JP6015640B2 - Highly active substance addition equipment - Google Patents
Highly active substance addition equipment Download PDFInfo
- Publication number
- JP6015640B2 JP6015640B2 JP2013252308A JP2013252308A JP6015640B2 JP 6015640 B2 JP6015640 B2 JP 6015640B2 JP 2013252308 A JP2013252308 A JP 2013252308A JP 2013252308 A JP2013252308 A JP 2013252308A JP 6015640 B2 JP6015640 B2 JP 6015640B2
- Authority
- JP
- Japan
- Prior art keywords
- reducing agent
- passage
- fuel
- air
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013543 active substance Substances 0.000 title claims description 33
- 239000000446 fuel Substances 0.000 claims description 150
- 239000003638 chemical reducing agent Substances 0.000 claims description 100
- 238000002485 combustion reaction Methods 0.000 claims description 57
- 238000002156 mixing Methods 0.000 claims description 56
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 46
- 229910001882 dioxygen Inorganic materials 0.000 claims description 46
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 43
- 239000001301 oxygen Substances 0.000 claims description 43
- 229910052760 oxygen Inorganic materials 0.000 claims description 43
- 239000003054 catalyst Substances 0.000 claims description 41
- 238000011144 upstream manufacturing Methods 0.000 claims description 33
- 230000009467 reduction Effects 0.000 claims description 27
- 239000007789 gas Substances 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 21
- 238000000746 purification Methods 0.000 claims description 19
- 230000001590 oxidative effect Effects 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 195
- 238000002407 reforming Methods 0.000 description 53
- 230000008016 vaporization Effects 0.000 description 51
- 238000002347 injection Methods 0.000 description 39
- 239000007924 injection Substances 0.000 description 39
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 34
- 238000006722 reduction reaction Methods 0.000 description 26
- 239000007788 liquid Substances 0.000 description 25
- 238000009834 vaporization Methods 0.000 description 21
- 230000004913 activation Effects 0.000 description 11
- 229930195733 hydrocarbon Natural products 0.000 description 11
- 150000002430 hydrocarbons Chemical class 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 239000004215 Carbon black (E152) Substances 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- 240000004282 Grewia occidentalis Species 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- WTHDKMILWLGDKL-UHFFFAOYSA-N urea;hydrate Chemical compound O.NC(N)=O WTHDKMILWLGDKL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/106—Auxiliary oxidation catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/04—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric, e.g. electrostatic, device other than a heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/16—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/30—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/38—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ozone (O3) generator, e.g. for adding ozone after generation of ozone from air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/03—Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
本発明は、NOxの還元に用いる還元剤を添加する、高活性物質添加装置に関する。 The present invention relates to a highly active substance addition apparatus for adding a reducing agent used for NOx reduction.
従来より、内燃機関の排気に含まれるNOx(窒素酸化物)を、触媒上で還元剤と反応させて浄化する技術が知られている。この技術に関し、特許文献1に記載の高活性物質添加装置では、内燃機関の燃焼に用いる燃料を還元剤として用いている。そして、液体の燃料を電極間の空気中に噴射し、電極間で放電を生じさせることで液体燃料を改質し、改質した液体燃料を排気通路へ添加している。
2. Description of the Related Art Conventionally, a technique for purifying NOx (nitrogen oxide) contained in exhaust gas of an internal combustion engine by reacting with a reducing agent on a catalyst is known. With regard to this technique, the highly active substance addition device described in
上記放電による燃料の改質では、電極間において空気中に含まれる酸素成分が必要である。すなわち、放電により酸素が電離され、電離した酸素により燃料が酸化されて改質される。したがって、上記特許文献1に記載の装置において、電極間に存在する空気と燃料の混合性を高めれば、電極を大型化することなく改質能力を向上できる余地がある。
The reforming of fuel by the discharge requires an oxygen component contained in the air between the electrodes. That is, oxygen is ionized by discharge, and the fuel is oxidized and reformed by the ionized oxygen. Therefore, in the apparatus described in
本発明は、上記問題を鑑みてなされたもので、その目的は、還元剤の混合性を高めることで、電極を大型化することなく改質能力を向上させた高活性物質添加装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a highly active substance addition device that improves the reforming ability without increasing the size of the electrode by increasing the mixing ability of the reducing agent. There is.
ここに開示される発明は上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。 The invention disclosed herein employs the following technical means to achieve the above object. Note that the reference numerals in parentheses described in the claims and in this section indicate the correspondence with the specific means described in the embodiments described later, and do not limit the technical scope of the invention. .
開示される発明のひとつは高活性物質添加装置である。この高活性物質添加装置は、内燃機関(10)の排気に含まれるNOxを還元触媒上で浄化するNOx浄化装置(15)が排気通路(10ex)に備えられた燃焼システムに設けられ、排気通路のうち還元触媒の上流側へ高活性物質を添加することを前提とする。そして、この高活性物質添加装置は、還元剤を流通させる還元剤通路(31a)を有するとともに、少なくとも酸素を含んだ酸素ガスを還元剤通路へ導入する酸素導入口(CL、CLa)を有し、酸素ガスと還元剤との混合気を還元剤通路で形成する混合容器(31)と、混合気が流通する流通路(22a)を形成するとともに、流通路に配置された電極(21)を有し、電極の放電により酸素ガスを電離させ、その電離した酸素ガスにより還元剤を酸化させて高活性物質としての改質還元剤を生成させる放電リアクタ(20)と、還元剤を加熱することにより圧力上昇させる高圧室(36a)、および還元剤を高圧室から還元剤通路へ噴出する噴出口(36b)を有する高圧ケース(36)と、を備え、酸素導入口は、還元剤通路の周方向に延びる形状であり、電極は平板形状であり、1組の電極が対向して配置されることで、対向する電極の間に、混合気が流通する電極間通路(21a)が形成され、放電リアクタは、複数組の電極を有し、流通路の流入口(22b)は、複数の電極間通路を含む矩形の形状であり、高圧ケースは、流入口の矩形の隅部(22c)に向けて還元剤を噴出するよう、噴出口を少なくとも4つ有することを特徴とする。 One of the disclosed inventions is a highly active substance adding device. This highly active substance addition device is provided in a combustion system in which an NOx purification device (15) for purifying NOx contained in exhaust gas of an internal combustion engine (10) on a reduction catalyst is provided in an exhaust passage (10ex). It is assumed that a highly active substance is added upstream of the reduction catalyst. The highly active substance addition device has a reducing agent passage (31a) for circulating the reducing agent and an oxygen inlet (CL, CLa) for introducing oxygen gas containing at least oxygen into the reducing agent passage. A mixture container (31) for forming a mixture of oxygen gas and a reducing agent in the reducing agent passage, and a flow passage (22a) through which the mixture flows, and an electrode (21) disposed in the flow passage. A discharge reactor (20) for ionizing oxygen gas by discharge of an electrode and oxidizing the reducing agent with the ionized oxygen gas to generate a modified reducing agent as a highly active substance; and heating the reducing agent And a high pressure case (36) having a jet port (36b) for jetting the reducing agent from the high pressure chamber to the reducing agent passage, and the oxygen inlet is arranged around the reducing agent passage. direction Shape extending der is, the electrode is a flat plate shape, that the one pair of electrodes are disposed to face, between the opposing electrodes, the inter-electrode path fuel mixture flows (21a) is formed, the discharge The reactor has a plurality of sets of electrodes, the inlet (22b) of the flow passage has a rectangular shape including a plurality of inter-electrode passages, and the high-pressure case faces the rectangular corner (22c) of the inlet. And having at least four outlets for jetting the reducing agent .
この発明によれば、酸素導入口は還元剤通路の周方向に延びる形状であるため、還元剤通路の周方向において広い範囲から酸素ガスが導入されるので、還元剤通路を流通する還元剤と酸素ガスとの混合性が高められる。そのため、電離した酸素ガスにより還元剤を酸化させる反応が促進される。よって、電極を大型化することなく、単位時間当たりに改質可能な量(改質能力)を向上できる。 According to this invention, since the oxygen introduction port has a shape extending in the circumferential direction of the reducing agent passage, oxygen gas is introduced from a wide range in the circumferential direction of the reducing agent passage. Mixability with oxygen gas is improved. Therefore, the reaction of oxidizing the reducing agent with the ionized oxygen gas is promoted. Therefore, the amount that can be modified per unit time (reforming ability) can be improved without increasing the size of the electrode.
以下、図面を参照しながら発明を実施するための複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。 Hereinafter, a plurality of modes for carrying out the invention will be described with reference to the drawings. In each embodiment, portions corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals and redundant description may be omitted. In each embodiment, when only a part of the configuration is described, the other configurations described above can be applied to other portions of the configuration.
(第1実施形態)
図1に示す燃焼システムは、以下に詳述する内燃機関10、過給機11、微粒子捕集装置(DPF14)、NOx浄化装置15、還元剤浄化装置(DOC16)および高活性物質添加装置を備える。燃焼システムは車両に搭載されたものであり、当該車両は、内燃機関10の出力を駆動源として走行する。内燃機関10は、圧縮自着火式のディーゼルエンジンであり、燃焼に用いる燃料には軽油を用いている。
(First embodiment)
The combustion system shown in FIG. 1 includes an
過給機11は、タービン11a、回転軸11bおよびコンプレッサ11cを備える。タービン11aは、内燃機関10の排気通路10exに配置され、排気の運動エネルギにより回転する。回転軸11bは、タービン11aおよびコンプレッサ11cの各インペラを結合することで、タービン11aの回転力をコンプレッサ11cに伝達する。コンプレッサ11cは、内燃機関10の吸気通路10inに配置され、吸気を圧縮して内燃機関10へ過給する。
The supercharger 11 includes a
吸気通路10inのうちコンプレッサ11cの下流側には、コンプレッサ11cで圧縮された吸気を冷却する冷却器12が配置されている。冷却器12により冷却された圧縮吸気は、スロットルバルブ13により流量調整された後、吸気マニホールドにより内燃機関10の複数の燃焼室へ分配される。
A
複数の燃焼室から排出された排気は、排気マニホールド10mにより集合される。排気マニホールド10mには、排気の一部をEGR(Exhaust Gas Recirculation)ガスとして吸気通路10inへ還流させる還流配管10egrが取り付けられている。このようにEGRガスを吸気に混合させることで、燃焼室での燃焼温度を低下させてNOx低減が図られる。還流配管10egrには、EGRクーラ17およびEGRバルブ18が取り付けられている。EGRクーラ17は、EGRガスを冷却することで燃焼温度をさらに低下させてNOx低減を促進させる。EGRバルブ18は、ECU80により制御され内燃機関10の運転状態に応じてEGRガスの流量を制御する。
The exhaust discharged from the plurality of combustion chambers is collected by the
排気通路10exのうちタービン11aの下流側には、DPF14(Diesel Particulate Filter)、NOx浄化装置15、DOC16(Diesel Oxidation Catalyst)が順に配置されている。DPF14は、排気に含まれている微粒子を捕集する。排気通路10exのうちDPF14の下流側かつNOx浄化装置15の上流側には、高活性物質添加装置の供給管24が接続されている。この供給管24から排気通路10exへ、高活性物質添加装置により生成された改質還元剤が添加される。改質還元剤とは、還元剤として用いる炭化水素(燃料)を部分的に酸化して部分酸化炭化水素に改質したものであり、図5を用いて後に詳述する。
In the exhaust passage 10ex, on the downstream side of the
NOx浄化装置15は、還元触媒を担持するハニカム状の担体15bと、担体15bを内部に収容するハウジング15aとを備える。NOx浄化装置15は、排気中のNOxを還元触媒上で改質還元剤と反応させてN2に還元することで、排気に含まれているNOxを浄化する。なお、排気中にはNOxの他にO2も含まれているが、改質還元剤はO2存在下においてNOxと選択的に反応する。
The
還元触媒には、NOxを吸着する機能を有したものが用いられている。詳細には、還元反応が可能となる活性化温度よりも触媒温度が低い場合には、還元触媒は排気中のNOxを吸着する機能を発揮する。そして、触媒温度が活性化温度以上の場合には、吸着されていたNOxは改質還元剤により還元されて、還元触媒から放出される。例えば、担体15bに担持された銀アルミナによる還元触媒により、NOx吸着機能を有したNOx浄化装置15が提供される。
A reduction catalyst having a function of adsorbing NOx is used. Specifically, when the catalyst temperature is lower than the activation temperature at which the reduction reaction is possible, the reduction catalyst exhibits a function of adsorbing NOx in the exhaust. When the catalyst temperature is equal to or higher than the activation temperature, the adsorbed NOx is reduced by the reforming reducing agent and released from the reduction catalyst. For example, the
DOC16は、酸化触媒を担持する担体をハウジング内に収容して構成されている。DOC16は、還元触媒上にてNOx還元に用いられずにNOx浄化装置15から流出した還元剤を、酸化触媒上で酸化する。これにより、排気通路10exの出口から還元剤が大気に放出されることを防止する。なお、酸化触媒の活性化温度(例えば200℃)は、還元触媒の活性化温度(例えば250℃)よりも低い。
The
次に、改質還元剤を生成して供給管24から排気通路10exへ添加する高活性物質添加装置について、図1および図2を用いて説明する。
Next, a highly active substance adding device that generates a reforming and reducing agent and adds it to the exhaust passage 10ex from the
高活性物質添加装置は、排気通路10exの外部に配置されており、以下に詳述する放電リアクタ20、燃料噴射弁33、電気ヒータ34、高温吸気配管10h、低温吸気配管10c、熱交換器10aおよび電子制御装置(ECU80)を備える。放電リアクタ20、燃料噴射弁33および電気ヒータ34への通電は、ECU80が備えるマイクロコンピュータ(マイコン81)により制御される。
The highly active substance addition device is disposed outside the exhaust passage 10ex, and will be described in detail below, including a
放電リアクタ20は、内部に流通路22aを形成するハウジング22を備え、流通路22aには複数の電極21が配置されている。これらの電極21は、互いに平行に対向するように配置された平板形状であり、高電圧が印加される電極と接地電圧の電極とが交互に配置されている。
The
放電リアクタ20の上流側には、連結部材30が取り付けられており、連結部材30の内部空間30aには、混合室31aを内部に形成する筒状の混合容器31が配置されている。混合容器31は、ハウジング22の上流側に接続される下流容器部312と、下流容器部312の上流側に繋がる上流容器部311とを備える。
A connecting
下流容器部312の下流側開口部312aは、矩形形状であり(図9参照)、ハウジング22により形成される流通路22aの流入口22bと連通する。下流容器部312の通路断面形状は、混合気の流れ方向におけるいずれの位置においても矩形であり、下流側に位置するほど徐々に通路断面が拡大していく。つまり、下流容器部312は下流側に向かって広がる末広がり形状に形成されている。
The
上流容器部311の上流側開口部311aは、連結部材30に設けられた筒状部材30bの開口部30eと同一の矩形形状であり(図9参照)、上流側開口部311aと開口部30eとは対向する。したがって、混合容器31と筒状部材30bとの間に形成された隙間CLを介して、混合室31aと内部空間30aとは連通する。混合室31aの周囲には内部空間30aが存在しており、その内部空間30aの空気が、環状の隙間CLを通じて混合室31aへ流入し、流通路22aおよび供給管24へと順に流れるように構成されている。
The
混合室31aは、気化した燃料を放電リアクタ20へ流通させる「還元剤通路」を提供する。隙間CLは、空気配管32を通じて内部空間30aに流入した酸素ガスを混合室31aへ導入する「酸素導入口」を提供する。隙間CLは環状に形成されている。そのため、図9に示すように、気体燃料が流通する方向の周りの全体から(図9中の矢印参照)、隙間CLを通じて混合室31aの上流側開口部311aに酸素ガスが導入される。つまり、隙間CLは、還元剤通路の全周に亘って環状に延びる形状であると言える。
The mixing
連結部材30の上流側には、後に詳述する気化ケース36、燃料噴射弁33、電気ヒータ34および温度センサ37を保持する保持部材35が取り付けられている。保持部材35の下方部分には第1空気通路35aが形成されている。一方、連結部材30の下方部分には第2空気通路30cが形成されており、第2空気通路30cの下流端は内部空間30aと連通し、第2空気通路30cの上流端は第1空気通路35aと連通する。保持部材35には、高温吸気配管10hまたは低温吸気配管10cから導入された空気を第1空気通路35aへ流通させる空気配管32が接続されている。
A holding
以上により、高温吸気配管10hまたは低温吸気配管10cから空気配管32へ導入された空気は、第1空気通路35a、第2空気通路30c、内部空間30aおよび隙間CLを順に流れて混合室31aへ流入する。酸素ガスとして用いる空気を混合室31aへ導く「空気通路」は、第1空気通路35a、第2空気通路30cおよび内部空間30aにより提供される。
As described above, the air introduced from the high
高温吸気配管10hおよび低温吸気配管10cは、コンプレッサ11cで圧縮された吸気の一部を、吸気通路10inから分岐させて空気配管32へ導入する。高温吸気配管10hは、吸気通路10inのうち冷却器12の上流部分から、冷却器12で冷却される前の高温の吸気を分岐させる。低温吸気配管10cは、吸気通路10inのうち冷却器12の下流部分から、冷却器12で冷却された後の低温の吸気を分岐させる。これらの高温吸気または低温吸気には酸素分子が含まれており、以下、このように少なくとも酸素を含むガスのことを単に酸素ガスと呼ぶ。
The high
図1に示すように、高温吸気配管10hには熱交換器10aが取り付けられている。熱交換器10aにより、還流配管10egr内を流通する高温のEGRガスと、熱交換器10a内を流通する高温吸気とが熱交換する。よって、高温吸気はEGRガスにより加熱される。つまり、熱交換器10aは、放電リアクタ20へ供給される酸素ガスを加熱する「酸素ガス加熱手段」を提供する。
As shown in FIG. 1, a heat exchanger 10a is attached to the high
低温吸気配管10cおよび高温吸気配管10hは、切替バルブ32aを通じて空気配管32に接続されている。切替バルブ32aは、低温吸気配管10cおよび高温吸気配管10hのいずれか一方を空気配管32に連通させるよう、マイコン81により制御されて駆動する。
The low
気化ケース36は、断面円形の気化室36aを内部に形成する(図3、図4参照)。気化室36aには、気化室36aの軸方向(図2の左右方向)に沿って棒状に延びる、電気ヒータ34の加熱面34aが配置されている。また、気化室36aのうち加熱面34aの上方には、温度センサ37の検出部37aが配置されており、温度センサ37は、気化室36aのうち加熱面34aの上方部分の温度を、電気ヒータ34による実際の加熱度合いとして検出する。
The vaporizing
気化ケース36の周壁の上方部分には開口部36cが形成されており、開口部36cの上方には燃料噴射弁33が配置されている。燃料噴射弁33の噴孔33a(図4参照)から噴射された霧状の液体燃料は、開口部36cを通じて気化室36aへ流入し、加熱面34aに噴き付けられる。
An
気化室36aに流入した液体燃料は、電気ヒータ34により加熱されて気化する。また、加熱面34aは、気化された燃料をさらに加熱することで、炭素数の少ない炭化水素に燃料を分解するクラッキングを生じさせる。例えば、軽油がクラッキングされる温度(350℃〜500℃)に燃料を加熱するよう、マイコン81が電気ヒータ34への通電を制御する。クラッキングされた燃料は沸点が低くなり凝縮しにくくなる。
The liquid fuel that has flowed into the vaporizing
気化してクラッキングされた燃料は、気化ケース36の軸方向先端部分に形成された複数の噴出口36bから噴出する。噴出口36bから噴出した気体燃料は、空気配管32等により導入された空気(酸素ガス)と混合室31aで混合し、その後、放電リアクタ20へ流入する。噴出口36bは、混合室31aの中に位置しており、隙間CLは、混合室31aのうち噴出口36bよりも上流側に位置する。詳細には、隙間CLの全体が、気化ケース36の外表面のうちの噴出口36bの位置よりも上流側に位置する。
The fuel that has been vaporized and cracked is ejected from a plurality of
燃料噴射弁33、電気ヒータ34および温度センサ37は、図示しないシール材を介して気化ケース36に取り付けられている。したがって、気化室36aのうち空気流入口36dおよび噴出口36bを除く部分については、密閉された空間になっている。よって、改質制御時に燃料が気化すると気化室36aが高圧になる。つまり、気化室36aを有する気化ケース36は、還元剤を加熱することにより圧力上昇させる「高圧室」を有する「高圧ケース」を提供する。
The
なお、燃料タンク33t内の液体燃料は、ポンプ33pにより燃料噴射弁33に供給され、燃料噴射弁33の噴孔33aから噴射されて減圧することにより、微粒化された状態で気化室36aへ供給される。つまり、燃料噴射弁33は、電気ヒータ34へ還元剤を供給する「還元剤供給手段」を提供するとともに、液体燃料を微粒化する「微粒化手段」も提供しており、例えば、液体燃料の粒径を60μm以下の噴霧状態にして噴射する。
The liquid fuel in the
燃料タンク33t内の燃料は、先述した燃焼用の燃料としても用いられており、内燃機関10の燃焼に用いる燃料と、還元剤として用いる燃料は共用される。燃料噴射弁33は、電磁ソレノイドによる電磁力により開弁作動させる構造であり、その電磁ソレノイドへの通電はマイコン81により制御される。
The fuel in the
気化ケース36内へ噴射される液体燃料の単位時間当たりの噴射量が、単位時間当たりに気化する気化量よりも多くなると、気化ケース36内に液体燃料が貯留されることとなる。この場合、気化ケース36は、噴射された液体燃料を気化するまで一時的に貯留する貯留槽を提供する。但し、貯留される燃料の液面が開口部36cの最下端部36eに達することのないよう、噴孔33aからの燃料噴射量は制御される。
When the amount of liquid fuel injected into the
保持部材35には、第1空気通路35aから分岐する分岐通路が形成されている。この分岐通路は、第1分岐通路35b、第2分岐通路35cおよび第3分岐通路35dから構成されている。第1分岐通路35bは、第1空気通路35aから分岐して上下方向に延びる(図2参照)。第2分岐通路35cは、第1分岐通路35bの上端から、気化ケース36の底面に沿って水平方向に延びる(図2、図3参照)。第3分岐通路35dは、第2分岐通路35cの下流端から、気化ケース36の外周面に沿って上方に延びる(図2、図4参照)。
The holding
図4に示すように、第3分岐通路35dの上端(下流端)は、気化ケース36の開口部36cと連通する。よって、開口部36cのうち第3分岐通路35dと連通する部分が、空気流入口36dに相当する。また、気化ケース36の周壁のうち開口部36cを形成する端面が、空気流入口36dの最下端部36eに相当する。そして、空気流入口36dは噴出口36bよりも下方に位置する。より具体的には、空気流入口36dの最下端部36eが、噴出口36bの入口の最下端部よりも下方に位置する。
As shown in FIG. 4, the upper end (downstream end) of the
また、空気流入口36dは、燃料噴射弁33の噴孔33aから噴射される範囲の外に配置されている。この噴射範囲は、加熱面34aのうち、図2において噴孔33aから延びる2本の点線で囲まれる範囲である。要するに、第1分岐通路35bの直上位置から図2の左側にずらした位置に、空気流入口36dを位置させている。
The
第2空気通路30cには、空気の流量を減少させる絞り部30dが設けられている。そのため、第1空気通路35aの圧力よりも内部空間30aの圧力が低くなり、混合室31aの圧力は低下する。噴出口36bは混合室31aに位置するので、混合室31aの圧力が低下すると、気化室36a内の気体燃料は噴出口36bから噴出されやすくなる。
The
気体燃料と空気とが混合室31aにて混合した混合気は、放電リアクタ20の電極21間の電極間通路21aを流通し、供給管24を通じて排気通路10exへ添加される。放電リアクタ20は、混合気に含まれる燃料(炭化水素)を酸化させて改質還元剤を生成する。以下、図5を用いてその生成反応について説明する。
The air-fuel mixture obtained by mixing gaseous fuel and air in the mixing
先ず、図5中の符号(1)に示すように、電極21から放出された電子が、混合気に含まれる酸素ガス(酸素分子)に衝突する。すると、酸素分子は電離して活性酸素の状態になる(符号(2)参照)。次に、活性酸素は、混合気に含まれる気体燃料(炭化水素)と反応して炭化水素を部分的に酸化する(符号(3)参照)。これにより、炭化水素が部分的に酸化された状態の改質還元剤が生成される(符号(4)参照)。改質還元剤の具体例としては、炭化水素の一部がヒドロキシ基(OH)、アルデヒド基(CHO)に酸化された状態の部分酸化物が挙げられる。
First, as indicated by reference numeral (1) in FIG. 5, electrons emitted from the
さらに放電リアクタ20は、燃料噴射弁33による燃料噴射が停止されて燃料が流入していない状態では、図6に示すようにオゾンを活発に生成するようになる。すなわち、先ず、電極21から放出された電子が、導入されてくる酸素ガス(酸素分子)に衝突する(符号(1)参照)。すると、酸素分子は電離して活性酸素の状態になる(符号(2)参照)。そして活性酸素は、送風されてくる酸素分子と反応して酸化する(符号(5)参照)。
Further, the
要するに、電極21に電圧を印加して酸素ガスが導入される状態にすれば、放電リアクタ20は、酸素ガスをグロー放電によりプラズマ状態にして、酸素分子を電離させて活性酸素にする。そして、この状態で噴出口36bから燃料が噴出されていれば、放電リアクタ20は活性酸素により燃料を部分的に酸化させて改質還元剤を生成する。一方、噴出口36bからの燃料噴出が停止されていれば、放電リアクタ20は活性酸素により酸素ガスからオゾンを生成する。生成された改質還元剤またはオゾンは、酸素ガスの供給圧力、つまりコンプレッサ11cによる圧力により、電極21間の電極間通路21aから流出し、供給管24を通じて排気通路10exへ添加される。
In short, when a voltage is applied to the
放電リアクタ20は、内部に流通路22aを形成するハウジング22を備え、流通路22aに電極21が配置されている(図1参照)。以下、ハウジング22内部における電極21の配置状態を、図7を用いて詳細に説明する。図示されるように、電極21は、絶縁基板21b、金属板21cおよび絶縁保護膜21dを備えて構成されている。絶縁基板21bはセラミック製であり、金属板21cを保持する。金属板21cは高電圧が印加されることにより流通路22aにおいて放電する。絶縁保護膜21dは、金属板21cが電極間通路21aに露出しないように、電極間通路21a側から金属板21cの表面を覆う。
The
複数の電極21は、スペーサ23を介して積層配置されている。これにより、平板形状の電極21が互いに平行に対向するように配置される。また、一対の電極21はスペーサ23により所定の間隔に保たれ、電極21間に電極間通路21aが形成される。放電リアクタ20は、一対の電極21を複数組備えている。各々の電極21間において、図5および図6を用いて説明した通り改質還元剤およびオゾンが生成される。
The plurality of
図8および図9に示すように、複数の噴出口36bは5つであり、そのうちの4つは正方形の4隅に位置するように配置され、そのうちの1つは上記正方形の中央に配置されている。さて、電極間通路21aの各々の流入口は矩形であり、これらの流入口は、ハウジング22内の流通路22aにおいて、一方向(図8の上下方向)に並んでいる。そのため、流通路22aの通路断面形状も矩形の形状であり、その形状に合わせて、流通路22aの流入口22bも矩形の形状に形成されている(図9の一点鎖線参照)。
As shown in FIGS. 8 and 9, the plurality of
先述した4隅の噴出口36bは、流入口22bの矩形4隅に位置する隅部22cへ向けて混合気を噴出する向きに形成されている。また、4つの噴出口36bの中央に位置する噴出口36bは、流入口22bの矩形中央に位置する中央部22dへ向けて混合気を噴出する向きに形成されている。
The four-
より詳細に説明すると、これら5つの噴出口36bは円形に形成されているため、噴出口36bから噴出された混合気は、下流に進むにつれて徐々に直径が拡大していく円錐状に拡がっていく(図8中の矢印参照)。したがって、円錐状に拡がる混合気の流入口22bにおける投影形状は、図8および図9に示す如く円形となる。このような円形の投影範囲のうち、4隅の噴出口36bから噴出した混合気の投影範囲は、流入口22bの4箇所の隅部22cに位置する。また、中央の噴出口36bから噴出した混合気の投影範囲は、流入口22bの中央部22dに位置する。
More specifically, since these five
気化ケース36に形成される噴出口36bの向きに関し、中央の噴出口36bは、気化ケース36の中心線に対して平行に延びる向きに形成されている。これにより、中央の噴出口36bから噴出した混合気は中央部22dへ向かうようになる。一方、4隅の噴出口36bの延びる向きは、上記中心線に対して隅部22cの側へ傾いている。これにより、4隅の噴出口36bから噴出した混合気は隅部22cへ向かうようになる。
With respect to the direction of the
ECU80が備えるマイコン81は、プログラムを記憶する記憶装置と、記憶されたプログラムにしたがって演算処理を実行する中央演算処理装置と、を備える。ECU80は、各種センサの検出値に基づき内燃機関10の作動を制御する。上記各種センサの具体例として、アクセルペダルセンサ(図示せず)、機関回転速度センサ(図示せず)、スロットル開度センサ(図示せず)、吸気圧センサ(図示せず)、吸気量センサ95、排気温度センサ96等が挙げられる。
The microcomputer 81 provided in the
アクセルペダルセンサは、ユーザのアクセルペダル踏込量を検出する。機関回転速度センサは、内燃機関10の出力軸の回転速度を検出する。スロットル開度センサはスロットルバルブ13の開度を検出する。吸気圧センサは、吸気通路10inのうちスロットルバルブ13の下流側の圧力を検出する。吸気量センサ95は吸気の質量流量を検出する。
The accelerator pedal sensor detects a user's accelerator pedal depression amount. The engine rotation speed sensor detects the rotation speed of the output shaft of the
概略、ECU80は、出力軸の回転速度および内燃機関10の負荷に応じて、図示しない燃料噴射弁から噴射される燃焼用燃料の噴射量および噴射時期を制御する。さらにECU80は、排気温度センサ96により検出された排気温度に基づき、高活性物質添加装置の作動を制御する。すなわち、マイコン81は、図10および図11に示す手順のプログラムを所定周期で繰り返し実行することで、改質還元剤の生成とオゾンの生成を切り替えるように制御する。これらのプログラムは、イグニッションスイッチがオン操作されたことをトリガとして始動し、内燃機関10の運転期間中は常時実行される。
In general, the
先ず、図10のステップS11において、電極21へ電圧を印加して放電リアクタ20での放電を実施する。続くステップS12では、NOx浄化装置15が有する還元触媒の温度(NOx触媒温度)が、活性化温度未満であるか否かを判定する。NOx触媒温度は、排気温度センサ96により検出された排気温度から推定される。ここで、還元触媒の活性化温度とは、改質還元剤によりNOxを還元浄化できる温度を示す。
First, in step S <b> 11 of FIG. 10, a voltage is applied to the
NOx触媒温度が活性化温度未満であると判定された場合には、ステップS13においてオゾン生成フラグをオンに設定する。このオゾン生成フラグは、図6の如くオゾンを生成するように指令するものである。一方、NOx触媒温度が活性化温度未満でないと判定された場合には、ステップS14において改質フラグをオンに設定する。この改質フラグは、図5の如く改質還元剤を生成するように指令するものである。 If it is determined that the NOx catalyst temperature is lower than the activation temperature, the ozone generation flag is set to ON in step S13. This ozone generation flag instructs to generate ozone as shown in FIG. On the other hand, if it is determined that the NOx catalyst temperature is not lower than the activation temperature, the reforming flag is set to ON in step S14. This reforming flag instructs to generate a reforming reducing agent as shown in FIG.
また、ステップS13にてオゾン生成フラグをオンに設定した場合には、続くステップS15において、低温吸気配管10cから低温吸気を放電リアクタ20へ供給させるよう、切替バルブ32aを作動させる。一方、ステップS14にて改質フラグをオンに設定した場合には、続くステップS16において、高温吸気配管10hから高温吸気を放電リアクタ20へ供給させるよう、切替バルブ32aを作動させる。ステップS15、S16の処理を実行している時のマイコン81は「切替制御手段」を提供する。
If the ozone generation flag is set to ON in step S13, the switching
次に、図11のステップS20では、改質フラグがオンに設定されているか否かを判定する。改質フラグがオンでないと判定されれば、続くステップS21にて電気ヒータ34への通電を停止させるとともに、ステップS22において、燃料噴射を停止させるように燃料噴射弁33を閉弁作動させる。ステップS22の処理を実行している時のマイコン81は「オゾン生成制御手段」を提供する。
Next, in step S20 of FIG. 11, it is determined whether or not the reforming flag is set to ON. If it is determined that the reforming flag is not on, energization of the
一方、改質フラグがオンであると判定されれば、続くステップS23にて、NOx浄化装置15が単位時間当りに必要とする改質還元剤の量(必要還元剤量)を算出する。このステップS23の処理を実行している時のマイコン81は「必要量算出手段」を提供する。以下、必要還元剤量を算出する具体例を説明する。
On the other hand, if it is determined that the reforming flag is on, in the subsequent step S23, the amount of reforming reducing agent (necessary reducing agent amount) required by the
先ず、内燃機関10の負荷、出力軸の回転速度および燃焼用の燃料の噴射量等、内燃機関10の運転状態に基づき、排気中のNOx濃度および排気量を算出する。次に、算出したNOx濃度および排気量に基づき排気中のNOx量(NOx排出量)を算出する。次に、算出したNOx排出量、供給した改質還元剤量およびNOx触媒温度等の履歴に基づき、NOx浄化装置15で吸着されているNOx量(NOx吸着量)を算出する。次に、算出したNOx吸着量に現時点でのNOx排出量を加算してNOx総量を算出する。次に、NOx総量を浄化するのに必要な改質還元剤の量を、必要還元剤量として算出する。
First, the NOx concentration in the exhaust gas and the exhaust amount are calculated based on the operation state of the
以上の如くステップS23にて必要還元剤量を算出した後、続くステップS24では、算出した必要還元剤量に基づき目標ヒータ温度を算出する。具体的には、必要還元剤量が多いほど目標ヒータ温度を高く設定する。但し、目標ヒータ温度の下限値はクラッキング可能温度以上に設定される。 After calculating the required reducing agent amount in step S23 as described above, in the subsequent step S24, the target heater temperature is calculated based on the calculated required reducing agent amount. Specifically, the target heater temperature is set higher as the required amount of reducing agent is larger. However, the lower limit value of the target heater temperature is set to be equal to or higher than the crackable temperature.
続くステップS25では、目標ヒータ温度となるように電気ヒータ34への供給電力を制御する。例えば、電気ヒータ34へ印加する電圧のパルス幅をデューティ制御することで供給電力を制御する。燃料が気化する際に、気化潜熱によって加熱面34aから熱量を持ち去るため、気化潜熱による温度低下分を考慮して、目標ヒータ温度となるように電気ヒータ34へ電力供給する。続くステップS26では、単位時間当たりの燃料噴射量が必要還元剤量になるよう、燃料噴射弁33の開弁時間を制御して燃料噴射を実施する。ステップS26の処理を実行している時のマイコン81は「改質制御手段」を提供する。
In the subsequent step S25, the power supplied to the
さて、燃料噴射弁33から噴射される液体燃料には、軽質燃料や重質燃料等の各種成分が含まれている。軽質燃料は加熱されると速やかに気化するのに対し、重質燃料は、加熱されると重合反応を起こして固形物を生成し、その固形物がデポジットとして気化室36aに堆積していく。そこで、上述した改質制御手段およびオゾン生成制御手段が実行されていない時に、以下に説明するクリーニング制御を実行して、デポジットを定期的に除去している。
Now, the liquid fuel injected from the
このクリーニング制御では、燃料噴射弁33からの燃料供給を停止させつつ電気ヒータ34を作動させて空焚きし、かつ、空気流入口36dから気化室36aに空気を流入させることで、上記デポジットを燃焼させる。これにより、加熱面34aに付着したデポジットが除去される。
In this cleaning control, the
以上に説明した通り、本実施形態に係る高活性物質添加装置では、酸素導入口として機能する隙間CLは、還元剤通路として機能する混合室31aの全周に亘って環状に延びる形状である。そのため、還元剤通路の全周方向から空気(酸素ガス)が導入されるので、全周方向のうちの一部分から空気が導入される場合に比べて、混合室31aを流通する気体燃料と空気との混合性が高められる。よって、電離した酸素により燃料を酸化させる反応、つまり図5の(4)に示す反応が促進される。よって、電極21への供給電力の増大や電極21の大型化を要することなく、単位時間当たりに改質可能な量(改質能力)を向上できる。
As described above, in the highly active substance addition device according to this embodiment, the gap CL that functions as an oxygen inlet has a shape that extends in an annular shape over the entire circumference of the mixing
さらに本実施形態では、気化室36aおよび噴出口36bを有する気化ケース36を備える。そして、加熱気化された燃料は気化室36aにて高圧の状態になり、高圧の気体燃料が噴出口36bから混合室31aへ噴出される。そのため、気化室36aを流通する気体燃料の流速が高められるので、気体燃料と空気との混合性が向上する。
Furthermore, in this embodiment, a vaporizing
さらに本実施形態では、電極21が平板形状であり、1組の電極21が対向して配置されることで電極間通路21aが形成されている。また、放電リアクタ20は、複数組の電極21を有し、流通路22aの流入口22bは、複数の電極間通路21aを含む矩形の形状である。そして、流入口22bの矩形の隅部22cに向けて燃料を噴出するよう、4つの隅部22cの各々に対応して噴出口36bが設けられている。これによれば、流入口22bの隅部22cへの混合気の流入量が少なくなることを抑制できる。
Furthermore, in this embodiment, the
さらに本実施形態では、酸素導入口として機能する隙間CLは、還元剤通路として機能する混合室31aのうち噴出口36bよりも上流側に位置する。さて、混合室31aのうち噴出口36bの近傍部分では、気体燃料が高速で流れることに起因してベルヌーイの定理により低圧となっている。そのため、噴出口36bよりも上流側に隙間CLを位置させた本実施形態によれば、隙間CLから導入された空気が上記低圧の部分に引き寄せられやすくなるので、空気と燃料との混合性が向上する。
Further, in the present embodiment, the gap CL that functions as an oxygen inlet is located upstream of the
さらに本実施形態では、電極21による放電がグロー放電である。この場合、アーク放電させる場合に比べて電極21間の距離が短く設定されることとなる。すると、空気と燃料との混合性を向上させることに起因した改質能力の向上が顕著に現れる。したがって、全周方向から空気を導入することにより混合性が向上させるといった先述の効果が、グロー放電させる本実施形態において顕著に発揮される。
Furthermore, in this embodiment, the discharge by the
さらに本実施形態では、液体の燃料を加熱して気化させる電気ヒータ34を備えるので、液体の燃料が電極21に付着する不具合を抑制しつつ改質還元剤を生成できる。それでいて、液体の燃料のうち気化されずに気化室に堆積した成分(デポジット)を、次のクリーニング制御により燃焼させて除去することができる。このクリーニング制御では、燃料供給を停止させつつ電気ヒータ34を作動させて空焚きし、かつ、気化室36aに空気を流入させることで、上記デポジットを燃焼させて除去できる。
Furthermore, in the present embodiment, since the
したがって、電気ヒータ34の加熱面34aにデポジットが付着することにより加熱面34aから燃料への伝熱性が悪化することを抑制でき、燃料の速やかな気化がデポジットにより阻害されることを抑制できる。また、噴出口36bがデポジットで詰まることにより混合室31aへの気体燃料の供給が阻害されることを抑制できる。
Therefore, it is possible to suppress the deterioration of the heat transfer from the
さらに本実施形態では、気化ケース36に形成された空気流入口36dは、噴出口36bよりも下方に位置する。そのため、クリーニング制御時には以下に説明する対流が生じるようになる。すなわち、気化室36a内の高温ガスは、比重が小さく軽いので、上方に位置する噴出口36bからは排出されやすくなり、また、下方に位置する空気流入口36dからは排出されにくくなる。したがって、気化室36a内の高温ガスが噴出口36bから排出され、その排出分だけ、空気流入口36dから空気が気化室36aへ流入するといった対流が生じる。そのため、気化室36aへの空気流入を促進でき、酸素不足によりデポジットが十分に燃焼できなくなるおそれを抑制できる。
Furthermore, in this embodiment, the
特に、クリーニング制御時には内燃機関10が停止してコンプレッサ11cが停止している場合があるが、この場合であっても、上記対流により気化室36aへ空気を流入させることができ、上記対流の効果が顕著に発揮される。しかも、改質制御時には燃料の気化により気化室36aが高圧になるので、空気流入口36dからの空気の流入を抑制できる。なお、改質制御時には気体燃料が空気流入口36dから流出したとしても、その流出した気体燃料は、第2空気通路30c、内部空間30aおよび隙間CLを通じて混合室31aへ流入するだけであり、問題にならない。
In particular, during the cleaning control, the
さらに本実施形態では、第1空気通路35aのうち第1分岐通路35bよりも下流側の部分に、空気の流量を減少させる絞り部30dが設けられている。そのため、混合室31aと第1分岐通路35bとの圧力差が増大される。よって、クリーニング制御手段の実行時における空気の流れ、すなわち噴出口36bからの高温ガス排出と空気流入口36dからの低温空気流入を促進できる。
Further, in the present embodiment, a
さらに本実施形態では、空気配管32から流入させる空気を加熱する熱交換器10aを備える。そのため、放電リアクタ20へ供給される酸素ガスが加熱されて温度上昇する。よって、燃料噴射弁33から噴射されて電気ヒータ34により気化された燃料が、混合室31aで酸素ガスにより冷却され、凝縮して電極21に付着することを抑制できる。よって、改質還元剤が低排気温時に意図に反して添加されたり、改質還元剤の添加が遅れたりする等の不具合、つまり、改質還元剤を排気通路10exへ添加するタイミングを意図通りに制御できなくなる不具合を抑制できる。
Furthermore, in this embodiment, the heat exchanger 10a which heats the air which flows in from the air piping 32 is provided. Therefore, the oxygen gas supplied to the
さらに本実施形態では、熱交換器10aは、内燃機関10で生じた熱を利用して酸素ガスを加熱する。そのため、内燃機関10の廃熱が有効に利用されるので、例えば電気ヒータを用いて酸素ガスを加熱する場合に生じるエネルギ消費を不要にできる。
Furthermore, in this embodiment, the heat exchanger 10a heats oxygen gas using the heat generated in the
さらに本実施形態では、熱交換器10aは、還流配管10egrに取り付けられており、EGRガスの熱を利用して酸素ガスを加熱する。ここで、還流配管10egrは、排気マニホールド10mの外側に張り出して配置される。そのため、例えば排気マニホールド10mに熱交換器10aを取り付ける場合に比べて、還流配管10egrに取り付ける本実施形態によればその取り付け作業性を良好にでき、熱交換器10aの搭載スペースを容易に確保できる。また、EGRガスは、燃焼室から排出された直後の排気であるため高温である。よって、高温のEGRガスを酸素ガスの加熱に利用する本実施形態によれば、酸素ガスを効率的に加熱できる。
Further, in the present embodiment, the heat exchanger 10a is attached to the reflux pipe 10egr, and heats the oxygen gas using the heat of the EGR gas. Here, the recirculation pipe 10egr is arranged so as to protrude outside the
さらに本実施形態では、電極21は、互いに対向するように配置された平板形状であり、一対の電極21の間に、酸素ガスが流通する電極間通路21aが形成されている。このように、放電リアクタ20の電極21が平行平板構造であった場合、限られた面積で効率よく放電が可能となるが、その背反として、燃料が付着する表面が広くなる。しかも、電極21のうち電極間通路21aの端部を形成する部分に、表面張力により付着した燃料が滞留しやすくなる。そのため、電極21への付着抑制といった先述の効果が、より一層効果的に発揮されるようになる。
Furthermore, in the present embodiment, the
さらに本実施形態では、供給された酸素ガスを放電により電離させて活性酸素にする放電リアクタ20と、放電リアクタ20へ燃料を供給する燃料噴射弁33とを備える。そして、図11のステップS22によるオゾン生成制御手段、およびステップS26による改質制御手段がマイコン81により提供される。そのため、オゾン生成制御手段により燃料噴射を停止させれば、活性酸素によりオゾンが生成され、改質制御手段により燃料を噴射させれば、活性酸素により燃料が酸化(改質)されて改質還元剤が生成される。よって、1つの放電リアクタ20で、還元剤の改質とオゾン生成の両方を実現できる。
Furthermore, in this embodiment, the
ここで、液体燃料が電極21に付着すると、改質還元剤の生成からオゾンの生成に切り替えた場合に、燃料供給を停止させているにも拘わらず、付着していた燃料が気化して電極間通路21a内に燃料が存在することとなる。すると、放電により生成された活性酸素は、燃料を酸化させて改質還元剤を生成してしまい、酸素分子を酸化させてオゾンを生成する量が少なくなる。これに対し本実施形態によれば、上述の如く電極21への燃料付着を抑制できるので、オゾン生成フラグオン時に改質還元剤が生成されるといった不具合を抑制できる。
Here, when the liquid fuel adheres to the
さらに本実施形態では、冷却器12で冷却された後の低温吸気を放電リアクタ20へ供給する低温吸気配管10c、および熱交換器10aにより加熱された酸素ガスを放電リアクタ20へ供給する高温吸気配管10hを備える。そして、オゾン生成時には低温吸気配管10cを放電リアクタ20と連通させ、改質還元剤生成時には高温吸気配管10hを放電リアクタ20と連通させるよう、図10のステップS15、S16により切替バルブ32aの作動を制御する。これによれば、オゾン生成時には低温吸気が供給されるので、生成したオゾンが吸気の熱で破壊されることを抑制できる。
Further, in the present embodiment, the low-
さらに本実施形態では、高温吸気配管10hは、過給機11により過給された吸気のうち冷却器12で冷却される前の高温吸気を放電リアクタ20へ供給する。そのため、改質還元剤生成時には、コンプレッサ11cの圧縮により温度上昇した吸気であって、冷却器12で冷却される前の高温吸気が供給される。よって、改質還元剤生成時には酸素ガスを高温にすることを促進でき、気体燃料が凝縮して電極21に付着することの抑制を促進できる。
Further, in the present embodiment, the high
さらに本実施形態では、電気ヒータ34によりクラッキングされた燃料を放電リアクタ20へ供給することで、該燃料を、放電リアクタ20により電離された酸素ガスで部分的に酸化させて改質還元剤を生成する。そのため、燃料の沸点がクラッキングされることにより低下するので、気化した燃料が酸素ガスによって冷却されて温度低下する際に、燃料が再度液化することが抑制される。その結果、気体燃料が凝縮して電極21に付着することの抑制を促進できる。
Furthermore, in this embodiment, the fuel cracked by the
さらに本実施形態では、液体燃料を微粒化した状態で電気ヒータ34へ供給する燃料噴射弁33を備える。そのため、電気ヒータ34にて液体燃料を気化してクラッキングするのに要する時間が短縮される。よって、必要還元剤量に対する改質還元剤の添加の応答性を速くできる。
Furthermore, in this embodiment, the
さらに本実施形態では、還元触媒がNOxを吸着する機能を有している。そのため、放電リアクタ20にて生成されたオゾンを排気通路10exに添加すると、排気中のNOがNO2に酸化され、還元触媒に吸着されやすくなる。よって、生成したオゾンを、還元触媒でのNOx吸着性向上に利用することができる。
Furthermore, in this embodiment, the reduction catalyst has a function of adsorbing NOx. Therefore, when ozone generated in the
さらに本実施形態では、還元触媒が活性化温度未満であることを条件としてオゾンを生成させ、還元触媒が活性化温度以上であることを条件として改質還元剤を生成させる。そのため、還元触媒が還元能力を発揮できない低温時に改質還元剤が排気通路10exに添加されることを回避できる。そして、上記低温時には排気通路10exにオゾンを添加してNOをNO2に酸化させ、NOx吸着性を向上させるので、低温時にNOxが浄化されないままNOx浄化装置15から流出することを抑制できる。また、オゾンは高温であるほど熱分解しやすくなるが、本実施形態では、上記低温時にオゾンが排気通路10exに添加され、低温時以外では添加されない。よって、添加したオゾンが排気熱で熱分解するおそれを低減できる。
Further, in the present embodiment, ozone is generated on the condition that the reduction catalyst is lower than the activation temperature, and the reforming reducing agent is generated on the condition that the reduction catalyst is higher than the activation temperature. Therefore, it can be avoided that the reforming reducing agent is added to the exhaust passage 10ex at a low temperature when the reduction catalyst cannot exhibit the reducing ability. And, at the low temperature, ozone is added to the exhaust passage 10ex to oxidize NO to NO 2 and improve NOx adsorption, so that NOx can be prevented from flowing out of the
(第2実施形態)
図2に示す上記実施形態では、混合容器31および連結部材30を別々の部材で形成している。そして、混合容器31の上流側開口部311aの全体が解放されるように、隙間CLは全周方向の全体に亘って形成されている。これに対し、図12および図13に示す本実施形態では、混合容器31および連結部材30が一体に形成されている。そのため、上流容器部311と筒状部材30bとを連結する連結部30fが備えられている。
(Second Embodiment)
In the embodiment shown in FIG. 2, the mixing
連結部30fは、筒状部材30bのうち開口部30eを形成する部分の端面と、上流容器部311のうち上流側開口部311aを形成する部分の端面とを連結する。連結部30fは、上記端面の複数個所に備えられている。具体的には、図13に示すように上下左右の4箇所に設けられている。したがって、上流側開口部311aのうち、複数の連結部30fの間に位置する隙間CLaが酸素導入口として機能する。隙間CLaは、還元剤通路の周方向に延びる形状である。
The
具体的には、隙間CLaのうち混合室31a内の流れ方向(図12の左右方向)の長さよりも、隙間CLaのうち還元剤通路の周方向に沿う長さ(図13参照)の方が長い。ここで言う周方向に沿う長さとは、隣り合う連結部30fの間隔であって、上流容器部311の外周面の沿面長さである。なお、図9に示す実施形態では隙間CLが1つであるのに対し、図13に示す本実施形態では、隙間CLaが複数存在することになる。
Specifically, the length of the gap CLa along the circumferential direction of the reducing agent passage (see FIG. 13) is longer than the length of the gap CLa in the flow direction (left-right direction in FIG. 12) in the mixing
本実施形態によれば、酸素導入口として機能する隙間CLaは、還元剤通路として機能する混合室31aの周方向に延びる形状である。そのため、還元剤通路の周方向において広い範囲から空気(酸素ガス)が導入されるので、混合室31aを流通する気体燃料と空気との混合性が高められる。よって、電離した酸素により燃料を酸化させる反応が促進されるので、電極21への供給電力の増大や電極21の大型化を要することなく、単位時間当たりに改質可能な量(改質能力)を向上できる。
According to this embodiment, the gap CLa that functions as an oxygen inlet has a shape that extends in the circumferential direction of the mixing
(他の実施形態)
以上、発明の好ましい実施形態について説明したが、発明は上述した実施形態に何ら制限されることなく、以下に例示するように種々変形して実施することが可能である。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(Other embodiments)
The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made as illustrated below. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of embodiments even if they are not explicitly stated, unless there is a problem with the combination. Is also possible.
図1に示す実施形態では、コンプレッサ11cにより圧縮された吸気の一部を、空気配管32へ導入している。これに対し、低温吸気配管10c、高温吸気配管10hおよび切替バルブ32aを廃止して、電動のエアポンプを備えるようにしてもよい。この場合、エアポンプにより送風された空気は、空気配管32を通じて混合室31aに流入する。エアポンプが送風する空気は、高活性物質添加装置の周囲に存在する常温常圧の大気である。空気には酸素分子が含まれているので、エアポンプが送風する空気は先述した酸素ガスに相当する。
In the embodiment shown in FIG. 1, a part of the intake air compressed by the
上記各実施形態では、上流容器部311の上流側開口部311aと筒状部材30bの開口部30eとの隙間CL、CLaを、混合室31a(還元剤通路)の周方向に延びる形状の酸素導入口として機能させている。そして、上流側開口部311aと開口部30eの形状および大きさを同一にしている。これに対し、上流側開口部311aと開口部30eの形状または大きさを異ならせてもよい。例えば、上流側開口部311aの縦寸法および横寸法を、開口部30eの縦寸法および横寸法よりも大きくしてもよい。
In each of the above embodiments, the oxygen introduction having a shape extending in the circumferential direction of the mixing
図1に示す実施形態では、還流配管10egrに熱交換器10aを取り付けている。これに対し、以下に説明する下流排気管に熱交換器10aを取り付けてもよい。この下流排気管は、排気マニホールド10mの下流側における排気通路10exを形成するものであり、詳細には、DPF14の下流側かつNOx浄化装置15の上流側に位置する排気通路10exを形成する。
In the embodiment shown in FIG. 1, a heat exchanger 10a is attached to the reflux pipe 10egr. On the other hand, you may attach the heat exchanger 10a to the downstream exhaust pipe demonstrated below. The downstream exhaust pipe forms an exhaust passage 10ex on the downstream side of the
ここで、下流排気管は、排気マニホールド10mの外側に張り出して配置される。そのため、例えば排気マニホールド10mに熱交換器10aを取り付ける場合に比べて、下流排気管に取り付ける本実施形態によれば、その取り付け作業性を良好にできる。また、熱交換器10aの搭載スペース確保を容易にできる。
Here, the downstream exhaust pipe is disposed so as to project outside the
また、放電リアクタ20および混合容器31はNOx浄化装置15の近傍に配置することが望ましく、このような配置にすると、混合容器31の近傍に下流排気管が位置する蓋然性が高い。よって、上述の如く下流排気管に熱交換器10aを取り付けると、熱交換器10aを混合容器31の近傍に配置することを容易に実現でき、ひいては高温吸気配管10hの配管長を短くできる。
In addition, it is desirable that the
或いは、排気マニホールド10mに熱交換器10aを取り付けてもよい。排気マニホールド10mは、燃焼室から排出された直後の排気が流通するため高温であるため、酸素ガスを効率的に加熱できる。
Alternatively, the heat exchanger 10a may be attached to the
図1に示す実施形態では、内燃機関10で生じた熱を利用して酸素ガスを加熱している。これに対し、インバータや内燃機関10を冷却する冷却水を熱源として酸素ガスを加熱してもよいし、電気ヒータを用いて酸素ガスを加熱してもよい。
In the embodiment shown in FIG. 1, the oxygen gas is heated using the heat generated in the
図1に示す実施形態では、燃料噴射弁33の噴孔33aから液体燃料を噴射して微粒化させている。これに対し、燃料噴射弁33を電磁バルブに置き換えて、ポンプ33pから供給された燃料を微粒化させることなく気化ケース36へ流出させ、気化ケース36内に一旦貯留させるようにしてもよい。
In the embodiment shown in FIG. 1, liquid fuel is injected and atomized from the
図1に示す実施形態では、液体の炭化水素を加熱して気化させる加熱手段として電気ヒータ34を採用しているが、内燃機関10の廃熱を利用した熱交換器を加熱手段として採用してもよい。また、図1に示す実施形態では、燃料噴射弁33から混合室31aへ液体燃料を供給しているが、混合室31aの外部で液体燃料を加熱して気化させておき、気体燃料を混合室31aへ供給するようにしてもよい。
In the embodiment shown in FIG. 1, the
図1に示す実施形態では、液体の炭化水素を微粒化して加熱手段へ供給する微粒化手段として、燃料噴射弁33を採用している。これに対し、超音波等の高周波数で振動する振動板に液体燃料を接触させることで、液体燃料を振動させて微粒化させる振動装置を、微粒化手段として採用してもよい。
In the embodiment shown in FIG. 1, the
オゾンの生成および改質還元剤の生成をともに停止させている完全停止の場合には、放電リアクタ20による放電を停止させて、無駄な電力消費の抑制を図るようにしてもよい。上記完全停止させるケースの具体例としては、NOx触媒温度が活性化温度未満であり、かつ、NOx吸着量が飽和状態になっているケースや、NOx触媒温度が還元可能範囲を超えて高温になっているケースが挙げられる。また、上記完全停止の場合には、エアポンプの作動を停止して酸素ガスの供給を停止させることで、電力消費の低減を図ってもよい。
In the case of a complete stop in which both the generation of ozone and the generation of the reforming reducing agent are stopped, the discharge by the
図1に示す上記実施形態では、NOxを物理的に捕捉(つまり吸着)する還元触媒が採用されているが、NOxを化学的結合により捕捉(つまり吸蔵)する還元触媒が採用された燃焼システムに、高活性物質添加装置を適用させてもよい。 In the above embodiment shown in FIG. 1, a reduction catalyst that physically captures (that is, adsorbs) NOx is employed. However, the combustion system employs a reduction catalyst that traps (that is, stores) NOx by chemical bonding. Alternatively, a highly active substance addition apparatus may be applied.
内燃機関10が理論空燃比よりもリーンな状態で燃焼させている時に、NOx浄化装置15がNOxを吸着し、リーン燃焼以外の時にNOxを還元させる燃焼システムに、高活性物質添加装置を適用させてもよい。この場合、リーン燃焼時にはオゾンを生成し、リーン燃焼以外の時に改質還元剤を生成させればよい。このようにリーン燃焼時にNOxを捕捉する触媒の具体例としては、担体に担持された白金とバリウムによる吸蔵還元触媒が挙げられる。
When the
吸着または吸蔵の機能を有しないNOx浄化装置15が採用された燃焼システムに、高活性物質添加装置を適用させてもよい。この場合、放電リアクタ20で生成されたオゾンをDPF14の再生に用いればよい。すなわち、DPF14の上流へオゾンを添加することで、排気中のNOをNO2に酸化してDPF14へ流入させる。すると、DPF14で捕集されて堆積した微粒子の炭素成分が、NO2と反応して酸化される。これにより、DPF14に堆積した微粒子が除去されて、DPF14が再生される。
The highly active substance addition device may be applied to a combustion system in which the
上記第1実施形態では、図7のステップS12で用いるNOx触媒温度を、排気温度センサ96により検出された排気温度から推定している。これに対し、NOx浄化装置15に温度センサを取り付けて、NOx触媒温度を直接計測してもよい。或いは、出力軸の回転速度および内燃機関10の負荷等に基づき、NOx触媒温度を推定してもよい。
In the first embodiment, the NOx catalyst temperature used in step S <b> 12 of FIG. 7 is estimated from the exhaust temperature detected by the
図1に示す実施形態では、放電リアクタ20は、平板形状の電極21を互いに平行に対向するように配置して構成されている。これに対し、放電リアクタは、針状に突出した形状の針状電極と、針状電極を環状に取り囲む環状電極とから構成されていてもよい。
In the embodiment shown in FIG. 1, the
図1に示す実施形態では、車両に搭載された燃焼システムに高活性物質添加装置を適用させている。これに対し、定置式の燃焼システムに高活性物質添加装置を適用させてもよい。図1に示す実施形態では、圧縮自着火式のディーゼルエンジンに高活性物質添加装置を適用させており、燃焼用の燃料として用いる軽油を還元剤として用いている。これに対し、点火着火式のガソリンエンジンに高活性物質添加装置を適用させて、燃焼用の燃料として用いるガソリンを還元剤として用いてもよい。また、還元剤は燃料(炭化水素)に限られるものではなく、例えば尿素水であってもよい。 In the embodiment shown in FIG. 1, a highly active substance addition device is applied to a combustion system mounted on a vehicle. On the other hand, a highly active substance addition device may be applied to a stationary combustion system. In the embodiment shown in FIG. 1, a highly active substance addition device is applied to a compression self-ignition diesel engine, and light oil used as a fuel for combustion is used as a reducing agent. On the other hand, gasoline used as a fuel for combustion may be used as a reducing agent by applying a highly active substance addition device to an ignition ignition type gasoline engine. Further, the reducing agent is not limited to fuel (hydrocarbon), and may be urea water, for example.
10…内燃機関、10ex…排気通路、15…NOx浄化装置、20…放電リアクタ、21…電極、22a…流通路、31…混合容器、31a…混合室(還元剤通路)、CL、CLa…隙間(酸素導入口)。
DESCRIPTION OF
Claims (4)
還元剤を流通させる還元剤通路(31a)を有するとともに、少なくとも酸素を含んだ酸素ガスを前記還元剤通路へ導入する酸素導入口(CL、CLa)を有し、前記酸素ガスと前記還元剤との混合気を前記還元剤通路で形成する混合容器(31)と、
前記混合気が流通する流通路(22a)を形成するとともに、前記流通路に配置された電極(21)を有し、前記電極の放電により前記酸素ガスを電離させ、その電離した酸素ガスにより前記還元剤を酸化させて前記高活性物質としての改質還元剤を生成させる放電リアクタ(20)と、
前記還元剤を加熱することにより圧力上昇させる高圧室(36a)、および前記還元剤を前記高圧室から前記還元剤通路へ噴出する噴出口(36b)を有する高圧ケース(36)と、
を備え、
前記酸素導入口は、前記還元剤通路の周方向に延びる形状であり、
前記電極は平板形状であり、1組の前記電極が対向して配置されることで、対向する前記電極の間に、前記混合気が流通する電極間通路(21a)が形成され、
前記放電リアクタは、複数組の前記電極を有し、
前記流通路の流入口(22b)は、複数の前記電極間通路を含む矩形の形状であり、
前記高圧ケースは、前記流入口の矩形の隅部(22c)に向けて前記還元剤を噴出するよう、前記噴出口を少なくとも4つ有することを特徴とする高活性物質添加装置。 A NOx purification device (15) for purifying NOx contained in the exhaust gas of the internal combustion engine (10) on the reduction catalyst is provided in a combustion system provided in the exhaust passage (10ex), and upstream of the reduction catalyst in the exhaust passage. In the high active substance addition device for adding the high active substance to the side,
It has a reducing agent passage (31a) for circulating the reducing agent, and has an oxygen inlet (CL, CLa) for introducing oxygen gas containing at least oxygen into the reducing agent passage, and the oxygen gas, the reducing agent, A mixing vessel (31) for forming a gas mixture in the reducing agent passage,
A flow passage (22a) through which the air-fuel mixture flows is formed, and an electrode (21) disposed in the flow passage is provided. The oxygen gas is ionized by discharge of the electrode, and the ionized oxygen gas causes the oxygen gas to be ionized. A discharge reactor (20) for oxidizing a reducing agent to produce a modified reducing agent as the highly active substance;
A high-pressure chamber (36a) for increasing the pressure by heating the reducing agent, and a high-pressure case (36) having an ejection port (36b) for ejecting the reducing agent from the high-pressure chamber to the reducing agent passage;
With
Said oxygen inlet port, Ri shape der extending in the circumferential direction of the reducing agent passage,
The electrodes have a flat plate shape, and a pair of the electrodes are arranged to face each other, so that an interelectrode passage (21a) through which the air-fuel mixture flows is formed between the facing electrodes.
The discharge reactor has a plurality of sets of the electrodes,
The inlet (22b) of the flow passage has a rectangular shape including a plurality of the inter-electrode passages,
The high-pressure substance addition apparatus according to claim 1, wherein the high-pressure case has at least four outlets so as to inject the reducing agent toward the rectangular corner (22c) of the inlet .
前記酸素導入口は、前記還元剤通路のうち前記噴出口よりも前記還元剤の流れの上流側に位置することを特徴とする請求項1または2に記載の高活性物質添加装置。 The spout is located in the reducing agent passage;
Said oxygen inlet, a high active substance addition device according to claim 1 or 2, characterized in that positioned upstream of the flow of the reducing agent than the ejection port of the reducing agent passage.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013252308A JP6015640B2 (en) | 2013-12-05 | 2013-12-05 | Highly active substance addition equipment |
DE102014117041.5A DE102014117041A1 (en) | 2013-12-05 | 2014-11-21 | Drug delivery device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013252308A JP6015640B2 (en) | 2013-12-05 | 2013-12-05 | Highly active substance addition equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015108352A JP2015108352A (en) | 2015-06-11 |
JP6015640B2 true JP6015640B2 (en) | 2016-10-26 |
Family
ID=53185408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013252308A Expired - Fee Related JP6015640B2 (en) | 2013-12-05 | 2013-12-05 | Highly active substance addition equipment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6015640B2 (en) |
DE (1) | DE102014117041A1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6322757B1 (en) * | 1999-08-23 | 2001-11-27 | Massachusetts Institute Of Technology | Low power compact plasma fuel converter |
US6959542B2 (en) * | 2002-01-25 | 2005-11-01 | Arvin Technologies, Inc. | Apparatus and method for operating a fuel reformer to regenerate a DPNR device |
US20050274104A1 (en) * | 2004-06-15 | 2005-12-15 | Leslie Bromberg | Optimum regeneration of diesel particulate filters and NOx traps using fuel reformers |
US8272206B2 (en) * | 2006-08-01 | 2012-09-25 | Korea Institute Of Machinery & Materials | Apparatus for plasma reaction and system for reduction of particulate materials in exhaust gas using the same |
JP4803186B2 (en) | 2008-01-09 | 2011-10-26 | トヨタ自動車株式会社 | Fuel reformer |
WO2013039091A1 (en) * | 2011-09-14 | 2013-03-21 | 日野自動車株式会社 | Fuel reformer and exhaust gas purification device using same |
-
2013
- 2013-12-05 JP JP2013252308A patent/JP6015640B2/en not_active Expired - Fee Related
-
2014
- 2014-11-21 DE DE102014117041.5A patent/DE102014117041A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
JP2015108352A (en) | 2015-06-11 |
DE102014117041A1 (en) | 2015-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2975231B1 (en) | Reducing agent supplying device | |
US8272206B2 (en) | Apparatus for plasma reaction and system for reduction of particulate materials in exhaust gas using the same | |
JP2014527592A (en) | Exhaust treatment system with hydrocarbon lean NOx catalyst | |
EP1861593A1 (en) | System and method for reducing emissions of an internal combustion engine using a fuel processor bypass | |
JP6083374B2 (en) | Reducing agent addition device | |
EP2966274B1 (en) | Reducing agent supplying device | |
EP2998532B1 (en) | Reducing agent supplying device | |
JP6090136B2 (en) | Reducing agent addition device | |
JP6015640B2 (en) | Highly active substance addition equipment | |
CN101180456A (en) | Exhaust systems of motor vehicles | |
US9528410B2 (en) | Reducing agent supplying device | |
JP6028782B2 (en) | Highly active substance addition equipment | |
JP6156108B2 (en) | Highly active substance addition equipment | |
JP6090134B2 (en) | Highly active substance addition equipment | |
JP6090135B2 (en) | Highly active substance addition equipment | |
JP6094556B2 (en) | Highly active substance addition equipment | |
JP6244982B2 (en) | Gas reformer and reducing agent addition device | |
JP6083373B2 (en) | Highly active substance addition equipment | |
KR20240088710A (en) | Exhaust system and its components | |
JP6390492B2 (en) | NOx purification system controller and reducing agent addition system | |
JP2016133018A (en) | Ozone supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150924 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160912 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6015640 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |