[go: up one dir, main page]

JP6043555B2 - Battery cooling structure - Google Patents

Battery cooling structure Download PDF

Info

Publication number
JP6043555B2
JP6043555B2 JP2012200270A JP2012200270A JP6043555B2 JP 6043555 B2 JP6043555 B2 JP 6043555B2 JP 2012200270 A JP2012200270 A JP 2012200270A JP 2012200270 A JP2012200270 A JP 2012200270A JP 6043555 B2 JP6043555 B2 JP 6043555B2
Authority
JP
Japan
Prior art keywords
heat pipe
substrate
hydraulic fluid
flat plate
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012200270A
Other languages
Japanese (ja)
Other versions
JP2014056690A (en
Inventor
弘貴 柴田
弘貴 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2012200270A priority Critical patent/JP6043555B2/en
Priority to CN2013204600848U priority patent/CN203351713U/en
Publication of JP2014056690A publication Critical patent/JP2014056690A/en
Application granted granted Critical
Publication of JP6043555B2 publication Critical patent/JP6043555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

この発明は組電池の冷却構造に関する。   The present invention relates to a cooling structure for an assembled battery.

この明細書および特許請求の範囲において、図1の上下を上下というものとする。   In this specification and claims, the top and bottom of FIG.

近年、環境問題などから、ハイブリッド自動車、電気自動車等が注目されており、そのために各種の二次電池が開発されている。各種の二次電池の中でもリチウムイオン二次電池は、エネルギー密度が高く、密閉性に優れ、かつメンテナンスフリーであるため、ハイブリッド自動車や電気自動車用のバッテリとして優れているが、大型のものは実用化されていない。そこで、複数個の小型の単電池を直列または並列に接続して組電池の形態とすることにより、所望の電圧や容量を確保している。   In recent years, hybrid vehicles, electric vehicles, and the like have attracted attention due to environmental problems, and various secondary batteries have been developed for this purpose. Among various types of secondary batteries, lithium ion secondary batteries have high energy density, excellent sealing properties, and are maintenance-free, so they are excellent as batteries for hybrid vehicles and electric vehicles. It has not been converted. Therefore, a desired voltage and capacity are secured by connecting a plurality of small cells in series or in parallel to form a battery pack.

リチウムイオン二次電池は、使用温度によって性能や寿命が変化するので、長時間にわたって効率良く使用するためには適正な温度で使用する必要があるが、上述したような組電池の形態で用いた場合、各単電池自体から発せられる熱を放熱することが困難であり、各単電池の温度が上昇して寿命が短くなるという問題がある。   Lithium ion secondary batteries vary in performance and life depending on the operating temperature, so it is necessary to use them at an appropriate temperature in order to use them efficiently over a long period of time. In this case, it is difficult to dissipate heat generated from each unit cell itself, and there is a problem that the temperature of each unit cell rises and the life is shortened.

そこで、上述したような組電池における単電池の温度上昇を抑制することを目的として、複数の扁平状の単電池と、複数の平板状ヒートパイプとが、両者が水平となるように交互に積層状に配置されており、平板状ヒートパイプの周縁部の少なくとも一部に、単電池よりも外方に突出しかつ放熱用ヒートシンクに接触させられる放熱部が設けられている冷却構造が提案されている(特許文献1参照)。   Therefore, for the purpose of suppressing the temperature rise of the unit cell in the assembled battery as described above, a plurality of flat unit cells and a plurality of flat plate heat pipes are alternately stacked so that both are horizontal. A cooling structure is proposed in which a heat dissipating part is provided on at least a part of the peripheral part of the flat plate heat pipe that protrudes outward from the unit cell and is brought into contact with a heat dissipating heat sink. (See Patent Document 1).

ところで、リチウムイオン二次電池は、内部ショートや過充電などに起因して熱暴走し、電池の温度が異常に上昇して発火の原因となることがあるので、安全性を向上させるために発火した際の消火機能を備えた装置が求められている。しかしながら、リチウムイオン二次電池の熱暴走時に発火した際の消火機能を有する簡単かつ安価な構造の装置は実現していないのが実情である。   By the way, lithium-ion secondary batteries run out of heat due to internal short circuit or overcharge, and the battery temperature may rise abnormally and cause ignition. There is a need for a device with a fire extinguishing function. However, in reality, a simple and inexpensive device having a fire extinguishing function when a lithium ion secondary battery is ignited during thermal runaway has not been realized.

特開2009−140714号公報JP 2009-140714 A

この発明の目的は、上記実情に鑑みてなされたものであり、組電池を構成する単電池を効率良く冷却することができるとともに、単電池が熱暴走に起因して発火した際に消火することができ、しかも簡単かつ安価な組電池の冷却構造を提供することにある。   The object of the present invention has been made in view of the above circumstances, and can efficiently cool the cells constituting the assembled battery, and extinguish when the cell is ignited due to thermal runaway. An object is to provide a simple and inexpensive cooling structure for an assembled battery.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)複数の扁平状の単電池と、ヒートパイプ部が設けられた基板を有する複数の平板状ヒートパイプとが、単電池の少なくとも片面に平板状ヒートパイプが熱的に接触するように積層状に配置されており、基板の周縁部の少なくとも一部に、単電池よりも外方に突出しかつ冷却源に熱的に接触させられる放熱部が設けられている組電池の冷却構造であって、
平板状ヒートパイプの基板のヒートパイプ部が、外方に膨出した中空の無端状作動液封入回路内に消火性作動液が封入されることによって設けられ、作動液封入回路に、ヒートパイプ部の内圧の異常上昇時に破損して消火性作動液を流出させる作動液流出部が設けられており、作動液封入回路が、一定の幅および一定の長さを有する複数の回路形成部を備えており、少なくとも1つの回路形成部に、内部が回路形成部内と通じるように外方に膨出し、かつ回路形成部の幅方向に突出するとともに平板状ヒートパイプの基板と直交する方向から見て先端に向かって先細り状となった山形の突出部が設けられ、当該突出部が作動液流出部となっている組電池の冷却構造。
1) A plurality of flat unit cells and a plurality of flat plate heat pipes having a substrate provided with a heat pipe portion are laminated so that the flat plate heat pipes are in thermal contact with at least one side of the unit cell. Is a battery assembly cooling structure provided with a heat dissipating part that protrudes outward from the unit cell and is brought into thermal contact with a cooling source, at least part of the peripheral edge of the substrate,
The heat pipe part of the substrate of the flat plate heat pipe is provided by sealing a fire-extinguishing hydraulic fluid in a hollow endless hydraulic fluid sealing circuit that bulges outward. A hydraulic fluid outflow portion that breaks down when the internal pressure of the internal fluid rises abnormally and flows out the fire-extinguishing hydraulic fluid is provided, and the hydraulic fluid enclosing circuit includes a plurality of circuit forming portions having a certain width and a certain length. And at least one circuit forming portion that bulges outward so that the inside communicates with the inside of the circuit forming portion, protrudes in the width direction of the circuit forming portion, and is viewed from a direction orthogonal to the substrate of the flat plate heat pipe The cooling structure of the assembled battery in which the protrusion part of the mountain shape which tapered toward is provided, and the said protrusion part is a hydraulic fluid outflow part .

2)消火性作動液がパーフルオロケトンからなる上記1)記載の組電池の冷却構造。   2) The assembled battery cooling structure according to 1) above, wherein the fire-extinguishing hydraulic fluid is perfluoroketone.

3)作動液流出部となる突出部が、平板状ヒートパイプの基板と直交する方向から見て互いに鋭角をなす2つの傾斜辺を有している上記1)または2)記載の組電池の冷却構造。 3) Cooling of the assembled battery according to 1) or 2) above, wherein the protruding portion serving as the hydraulic fluid outflow portion has two inclined sides that form an acute angle when viewed from a direction orthogonal to the substrate of the flat plate heat pipe. Construction.

4)単電池および平板状ヒートパイプが鉛直状に配置されており、平板状ヒートパイプの基板の上部に、単電池の上端部よりも上方に突出した上方突出部が設けられるとともに、ヒートパイプ部の作動液封入回路が基板の上方突出部まで延びており、平板状ヒートパイプの基板の上方突出部に放熱部が設けられ、作動液封入回路における基板の上方突出部に存在する部分に作動液流出部が設けられている上記1)〜3)のうちのいずれかに記載の組電池の冷却構造。 4) The unit cell and the flat plate heat pipe are arranged vertically, and an upper projecting portion that projects upward from the upper end of the unit cell is provided on the upper part of the substrate of the flat plate heat pipe, and the heat pipe unit The hydraulic fluid enclosing circuit extends to the upper projecting portion of the substrate, a heat dissipating portion is provided in the upper projecting portion of the substrate of the flat plate heat pipe, and the operating fluid is present in the portion existing in the upper projecting portion of the substrate in the hydraulic fluid enclosing circuit. 4. The assembled battery cooling structure according to any one of 1) to 3), wherein an outflow portion is provided.

5)平板状ヒートパイプの基板が、ヒートパイプ部が設けられた鉛直状本体部分を備えており、鉛直状本体部分の上端に、鉛直状本体部分と直角をなす水平状放熱部が設けられ、すべての平板状ヒートパイプの基板の放熱部に跨って、1つの冷却源が熱的に接触するようになされている上記4)記載の組電池の冷却構造。 5) The substrate of the flat plate heat pipe has a vertical main body portion provided with a heat pipe portion, and a horizontal heat dissipating portion perpendicular to the vertical main body portion is provided at the upper end of the vertical main body portion, The cooling structure for an assembled battery as described in 4) above, wherein one cooling source is in thermal contact with the heat radiating portion of the substrate of all the flat plate heat pipes.

6)平板状ヒートパイプにおける基板の鉛直状本体部分の下部に単電池の下端部よりも下方に突出した下方突出部が設けられ、下方突出部に、加熱源に熱的に接触させられる受熱部が設けられており、組電池を加熱する機能を有している上記5)記載の組電池の冷却構造。 6) In the flat plate heat pipe, a lower projecting portion projecting downward from the lower end portion of the unit cell is provided below the vertical main body portion of the substrate, and the lower projecting portion is thermally contacted with a heating source. The assembled battery cooling structure according to 5) above, which has a function of heating the assembled battery.

7)平板状ヒートパイプの基板における鉛直状本体部分の下端に、鉛直状本体部分と直角をなす水平状受熱部が設けられ、すべての平板状ヒートパイプの基板の受熱部に跨って、1つの加熱源が熱的に接触するようになされている上記6)記載の組電池の冷却構造。 7) A horizontal heat receiving portion perpendicular to the vertical main body portion is provided at the lower end of the vertical main body portion of the flat plate heat pipe substrate, and one horizontal plate is provided across the heat receiving portions of the flat plate heat pipe substrates. 6. The assembled battery cooling structure according to 6) above, wherein the heating source is in thermal contact.

8)平板状ヒートパイプの基板が互いに接合された2枚の金属板からなり、平板状ヒートパイプの基板におけるヒートパイプ部の作動液封入回路が、基板の少なくともいずれか一方の金属板を膨出させることにより形成されている上記1)〜7)のうちのいずれかに記載の組電池の冷却構造。 8) The flat heat pipe substrate is composed of two metal plates joined together, and the hydraulic fluid enclosing circuit of the heat pipe portion in the flat heat pipe substrate bulges out at least one of the metal plates The assembled battery cooling structure according to any one of 1) to 7) , wherein

上記1)〜8)の冷却構造によれば、平板状ヒートパイプの基板のヒートパイプ部が、外方に膨出した中空の無端状作動液封入回路内に消火性作動液が封入されることによって設けられ、作動液封入回路に、ヒートパイプ部の内圧の異常上昇時に破損して消火性作動液を流出させる作動液流出部が設けられており、作動液封入回路が、一定の幅および一定の長さを有する複数の回路形成部を備えており、少なくとも1つの回路形成部に、内部が回路形成部内と通じるように外方に膨出し、かつ回路形成部の幅方向に突出するとともに平板状ヒートパイプの基板と直交する方向から見て先端に向かって先細り状となった山形の突出部が設けられ、当該突出部が作動液流出部となっているので、たとえばリチウムイオン二次電池からなる単電池が、内部ショートや過充電などに起因して熱暴走し、電池の温度が異常に上昇して発火すると、ヒートパイプ部の作動液封入回路内の消火性作動液がドライアウトして内圧が上昇する。その結果、作動液流出部が破損して消火性作動液が流出し、発生した火が消火される。 Above 1) to 8) by lever cooling structure, the heat pipe portion of the substrate of the flat heat pipe, extinguishing property hydraulic fluid is sealed in the outward bulging hollow endless working fluid enclosed circuit provided by, the hydraulic fluid enclosed circuit, which hydraulic fluid outflow section for discharging the extinguishing property hydraulic fluid damaged when abnormal increase in the internal pressure of the heat pipe portion is provided, hydraulic fluid enclosed circuit, constant width and A plurality of circuit forming portions having a certain length are provided, and at least one circuit forming portion bulges outward so that the inside communicates with the inside of the circuit forming portion, and protrudes in the width direction of the circuit forming portion. Since a projection in the shape of a taper that is tapered toward the tip when viewed from the direction orthogonal to the substrate of the flat plate heat pipe is provided, and the projection serves as a working fluid outflow portion , for example, a lithium ion secondary battery A single cell consisting of If a thermal runaway occurs due to a short circuit or overcharge, and the battery temperature rises abnormally and ignites, the fire-extinguishing hydraulic fluid in the hydraulic fluid sealing circuit of the heat pipe portion is dried out and the internal pressure rises. As a result, the hydraulic fluid outflow portion is damaged, the fire extinguishing hydraulic fluid flows out, and the generated fire is extinguished.

また、作動液封入回路の山形突出部の耐圧性は低下するので、ヒートパイプ部の内圧の異常上昇時に破損して消火性作動液を流出させる作動液流出部を、比較的簡単な構造で設けることができる In addition, since the pressure resistance of the chevron-shaped projecting portion of the hydraulic fluid sealing circuit is reduced, a hydraulic fluid outflow portion that breaks down when the internal pressure of the heat pipe increases abnormally and allows the fire extinguishing hydraulic fluid to flow out is provided with a relatively simple structure. Can

上記3)の冷却構造によれば、作動液封入回路の山形突出部の耐圧性が低下するので、ヒートパイプ部の内圧の異常上昇時に破損して消火性作動液を流出させる作動液流出部を、比較的簡単な構造で設けることができる。 According to the cooling structure of ( 3) above, the pressure resistance of the chevron protruding portion of the hydraulic fluid sealing circuit is reduced, so the hydraulic fluid outflow portion that breaks down when the internal pressure of the heat pipe portion abnormally increases and causes the fire extinguishing hydraulic fluid to flow out is provided. It can be provided with a relatively simple structure.

上記4)の冷却構造によれば、組電池が発火した際に作動液流出部から流出した消火性作動液が下方に流れ、効果的に消火することが可能になる。 According to the cooling structure of 4) above, when the assembled battery ignites, the fire-extinguishing hydraulic fluid that has flowed out from the hydraulic fluid outflow portion flows downward and can be effectively extinguished.

しかも、平板状ヒートパイプの基板の上方突出部に放熱部が設けられているので、以下に述べるように単電池を効率良く冷却することが可能になる。すなわち、単電池を冷却する際には、単電池から発せられる熱によって、平板状ヒートパイプにおける単電池に熱的に接触している部分が加熱され、この熱がヒートパイプ部の作動液封入部内の作動液に伝わって作動液が蒸発する。一方、放熱部の近傍においては、放熱部に熱的に接触している冷却源によって、基板における放熱部に近い部分から熱が奪われ、放熱部に近い上部において作動液封入部内の気相の作動液が凝縮し、作動液封入部内の気相作動液が凝縮した部分の圧力が低下する。そして、作動液封入部内で発生した気相作動液が、作動液封入部内における圧力が低下した部分に流れるとともに、再凝縮した液相作動液が、重力により下方に流れるので、ヒートパイプ部において、気相作動液の上方への流れと液相作動液の下方への流れとが発生し、作動液の循環が起きる。ヒートパイプ部の作動液封入部内で気相作動液が凝縮した液相作動液は、液相作動液が蒸発した部分に流れるまでの間においても、単電池から熱を奪って蒸発する。したがって、単電池における平板状ヒートパイプに熱的に接触している部分の全体が均等に冷却される。   Moreover, since the heat dissipating part is provided in the upper protruding part of the substrate of the flat plate heat pipe, it becomes possible to cool the unit cell efficiently as described below. That is, when the unit cell is cooled, the portion of the flat plate heat pipe that is in thermal contact with the unit cell is heated by the heat generated from the unit cell, and this heat is heated in the working fluid enclosure of the heat pipe unit. The hydraulic fluid evaporates by being transferred to the hydraulic fluid. On the other hand, in the vicinity of the heat dissipating part, heat is taken away from the part near the heat dissipating part in the substrate by the cooling source that is in thermal contact with the heat dissipating part, and in the upper part near the heat dissipating part, The hydraulic fluid is condensed, and the pressure of the portion where the vapor-phase hydraulic fluid in the hydraulic fluid enclosure is condensed is reduced. And the gas phase hydraulic fluid generated in the hydraulic fluid enclosing part flows to the portion where the pressure in the hydraulic fluid enclosing part is reduced, and the recondensed liquid phase hydraulic fluid flows downward by gravity. The upward flow of the gas-phase hydraulic fluid and the downward flow of the liquid-phase hydraulic fluid are generated, and the hydraulic fluid is circulated. The liquid-phase hydraulic fluid in which the gas-phase hydraulic fluid is condensed in the hydraulic fluid enclosing portion of the heat pipe portion evaporates by taking heat from the unit cell until it flows to the portion where the liquid-phase hydraulic fluid has evaporated. Accordingly, the entire portion of the unit cell that is in thermal contact with the flat plate-like heat pipe is uniformly cooled.

上記5)の冷却構造によれば、複数の平板状ヒートパイプの基板の放熱部に跨って冷却源を熱的に接触させることが可能になり、冷却源の数を低減することが可能になる。 According to the cooling structure of 5) above, it becomes possible to make the cooling sources come into thermal contact across the heat radiation portions of the substrates of the plurality of flat plate heat pipes, and the number of cooling sources can be reduced. .

上記6)の冷却構造によれば、平板状ヒートパイプにおける基板の鉛直状本体部分の下部に単電池の下端部よりも下方に突出した下方突出部が設けられ、下方突出部に、加熱源に熱的に接触させられる受熱部が設けられており、組電池を加熱する機能を有しているので、以下に述べるように、寒冷地においては使用開始前に単電池を短時間で適正温度に加熱することが可能になる。すなわち、寒冷地において、使用開始前に単電池を加熱する際には、加熱源から平板状ヒートパイプの基板の受熱部に熱を供給する。供給された熱は、基板における受熱部に近い部分に伝わるとともに、ヒートパイプ部の作動液封入部内の作動液に伝わって作動液が蒸発する。一方、単電池に熱的に接触している部分においては、単電池によって基板から熱が奪われて単電池が加熱され、作動液封入部内の気相の作動液が凝縮し、作動液封入部内の気相作動液が凝縮した部分の圧力が低下する。そして、作動液封入部内で発生した気相作動液が、作動液封入部内における圧力が低下した部分に流れるとともに、再凝縮した液相作動液が、重力により下方に流れるので、ヒートパイプ部において、気相作動液の上方への流れと液相作動液の下方への流れとが発生し、作動液の循環が起きる。したがって、単電池における平板状ヒートパイプに熱的に接触している部分の全体が均等に加熱され、単電池の全体が短時間で適正温度に加熱される。 According to the cooling structure of the above 6) , a lower projecting portion projecting downward from the lower end portion of the unit cell is provided below the vertical body portion of the substrate in the flat plate heat pipe, and the lower projecting portion serves as a heating source. Since the heat receiving part that is brought into thermal contact is provided and has the function of heating the assembled battery, as described below, in a cold region, the cell can be brought to an appropriate temperature in a short time before the start of use. It becomes possible to heat. That is, when a unit cell is heated before the start of use in a cold region, heat is supplied from a heating source to the heat receiving portion of the flat plate heat pipe. The supplied heat is transmitted to a portion of the substrate close to the heat receiving portion, and is also transmitted to the working fluid in the working fluid sealing portion of the heat pipe portion to evaporate the working fluid. On the other hand, in the portion that is in thermal contact with the unit cell, the unit cell is deprived of heat from the substrate, and the unit cell is heated, so that the gas-phase hydraulic fluid in the hydraulic fluid enclosing unit condenses, The pressure in the portion where the gas phase hydraulic fluid is condensed decreases. And the gas phase hydraulic fluid generated in the hydraulic fluid enclosing part flows to the portion where the pressure in the hydraulic fluid enclosing part is reduced, and the recondensed liquid phase hydraulic fluid flows downward by gravity. The upward flow of the gas-phase hydraulic fluid and the downward flow of the liquid-phase hydraulic fluid are generated, and the hydraulic fluid is circulated. Therefore, the entire portion of the unit cell that is in thermal contact with the flat plate-like heat pipe is evenly heated, and the entire unit cell is heated to an appropriate temperature in a short time.

上記7)の冷却構造によれば、複数の平板状ヒートパイプの基板の受熱部に跨って加熱源を熱的に接触させることが可能なり、冷却源および加熱源の数を低減することが可能になる。 According to the cooling structure of the above 7) , it is possible to make the heat source thermally contact across the heat receiving portions of the substrates of the plurality of flat plate heat pipes, and it is possible to reduce the number of cooling sources and heating sources. become.

この発明による組電池の冷却構造の全体構成を示す一部切り欠き正面図である。1 is a partially cutaway front view showing an overall configuration of a cooling structure for a battery pack according to the present invention. 図1に示す冷却構造の一部を示す分解斜視図である。It is a disassembled perspective view which shows a part of cooling structure shown in FIG. 図1の冷却構造に用いられる平板状ヒートパイプの一部分を示す基板と直交する方向から見た図である。It is the figure seen from the direction orthogonal to the board | substrate which shows a part of flat heat pipe used for the cooling structure of FIG. 図1の冷却構造に用いられる平板状ヒートパイプの第1の変形例を示す図である。It is a figure which shows the 1st modification of the flat heat pipe used for the cooling structure of FIG. 図1の冷却構造に用いられる平板状ヒートパイプの第2の変形例を示す図である。It is a figure which shows the 2nd modification of the flat heat pipe used for the cooling structure of FIG. 図1の冷却構造に用いられる平板状ヒートパイプの第3の変形例を示す図である。It is a figure which shows the 3rd modification of the flat heat pipe used for the cooling structure of FIG.

以下、この発明の実施形態を、図面を参照して説明する。なお、以下の説明において、図1の左右を左右というものとする。   Embodiments of the present invention will be described below with reference to the drawings. In the following description, the left and right in FIG.

また、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

図1はこの発明による組電池の冷却構造の全体構成を示し、図2はその一部の構成を示す。また、図3は図1の冷却構造に用いられる平板状ヒートパイプの一部分を示す。   FIG. 1 shows the overall structure of a battery pack cooling structure according to the present invention, and FIG. 2 shows a part of the structure. FIG. 3 shows a part of a flat plate heat pipe used in the cooling structure of FIG.

図1および図2において、組電池の冷却構造は、リチウムイオン二次電池からなる複数の扁平直方体状単電池(1)と複数の平板状ヒートパイプ(2)とが、単電池(1)および平板状ヒートパイプ(2)が鉛直状となり、かつ平板状ヒートパイプ(2)が隣り合う単電池(1)どうしの間および左端の単電池(1)の左側(外側)に位置するように積層状に配置されたものである。単電池(1)と平板状ヒートパイプ(2)とは熱的に接触させられている。図示は省略したが、単電池(1)と平板状ヒートパイプ(2)との間には電気絶縁フィルムが介在させられるか、あるいは平板状ヒートパイプ(2)の左右両面に電気絶縁コーティングが施されることによって、単電池(1)と平板状ヒートパイプ(2)との間が電気絶縁状態となっていることが好ましい。   In FIG. 1 and FIG. 2, the cooling structure of the assembled battery is such that a plurality of flat rectangular unit cells (1) and a plurality of flat plate heat pipes (2) made of lithium ion secondary batteries are unit cells (1) and Laminate so that the flat plate heat pipe (2) is vertical and the flat plate heat pipe (2) is positioned between adjacent cells (1) and on the left side (outside) of the leftmost cell (1) Are arranged in a shape. The unit cell (1) and the flat plate heat pipe (2) are in thermal contact. Although illustration is omitted, an electric insulation film is interposed between the unit cell (1) and the flat plate heat pipe (2), or an electric insulation coating is applied to both the left and right sides of the flat plate heat pipe (2). By doing so, it is preferable that the unit cell (1) and the flat plate-like heat pipe (2) are electrically insulated.

なお、この明細書において、「直方体」という用語には、数学的に定義される厳密な直方体だけではなく、直方体に近似した形状も含むものとする。また、単電池(1)は扁平直方体状に限らず、扁平状であればよい。   In this specification, the term “cuboid” includes not only a strict cuboid defined mathematically but also a shape approximated to a cuboid. Further, the unit cell (1) is not limited to a flat rectangular parallelepiped shape, and may be a flat shape.

単電池(1)の上端に1対の端子(3)が上方突出状に設けられており、図示は省略したが、端子(3)を利用して全ての単電池(1)が直列状または並列状に接続されることにより組電池(4)が構成されている。   A pair of terminals (3) are provided on the upper end of the unit cell (1) so as to protrude upwards, and although not shown, all the unit cells (1) are connected in series using the terminal (3). The assembled battery (4) is configured by being connected in parallel.

平板状ヒートパイプ(2)は、互いに接合された2枚のアルミニウム板からなり、かつ1つのヒートパイプ部(6)が設けられた鉛直状本体部分(5a)を有する縦長方形基板(5)を備えている。平板状ヒートパイプ(2)の基板(5)の鉛直状本体部分(5a)の上端は単電池(1)の上端よりも上方に大きく突出しており、ヒートパイプ部(6)の上部も単電池(1)の上端よりも上方に位置している。鉛直状本体部分(5a)の上方突出部を(5b)で示す。平板状ヒートパイプ(2)の基板(5)の鉛直状本体部分(5a)の下端は単電池(1)の下端よりも基板(5)の厚み以上下方に位置している。   The flat plate heat pipe (2) is composed of two aluminum plates joined together, and a vertical rectangular substrate (5) having a vertical main body portion (5a) provided with one heat pipe portion (6). I have. The upper end of the vertical body part (5a) of the substrate (5) of the flat plate heat pipe (2) protrudes greatly upward from the upper end of the unit cell (1), and the upper part of the heat pipe part (6) is also a unit cell. It is located above the upper end of (1). An upward projecting portion of the vertical main body portion (5a) is indicated by (5b). The lower end of the vertical main body portion (5a) of the substrate (5) of the flat plate heat pipe (2) is positioned lower than the lower end of the unit cell (1) by the thickness of the substrate (5).

平板状ヒートパイプ(2)の基板(5)のヒートパイプ部(6)は、基板(5)のいずれか一方のアルミニウム板を外側に膨出させることにより形成された1つの無端状作動液封入回路(7)内に、消火性作動液が封入されることによって形成されている。なお、作動液封入回路(7)は、両アルミニウム板をそれぞれ外方に膨出させることにより形成されていてもよい。消火性作動液としては、パーフルオロケトンを用いることが好ましい。パーフルオロケトンとしては、たとえばNovec(ノベック)649(CF3CF2C(O)CF(CF32、住友スリーエム社製)が用いられる。 The heat pipe portion (6) of the substrate (5) of the flat plate heat pipe (2) is filled with one endless hydraulic fluid formed by expanding one of the aluminum plates of the substrate (5) outward. The circuit (7) is formed by enclosing a fire-extinguishing hydraulic fluid. The hydraulic fluid sealing circuit (7) may be formed by expanding both aluminum plates outward. As the fire-extinguishing hydraulic fluid, it is preferable to use perfluoroketone. As the perfluoroketone, for example, Novec (Novec) 649 (CF 3 CF 2 C (O) CF (CF 3 ) 2 , manufactured by Sumitomo 3M Limited) is used.

作動液封入回路(7)は、基板(5)の鉛直状本体部分(5a)全体に形成された縦長方形の格子状となっており、一定の幅および一定の長さを有する垂直直線状および水平直線状の複数の回路形成部(7a)を備えているとともに、基板(5)の上方突出部(5b)まで延びている。少なくともいずれか1つ、ここでは1つの垂直直線状の回路形成部(7a)における基板(5)の上方突出部(5b)に存在する部分の両側に、ヒートパイプ部(6)の作動液封入回路(7)の内圧の異常上昇時に破損して消火性作動液を流出させる作動液流出部(8)が設けられている。作動液流出部(8)は、回路形成部(7a)の幅方向の両側にそれぞれ回路形成部(7a)の幅方向に突出するように設けられており、図3に示すように、回路形成部(7a)の同一膨出高さを有するとともに内部が回路形成部(7a)と通じるように外方に膨出し、かつ平板状ヒートパイプ(2)の基板(5)と直交する方向から見て先細り状となった山形の突出部からなる。作動液流出部(8)となる山形突出部は、上下2つの傾斜辺(8a)を有しており、各傾斜辺(8a)は、平板状ヒートパイプ(2)の基板(5)と直交する方向から見て突出端側に向かって他の傾斜辺(8a)側に傾斜し、かつ互いに鋭角をなしている。   The hydraulic fluid enclosing circuit (7) is a vertical rectangular lattice formed on the entire vertical body portion (5a) of the substrate (5), and has a vertical linear shape having a constant width and a constant length, and A plurality of horizontal linear circuit forming portions (7a) are provided and extend to the upper projecting portion (5b) of the substrate (5). At least one of them, here, one vertical linear circuit forming part (7a) is filled with hydraulic fluid in the heat pipe part (6) on both sides of the part existing in the upper protruding part (5b) of the substrate (5) A hydraulic fluid outflow portion (8) is provided that breaks down when the internal pressure of the circuit (7) rises abnormally and allows the extinguishing hydraulic fluid to flow out. The hydraulic fluid outflow portion (8) is provided on both sides in the width direction of the circuit forming portion (7a) so as to protrude in the width direction of the circuit forming portion (7a). As shown in FIG. The portion (7a) has the same bulging height, the inside bulges outward so as to communicate with the circuit forming portion (7a), and is viewed from a direction perpendicular to the substrate (5) of the flat plate heat pipe (2). It consists of a mountain-shaped protrusion that is tapered. The chevron-shaped projecting portion serving as the hydraulic fluid outflow portion (8) has two upper and lower inclined sides (8a), and each inclined side (8a) is orthogonal to the substrate (5) of the flat plate heat pipe (2). Inclined toward the other inclined side (8a) toward the protruding end side when viewed from the direction in which they are formed, and form an acute angle with each other.

平板状ヒートパイプ(2)の基板(5)は、たとえば2枚のアルミニウム板の合わせ面のうちの少なくともいずれか一方の面に圧着防止剤を所要パターンに印刷し、この状態で2枚のアルミニウム板を圧着して合わせ板をつくり、合わせ板の非圧着部に流体圧を導入することによって作動液封入回路(7)を一挙に形成する、所謂ロールボンド方によって製造される。合せ板の非圧着部は、作動液封入回路(7)に対応する形状の作動液封入回路(7)用非圧着部と、作動液封入回路(7)用非圧着部から合せ板の周縁に至る流体圧導入用非圧着部とからなる。流体圧導入用非圧着部から流体圧を導入して作動液封入回路(7)を形成すると、流体圧導入用非圧着部は、一端が作動液封入回路(7)に連なるとともに他端が合せ板の周縁に開口した作動液注入部となる。作動液注入部は作動液の注入後封止される。   For the substrate (5) of the flat plate heat pipe (2), for example, an anti-bonding agent is printed in a required pattern on at least one of the two aluminum plate mating surfaces. It is manufactured by a so-called roll bonding method in which a working liquid sealing circuit (7) is formed at a time by making a laminated board by crimping the board and introducing fluid pressure to the non-crimped portion of the laminated board. The non-crimping part of the laminating plate is connected to the periphery of the laminating plate from the non-crimping part for the hydraulic fluid enclosing circuit (7) and the non-crimping part for the hydraulic fluid enclosing circuit (7). And a non-crimping part for introducing fluid pressure. When fluid pressure is introduced from the non-crimping part for introducing fluid pressure to form the hydraulic fluid sealing circuit (7), one end of the non-crimping part for fluid pressure introduction is connected to the hydraulic fluid sealing circuit (7) and the other end is aligned. It becomes the hydraulic fluid injection | pouring part opened to the peripheral edge of the board. The hydraulic fluid injection part is sealed after the hydraulic fluid is injected.

なお、基板(5)は、少なくとも1枚のアルミニウム板が作動液封入回路(7)を形成するための外方膨出部を有する2枚のアルミニウム板を、たとえばろう付することにより形成してもよい。   The substrate (5) is formed by brazing, for example, two aluminum plates having at least one aluminum plate having an outward bulging portion for forming the hydraulic fluid sealing circuit (7). Also good.

平板状ヒートパイプ(2)の基板(5)における鉛直状本体部分(5a)の上端に、基板(5)が鉛直状本体部分(5a)に対して左右いずれか一方、ここでは右方に直角をなすように曲げられることによって、鉛直状本体部分(5a)と直角をなす水平状放熱部(9)が設けられ、同じく鉛直状本体部分(5a)の下端に、基板(5)が鉛直状本体部分(5a)に対して左右いずれか一方、ここでは右方に直角をなすように曲げられることによって、鉛直状本体部分(5a)と直角をなしかつ単電池(1)の下方に位置する水平状受熱部(10)が設けられている。すべての放熱部(9)は同一水平面内に位置しており、複数、ここではすべての放熱部(9)に跨って1つの冷却源(11)が熱的に接触させられている。図示の例では、冷却源(11)は、放熱部(9)に熱的に接触させられる放熱基板(11a)と、放熱基板(11a)の片面に間隔をおいて並列状に一体に形成された複数のフィン(11b)とからなる。また、冷却源(11)としては、内部に低温流体が流される流体冷却式クーラなどが用いられてもよい。また、すべての受熱部(10)は同一水平面内に位置しており、複数、ここではすべての受熱部(10)に跨って1つの加熱源(12)が熱的に接触させられている。加熱源(12)としては、内部に高温流体が流される流体加熱式ヒータや、電気ヒータなどが用いられる。なお、図2に鎖線で示すように、放熱部(9)および受熱部(10)は、基板(5)が鉛直状本体部分(5a)に対して左方に直角をなすように曲げられることによって設けられていてもよい。   At the upper end of the vertical body part (5a) in the substrate (5) of the flat plate heat pipe (2), the substrate (5) is either left or right with respect to the vertical body part (5a), here right-angled to the right The horizontal heat dissipating part (9) perpendicular to the vertical main body part (5a) is provided by being bent so that the substrate (5) is in a vertical state at the lower end of the vertical main body part (5a). Either right or left with respect to the main body part (5a), here, it is bent to form a right angle to the right, thereby forming a right angle with the vertical main body part (5a) and positioned below the unit cell (1) A horizontal heat receiving portion (10) is provided. All the heat radiating portions (9) are located in the same horizontal plane, and one cooling source (11) is in thermal contact with a plurality of, here, all the heat radiating portions (9). In the example shown in the figure, the cooling source (11) is integrally formed in parallel with a space between one side of the heat dissipation substrate (11a) and the heat dissipation substrate (11a) that is in thermal contact with the heat dissipation portion (9). And a plurality of fins (11b). Further, as the cooling source (11), a fluid cooling type cooler in which a low-temperature fluid is allowed to flow inside may be used. Moreover, all the heat receiving parts (10) are located in the same horizontal plane, and one heating source (12) is thermally contacted across multiple, here all the heat receiving parts (10). As the heating source (12), a fluid heating heater in which a high-temperature fluid flows inside, an electric heater, or the like is used. In addition, as shown by a chain line in FIG. 2, the heat radiating portion (9) and the heat receiving portion (10) are bent so that the substrate (5) forms a right angle to the left with respect to the vertical main body portion (5a). May be provided.

上述した冷却構造において、単電池(1)を冷却する際には、単電池(1)から発せられる熱によって、平板状ヒートパイプ(2)の基板(5)の鉛直状本体部分(5a)における単電池(1)に熱的に接触している部分が加熱され、この熱がヒートパイプ部(6)の作動液封入回路(7)内の消火性作動液に伝わって消火性作動液が蒸発する。一方、平板状ヒートパイプ(2)の基板(5)の放熱部(9)に熱的に接触している冷却源(11)によって、基板(5)の鉛直状本体部分(5a)における放熱部(9)に近い部分から熱が奪われ、放熱部(9)に近い上部において消火性作動液封入回路(7)内の気相の消火性作動液が凝縮し、消火性作動液封入回路(7)の上部内の圧力が低下する。そして、消火性作動液封入回路(7)内で発生した気相の消火性作動液が、消火性作動液封入回路(7)内における気相消火性作動液が凝縮して圧力が低下した上部に流れるとともに、再凝縮した液相消火性作動液が、重力により下方に流れるので、ヒートパイプ部(6)において、気相消火性作動液の上方への流れと液相消火性作動液の下方への流れが発生し、消火性作動液の循環がおきる。ヒートパイプ部(6)の消火性作動液封入回路(7)の上部内で凝縮した液相の消火性作動液は、ヒートパイプ部(6)の下部に戻るまでの間においても、平板状ヒートパイプ(2)の基板(5)の鉛直状本体部分(5a)における単電池(1)に熱的に接触している部分の消火性作動液封入回路(7)内で単電池(1)から熱を奪って蒸発する。したがって、単電池(1)における平板状ヒートパイプ(2)に熱的に接触している部分の全体が均等に冷却される。   In the cooling structure described above, when cooling the cell (1), the heat generated from the cell (1), in the vertical body portion (5a) of the substrate (5) of the flat plate heat pipe (2). The part that is in thermal contact with the unit cell (1) is heated, and this heat is transmitted to the fire-extinguishing hydraulic fluid in the hydraulic fluid sealing circuit (7) of the heat pipe (6) to evaporate the fire-extinguishing hydraulic fluid. To do. On the other hand, by the cooling source (11) in thermal contact with the heat radiating portion (9) of the substrate (5) of the flat plate heat pipe (2), the heat radiating portion in the vertical main body portion (5a) of the substrate (5) Heat is deprived from the part close to (9), and the gas-phase fire extinguishing hydraulic fluid in the fire extinguishing hydraulic fluid sealing circuit (7) condenses in the upper part near the heat radiating section (9), and the fire extinguishing hydraulic fluid sealing circuit ( 7) The pressure in the upper part decreases. And the gas-phase fire-extinguishing hydraulic fluid generated in the fire-extinguishing hydraulic fluid sealing circuit (7) is condensed into the gas-phase fire-extinguishing hydraulic fluid in the fire-extinguishing hydraulic fluid sealing circuit (7) and the pressure is lowered. The liquid-phase fire-extinguishing hydraulic fluid that flows through and flows downward due to gravity flows downward in the heat pipe (6) and below the liquid-phase fire-extinguishing hydraulic fluid. The fire extinguishing fluid is circulated. The liquid fire extinguishing hydraulic fluid condensed in the upper part of the fire extinguishing hydraulic fluid enclosing circuit (7) of the heat pipe part (6) is flat plate heat before returning to the lower part of the heat pipe part (6). From the unit cell (1) in the fire extinguishing hydraulic fluid sealing circuit (7) of the part (5a) of the substrate (5) of the pipe (2) in thermal contact with the unit cell (1) It takes heat and evaporates. Therefore, the entire portion of the unit cell (1) that is in thermal contact with the flat plate heat pipe (2) is cooled uniformly.

仮に、リチウムイオン二次電池からなる単電池(1)が、内部ショートや過充電などに起因して熱暴走し、単電池(1)の温度が異常に上昇して発火すると、ヒートパイプ部(6)の作動液封入回路(7)内の消火性作動液がドライアウトして内圧が上昇する。その結果、作動液流出部(8)が先端から破損して消火性作動液が流出し、発火が消される。   If a unit cell (1) made of a lithium ion secondary battery runs out of heat due to an internal short circuit or overcharge, and the temperature of the unit cell (1) rises abnormally and ignites, the heat pipe ( The fire-extinguishing hydraulic fluid in the hydraulic fluid sealing circuit (7) in 6) is dried out and the internal pressure rises. As a result, the hydraulic fluid outflow portion (8) is damaged from the tip, the extinguishing hydraulic fluid flows out, and the ignition is extinguished.

寒冷地において、使用開始前に単電池(1)を加熱する際には、加熱源(12)から平板状ヒートパイプ(2)の基板(5)の受熱部(10)に熱を供給する。受熱部(10)に供給された熱は、基板(5)の鉛直状本体部分(5a)における受熱部(10)に近い部分に伝わるとともに、ヒートパイプ部(6)の消火性作動液封入回路(7)内の消火性作動液に伝わって消火性作動液が蒸発する。一方、単電池(1)の温度は低いので、単電池(1)に熱的に接触している部分においては、単電池(1)によって基板(5)から熱が奪われて単電池(1)が加熱され、消火性作動液封入回路(7)内の気相の消火性作動液が凝縮し、消火性作動液封入回路(7)内の気相消火性作動液が凝縮した部分の圧力が低下する。そして、消火性作動液封入回路(7)内で発生した気相消火性作動液が、消火性作動液封入回路(7)内における圧力が低下した部分に流れるとともに、再凝縮した液相消火性作動液が、重力により下方に流れるので、ヒートパイプ部(6)において、気相消火性作動液の上方への流れと液相消火性作動液の下方への流れとが発生し、消火性作動液の循環が起きるとともに蒸発凝縮の潜熱変化が起こる。したがって、単電池(1)における平板状ヒートパイプ(2)に熱的に接触している部分の全体が均等に加熱され、単電池(1)の全体が短時間で適正温度に加熱される。   When the unit cell (1) is heated before use in a cold region, heat is supplied from the heating source (12) to the heat receiving part (10) of the substrate (5) of the flat plate heat pipe (2). The heat supplied to the heat receiving part (10) is transmitted to a part close to the heat receiving part (10) in the vertical main body part (5a) of the substrate (5), and a fire-extinguishing hydraulic fluid enclosing circuit of the heat pipe part (6) The fire-extinguishing hydraulic fluid evaporates by being transmitted to the fire-extinguishing hydraulic fluid in (7). On the other hand, since the temperature of the unit cell (1) is low, in the part that is in thermal contact with the unit cell (1), the unit cell (1) is deprived of heat from the substrate (5) by the unit cell (1). ) Is heated, the gas-phase fire-extinguishing hydraulic fluid in the fire-extinguishing hydraulic fluid sealing circuit (7) is condensed, and the pressure in the portion where the gas-phase fire-extinguishing hydraulic fluid in the fire-extinguishing hydraulic fluid sealing circuit (7) is condensed Decreases. The vapor-phase fire-extinguishing hydraulic fluid generated in the fire-extinguishing hydraulic fluid sealing circuit (7) flows to the portion where the pressure in the fire-extinguishing hydraulic fluid sealing circuit (7) is reduced, and the condensed liquid phase fire-extinguishing properties Since the hydraulic fluid flows downward due to gravity, in the heat pipe (6), an upward flow of the gas-phase fire-extinguishing hydraulic fluid and a downward flow of the liquid-phase fire-extinguishing hydraulic fluid are generated, and the fire-extinguishing operation is performed. As the liquid circulates, the latent heat of evaporation condensation changes. Therefore, the entire portion of the unit cell (1) that is in thermal contact with the flat plate heat pipe (2) is heated uniformly, and the entire unit cell (1) is heated to an appropriate temperature in a short time.

上記実施形態において、図1に鎖線で示すように、組電池(4)の単電池(1)および平板状ヒートパイプ(2)が、たとえばアルミニウムなどの高熱伝導性材料からなる1つの外装ケーシング(13)内に収納されて用いられることがある。この場合、平板状ヒートパイプ(2)の放熱部(9)が外装ケーシング(13)の頂壁内面に熱的に接触させられ、同じく受熱部(10)が外装ケーシング(13)の底壁内面に熱的に接触させられる。   In the above-described embodiment, as shown by a chain line in FIG. 1, the single battery (1) and the flat plate heat pipe (2) of the assembled battery (4) are made of one outer casing (for example, made of a high thermal conductivity material such as aluminum). 13) It may be stored and used inside. In this case, the heat radiating part (9) of the flat plate heat pipe (2) is brought into thermal contact with the inner surface of the top wall of the outer casing (13), and the heat receiving part (10) is also used as the inner surface of the bottom wall of the outer casing (13). In thermal contact.

図4〜図6は上述した実施形態1の冷却構造に用いられる平板状ヒートパイプの変形例を示す。   4-6 shows the modification of the flat heat pipe used for the cooling structure of Embodiment 1 mentioned above.

図4に示す平板状ヒートパイプ(15)の場合、上記実施形態の平板状ヒートパイプ(2)と同様な構成を有する基板(5)の鉛直状本体部分(5a)の長さ方向の上端側でかつ幅方向の両側部分が切除されることによって、基板(5)の鉛直状本体部分(5a)の幅方向の中央部に、基板(5)の幅方向に一定の幅を有しかつ長手方向外側に突出した上方突出部(16)が設けられている。上方突出部(16)は、単電池(1)の上端よりも上方に突出している。なお、放熱部(9)は上方突出部(16)の上端に設けられている。   In the case of the flat plate heat pipe (15) shown in FIG. 4, the upper end side in the length direction of the vertical main body portion (5a) of the substrate (5) having the same configuration as the flat plate heat pipe (2) of the above embodiment. In addition, both side portions in the width direction are cut off, so that the vertical portion (5a) of the substrate (5) has a constant width in the width direction of the substrate (5) at the center in the width direction and the longitudinal direction. An upward projecting portion (16) projecting outward in the direction is provided. The upward projecting portion (16) projects upward from the upper end of the unit cell (1). The heat radiating portion (9) is provided at the upper end of the upward projecting portion (16).

基板(5)の鉛直状本体部分(5a)に設けられたヒートパイプ部(17)の作動液封入回路(18)は、突出部(16)を含んで基板(5)の全体に形成された異形の格子状となっており、一定の幅および一定の長さを有する垂直直線状および水平直線状の複数の回路形成部(18a)を備えているとともに、基板(5)の上方突出部(16)まで延びている。少なくともいずれか1つ、ここでは1つの垂直直線状の回路形成部(18a)における基板(5)の上方突出部(16)に存在する部分の幅方向両側に、ヒートパイプ部(17)の作動液封入回路(18)の内圧の異常上昇時に破損して消火性作動液を流出させる作動液流出部(8)が設けられている。   The hydraulic fluid sealing circuit (18) of the heat pipe portion (17) provided in the vertical main body portion (5a) of the substrate (5) is formed on the entire substrate (5) including the protruding portion (16). It has an irregular lattice shape, and has a plurality of vertical and horizontal linear circuit forming portions (18a) having a constant width and a constant length, and an upward projecting portion of the substrate (5) ( It extends to 16). The operation of the heat pipe part (17) on both sides in the width direction of the part existing in the upper projecting part (16) of the substrate (5) in at least one, here, one vertical linear circuit forming part (18a) A hydraulic fluid outflow portion (8) is provided that breaks down when the internal pressure of the liquid sealing circuit (18) rises abnormally and causes the extinguishing hydraulic fluid to flow out.

図5に示す平板状ヒートパイプ(20)の場合、上記実施形態の平板状ヒートパイプ(2)と同様な構成を有する基板(5)の鉛直状本体部分(5a)の長さ方向の上端側でかつ幅方向の中央部分が切除されることによって、基板(5)の鉛直状本体部分(5a)の幅方向の両側部分に、基板(5)の幅方向に一定の幅を有しかつ長手方向外側に突出した2つの上方突出部(21)が間隔をおいて設けられている。上方突出部(21)は、単電池(1)の上端よりも上方に突出している。なお、放熱部(9)は各上方突出部(21)の上端に設けられている。   In the case of the flat plate heat pipe (20) shown in FIG. 5, the upper end side in the length direction of the vertical main body portion (5a) of the substrate (5) having the same configuration as the flat plate heat pipe (2) of the above embodiment. In addition, by cutting away the central portion in the width direction, both sides of the vertical body portion (5a) of the substrate (5) have a certain width in the width direction of the substrate (5) and are elongated. Two upward projecting portions (21) projecting outward in the direction are provided at intervals. The upward projecting portion (21) projects upward from the upper end of the unit cell (1). The heat radiating portion (9) is provided at the upper end of each upward projecting portion (21).

基板(5)の鉛直状本体部分(5a)に設けられたヒートパイプ部(22)の作動液封入回路(23)は、両突出部(21)を含んで基板(5)の全体に形成された異形の格子状となっており、一定の幅および一定の長さを有する垂直直線状および水平直線状の複数の回路形成部(23a)を備えているとともに、基板(5)の上方突出部(21)まで延びている。少なくともいずれか1つ、ここでは1つの垂直直線状の回路形成部(23a)における基板(5)の上方突出部(21)に存在する部分の幅方向両側に、ヒートパイプ部(22)の作動液封入回路(23)の内圧の異常上昇時に破損して消火性作動液を流出させる作動液流出部(8)が設けられている。   The hydraulic fluid sealing circuit (23) of the heat pipe portion (22) provided in the vertical main body portion (5a) of the substrate (5) is formed on the entire substrate (5) including both protruding portions (21). And a plurality of vertical and horizontal linear circuit forming portions (23a) having a certain width and a certain length, and an upward protruding portion of the substrate (5) It extends to (21). The operation of the heat pipe part (22) on both sides in the width direction of the part existing in the upper projecting part (21) of the substrate (5) in at least one, here, one vertical linear circuit forming part (23a) A hydraulic fluid outflow portion (8) is provided that breaks down when the internal pressure of the liquid sealing circuit (23) rises abnormally and causes the fire-extinguishing hydraulic fluid to flow out.

図4および図5に示す平板状ヒートパイプ(15)(20)は、単電池(1)の1対の端子(3)を利用して、全ての単電池(1)を直列状または並列状に接続するの際に好ましい形態である。   The flat heat pipes (15) and (20) shown in FIGS. 4 and 5 use a pair of terminals (3) of the cell (1) to connect all the cells (1) in series or in parallel. This is a preferred form when connecting to the.

図6に示す平板状ヒートパイプ(30)の場合、基板(5)の鉛直状本体部分(5a)に設けられたヒートパイプ部(31)の作動液封入回路(32)は、基板(5)の中央部に位置する縦長方形の格子部(33)と、格子部(33)から放射状に外側にのびた複数の直線部(34)と、複数の直線部(34)の先端どうしを連結する縦長方形額縁状の連結部(35)とよりなる。したがって、作動液封入回路(32)は、一定の幅および一定の長さを有する垂直直線状、水平直線状および傾斜直線状の複数の回路形成部(32a)を備えているとともに、基板(5)の上方突出部(5b)まで延びている。少なくともいずれか1つ、ここでは上端の水平直線状の回路形成部(32a)における基板(5)の上方突出部(5b)に存在する部分に、ヒートパイプ部(31)の作動液封入回路(32)の内圧の異常上昇時に破損して消火性作動液を流出させる作動液流出部(8)が設けられている。作動液流出部(8)は、回路形成部(32a)の幅方向の下側に回路形成部(32a)の幅方向に突出するように設けられている。   In the case of the flat plate heat pipe (30) shown in FIG. 6, the hydraulic fluid sealing circuit (32) of the heat pipe portion (31) provided in the vertical main body portion (5a) of the substrate (5) is the substrate (5). A vertical rectangular lattice portion (33) located at the center of the plurality of straight portions (34) extending radially outward from the lattice portion (33), and a plurality of straight portions (34) connecting the tips of the straight portions. It consists of a rectangular frame-shaped connecting part (35). Therefore, the hydraulic fluid enclosing circuit (32) includes a plurality of circuit forming portions (32a) having a certain width and a certain length, such as a vertical straight line, a horizontal straight line, and an inclined straight line, and a substrate (5 ) To the upper protrusion (5b). At least one of them, in this case, a portion of the horizontal linear circuit forming portion (32a) at the upper end that is present in the upper projecting portion (5b) of the substrate (5) has a hydraulic fluid sealing circuit (31) for the heat pipe portion (31). A hydraulic fluid outflow portion (8) is provided that breaks down when the internal pressure in (32) rises abnormally and allows the extinguishing hydraulic fluid to flow out. The hydraulic fluid outflow portion (8) is provided on the lower side in the width direction of the circuit formation portion (32a) so as to protrude in the width direction of the circuit formation portion (32a).

この発明による組電池の冷却構造は、たとえば複数のLi二次電池からなる組電池を備えたハイブリッドカーに好適に用いられる。   The assembled battery cooling structure according to the present invention is suitably used for a hybrid car including an assembled battery including a plurality of Li secondary batteries, for example.

(1):単電池
(2)(15)(20)(30):平板状ヒートパイプ
(4):組電池
(5):基板
(5a):本体部分
(6)(17)(22)(31):ヒートパイプ部
(7)(18)(23)(32):作動液封入回路
(7a)(18a)(23a)(32a):回路形成部
(8):作動液流出部
(9):放熱部
(10):受熱部
(11):冷却源
(12):加熱源
(1): Single cell
(2) (15) (20) (30): Flat heat pipe
(4): Battery pack
(5): Board
(5a): Body part
(6) (17) (22) (31): Heat pipe part
(7) (18) (23) (32): Hydraulic fluid sealing circuit
(7a) (18a) (23a) (32a): Circuit forming part
(8): Hydraulic fluid outlet
(9): Heat radiation part
(10): Heat receiving part
(11): Cooling source
(12): Heat source

Claims (8)

複数の扁平状の単電池と、ヒートパイプ部が設けられた基板を有する複数の平板状ヒートパイプとが、単電池の少なくとも片面に平板状ヒートパイプが熱的に接触するように積層状に配置されており、基板の周縁部の少なくとも一部に、単電池よりも外方に突出しかつ冷却源に熱的に接触させられる放熱部が設けられている組電池の冷却構造であって、
平板状ヒートパイプの基板のヒートパイプ部が、外方に膨出した中空の無端状作動液封入回路内に消火性作動液が封入されることによって設けられ、作動液封入回路に、ヒートパイプ部の内圧の異常上昇時に破損して消火性作動液を流出させる作動液流出部が設けられており、作動液封入回路が、一定の幅および一定の長さを有する複数の回路形成部を備えており、少なくとも1つの回路形成部に、内部が回路形成部内と通じるように外方に膨出し、かつ回路形成部の幅方向に突出するとともに平板状ヒートパイプの基板と直交する方向から見て先端に向かって先細り状となった山形の突出部が設けられ、当該突出部が作動液流出部となっている組電池の冷却構造。
A plurality of flat unit cells and a plurality of flat plate heat pipes having a substrate provided with a heat pipe portion are arranged in a stacked manner so that the flat plate heat pipes are in thermal contact with at least one surface of the unit cell. A cooling structure for an assembled battery in which at least a part of the peripheral edge of the substrate is provided with a heat radiating portion that protrudes outward from the unit cell and is brought into thermal contact with a cooling source,
The heat pipe part of the substrate of the flat plate heat pipe is provided by sealing a fire-extinguishing hydraulic fluid in a hollow endless hydraulic fluid sealing circuit that bulges outward. A hydraulic fluid outflow portion that breaks down when the internal pressure of the internal fluid rises abnormally and flows out the fire-extinguishing hydraulic fluid is provided, and the hydraulic fluid enclosing circuit includes a plurality of circuit forming portions having a certain width and a certain length. And at least one circuit forming portion that bulges outward so that the inside communicates with the inside of the circuit forming portion, protrudes in the width direction of the circuit forming portion, and is viewed from a direction orthogonal to the substrate of the flat plate heat pipe The cooling structure of the assembled battery in which the protrusion part of the mountain shape which tapered toward is provided, and the said protrusion part is a hydraulic fluid outflow part .
消火性作動液がパーフルオロケトンからなる請求項1記載の組電池の冷却構造。 2. The assembled battery cooling structure according to claim 1, wherein the fire-extinguishing hydraulic fluid is made of perfluoroketone. 作動液流出部となる突出部が、平板状ヒートパイプの基板と直交する方向から見て互いに鋭角をなす2つの傾斜辺を有している請求項1または2記載の組電池の冷却構造。 The cooling structure for an assembled battery according to claim 1 , wherein the projecting portion serving as the hydraulic fluid outflow portion has two inclined sides that form an acute angle with each other when viewed from a direction orthogonal to the substrate of the flat plate heat pipe . 単電池および平板状ヒートパイプが鉛直状に配置されており、平板状ヒートパイプの基板の上部に、単電池の上端部よりも上方に突出した上方突出部が設けられるとともに、ヒートパイプ部の作動液封入回路が基板の上方突出部まで延びており、平板状ヒートパイプの基板の上方突出部に放熱部が設けられ、作動液封入回路における基板の上方突出部に存在する部分に作動液流出部が設けられている請求項1〜3のうちのいずれかに記載の組電池の冷却構造。 The unit cell and the flat plate heat pipe are arranged vertically, and an upper projecting portion that projects upward from the upper end of the unit cell is provided on the top of the flat plate heat pipe substrate, and the operation of the heat pipe unit The liquid-filled circuit extends to the upper projecting portion of the substrate, the heat-dissipating portion is provided in the upper projecting portion of the substrate of the flat plate heat pipe, and the working fluid outflow portion is in the portion existing in the upper projecting portion of the substrate The cooling structure for an assembled battery according to any one of claims 1 to 3 . 平板状ヒートパイプの基板が、ヒートパイプ部が設けられた鉛直状本体部分を備えており、鉛直状本体部分の上端に、鉛直状本体部分と直角をなす水平状放熱部が設けられ、すべての平板状ヒートパイプの基板の放熱部に跨って、1つの冷却源が熱的に接触するようになされている請求項4記載の組電池の冷却構造。 The flat heat pipe substrate has a vertical main body portion provided with a heat pipe portion, and a horizontal heat dissipating portion perpendicular to the vertical main body portion is provided at the upper end of the vertical main body portion. The assembled battery cooling structure according to claim 4 , wherein one cooling source is in thermal contact with the heat radiating portion of the substrate of the flat plate heat pipe . 平板状ヒートパイプにおける基板の鉛直状本体部分の下部に単電池の下端部よりも下方に突出した下方突出部が設けられ、下方突出部に、加熱源に熱的に接触させられる受熱部が設けられており、組電池を加熱する機能を有している請求項5記載の組電池の冷却構造。 A lower protrusion that protrudes downward from the lower end of the unit cell is provided below the vertical main body portion of the substrate in the flat heat pipe, and a heat receiving portion that is brought into thermal contact with the heating source is provided at the lower protrusion. The assembled battery cooling structure according to claim 5 , wherein the assembled battery has a function of heating the assembled battery. 平板状ヒートパイプの基板における鉛直状本体部分の下端に、鉛直状本体部分と直角をなす水平状受熱部が設けられ、すべての平板状ヒートパイプの基板の受熱部に跨って、1つの加熱源が熱的に接触するようになされている請求項6記載の組電池の冷却構造。 A horizontal heat receiving portion perpendicular to the vertical main body portion is provided at the lower end of the vertical main body portion of the flat heat pipe substrate, and one heating source is provided across the heat receiving portions of all flat heat pipe substrates. 7. The assembled battery cooling structure according to claim 6, wherein the battery is in thermal contact . 平板状ヒートパイプの基板が互いに接合された2枚の金属板からなり、平板状ヒートパイプの基板におけるヒートパイプ部の作動液封入回路が、基板の少なくともいずれか一方の金属板を膨出させることにより形成されている請求項1〜7のうちのいずれかに記載の組電池の冷却構造。 The flat heat pipe substrate is composed of two metal plates joined to each other, and the hydraulic fluid enclosing circuit of the heat pipe portion in the flat heat pipe substrate bulges at least one of the metal plates of the substrate. The assembled battery cooling structure according to claim 1, wherein the battery pack cooling structure is formed by:
JP2012200270A 2012-09-12 2012-09-12 Battery cooling structure Active JP6043555B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012200270A JP6043555B2 (en) 2012-09-12 2012-09-12 Battery cooling structure
CN2013204600848U CN203351713U (en) 2012-09-12 2013-07-29 Cooling and heating structure for battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012200270A JP6043555B2 (en) 2012-09-12 2012-09-12 Battery cooling structure

Publications (2)

Publication Number Publication Date
JP2014056690A JP2014056690A (en) 2014-03-27
JP6043555B2 true JP6043555B2 (en) 2016-12-14

Family

ID=49751566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012200270A Active JP6043555B2 (en) 2012-09-12 2012-09-12 Battery cooling structure

Country Status (2)

Country Link
JP (1) JP6043555B2 (en)
CN (1) CN203351713U (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148225A1 (en) * 2015-03-19 2016-09-22 株式会社オートネットワーク技術研究所 Cooling member and power storage module
JP6548032B2 (en) 2015-03-19 2019-07-24 株式会社オートネットワーク技術研究所 Cooling member and storage module
JP6248972B2 (en) * 2015-03-23 2017-12-20 トヨタ自動車株式会社 Battery pack
KR102284339B1 (en) 2015-09-09 2021-08-04 에스케이이노베이션 주식회사 Battery module
JP6668713B2 (en) * 2015-12-02 2020-03-18 株式会社オートネットワーク技術研究所 Power storage module
EP3361554B1 (en) * 2015-12-14 2020-06-17 LG Chem, Ltd. Battery module, battery pack comprising battery module, and vehicle comprising battery pack
JP6627593B2 (en) * 2016-03-16 2020-01-08 株式会社オートネットワーク技術研究所 Cooling member and power storage module
JP6627594B2 (en) * 2016-03-16 2020-01-08 株式会社オートネットワーク技術研究所 Cooling member and power storage module
JP6628092B2 (en) * 2016-03-16 2020-01-08 株式会社オートネットワーク技術研究所 Cooling member and power storage module
JP6670448B2 (en) * 2016-08-16 2020-03-25 株式会社オートネットワーク技術研究所 Power storage module
JP6597519B2 (en) * 2016-08-16 2019-10-30 株式会社オートネットワーク技術研究所 Power storage module
JP6502540B1 (en) * 2018-02-15 2019-04-17 Necプラットフォームズ株式会社 Protective structure
CN108321448B (en) * 2018-03-05 2023-07-28 西南交通大学 Efficient rail transit energy storage thermal management system and thermal management method thereof
IT201800008013A1 (en) 2018-08-09 2020-02-09 Cga Tech Srl HEAT EXCHANGER AND RELATIVE METHOD OF REALIZATION
JP7567549B2 (en) 2021-02-25 2024-10-16 マツダ株式会社 Temperature control device for vehicle battery unit and control method thereof
CN113410588A (en) * 2021-06-18 2021-09-17 陕西奥林波斯电力能源有限责任公司 Pole and large-capacity battery using same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683113B2 (en) * 1989-09-22 1997-11-26 帝人製機株式会社 heat pipe
JPH11204151A (en) * 1998-01-08 1999-07-30 Nissan Motor Co Ltd Battery cooling device of electric vehicle
JP4724435B2 (en) * 2004-03-04 2011-07-13 昭和電工株式会社 Flat heat pipe and manufacturing method thereof
JP2009092357A (en) * 2007-10-12 2009-04-30 Showa Denko Kk Tabular heat pipe
WO2010050011A1 (en) * 2008-10-29 2010-05-06 三菱重工業株式会社 Electric element system
JP5659554B2 (en) * 2010-05-17 2015-01-28 株式会社デンソー Battery pack

Also Published As

Publication number Publication date
JP2014056690A (en) 2014-03-27
CN203351713U (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP6043555B2 (en) Battery cooling structure
JP2013157111A (en) Cooling and heating structure of battery pack
JP6167023B2 (en) Battery cooling structure
JP6049752B2 (en) Newly structured bus bar
JP6043578B2 (en) Battery cooling structure
KR102072765B1 (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
JP7045584B2 (en) Battery module and battery pack with it
JP6412456B2 (en) Secondary battery cooling system
CN109659643B (en) Battery cell module, secondary battery pack, and motor vehicle
JP6186209B2 (en) Battery cooling and heating structure
JP2022542124A (en) Battery module including heat insulating member and battery pack including the same
CN210926233U (en) Battery module and battery pack
JP2018088305A (en) Cooling system
KR20180013460A (en) Battery apparatus
KR102311076B1 (en) Battery Module Having Heat Pipe and Battery Pack Having the Same
US20190386359A1 (en) Cell carrier comprising phase change material
JP2012174496A (en) Battery module
JP2010287490A (en) Secondary battery
KR101352659B1 (en) Laptop-computer battery pack having a heat-pipe
JP2023162105A (en) Battery device with heat protection mechanism
KR101834846B1 (en) Battery-module
KR20200073721A (en) Battery Pack
KR102687619B1 (en) Battery module
TWI528614B (en) Battery module
KR101926830B1 (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6043555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350