[go: up one dir, main page]

JP6050912B1 - How to prevent cracks in drawn products of high-strength steel sheets - Google Patents

How to prevent cracks in drawn products of high-strength steel sheets Download PDF

Info

Publication number
JP6050912B1
JP6050912B1 JP2016125509A JP2016125509A JP6050912B1 JP 6050912 B1 JP6050912 B1 JP 6050912B1 JP 2016125509 A JP2016125509 A JP 2016125509A JP 2016125509 A JP2016125509 A JP 2016125509A JP 6050912 B1 JP6050912 B1 JP 6050912B1
Authority
JP
Japan
Prior art keywords
drawn
heating
drawn product
steel sheet
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016125509A
Other languages
Japanese (ja)
Other versions
JP2017226901A (en
Inventor
泰二 久司
泰二 久司
Original Assignee
東洋スチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋スチール株式会社 filed Critical 東洋スチール株式会社
Priority to JP2016125509A priority Critical patent/JP6050912B1/en
Application granted granted Critical
Publication of JP6050912B1 publication Critical patent/JP6050912B1/en
Publication of JP2017226901A publication Critical patent/JP2017226901A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

【課題】高張力鋼板の絞り加工品に発生する置き割れの防止方法を提供する。【解決手段】引張強度が400MPa〜800MPaの高張力鋼板を第1次的又は試作的に絞り加工して、その絞り加工品の置き割れ発生部位(P)を予じめ特定しておき、上記高張力鋼板を同じ第2次的又は本格的な絞り加工後に、その絞り加工品の予じめ特定しておいた上記部位(P)のみを、その切断面の光学顕微鏡写真に焼入れ状態の加熱部(a)並びに非焼入れ状態の未加熱残存部(b)と異なる組織変化の中間層である境界(c)が板面(d)とほぼ平行な方向(H−H)に沿って延在する帯状に表出するまで部分加熱する。【選択図】図1An object of the present invention is to provide a method for preventing cracks occurring in a drawn product of a high-tensile steel plate. A high-strength steel sheet having a tensile strength of 400 MPa to 800 MPa is first or prototypely drawn, and a place where a crack (P) occurs in the drawn product is specified in advance. After the same secondary or full-scale drawing of a high-tensile steel plate, only the part (P) that has been specified in advance of the drawn product is quenched in the optical micrograph of the cut surface. The boundary (c), which is an intermediate layer of a structure change different from the part (a) and the non-quenched unheated remaining part (b), extends along a direction (HH) substantially parallel to the plate surface (d). Partially heat until it appears as a strip. [Selection] Figure 1

Description

本発明は高張力鋼板を絞り加工した製品の置き割れ防止方法に関する。   The present invention relates to a method for preventing cracks in a product obtained by drawing a high-tensile steel plate.

一般に、プレス金型により金属板の絞り加工を行う場合、その加工次第によっては素材の内部に引張応力が残留し、そのため加工後数時間から数日間放置している間に、その絞り加工品の開口端部から自然に亀裂が発生する現象(置き割れ、時期割れ又は時効割れという)や、腐食、溶接、酸洗い、電気メッキなどの工程における水素吸収による破壊(遅れ破壊やメッキ割れという)が起る問題がある。   Generally, when a metal plate is drawn by a press die, depending on the processing, a tensile stress may remain inside the material, so that the drawn product may be left for several hours to several days after processing. Phenomenon in which cracks occur naturally from the open end (called cracks, time cracks or aging cracks), and damage due to hydrogen absorption in processes such as corrosion, welding, pickling and electroplating (called delayed fractures and plating cracks) There are problems that occur.

特に、高張力鋼板は炭素(C)のほかに、ニッケル(Ni)やシリコン(Si)、マンガン(Mn)などの合金元素を添加し、その熱処理工程を工夫することによって、高い引張強度を得ており、軽量化にも役立つため、広く使用されつつあるが、一般鋼に比して延性が低いため、プレス金型による絞り加工上の大きな制約が伴い、割れなどの加工不良を生じやすい。加工時に割れなどの不良品を発生せず、良好な加工品を得られたとしても、その後に上記置き割れやメッキ割れ、遅れ破壊などが起るので、厄介である。   In particular, high-tensile steel sheets obtain high tensile strength by adding alloy elements such as nickel (Ni), silicon (Si), and manganese (Mn) in addition to carbon (C) and devising the heat treatment process. Since it is also useful for weight reduction, it is widely used, but its ductility is lower than that of general steel. Even if defective products such as cracks are not generated during processing and a good processed product is obtained, the above-mentioned cracks, plating cracks, delayed fracture, etc. occur thereafter, which is troublesome.

このような問題の解決策としては、特許第2982494号が提案されている。   As a solution to such a problem, Japanese Patent No. 29882494 has been proposed.

特許第2982494号公報Japanese Patent No. 2982494

ところが、上記特許文献1に開示されたプレス法の構成では、主に素材の肉厚を均一化させるための正しごきと、素材の引張残留応力を減少させ、圧縮応力を残留させるための逆しごきとを行って、その素材が高張力鋼などの高強度材であっても、上記圧縮残留応力の生成により置き割れ現象の発生を防止するようになっているので、円筒状などの比較的単純な形状であれば、上記逆しごきを支障なく行えるとしても、複雑な形状をプレス成形する際には、そのしごき方向に制約を受けることになる結果、適用できる目的物が非常に狭く限定されてしまうのであり、汎用性に劣る。   However, in the configuration of the pressing method disclosed in the above-mentioned Patent Document 1, the normal ironing mainly for uniformizing the thickness of the material, and the reverse ironing for reducing the tensile residual stress of the material and causing the compressive stress to remain. Even if the material is a high-strength material such as high-strength steel, the generation of compressive residual stress prevents the occurrence of the cracking phenomenon. Even if the above-described reverse ironing can be performed without any problem, when pressing a complicated shape, the direction of ironing is restricted, so that applicable objects are very narrowly limited. It is inferior in versatility.

本発明はこのような問題の抜本的な解決を目的としており、その目的を達成するために、請求項1では引張強度が400MPa〜800MPaの高張力鋼板を第1次的又は試作的に絞り加工して、その絞り加工品の置き割れ発生部位を予め特定しておき、   The present invention aims to drastically solve such problems, and in order to achieve the object, in claim 1, a high-strength steel sheet having a tensile strength of 400 MPa to 800 MPa is first or prototypely drawn. Then, specify the place where cracks occur in the drawn product beforehand,

上記高張力鋼板を同じ第2次的又は本格的な絞り加工後に、その絞り加工品の予め特定しておいた上記部位のみを、その切断面の光学顕微鏡写真に焼入れ状態の加熱部並びに非焼入れ状態の未加熱残存部と異なる組織変化の中間層である境界が板面とほぼ平行な方向に沿って延在する帯状に表出するまで部分加熱することを特徴とする。   After the same secondary or full-scale drawing of the high-tensile steel plate, only the above-mentioned part specified in advance of the drawn product is subjected to quenching in the optical micrograph of the cut surface and non-quenched Partial heating is performed until the boundary, which is an intermediate layer of a structure change different from the unheated remaining portion in the state, appears in a strip shape extending along a direction substantially parallel to the plate surface.

また、請求項2では部分加熱温度が400℃〜1,000℃であり、その加熱保持時間が0.1秒〜1.0分であることを特徴とする。   Further, in the second aspect, the partial heating temperature is 400 ° C. to 1,000 ° C., and the heating and holding time is 0.1 second to 1.0 minute.

請求項3では部分加熱方法が向かい合う一対の電極で、予め特定しておいた置き割れ発生部位を挟みながら通電する方法であることを特徴とする。   According to a third aspect of the present invention, the partial heating method is a method of energizing a pair of electrodes facing each other while sandwiching a predetermined crack generation site.

請求項4では部分加熱方法が予め特定しておいた置き割れ発生部位へ、エネルギービームを照射する方法であることを特徴とする。   According to a fourth aspect of the present invention, the partial heating method is a method of irradiating an energy beam to a predetermined crack generation site.

更に、請求項5では高張力鋼板の絞り加工品が断面U字形をなし、その絞り加工品の置き割れ発生部位として予め特定しておいた曲げコーナー部位のみを部分加熱することを特徴とする。   Further, according to a fifth aspect of the present invention, the drawn product of the high-strength steel sheet has a U-shaped cross section, and only the bending corner portion specified in advance as the place where the drawn product is placed is partially heated.

請求項1の上記構成によれば、冒頭に述べた従来技術の問題を確実に解決することができ、高張力鋼板をプレス金型による絞り加工上の素材として広く使えることになる。   According to the above configuration of the first aspect, the problems of the prior art described at the beginning can be surely solved, and a high-tensile steel plate can be widely used as a material for drawing by a press die.

つまり、上記高張力鋼板の第1次的又は試作的な絞り加工により、その絞り加工品の置き割れ発生部位を予め特定(知得)しておき、その高張力鋼板を同じ第2次的に又は本格的に絞り加工した後、その絞り加工品の予め特定(知得)しておいた上記置き割れ発生部位だけを部分加熱する方法であるため、上記絞り加工品の各種目標形状に対する汎用性に優れる。   That is, the first crack or the prototype drawing of the high-strength steel plate specifies (acquires) the crack generation site of the drawn product in advance, and the high-strength steel plate is secondarily the same. Or, after full-scale drawing, it is a method of partially heating only the above-mentioned place where the drawing crack has been specified (knowledge) of the drawn product, so versatility for various target shapes of the drawn product Excellent.

しかも、上記部分加熱はその置き割れ発生部位の切断面を撮影した光学顕微鏡写真に、焼入れ状態の加熱部並びに非焼入れ状態の未加熱残存部と相違する組織変化の中間層である境界が板面とほぼ平行な方向に沿って延在する帯状に表出するまで行うようになっているため、置き割れや遅れ破壊の防止効果を常に安定良く得られるのである。   Moreover, in the partial heating, an optical micrograph obtained by photographing the cut surface of the place where the crack is generated has a boundary that is an intermediate layer of a structural change different from the heated part in the quenched state and the unheated remaining part in the non-quenched state. Since it is performed until it appears in a strip shape extending in a direction substantially parallel to the direction, the effect of preventing cracking and delayed fracture can always be obtained stably.

その場合、請求項2の構成を採用するならば、その部分加熱した置き割れ発生部位の光学顕微鏡写真に、上記組織変化の境界(中間層)が確実に表出するため、誰でも適正な部分加熱であると判定することができ、客観性に優れる。   In that case, if the structure of claim 2 is adopted, since the boundary (intermediate layer) of the above-mentioned structure change is surely displayed in the optical micrograph of the partially heated place where the crack is generated, anyone can use the appropriate part. It can be determined that it is heating, and is excellent in objectivity.

請求項3や請求項4の構成を採用するならば、各種目標形状の絞り加工品を部分加熱する際、その形状の変化に対応しやすく、殊更請求項3の構成によれば、その絞り加工品の素材である高張力鋼板の中心部から表面に向かって、すばやく円滑に加熱することもできるため、汎用性と生産性がますます向上する。   If the construction of claim 3 or claim 4 is adopted, it is easy to cope with the change of the shape when drawing products of various target shapes are partially heated. Because it can be heated quickly and smoothly from the center of the high-tensile steel plate, which is the material of the product, to the surface, versatility and productivity are further improved.

請求項5の構成を採用するならば、断面U字形に成形された絞り加工品の置き割れや遅れ破壊が発生しやすい曲げコーナー部位の残留応力を、その部分加熱によって緩和又は除去できる効果がある。   If the structure of Claim 5 is employ | adopted, there exists an effect which can relieve | eliminate or remove the residual stress of the bending-corner site | part which is easy to generate | occur | produce the place crack and delayed fracture of the drawing processed goods shape | molded by the U-shaped cross section by the partial heating. .

本発明により部分加熱した置き割れ発生部位の切断面を撮影した光学顕微鏡写真に表われた組織の模式図であって、(イ)はスポット溶接機により加熱した場合の組織を示し、(ロ)はレーザー装置により加熱した場合の組織を示している。It is the schematic diagram of the structure | tissue shown in the optical micrograph which image | photographed the cut surface of the place crack generation | occurrence | production part partially heated by this invention, (a) shows a structure | tissue at the time of heating with a spot welder, (b) Indicates a tissue when heated by a laser device. 本発明の対象である絞り加工品の一例として示すキャスターの側面図である。It is a side view of the caster shown as an example of the drawing processed product which is the object of the present invention. 図2の正面図である。FIG. 3 is a front view of FIG. 2. キャスターの軸受け本体を絞り加工品として、その一連の工程順序を示す説明図である。It is explanatory drawing which shows the series of process order, using the bearing main body of a caster as a drawing processed product. 上記軸受け本体の置き割れ発生部位を示す斜面図である。It is a perspective view which shows the placement crack generation | occurrence | production site | part of the said bearing main body. 図5の置き割れ発生部位をスポット溶接機によって部分加熱する状態の概略斜面図である。It is a schematic slope view of the state which partially heats the place crack generation | occurrence | production site | part of FIG. 5 with a spot welder. 図6と対応する部分加熱状態の説明図である。It is explanatory drawing of the partial heating state corresponding to FIG.

以下、本発明の構成を具体的に詳述する。本発明は高張力鋼板を用いて、プレス金型により各種の目標形状に絞り加工した製品を対象とする汎用的な置き割れ防止方法である。   Hereinafter, the configuration of the present invention will be described in detail. The present invention is a general-purpose crack prevention method for products that are drawn into various target shapes by a press die using a high-tensile steel plate.

本発明を適用する高張力鋼板は、400MPa〜800MPaの引張強度を有するものである。その引張強度が400MPa未満のものについては、本発明を適用するまでもなく、一般鋼とほぼ同じ加工条件のもとで製造することができ、他方引張強度が800MPaを越えるものについては、通常のプレス加工方法による製造が困難であり、置き割れや遅れ破壊の発生原因も大きく異なるので、本発明を適用し難い。   The high-tensile steel plate to which the present invention is applied has a tensile strength of 400 MPa to 800 MPa. Those having a tensile strength of less than 400 MPa can be manufactured under almost the same processing conditions as general steel, without needing to apply the present invention, while those having a tensile strength exceeding 800 MPa are ordinary. Manufacturing by the press working method is difficult, and the cause of occurrence of cracking and delayed fracture is greatly different. Therefore, it is difficult to apply the present invention.

本発明者が高張力鋼板をプレス金型により、各種の目標形状に絞り加工して、その成形加工特性を調査・検討した結果では、置き割れや遅れ破壊の発生部位が常に特定の個所に集中していること、その特定個所は主に引張応力の残留しやすい曲げコーナー部位であることが判明した。そのためその残留応力を除去又は緩和することが、問題の解決になると考えられる。   As a result of the inventor drawing high-strength steel sheets into various target shapes using a press die and investigating and studying their forming characteristics, the occurrence sites of cracks and delayed fracture are always concentrated at specific locations. It was found that the specific location is mainly a bending corner where tensile stress tends to remain. Therefore, it is thought that removing or mitigating the residual stress will solve the problem.

そこで、目標形状の絞り加工品を得るべく、その素材の上記高張力鋼板を第1次的に又は試作として絞り加工することにより、その絞り加工品の置き割れ発生部位を予め特定(知得)しておくのである。その試作としての絞り加工を行う代りに、プレス成形解析方法により上記置き割れ発生部位を予め特定しておいても良い。   Therefore, in order to obtain a drawn product with a target shape, the above-described high-tensile steel plate is drawn first or as a prototype, thereby specifying the place where the drawn crack is placed in advance (knowledge). I will keep it. Instead of performing the drawing as the prototype, the place where the placement crack is generated may be specified in advance by a press forming analysis method.

それから同じ素材の高張力鋼板を第2次的又は本格的に絞り加工して、その加工し終えた絞り加工品の予め特定しておいた置き割れ発生部位だけを、一定条件のもとに部分加熱する。その部分加熱上の一定条件とは、「加熱後の置き割れ発生部位における切断面の光学顕微鏡写真に、焼入れ状態の加熱部並びに非焼入れ状態の未加熱残存部と異なる組織変化の中間層である境界が板面とほぼ平行な方向に沿って延在する帯状に表出するまで」加熱することである。   Then, the high-strength steel sheet of the same material is drawn secondarily or in earnest, and only the part where the crack is generated is specified under certain conditions. Heat. The fixed condition on the partial heating is “an intermediate layer having a structure change different from that of the heated part in the quenched state and the unheated remaining part in the non-quenched state in the optical micrograph of the cut surface at the place where the crack occurred after heating. Heating until the boundary appears in a strip extending along a direction substantially parallel to the plate surface.

即ち、その部分加熱の方法としてはスポット溶接機(交流式抵抗溶接機)などにおける向かい合う一対の電極で、上記絞り加工品の予め特定しておいた置き割れ発生部位を挟みながら通電して、その素材である高張力鋼板の中心部から加熱する方法を初め、同じく絞り加工品の予め特定しておいた置き割れ発生部位へ、レーザーなどのエネルギービームを照射して、その素材の表面から加熱する方法や高周波による誘導加熱法、ガス炎やアークを用いる方法などを広く採用することができるが、特に素材の中心部から置き割れ発生部位の表面に向かって全体的に早く加熱できる直接通電加熱法が最も好ましい。   That is, as a method of partial heating, with a pair of electrodes facing each other in a spot welder (AC resistance welding machine), etc., energize while sandwiching a predetermined crack generation site of the drawn product, Beginning with the method of heating from the center of the high-strength steel plate that is the material, the laser beam or other energy beam is applied to the part of the drawn product that has been specified in advance and heated from the surface of the material. A wide range of methods, induction heating methods using high frequency, and methods using gas flames and arcs can be widely used. In particular, the direct current heating method that can quickly heat from the center of the material to the surface of the cracking site as a whole. Is most preferred.

また、上記部分加熱の温度としては400℃〜1000℃、好ましくは600℃〜900℃に設定する。部分加熱であっても、その温度が400℃未満であると、大きな組織変化を得られず、残留応力を充分に緩和できないため、置き割れや遅れ破壊の防止に役立たない。上記加熱部並びに未加熱残存部と異なる組織変化の境界(中間層)が顕出することはない。   The temperature of the partial heating is set to 400 ° C to 1000 ° C, preferably 600 ° C to 900 ° C. Even in the case of partial heating, if the temperature is lower than 400 ° C., a large structural change cannot be obtained, and the residual stress cannot be sufficiently relaxed, so that it does not help prevent cracking and delayed fracture. The boundary (intermediate layer) of the structure change different from the heated part and the unheated remaining part does not appear.

他方、1000℃を越える高温であると、熱の影響が広範囲に波及し、全体的な組織変化を起した焼入れ状態となり、加熱部分が硬脆くなるため、衝撃性の低下を招く。この条件下でも、上記加熱部並びに未加熱残存部と異なる組織変化の境界(中間層)が顕出することはない。また、さらに高温になると母材が溶融してしまい形状を維持できなくなるなどの問題を生じる。   On the other hand, when the temperature is higher than 1000 ° C., the influence of heat spreads over a wide range, and the entire structure is changed, and the heated portion becomes hard and brittle. Even under this condition, a boundary (intermediate layer) of the structural change different from the heated part and the unheated remaining part does not appear. Further, when the temperature becomes higher, the base material is melted and the shape cannot be maintained.

直接通電加熱法による加熱の場合においては、板厚によって左右されるが、10〜45kVの電圧を印加することが好ましい。10kVより電圧が低い場合、部分加熱が不十分となり焼き入れ部分を形成することが難しく、45kVを超える場合、加熱部分全体に焼きが入り硬脆くなったり、加熱部分が溶融してしまうなどの問題を生じる。   In the case of heating by the direct current heating method, although it depends on the plate thickness, it is preferable to apply a voltage of 10 to 45 kV. When the voltage is lower than 10 kV, partial heating is insufficient and it is difficult to form a quenched portion. When the voltage exceeds 45 kV, the entire heated portion is hardened and becomes hard and brittle, or the heated portion is melted. Produce.

加熱部分の温度については、一般的に温度測定で用いられる各種センサーを用いることもできるほか、加熱部の色変化による方法をとることができる。   Regarding the temperature of the heated portion, various sensors generally used for temperature measurement can be used, and a method based on a color change of the heated portion can be used.

更に、上記部分加熱の保持時間としては0.1秒〜1.0分、好ましくは0.2秒〜20秒に設定する。その加熱保持時間が0.1秒未満では、上記加熱温度の400℃未満である場合と同様に、未だ組織変化が小さく、応力を緩和するまでの時間が不足するため、置き割れや遅れ破壊を防止することができない。製品の強度にバラツキを生じるおそれもある。   Furthermore, the holding time for the partial heating is set to 0.1 second to 1.0 minute, preferably 0.2 second to 20 seconds. If the heating and holding time is less than 0.1 seconds, as in the case where the heating temperature is less than 400 ° C., the structure change is still small and the time until stress is relaxed is insufficient. It cannot be prevented. There is also a risk of variations in product strength.

他方、1.0分を越える長時間の場合、応力の緩和には充分であるが、上記加熱温度の1000℃を越える場合と同じく、熱が広範囲に伝導するため、強度変化が大きくなり、設計強度を達成できなくなる問題がある。また、後処理に長時間を要することになるため、生産性の低下を招く。   On the other hand, in the case of a long time exceeding 1.0 minutes, it is sufficient for relaxation of stress, but as in the case where the heating temperature exceeds 1000 ° C., the heat is conducted in a wide range, so that the strength change becomes large and the design is increased. There is a problem that the strength cannot be achieved. Moreover, since a long time is required for post-processing, the productivity is reduced.

要するに、上記加熱温度とその加熱保持時間との組合せを最適に設定すると共に、絞り加工品の目標形状に応じた最適の加熱方法を採用して、その絞り加工品の置き割れ発生部位だけを図1(イ)(ロ)の模式図に示す如く、その加熱後の置き割れ発生部位(P)における切断面の光学顕微鏡写真に、焼入れ状態の加熱部(a)と非焼入れ状態の未加熱残存部(b)との何れとも異なる組織変化の境界(中間層)(c)が板面(d)とほぼ平行な方向(H−H)に沿って延在する帯状に表出するまで部分加熱するのである。   In short, the combination of the above heating temperature and the heating holding time is optimally set, and the optimum heating method according to the target shape of the drawn product is adopted, and only the place where the drawn crack is generated is shown. As shown in the schematic diagrams of 1 (b) and (b), in the optical micrograph of the cut surface at the cracked portion (P) after the heating, the heated part (a) in the quenched state and the unheated remaining in the unquenched state Partial heating until the boundary (intermediate layer) (c) of the structure change different from any part (b) appears in a strip shape extending along a direction (HH) substantially parallel to the plate surface (d) To do.

これを換言すれば、絞り加工品の予め特定しておいた置き割れ発生部位(P)だけを部分加熱した後、その部位(P)の切断面を機械的に研磨し、ナイタール(エッチング剤:硝酸とアルコールの混合液)で腐蝕した上、光学顕微鏡で観察し、撮影した組織写真において、焼入れ状態の加熱部(a)並びに非焼入れ状態の未加熱残存部(b)と異なる組織変化の中間層である境界(c)が、板面(d)とほぼ平行な方向(H−H)に沿って延在する帯状に表出していることを確認できれば、適正に部分加熱されたものと判定(評価)するのである。   In other words, after partially heating only the specified crack generation site (P) of the drawn product, the cut surface of the site (P) is mechanically polished, and the nital (etching agent: In the structure photograph, which was corroded with a mixed solution of nitric acid and alcohol), observed with an optical microscope, and photographed, the middle of the structural change different from the heated part (a) in the quenched state and the unheated remaining part (b) in the non-quenched state If it can be confirmed that the boundary (c), which is a layer, is exposed in a strip shape extending along a direction (HH) substantially parallel to the plate surface (d), it is determined that the layer has been appropriately partially heated. (Evaluation).

本発明の上記構成によれば、高張力鋼板の絞り加工品に置き割れやメッキ割れ、遅れ破壊が発生することを防止できる結果、良好な加工品が爾後的に不良品化するおそれはなく、その置き割れ防止のためにプレス金型を修正したり、新らたなプレス金型を作成したりする必要がない。   According to the above configuration of the present invention, it is possible to prevent the occurrence of cracks, plating cracks, and delayed fracture in the drawn product of the high-tensile steel sheet, so that there is no risk that a good processed product will become a defective product later. There is no need to modify the press die or create a new press die to prevent the cracking.

更に言えば、本発明の置き割れ防止法は一般的な応力を緩和させるために、絞り加工前の素材である高張力鋼板を全体的に加熱する方法ではなく、同じく素材の高張力鋼板に軟化部を設けるべく、その鋼板を絞り加工前や絞り加工中に部分加熱する方法でもない。あくまでも絞り加工後の製品を部分加熱する方法であり、その結果生産性の低下が危惧されるが、その高張力鋼板の第1次的又は試作的な絞り加工によって、予め特定(把握)しておいた置き割れ発生部位だけを部分加熱するようになっているため、その加熱方法として特に向かい合う一対の電極により素材の中心部から早く加熱できる通電加熱方法を採用した場合、その絞り加工の目標形状がたとえ複雑に変化したとしても、常にすばやく正確に加熱できる汎用性があり、上記素材の全体加熱に比しても熱に起因する大きな変形を起すおそれがなく、強度の低下や生産性の低下を招くこともない。   Furthermore, the crack prevention method of the present invention is not a method of heating the high-strength steel sheet, which is the material before drawing, as a whole, but to soften the high-strength steel sheet, which is the same material, in order to relieve general stress. It is not a method of partially heating the steel plate before or during drawing to provide a portion. This is only a method of partially heating the product after drawing, and as a result there is a risk that productivity will decline, but it is specified (understood) in advance by the primary or prototype drawing of the high-tensile steel plate. Since only the part where the crack was generated is partially heated, when the current heating method that can be heated quickly from the center of the material by a pair of electrodes facing each other is used as the heating method, the target shape of the drawing process is Even if it changes complicatedly, it has versatility that it can always be heated quickly and accurately, and there is no risk of large deformation caused by heat, compared to the overall heating of the above materials, reducing strength and productivity. There is no invitation.

<実施例1>
以下、キャスターの軸受け本体に適用した本発明の実施例を説明するが、その高張力鋼板の絞り加工品がキャスターの軸受け本体だけに限定されることはなく、各種の目標形状に絞り加工された製品を対象とする。
<Example 1>
Hereinafter, the embodiment of the present invention applied to the bearing body of the caster will be described. However, the drawn product of the high-tensile steel plate is not limited to the bearing body of the caster, and has been drawn into various target shapes. For products.

図2、3に示すようなキャスター(10)の車輪(11)を軸受けする本体(12)の素材として、引張強度が590MPa、板厚が2.0mmの高張力鋼板(JFEスチール株式会社のJSC590R−SD)を用い、150〜200Tプレス機(株式会社アマダ製)を使って、図4(i)〜(vi)のような外形抜き・穴明け→前絞り・刻印→絞り→穴明け→溝加工→車軸穴明けという6工程のプレス加工を行った。   As a material of the main body (12) for bearing the wheel (11) of the caster (10) as shown in FIGS. 2 and 3, a high-strength steel plate having a tensile strength of 590 MPa and a plate thickness of 2.0 mm (JSC590R of JFE Steel Corporation) -SD), 150-200T press machine (manufactured by Amada Co., Ltd.), outline drawing / drilling as shown in FIGS. 4 (i)-(vi) → pre-drawing / engraving → drawing → drilling → groove 6 steps of press working, machining → axle drilling.

その加工直後の製品を目視観察したが、割れや裂けなどの不具合を確認できなかったので、そのまま12時間放置した後、再度上記製品を目視観察したところ、図5の符号(P)で示す曲げコーナー部位に割れが見つかった。また、割れが発見されなかった製品については、三価ユニクロメッキ(亜鉛メッキ)を施したところが、同じ図5の符号(P)で示す曲げコーナー部位に割れが見つかり、製品として使用できない状態であった。   The product immediately after the processing was visually observed, but defects such as cracks and tears could not be confirmed. Therefore, after standing for 12 hours as it was, the product was visually observed again, and the bending indicated by the symbol (P) in FIG. Cracks were found at the corners. In addition, for products in which no cracks were found, trivalent unichrome plating (zinc plating) was applied, but cracks were found at the bending corners indicated by reference (P) in FIG. It was.

そこで、上記軸受け本体(12)における図5の符号(P)で示す割れが発生している曲げコーナー部位を、そのプレス加工後30分経過してから図6、7のように、スポット溶接機(W)における2mmの直径を備えた向かい合う一対の電極(13)で挟み、30kVで0.4秒電圧を印加することにより部分加熱した。その印加中、電極(13)で挟まれた部位には赤熱が見られ、その発色の度合いから判定される加熱温度は800℃程度であった。   Therefore, a spot welder as shown in FIGS. 6 and 7 after 30 minutes has elapsed after the press working at the bending corner portion where the crack (P) in FIG. 5 has occurred in the bearing body (12). It was sandwiched between a pair of electrodes (13) facing each other with a diameter of 2 mm in (W) and partially heated by applying a voltage at 30 kV for 0.4 seconds. During the application, red heat was seen at the portion sandwiched between the electrodes (13), and the heating temperature determined from the degree of color development was about 800 ° C.

その加熱後、上記軸受け本体(12)における不具合の有無を目視観察したが、割れや裂けなどの不具合を発見しなかった。また、上記加熱後48時間放置した時点で、再度軸受け本体(12)の不具合を目視観察したが、上記不具合を確認することはできなかった。   After the heating, the bearing main body (12) was visually observed for defects, but no defects such as cracks or tears were found. Further, when the sample was left for 48 hours after the heating, the defect of the bearing body (12) was visually observed again, but the defect could not be confirmed.

更に、上記軸受け本体(12)に三価ユニクロメッキ(亜鉛メッキ)を施した後、その不具合の有無を目視観察したが、やはり上記不具合を確認することはできなかった。   Furthermore, after trivalent unichrome plating (zinc plating) was performed on the bearing body (12), the presence or absence of the defect was visually observed, but the defect could not be confirmed.

上記メッキ加工を行った軸受け本体(12)に、車輪(11)やベアリングなどの必要な部品を組み付けて、その完成したキャスター(10)の走行試験を行ったところ、100km試験走行した後でも、上記不具合を発見しなかった。   The bearing body (12) subjected to the above plating process was assembled with necessary parts such as wheels (11) and bearings, and a running test of the completed caster (10) was conducted. The above bug was not found.

上記実施例1の加熱条件と結果を表1に示す。その表1の結果では、予め特定しておいた上記曲げコーナー部位の本発明による部分加熱が、置き割れやメッキ割れ、遅れ破壊の防止に寄与したものと考えられる。   The heating conditions and results of Example 1 are shown in Table 1. From the results of Table 1, it is considered that the partial heating according to the present invention at the bending corner portion specified in advance contributed to the prevention of setting cracks, plating cracks, and delayed fracture.

Figure 0006050912
Figure 0006050912

その軸受け本体(12)の部分加熱した曲げコーナー部位(P)をカットし、その切断面を研磨した後、ナイタールで腐蝕処理し、撮影した光学顕微鏡写真に表出した組織は、図1(イ)の模式図に示すとおりであり、その写真には上記部分加熱した結果(証拠)を意味する焼入れ状態の加熱部(a)並びに非焼入れ状態の未加熱残存部(b)と異なる組織変化の中間層である境界(c)が、板面(d)とほぼ平行な方向(H−H)に沿って延在する帯状に表出していた。境界(中間層)(c)としての組織変化が起生される上記加熱温度とその保持時間での部分加熱である結果、その絞り加工品である軸受け本体(12)の機械的強度を低下させることもなかった。   The partially heated bending corner portion (P) of the bearing body (12) is cut, and the cut surface is polished, and then the structure is exposed to a corrosion treatment with nital and shown in the photographed optical micrograph. ), And the photograph shows the structure change different from that of the heated part (a) in the quenched state and the unheated remaining part (b) in the non-quenched state, which means the result of the partial heating (evidence). The boundary (c), which is an intermediate layer, was exposed in a strip shape extending along a direction (HH) substantially parallel to the plate surface (d). As a result of the partial heating at the heating temperature and the holding time at which the structural change as the boundary (intermediate layer) (c) occurs, the mechanical strength of the bearing body (12) as the drawn product is reduced. It never happened.

<実施例2>
これは実施例1における上記加熱条件のうち、電圧(40kV)と加熱温度(950℃)だけを変えて、同じスポット溶接機(W)により部分加熱した実施例である。
<Example 2>
This is an example in which only the voltage (40 kV) and the heating temperature (950 ° C.) are changed and partial heating is performed by the same spot welder (W) among the heating conditions in Example 1.

<実施例3>
これは実施例1における上記加熱条件のうち、加熱温度(900℃)とその加熱保持時間(0.6秒)だけを変えて、やはりスポット溶接機(W)により部分加熱した実施例である。
<Example 3>
This is an example in which, of the heating conditions in Example 1, only the heating temperature (900 ° C.) and the heating holding time (0.6 seconds) were changed, and partial heating was performed by the spot welder (W).

<実施例4>
これは実施例1における上記加熱条件のうち、絞り加工後の放置時間だけを180分として、長く経過してからスポット溶接機(W)により部分加熱した実施例である。
<Example 4>
This is an example of partial heating by the spot welder (W) after a long period of time, with the standing time after drawing being 180 minutes, of the heating conditions in Example 1.

尚、実施例2〜4でも表1に記載した結果から明白なように、実施例1と同じ図1(イ)の境界(c)が顕出し、やはり強度の低下を起すこともなく、置き割れや遅れ破壊の防止効果を達成することができた。   As is clear from the results described in Table 1 in Examples 2 to 4, the same boundary (c) in FIG. 1 (a) as that in Example 1 was revealed, and no reduction in strength was caused. The effect of preventing cracking and delayed fracture could be achieved.

<実施例5>
これは実施例1〜4において採用したスポット溶接機(W)に代えて、レーザー加熱装置(株式会社アマダ製)(図示省略)を使用し、その出力240Wで2cm/秒で加熱した。そのエネルギービームが照射された表面には赤熱が見られ、その発色度合いから850℃に加熱されていると判定した。
<Example 5>
In place of the spot welder (W) employed in Examples 1 to 4, a laser heating device (manufactured by Amada Co., Ltd.) (not shown) was used and heated at an output of 240 W at 2 cm / second. It was determined that the surface irradiated with the energy beam was red-hot and heated to 850 ° C. from the degree of color development.

その加熱後48時間放置した時点で、上記キャスターにおける軸受け本体の不具合を目視観察したが、割れや裂けなどの不具合を確認することはできなかった。また、実施例1と同じメッキ加工と更に完成したキャスターの走行試験も行ったが、やはり割れや裂けなどの不具合は確認されなかった。   When left for 48 hours after the heating, defects of the bearing body in the caster were visually observed, but defects such as cracks and tears could not be confirmed. Further, the same plating process as in Example 1 and a running test of the completed caster were also performed, but no defects such as cracks and tears were found.

そして、上記レーザー加熱装置のエネルギービームにより部分加熱した部位をカットし、その切断面をナイタールで腐蝕処理し、光学顕微鏡で組織の変化状態を観察したところ、その写真には図1(ロ)の模式図に示す如き、焼入れ状態の加熱部(a)並びに非焼入れ状態の未加熱残存部(b)と相違する組織変化の中間層である境界(c)が板面(d)とほぼ平行な方向(H−H)に沿って延在する帯状に表出していた。   And the part heated partially by the energy beam of the said laser heating apparatus was cut, the cut surface was corroded with nital, and when the change state of the structure | tissue was observed with the optical microscope, the photograph of FIG. As shown in the schematic diagram, the boundary (c), which is an intermediate layer of the structure change different from the quenched portion (a) in the quenched state and the unheated remaining portion (b) in the unquenched state, is substantially parallel to the plate surface (d). It was exposed in the shape of a band extending along the direction (HH).

尚、上記実施例1と実施例5では部分加熱温度の判定を、加熱温度と加熱色との対応関係資料(図示省略)に基いて感覚的に行ったが、市販の適当な温度センサーを使って測定しても勿論良い。   In Examples 1 and 5, the partial heating temperature was judged sensuously based on the correspondence data (not shown) between the heating temperature and the heating color, but a commercially available appropriate temperature sensor was used. Of course, it may be measured.

更に、表1に併記した比較例1〜4の加熱条件は、何れも本発明の規定する上記数値範囲をはずれているため、所期する置き割れや遅れ破壊などの防止効果を達成することができなかった。上記実施例1〜5では確認できた組織変化の帯状境界(中間層)が、比較例1〜4の加熱条件下において表出しなかったことは言うまでもない。   Furthermore, since the heating conditions of Comparative Examples 1 to 4 written together in Table 1 are all out of the numerical range defined by the present invention, it is possible to achieve the desired effect of preventing cracks and delayed fracture. could not. Needless to say, the belt-like boundary (intermediate layer) of the texture change confirmed in Examples 1 to 5 was not exposed under the heating conditions of Comparative Examples 1 to 4.

<比較例1>
これでは、加熱後48時間放置した時点において割れや裂けなどの不具合は確認されなかったが、その上記軸受け本体に三価ユニクロメッキ(亜鉛メッキ)を施したところ、その一部に割れ(メッキ割れ)が観察された。更に、メッキ割れを起さなかった軸受け本体に、車輪やベアリングなどを組み付け完成させたキャスターの走行試験を行ったところ、60km走行した時点で割れが発生した。
<Comparative Example 1>
In this case, defects such as cracks and tears were not confirmed when left for 48 hours after heating, but when the trivalent unichrome plating (zinc plating) was applied to the bearing body, some of the cracks (plating cracks) ) Was observed. Furthermore, when a running test was performed on a caster in which wheels and bearings were assembled and completed on a bearing body that did not cause plating cracking, cracking occurred when traveling for 60 km.

その原因としては、加熱温度が著しく低いため、絞り加工品の残留応力を確実に緩和又は除去できなかったものと考えられる。   The reason for this is considered to be that the heating stress was extremely low, so that the residual stress of the drawn product could not be relaxed or removed reliably.

<比較例2>
これでは、加熱温度が高くなりすぎてしまい加熱部分が溶融し所定の形状を保つことができなかった。
<Comparative example 2>
In this case, the heating temperature becomes too high, and the heated portion is melted and the predetermined shape cannot be maintained.

<比較例3>
これでは、加熱後48時間放置しても割れは確認されなかったが、その後三価ユニクロメッキ(亜鉛メッキ)を施したところ、すべてに割れが発生した。
<Comparative Example 3>
In this case, cracking was not confirmed even after standing for 48 hours after heating, but when trivalent unichrome plating (zinc plating) was applied thereafter, cracking occurred in all.

その原因としては、加熱保持時間が著しく短く、絞り加工品の残留応力を緩和するための加熱不足であると考えられる。   The reason for this is considered that the heating and holding time is remarkably short and the heating is insufficient to relieve the residual stress of the drawn product.

<比較例4>
これでは、加熱後48時間放置しても割れは確認されず、三価ユニクロメッキ(亜鉛メッキ)を施した後にも割れは観察されなかったが、その後更に走行試験に供したところ、70km走行した時点で割れが発生した。
<Comparative example 4>
In this case, no cracks were confirmed even after standing for 48 hours after heating, and no cracks were observed even after the trivalent unichrome plating (zinc plating) was applied. Cracks occurred at that time.

その原因としては、上記比較例3との逆に、加熱保持時間が著しく長いため、その熱の影響が広範囲に波及し、全体の組織変化を起し、硬脆くなってしまったものと考えられる。   As the cause, contrary to the comparative example 3, since the heating and holding time is remarkably long, the influence of the heat spreads over a wide range, causing the entire structure to change and becoming hard and brittle. .

(10)・キャスター
(11)・車輪
(12)・軸受け本体
(13)・電極
(P)・置き割れ発生部位
(w)・スポット溶接機
(a)・焼入れ状態の加熱部
(b)・非焼入れ状態の未加熱残存部
(c)・境界(中間層)
(d)・板面
(10) ・ Caster (11) ・ Wheel (12) ・ Bearing body (13) ・ Electrode (P) ・ Place where cracks occur (w) ・ Spot welder (a) ・ Heat-hardened part (b) ・ Non Quenched unheated remaining part (c), boundary (intermediate layer)
(D) ・ Plate surface

Claims (5)

引張強度が400MPa〜800MPaの高張力鋼板を第1次的又は試作的に絞り加工して、その絞り加工品の置き割れ発生部位を予め特定しておき、
上記高張力鋼板を同じ第2次的又は本格的な絞り加工後に、その絞り加工品の予め特定しておいた上記部位のみを、その切断面の光学顕微鏡写真に焼入れ状態の加熱部並びに非焼入れ状態の未加熱残存部と異なる組織変化の中間層である境界が板面とほぼ平行な方向に沿って延在する帯状に表出するまで部分加熱することを特徴とする高張力鋼板の絞り加工品の置き割れ防止方法。
A tensile strength of 400 MPa to 800 MPa high-strength steel sheet is first or prototypely drawn, and the place where cracks occur in the drawn product is specified in advance,
After the same secondary or full-scale drawing of the high-tensile steel plate, only the above-mentioned part specified in advance of the drawn product is subjected to quenching in the optical micrograph of the cut surface and non-quenched Drawing of a high-tensile steel sheet, which is partially heated until the boundary, which is an intermediate layer of a structural change different from the unheated remaining part in the state, appears in a strip shape extending in a direction substantially parallel to the plate surface How to prevent cracks in products.
部分加熱温度が400℃〜1,000℃であり、その加熱保持時間が0.1秒〜1.0分であることを特徴とする請求項1記載の高張力鋼板の絞り加工品の置き割れ防止方法。   The partial cracking of a drawn product of a high-strength steel sheet according to claim 1, wherein the partial heating temperature is 400 ° C to 1,000 ° C, and the heating and holding time is 0.1 second to 1.0 minute. Prevention method. 部分加熱方法が向かい合う一対の電極で、予め特定しておいた置き割れ発生部位を挟みながら通電する方法であることを特徴とする請求項1又は2記載の高張力鋼板の絞り加工品の置き割れ防止方法。   3. A crack in a drawn product of a high-strength steel sheet according to claim 1 or 2, wherein the partial heating method is a method of energizing a pair of electrodes facing each other while sandwiching a predetermined crack generation site. Prevention method. 部分加熱方法が予め特定しておいた置き割れ発生部位へ、エネルギービームを照射する方法であることを特徴とする請求項1又は2記載の高張力鋼板の絞り加工品の置き割れ防止方法。   The method for preventing cracks in a drawn product of a high-strength steel sheet according to claim 1 or 2, wherein the partial heating method is a method of irradiating an energy beam to a crack generation site specified in advance. 高張力鋼板の絞り加工品が断面U字形をなし、その絞り加工品の置き割れ発生部位として予め特定しておいた曲げコーナー部位のみを部分加熱することを特徴とする請求項1又は2記載の高張力鋼板の絞り加工品の置き割れ防止方法。   The drawn product of the high-strength steel sheet has a U-shaped cross section, and only the bending corner portion specified in advance as a place where a crack occurs in the drawn product is partially heated. A method for preventing cracks in drawn products of high-tensile steel sheets.
JP2016125509A 2016-06-24 2016-06-24 How to prevent cracks in drawn products of high-strength steel sheets Active JP6050912B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016125509A JP6050912B1 (en) 2016-06-24 2016-06-24 How to prevent cracks in drawn products of high-strength steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016125509A JP6050912B1 (en) 2016-06-24 2016-06-24 How to prevent cracks in drawn products of high-strength steel sheets

Publications (2)

Publication Number Publication Date
JP6050912B1 true JP6050912B1 (en) 2016-12-21
JP2017226901A JP2017226901A (en) 2017-12-28

Family

ID=57572492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016125509A Active JP6050912B1 (en) 2016-06-24 2016-06-24 How to prevent cracks in drawn products of high-strength steel sheets

Country Status (1)

Country Link
JP (1) JP6050912B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316912B1 (en) * 2016-11-25 2018-04-25 東洋スチール株式会社 Manufacturing method for high-strength steel sheet press products
EP3971308A4 (en) * 2019-05-16 2022-06-15 JFE Steel Corporation HIGH STRENGTH ELEMENT, METHOD OF PRODUCTION OF HIGH STRENGTH ELEMENT AND METHOD OF PRODUCTION OF STEEL SHEET FOR HIGH STRENGTH ELEMENT

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7043291B2 (en) * 2018-02-26 2022-03-29 東プレ株式会社 Manufacturing method of tailored blank press molded product
JP2020171935A (en) * 2019-04-09 2020-10-22 東亜工業株式会社 Manufacturing method of press molded product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329559A (en) * 1992-05-29 1993-12-14 Toyota Motor Corp Press method for forming plate-like stock to cylindrical vessel shape
JPH08228927A (en) * 1995-03-01 1996-09-10 Nisshin Steel Co Ltd Production of inside cylinder of electric kettle
JP2011202204A (en) * 2010-03-24 2011-10-13 Jfe Steel Corp Method for producing ultra-high strength member and using method
JP2013147750A (en) * 2013-03-07 2013-08-01 Nippon Steel & Sumitomo Metal Corp High strength hot-stamped product having excellent toughness and hydrogen embrittlement resistance, and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329559A (en) * 1992-05-29 1993-12-14 Toyota Motor Corp Press method for forming plate-like stock to cylindrical vessel shape
JPH08228927A (en) * 1995-03-01 1996-09-10 Nisshin Steel Co Ltd Production of inside cylinder of electric kettle
JP2011202204A (en) * 2010-03-24 2011-10-13 Jfe Steel Corp Method for producing ultra-high strength member and using method
JP2013147750A (en) * 2013-03-07 2013-08-01 Nippon Steel & Sumitomo Metal Corp High strength hot-stamped product having excellent toughness and hydrogen embrittlement resistance, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316912B1 (en) * 2016-11-25 2018-04-25 東洋スチール株式会社 Manufacturing method for high-strength steel sheet press products
EP3971308A4 (en) * 2019-05-16 2022-06-15 JFE Steel Corporation HIGH STRENGTH ELEMENT, METHOD OF PRODUCTION OF HIGH STRENGTH ELEMENT AND METHOD OF PRODUCTION OF STEEL SHEET FOR HIGH STRENGTH ELEMENT

Also Published As

Publication number Publication date
JP2017226901A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6050912B1 (en) How to prevent cracks in drawn products of high-strength steel sheets
WO2018077067A1 (en) Steel welding component with aluminum or aluminum alloy coating, and preparation method therefor
JP6558443B2 (en) Resistance spot welding method
US8993920B2 (en) Method for producing a steel pipe using a high energy density beam
RU2701799C1 (en) Equipment for production of cuts in steel strip, method for production of cuts in steel strip, technical equipment for cold rolling and method of cold rolling
Pleterski et al. Blanking punch life improvement by laser cladding
Miles et al. Formability of friction-stir-welded dissimilar-aluminum-alloy sheets
US9227267B1 (en) Warm bond method for butt joining metal parts
JP3896031B2 (en) Manufacturing method of high strength UOE steel pipe
US20210101225A1 (en) Weld joint manufacturing method and weld joint
JPH0847716A (en) Method for producing electric resistance welded steel pipe excellent in HIC resistance and SSCC resistance
Mohammed et al. Properties evaluation of shielded metal arc welded medium carbon steel material
JP6316912B1 (en) Manufacturing method for high-strength steel sheet press products
JP2016068593A (en) Truck frame for railway vehicle and method of manufacturing the same
JP4514137B2 (en) Method for preventing rolling surface flaw of Ni-containing steel
KR101259300B1 (en) Steel pipe producing method
JP4619635B2 (en) Welding method for high carbon steel
JP2650558B2 (en) Manufacturing method of high workability welded steel pipe
JP2004131794A (en) Steel sheet dehydrogenation method and steel sheet manufacturing method using the same
CN108466011A (en) Improve the preprocess method and welding process for stamping of welded steel performance
JP2006021206A (en) Steel casting having part repaired by welding, and method for repairing steel casting by welding
CN102419290A (en) Method for judging laser welding strength of heat-treatment-improved martensitic aged steel belt
JP2864338B2 (en) Flash welding method for high strength steel
Li et al. Fatigue life extension of the prefatigued welded joints by ultrasonic impact treatment
Siltanen et al. Preliminary laser welding tests of 22MnB5 steel with a butt joint and lap joint configurations

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161125

R150 Certificate of patent or registration of utility model

Ref document number: 6050912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250