increase rate satisfying the following formula (2) on the rolled plate and heating it to the temperature range of 750-900 ° C for 5-600 s, the following formula (3) A tensile strength is 980 MPa or more, a yield strength is 590 to 800 MPa, and an elongation is 15% or more , characterized in that continuous annealing is performed under the condition of cooling a temperature range of 750 to 500 ° C. at an average cooling rate to be satisfied. A method for producing a cold rolled steel sheet having a high strength and low yield ratio;
0.36 ≧ (% C) × (% Mn) ≧ 0.13 (1)
Average heating rate (℃ / s) ≧ 0.24 / (% Ti) (2)
75 ≧ Average cooling rate (℃ / s) ≧ 100 × (% Ti) +13 ... (3)
However, (% M) represents the content (mass%) of the element M.
平均昇温速度(℃/s)≧0.5/(%Ti) ・・・(4) The high-strength, low-yield ratio cold-rolled steel sheet according to any one of claims 1 to 3, wherein the temperature range of 300 to 700 ° C is increased at an average temperature increase rate that satisfies the following formula (4): Manufacturing method of
Average heating rate (℃ / s) ≧ 0.5 / (% Ti) (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013137841A JP6052078B2 (en) | 2012-07-04 | 2013-07-01 | Manufacturing method of cold rolled steel sheet with high strength and low yield ratio |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012150282 | 2012-07-04 | ||
JP2012150282 | 2012-07-04 | ||
JP2013137841A JP6052078B2 (en) | 2012-07-04 | 2013-07-01 | Manufacturing method of cold rolled steel sheet with high strength and low yield ratio |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014029021A JP2014029021A (en) | 2014-02-13 |
JP6052078B2 true JP6052078B2 (en) | 2016-12-27 |
Family
ID=50201757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013137841A Active JP6052078B2 (en) | 2012-07-04 | 2013-07-01 | Manufacturing method of cold rolled steel sheet with high strength and low yield ratio |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6052078B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170348790A1 (en) * | 2015-02-02 | 2017-12-07 | Jfe Steel Corporation | Steel sheet assembly, method of manufacturing steel sheet assembly, and spot welding process |
JP6048625B1 (en) * | 2015-03-03 | 2016-12-21 | Jfeスチール株式会社 | High strength steel plate and manufacturing method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4351465B2 (en) * | 2003-04-15 | 2009-10-28 | 新日本製鐵株式会社 | Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same |
JP5320681B2 (en) * | 2007-03-19 | 2013-10-23 | Jfeスチール株式会社 | High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet |
JP5194878B2 (en) * | 2007-04-13 | 2013-05-08 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same |
JP5256690B2 (en) * | 2007-10-25 | 2013-08-07 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same |
US8128762B2 (en) * | 2008-08-12 | 2012-03-06 | Kobe Steel, Ltd. | High-strength steel sheet superior in formability |
JP4924730B2 (en) * | 2009-04-28 | 2012-04-25 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability, weldability and fatigue characteristics and method for producing the same |
JP5434960B2 (en) * | 2010-05-31 | 2014-03-05 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in bendability and weldability and method for producing the same |
-
2013
- 2013-07-01 JP JP2013137841A patent/JP6052078B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014029021A (en) | 2014-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9617614B2 (en) | Method for manufacturing high strength steel sheet having excellent formability | |
JP6443593B1 (en) | High strength steel sheet | |
US20180023171A1 (en) | Steel sheet for warm press forming, warm-pressed member, and manufacturing methods thereof | |
CN110073026B (en) | High-strength cold-rolled steel sheet and hot-dip galvanized steel sheet having excellent yield strength, ductility and hole expansibility, and methods for producing same | |
JP4995109B2 (en) | High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same | |
CN111315908A (en) | Cold-rolled steel sheet and method for producing same | |
WO2013150669A1 (en) | Galvannealed hot-rolled steel sheet and method for manufacturing same | |
WO2011118421A1 (en) | Method for producing high-strength steel plate having superior deep drawing characteristics | |
JP4855442B2 (en) | Low yield ratio alloyed hot dip galvanized high strength steel sheet manufacturing method | |
KR20120121811A (en) | High strength steel sheet and method of manufacturing the steel sheet | |
JP2023547102A (en) | Ultra-high strength steel plate with excellent ductility and its manufacturing method | |
JP6221424B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP2023071938A (en) | High strength steel sheet having excellent ductility and workability, and method for manufacturing the same | |
KR20130143278A (en) | High strength steel sheet with excellent plating and bending properties and method of manufacturing the same | |
CN113840930A (en) | Cold rolled and coated steel sheet and method for manufacturing the same | |
JP6052078B2 (en) | Manufacturing method of cold rolled steel sheet with high strength and low yield ratio | |
JP4679195B2 (en) | Low yield ratio high tension hot dip galvanized steel sheet manufacturing method | |
JP4930393B2 (en) | Cold rolled steel sheet manufacturing method | |
JP5531737B2 (en) | Low yield ratio type alloyed hot dip galvanized high strength steel sheet with excellent ductility and hole expansibility | |
JP2016194135A (en) | High strength high ductility steel sheet excellent in production stability, manufacturing method thereof and cold rolled original sheet used for manufacturing high strength high ductility steel sheet | |
JP2024535108A (en) | Cold-rolled heat-treated steel sheet and its manufacturing method | |
WO2014086799A1 (en) | A cold-rolled and continuously annealed high strength steel strip or sheet having a good deep-drawability and a method for producing said steel strip or sheet | |
JP2012237069A (en) | High-strength cold-rolled steel sheet with excellent manufacturing stability, and method of manufacturing the same | |
KR20100047000A (en) | High-strength steel sheet having excellent galvanizing property, and method for producing the same | |
JP2009221556A (en) | Method for producing high-strength cold-rolled steel sheet excellent in deep-drawability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160607 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160729 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6052078 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |