[go: up one dir, main page]

JP6012980B2 - Bearing device preload adjustment structure - Google Patents

Bearing device preload adjustment structure Download PDF

Info

Publication number
JP6012980B2
JP6012980B2 JP2012036048A JP2012036048A JP6012980B2 JP 6012980 B2 JP6012980 B2 JP 6012980B2 JP 2012036048 A JP2012036048 A JP 2012036048A JP 2012036048 A JP2012036048 A JP 2012036048A JP 6012980 B2 JP6012980 B2 JP 6012980B2
Authority
JP
Japan
Prior art keywords
inner ring
bearing
preload
spacer
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012036048A
Other languages
Japanese (ja)
Other versions
JP2013170656A (en
Inventor
森 正継
正継 森
坂口 智也
智也 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2012036048A priority Critical patent/JP6012980B2/en
Publication of JP2013170656A publication Critical patent/JP2013170656A/en
Application granted granted Critical
Publication of JP6012980B2 publication Critical patent/JP6012980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Turning (AREA)
  • Support Of The Bearing (AREA)

Description

この発明は、工作機械主軸装置等において高速で使用される軸受装置の予圧調整構造に関する。 The present invention relates to a preload adjusting structure of the bearing device for use in a high speed in a machine tool spindle apparatus.

従来、工作機械主軸装置に使用される軸受の予圧方式には、高速軽切削加工を目的としてばね等で一定の負荷しか軸受に作用しない定圧予圧方式と、軸受の組立位置を固定して使用する定位置予圧方式とがある。この定位置予圧方式は低速での重切削加工を目的とするため、予圧を負荷した状態で使用されることが多い。しかし、予圧を負荷した軸受を高速で運転すると、主に内輪の温度上昇と遠心力による膨張のため、ラジアル負すきま量が増大してしまう。その結果、予圧過大となって、温度上昇さらには軸受寿命を低下させる等の不具合を発生させる場合がある。   Conventionally, the bearing preloading method used for machine tool spindle devices is a constant pressure preloading method in which only a certain load acts on the bearing with a spring or the like for the purpose of high-speed light cutting, and a fixed assembly position of the bearing is used. There is a fixed position preload system. Since this fixed position preloading method is intended for heavy cutting at low speed, it is often used with a preload applied. However, when a bearing loaded with a preload is operated at a high speed, the radial negative clearance increases mainly due to temperature rise of the inner ring and expansion due to centrifugal force. As a result, the preload becomes excessive, which may cause problems such as an increase in temperature and a decrease in bearing life.

加工精度と加工能率を考えた場合、定位置予圧方式で高速加工を行いたいが、軸受剛性と高速性は相反する要因であり、両立が難しいのが現状である。軸受を高速運転した時に生じる過大予圧を緩和させるための方法として、以下に挙げる技術が提案されている(特許文献1〜3)。   Considering machining accuracy and machining efficiency, we want to perform high-speed machining with the fixed position preload method, but the bearing rigidity and high-speed performance are contradictory factors, and it is difficult to achieve both. The following techniques have been proposed as methods for reducing the excessive preload generated when the bearing is operated at high speed (Patent Documents 1 to 3).

特許文献1に開示された方法は、ねじとばねを利用することで、機械的に低速での重切削加工時に定位置予圧とし、高速時にはばねによる定圧予圧が付与できるようにしたものである。
特許文献2に開示された方法は、背面組合せされたアンギュラ玉軸受において、軸受間(背面側)に配置された外輪間座に発熱部を設け、間座の寸法を温度制御により変化させることで軸受予圧を調整するものである。この方法において、低速での重切削加工時には、予圧を大として軸受剛性を高くする。この場合、間座を加熱することで軸方向に膨張させて予圧を大きくしている。一方、高速での軽切削加工時においては、発熱を抑制し限界速度を向上させるために、低速時とは逆に放熱することで間座を収縮させて予圧を減少させている。
The method disclosed in Patent Document 1 uses a screw and a spring to provide a fixed position preload during heavy cutting at a mechanically low speed, and to apply a constant pressure preload by a spring at a high speed.
The method disclosed in Patent Document 2 is a method of providing a heat generating portion in an outer ring spacer disposed between bearings (back side) in an angular ball bearing combined with a back surface, and changing the size of the spacer by temperature control. It adjusts the bearing preload. In this method, at the time of heavy cutting at low speed, the preload is increased to increase the bearing rigidity. In this case, the spacer is heated to expand in the axial direction to increase the preload. On the other hand, at the time of light cutting at high speed, in order to suppress heat generation and improve the limit speed, the spacer is contracted by radiating heat contrary to that at low speed to reduce the preload.

特許文献3に開示された方法は、組合せ軸受の一部外輪を軸方向に段階的に位置決めしながら移動させることで、軸受の軸方向すきまを変化させて予圧を調整するものである。一例として、0〜使用最高回転速度域で、3 段階の予圧調整が可能とされるものが開示されている。具体的には,4 列のアンギュラ玉軸受の前側2列軸受の外輪を外筒に固定し、後側2列軸受の外輪を固定した軸受箱を軸方向に油圧力を使用して、3 段階に軸方向移動させることで軸受の軸方向すきまを変えている。   The method disclosed in Patent Document 3 adjusts the preload by changing the axial clearance of the bearing by moving a part of the outer ring of the combined bearing while positioning it stepwise in the axial direction. As an example, there is disclosed one that allows three-stage preload adjustment in the 0 to maximum rotational speed range. Specifically, the outer ring of the front two-row bearing of the four rows of angular ball bearings is fixed to the outer cylinder, and the bearing box on which the outer ring of the rear two-row bearing is fixed is axially used in three stages. The axial clearance of the bearing is changed by moving it in the axial direction.

特開平3−79205号公報JP-A-3-79205 特開2006−64127号公報JP 2006-64127 A 特開平2−279203号公報JP-A-2-279203

運転中の軸受予圧は、内外輪の温度差の影響を受ける。一般的に鋼製の内外輪を使用して運転すると、内輪での発生熱は軸受箱が強制冷却される外輪側に比べ放熱し難く、結果として内外輪の温度は、
内輪温度>外輪温度
となってしまう。すなわち、運転中の内輪軌道径の膨張量は、この温度上昇と回転による遠心力のため、外輪軌道径の膨張量に対して大きくなってしまう。このことが、運転中の予圧増大をもたらす主要因となっている。
The bearing preload during operation is affected by the temperature difference between the inner and outer rings. In general, when operating using steel inner and outer rings, the heat generated in the inner ring is less likely to dissipate compared to the outer ring side where the bearing housing is forcibly cooled.
Inner ring temperature> outer ring temperature. That is, the amount of expansion of the inner ring raceway diameter during operation becomes larger than the amount of expansion of the outer ring raceway diameter due to the centrifugal force due to the temperature rise and rotation. This is the main factor that increases the preload during operation.

この運転中の予圧増大要因のことを念頭に置いて、上記各特許文献1〜3に開示された技術についてその特性を見てみると、以下のことが言える。
特許文献1に開示の方法では、構造が複雑となり、コスト面で高価なものになってしまう。
また、特許文献2に開示の方法では、発熱体による間座の温度上昇、または冷却に時間を要し、予圧制御の応答性が悪くなってしまう欠点がある。すなわち、一定回転速度での長時間加工には向いているが、頻繁に回転速度が変化する加工機には不向きである。
Taking the factors of increasing the preload during operation into consideration, the following can be said when the characteristics of the technologies disclosed in the patent documents 1 to 3 are examined.
In the method disclosed in Patent Document 1, the structure becomes complicated and the cost becomes expensive.
In addition, the method disclosed in Patent Document 2 has a drawback that it takes time to increase the temperature of the spacer by the heating element or to cool it, and the responsiveness of the preload control is deteriorated. That is, it is suitable for long-time machining at a constant rotation speed, but is not suitable for a processing machine in which the rotation speed frequently changes.

また、特許文献3に開示のように、軸受外輪を軸方向に強制的に移動させて予圧調整する方法は、後ろ側軸受部において軸受箱と外筒の2重構造となっていること、軸受箱を軸方向に移動して位置決めする部品が必要になるなど、部品点数が多くなってしまう。また、予圧調整を行うための軸受箱の移動手段として油圧源が必要となる。このように、この方法では、予圧調整のためのコストが高くなってしまうという課題がある。   Further, as disclosed in Patent Document 3, the method of forcibly moving the bearing outer ring in the axial direction to adjust the preload is that the rear bearing portion has a double structure of the bearing housing and the outer cylinder, The number of parts increases, such as the need for parts to move and position the box in the axial direction. In addition, a hydraulic source is required as a means for moving the bearing housing for preload adjustment. Thus, this method has a problem that the cost for adjusting the preload is increased.

この発明の目的は、外部からの温度等の制御を必要とせず、比較的簡単な構造で予圧調整を行うことができて、低速では定位置予圧軸受特有の高い支持剛性を与え、かつ単なる定位置予圧の軸受では到達困難な高速回転を、簡便な自律機構で達成することができる軸受装置の予圧調整構造を提供することである。 The object of the present invention is that preload adjustment can be performed with a relatively simple structure without requiring control of the temperature etc. from the outside, high support rigidity unique to the fixed position preload bearing is given at low speed, and simple control. the bearing position preload is to provide a preload adjusting structure of the bearing device can be achieved in the difficult high-speed rotation reaches, simple autonomous mechanism.

この発明の軸受装置の予圧調整構造は、共通の軸をハウジングに対して支持する複数の転がり軸受形の軸受を備え、これら複数の軸受のうちの一部または全部の軸受がアンギュラ玉軸受か円すいころ軸受であり、これら各軸受が定位置予圧形式で予圧された軸受装置において、最低一つの軸受は、内輪が、この軸受の最高回転速度内で常に軸に締まり嵌め状態となるように、軸に固定され、残りの軸受は、内輪が、回転停止状態では締まり嵌めとなり、前記最高回転速度未満の遷移回転速度以上の高速回転ではすきま嵌めとなって軸に対して移動可能となるように、各軸受の内輪の軸に対する初期締め代定される。上記「最高回転速度」は、例えばこの軸受装置が用いられる工作機械等の機器における使用回転速度、または軸受の許容最高回転速度である。 A preload adjusting structure for a bearing device according to the present invention includes a plurality of rolling bearing type bearings that support a common shaft with respect to a housing, and some or all of the plurality of bearings are angular ball bearings or conical bearings. In roller bearings in which each of these bearings is preloaded in a fixed position preload type, at least one bearing has a shaft so that the inner ring is always tightly fitted to the shaft within the maximum rotational speed of the bearing. the solid is constant, the rest of the bearing inner race becomes a tight fit in a rotation stop state, so as to be movable with respect to the axis become loose fit in a high-speed rotation of the above transition rotation speed of the less than maximum speed , the initial interference is set for the inner ring of the axis of each bearing. The “maximum rotational speed” is, for example, a rotational speed used in a machine tool or the like in which the bearing device is used, or an allowable maximum rotational speed of the bearing.

この構成によると、定位置予圧形式であり、かつ複数の軸受のうち、最低一つの軸受は内輪が最高回転速度内で常に軸に締まり嵌め状態となるように、軸に固定としてあるため、予圧によって常に高い軸受剛性が得られ、工作機械等に用いた場合に、低速回転での重切削加工等も精度良く行える。残りの軸受は、回転停止状態や低速状態では締まり嵌めであるが、遷移回転速度以上の高速回転ではすきま嵌めとなって軸に対して移動可能となるように、内輪の軸に対する初期締め代が設定されている。そのため、高速回転を行っても、予圧過大となって過度の温度上昇や軸受寿命の低下を招くことが回避される。また、回転速度による締め代の変化を利用した予圧調整であるため、外部からの制御を必要としない。
このように、外部からの温度等の制御を必要とせず、比較的簡単な構造で予圧調整を行うことができて、低速では定位置予圧軸受特有の高い支持剛性を与え、かつ単なる定位置予圧の軸受では到達困難な高速回転を、簡便な自律機構で達成することができる。
According to this configuration, since it is a fixed position preload type and at least one of the plurality of bearings is fixed to the shaft so that the inner ring is always tightly fitted to the shaft within the maximum rotational speed, Therefore, a high bearing rigidity is always obtained, and when used in a machine tool or the like, heavy cutting at a low speed can be accurately performed. The remaining bearings are interference-fitted in the rotation stop state or low-speed state, but the initial allowance for the inner ring shaft is sufficient so that it can move with respect to the shaft due to clearance fit at high-speed rotation above the transition rotational speed. Is set. Therefore, even if high-speed rotation is performed, it is avoided that the preload becomes excessive and excessive temperature rise and bearing life decrease are caused. In addition, since the preload adjustment is performed using the change in the tightening allowance depending on the rotation speed, no external control is required.
In this way, preload adjustment can be performed with a relatively simple structure without the need for external temperature control, etc., and at a low speed, high support rigidity peculiar to a fixed position preload bearing is provided, and a simple fixed position preload is provided. High-speed rotation that is difficult to achieve with this bearing can be achieved with a simple autonomous mechanism.

この発明において、締まり嵌めからすきま嵌めとなる前記遷移回転速度は、任意に設定すれば良いが、例えば、軸の高い支持剛性が求められる速度域の上限に設定しても良い。「軸の高い支持剛性が求められる速度域」は、工作機械の主軸に適用される場合は、例えば重切削加工を行う速度域である。
なお。遷移回転速度は、例えば次の速度とする。内輪が締まりばめで且つ定位置予圧において,回転速度の上昇による軸受予圧増大の許容値(いいかえれば許容軸受温度)がある。経験的に締まりばめ,定位置予圧条件での限界回転速度は,概ねdmn値で100万であり,この速度を遷移回転速度とする。
In the present invention, the transition rotational speed from the interference fit to the clearance fit may be arbitrarily set. For example, the transition rotational speed may be set to the upper limit of the speed range in which high support rigidity of the shaft is required. The “speed range where high support rigidity of the shaft is required” is a speed range where heavy cutting is performed, for example, when applied to the spindle of a machine tool.
Note that. The transition rotational speed is, for example, the following speed. There is a permissible value (in other words, permissible bearing temperature) of increased bearing preload due to an increase in rotational speed when the inner ring is an interference fit and fixed position preload. Interference fit on empirical, limit rotational speed at a constant position preload conditions, generally is 100 a man with d m n values, to the speed and transition speed.

前記軸受の内輪を軸に位置決め固定する環状の幅可変内輪間座が設けられ、この幅可変内輪間座は、運転中の径方向膨張量が異なる2体の環状の内輪間座分割体で構成され、膨張量小の側の内輪間座分割体は外径側にテーパ面を有し、膨張量大の側の内輪間座分割体は内径側にテーパ面を有し、これらテーパ面の嵌め合いで軸方向の位置決めが行われる。 An annular variable width inner ring spacer is provided for positioning and fixing the inner ring of the bearing on the shaft, and this variable width inner ring spacer is composed of two annular inner ring spacer divided bodies having different radial expansion amounts during operation. The inner ring spacer divided body on the small expansion side has a tapered surface on the outer diameter side, and the inner ring spacer divided body on the large expansion side has a tapered surface on the inner diameter side. At the same time, axial positioning is performed.

この場合に、定位置予圧で予圧される複数の軸受のうち、前記内輪間座分割体に接する側の軸受の内輪の軸との嵌め合い、前記遷移回転速度未満の低速回転時に締まり嵌めとなり、前記遷移回転速度以上の高速回転時にすきま嵌めとなるように、初期締め代定されても良い。 In this case, among the plurality of bearings preloaded by the fixed position preload, the fitting of the bearing on the side in contact with the inner ring spacer split body with the shaft of the inner ring is an interference fit during low speed rotation less than the transition rotational speed. the so that clearance-fitted at the time of high-speed rotation of the above transition speed, the initial interference may be set.

前記2体の内輪間座分割体のうち、軸受に接する側の内輪間座分割体、前記外径側のテーパ面を有しかつ運転中の温度上昇および遠心力による径方向膨張量が小さくなる材質とされ、軸肩部に接する側のもう1体の内輪間座分割体は、前記内径側のテーパ面を有しかつ運転中の温度上昇および遠心力による径方向膨張量が大きくなる材質とされていても良い。 Of the inner ring divided spacer segment of the two bodies, the inner ring divided spacer segment on the side in contact with the bearing, the radial expansion amount due to a temperature rise and the centrifugal force of a and during operation the tapered surface of the outer diameter side is small The other inner ring spacer divided body on the side in contact with the shoulder of the shaft has a tapered surface on the inner diameter side , and a material whose temperature increases during operation and the amount of radial expansion due to centrifugal force increases. It may be said.

前記外径側のテーパ面を有する内輪間座分割体はセラミックス製とされ、前記内径側のテーパ面を有する内輪間座分割体は鋼製とされていても良い。
前記2体の内輪間座分割体のテーパ面のテーパ角度は、例えば、これら内輪間座分割体の膨張量差、予圧調整量、および食い込みを考慮して決定する。
The inner ring spacer divided body having the tapered surface on the outer diameter side may be made of ceramics, and the inner ring spacer divided body having the tapered surface on the inner diameter side may be made of steel.
The taper angle of the tapered surfaces of the two inner ring spacer divided bodies is determined in consideration of, for example, the difference in expansion between the inner ring spacer divided bodies, the preload adjustment amount, and the bite.

上記2体の環状の内輪間座分割体からなる幅可変内輪間座を用いた場合の予圧調整の作用につき説明する。軸受個数は2つでその間に内輪間座があり、また凸のテーパ面を有する内輪間座分割体をセラミックス製、凹のテーパ面を有する内輪間座分割体を鋼製として説明する。
低速時には2列の軸受の外輪間の間座幅寸法と内輪間の間座幅寸法差により予圧が設定される。回転速度の上昇に伴い、奥側軸受の内輪と軸との嵌め合い部では、内輪と軸とに作用する遠心力の差(内輪>軸)により締め代が減少し、すきまが発生して内輪の軸方向移動を容易にさせる。また、幅可変内輪間座(2体の内輪間座分割体)において、回転速度上昇によるセラミックス製の内輪間座分割体と鋼製の内輪間座分割体の遠心力の差(セラミックス製内輪間座分割体<鋼製内輪間座分割体)、さらに温度による熱膨張差(セラミックス製内輪間座分割体<鋼製内輪間座分割体)により、テーパ面合わせ部では径方向にすきまを発生させて2体の内輪間座分割体による総幅はすきまの増大とともに小さくなって行く。すなわち、回転速度の上昇に伴う内輪位置決め間座幅寸法の減少は、奥側軸受の内輪を軸方向に移動させることになり、軸受予圧の増大を緩和させる方向に作用することになる。逆に、高速からの減速時においては、遠心力の減少と温度の降下により、奥側軸受の内輪を予圧を増大させる方向に移動させることになり、初期の予圧状態に戻る。
The operation of the preload adjustment in the case of using the variable width inner ring spacer composed of the two annular inner ring spacer divided bodies will be described. The number of bearings is two, and there is an inner ring spacer between them, and the inner ring spacer divided body having a convex tapered surface is made of ceramics, and the inner ring spacer divided body having a concave tapered surface is made of steel.
At low speed, the preload is set by the difference in the spacer width dimension between the outer rings of the two rows of bearings and the spacer width dimension between the inner rings. As the rotational speed increases, the interference between the inner ring and the shaft of the rear bearing is reduced due to the difference in centrifugal force acting on the inner ring and the shaft (inner ring> shaft). Makes it easier to move in the axial direction. Also, in the variable width inner ring spacer (two inner ring spacer divided bodies), the difference in centrifugal force between the ceramic inner ring spacer divided body and the steel inner ring spacer divided body due to the increase in rotational speed (between the ceramic inner ring spacers) Due to the difference in thermal expansion due to temperature (ceramic inner ring spacer split body <steel inner ring spacer split body) due to the temperature of the seat split body <steel inner ring spacer split body) The total width of the two inner ring spacer divisions decreases as the clearance increases. That is, the decrease in the inner ring positioning spacer width dimension accompanying the increase in the rotational speed moves the inner ring of the inner bearing in the axial direction, and acts in a direction that alleviates the increase in bearing preload. Conversely, when decelerating from a high speed, the inner ring of the back bearing is moved in the direction of increasing the preload due to the decrease in the centrifugal force and the temperature drop, and the initial preload state is restored.

ここで、幅可変内輪間座となる2体の内輪間座分割体のうち、セラミックス製内輪間座分割体は、密度と線膨張係数が鋼製のものより小さく、ヤング率が大きければ材質を問わない。また、2体の内輪間座分割体のテーパ部角度は、使用回転速度と運転中の目標とする予圧調整量によって設定される。   Here, of the two inner ring spacer divided bodies that become the variable width inner ring spacer, the ceramic inner ring spacer divided body is smaller in density and linear expansion coefficient than those made of steel and has a higher Young's modulus. It doesn't matter. Further, the taper portion angle of the two inner ring spacer divided bodies is set by the rotational speed used and the target preload adjustment amount during operation.

上記はそれぞれテーパ面を有する2体の内輪間座分割体により内輪位置を自動調整させる例を示したが、参考提案例として、次のように種々のばねを用いても良い。
例えば、前記遷移回転速度以上の高速回転ではすきま嵌めとなって軸に対して移動可能となる軸受の内輪に隣接して、この内輪を軸に位置決め固定するばねを設けても良い。
この場合に、前記ばねの一部を軸に対して締まり嵌めとしても良い。また、前記ばねは皿ばねであっても良い。
The above shows an example in which the inner ring position is automatically adjusted by the two inner ring spacer divided bodies each having a tapered surface. However , various springs may be used as a reference proposal example as follows .
For example, a spring for positioning and fixing the inner ring on the shaft may be provided adjacent to the inner ring of the bearing that becomes a clearance fit and can move with respect to the shaft at a high speed that is higher than the transition rotational speed.
In this case, a part of the spring may be an interference fit with respect to the shaft. The spring may be a disc spring.

この発明において、前記内輪間座を2体の環状の内輪間座分割体とした場合に、軸受に接する側の内輪間座分割体の外径部に、前記軸受の内輪に向けて突出して内径が前記内輪の外径に嵌まり合う円環部けられ、この円環部の初期締め代、回転停止状態ではすきま嵌めとなり、前記遷移回転速度未満の低速では締まり嵌めとなるように設定されても良い。 In the present invention, when the inner ring spacer is formed as two annular inner ring spacer divided bodies, the inner ring spacer protrudes toward the inner ring of the bearing on the outer diameter portion of the inner ring spacer divided body on the side in contact with the bearing. There annular portion which mate to the outer diameter of the inner ring is set vignetting, the initial interference of the annular portion becomes a clearance fit in a rotation stop state, such that the interference fit is at a low speed of less than said transition speed it may be set.

この発明において、軸受に接しない側の内輪間座分割体の軸に対する締め代を、絶えず締まり嵌めとなるように設定しても良い。   In this invention, you may set the interference with respect to the axis | shaft of the inner ring | wheel spacer division | segmentation body by the side which does not contact a bearing so that it may always become an interference fit.

この発明または参考提案例において、前記2体の内輪間座分割体またはばねが隣接する前記軸受の内輪の前記隣接位置とは反対側に位置する間座の外径部に、前記軸受の内輪に向けて突出して内径が前記内輪の外径に嵌まり合う円環部を設け、この円環部の初期締め代を、回転停止状態ではすきま嵌めとなり、前記内輪と軸がすきま嵌めとなる前記遷移回転速度以上の高速回転では締まり嵌めとなるように設定しても良い。 Oite this inventions or references proposed example, the outer diameter of the spacer ring spacer divided body or springs of the two bodies is from said position adjacent to the inner ring of the bearing adjacent to opposite, the bearing An annular portion that protrudes toward the inner ring and has an inner diameter that fits the outer diameter of the inner ring is provided, and the initial tightening allowance of the annular portion is a clearance fit when the rotation is stopped, and the inner ring and the shaft are a clearance fit. It may be set so as to be an interference fit at a high rotation speed higher than the transition rotation speed.

この場合に、前記円環部が、前記間座の内周の間座機能部分とは別部品であっても良い。また、この場合に、前記間座の軸に対する締め代を、絶えず締まり嵌めとなるように設定しても良い。   In this case, the annular portion may be a separate component from the spacer function portion on the inner periphery of the spacer. Further, in this case, the tightening allowance for the spacer shaft may be set so as to always be an interference fit.

この発明の工作機械は、この発明の前記いずれかの構成の軸受装置の予圧調整構造を有する軸受スピンドルを備えたことを特徴とする。
この構成によると、軸受スピンドルの低速での剛性を高めると共に、高速回転も可能となるので、重切削が可能で、かつ加工精度を向上させることができる。
A machine tool according to the present invention includes a bearing spindle having a preload adjusting structure for a bearing device having any one of the configurations of the present invention.
According to this configuration, the rigidity of the bearing spindle at low speed can be increased and high-speed rotation can be performed, so that heavy cutting is possible and machining accuracy can be improved.

この構成の工作機械において、前記軸受装置における前記締まり嵌めからすきま嵌めに遷移する遷移回転速度を、工作機械に求められる重切削加工での最高回転速度以上に設定しても良い。
この構成によると、低速での重切削加工が高精度に行え、かつ高速での軽切削加工が可能で、加工効率を向上させることができる。
In the machine tool having this configuration, the transition rotational speed at which the bearing device transitions from the interference fit to the clearance fit may be set to be equal to or higher than the maximum rotational speed in heavy cutting required for the machine tool.
According to this configuration, heavy cutting at low speed can be performed with high accuracy, light cutting at high speed can be performed, and processing efficiency can be improved.

の軸受装置の予圧調整方法は、共通の軸をハウジングに対して支持する複数の転がり軸受形の軸受を備え、これら複数の軸受のうちの一部または全部の軸受がアンギュラ玉軸受か円すいころ軸受であり、これら各軸受が定位置予圧形式で予圧された軸受装置の予圧調整方法において、最低一つの軸受は、内輪が、この軸受の最高回転速度内で常に軸に固定とし、残りの軸受は、内輪を運転中に軸方向に移動させることで予圧調整を行なうことを特徴とする。
この方法によると、外部からの温度等の制御を必要とせず、比較的簡単な構造で予圧調整を行うことができる。また、低速では定位置予圧軸受特有の高い支持剛性を与え、かつ単なる定位置予圧の軸受では到達困難な高速回転を、簡便な自律機構で達成することができる。
Preload adjusting method of bearings apparatus this is provided with a bearing of a plurality of rolling bearings shaped supporting a common shaft relative to the housing, conical part or all of the bearings of these plurality of bearings or angular contact ball bearings In the preload adjustment method of the bearing device in which each of these bearings is preloaded in a fixed position preload type, at least one of the bearings is such that the inner ring is always fixed to the shaft within the maximum rotation speed of this bearing, and the remaining The bearing is characterized in that the preload adjustment is performed by moving the inner ring in the axial direction during operation.
According to this method, preload adjustment can be performed with a relatively simple structure without requiring control of the temperature and the like from the outside. Moreover, high support rigidity peculiar to the fixed position preload bearing can be given at a low speed, and high speed rotation difficult to achieve with a simple position preload bearing can be achieved with a simple autonomous mechanism.

この発明の軸受装置の予圧調整構造は、共通の軸をハウジングに対して支持する複数の転がり軸受形の軸受を備え、これら複数の軸受のうちの一部または全部の軸受がアンギュラ玉軸受か円すいころ軸受であり、これら各軸受が定位置予圧形式で予圧された軸受装置において、最低一つの軸受は、内輪が、この軸受の最高回転速度内で常に軸に締まり嵌め状態となるように、軸に固定され、残りの軸受は、内輪が、回転停止状態では締まり嵌めとなり、前記最高回転速度未満の定められた遷移回転速度以上の高速回転ではすきま嵌めとなって軸に対して移動可能となるように、各軸受の内輪の軸に対する初期締め代が設定され、前記軸受の内輪を前記軸に位置決め固定する環状の幅可変内輪間座が設けられ、この幅可変内輪間座は、運転中の径方向膨張量が異なる2体の環状の内輪間座分割体で構成され、膨張量小の側の内輪間座分割体は外径側にテーパ面を有し、膨張量大の側の内輪間座分割体は内径側にテーパ面を有し、これらテーパ面の嵌め合いで前記内輪の軸方向の位置決めが行われる。このため、外部からの温度等の制御を必要とせず、比較的簡単な構造で予圧調整を行うことができる。また、低速では定位置予圧軸受特有の高い支持剛性を与え、かつ単なる定位置予圧の軸受では到達困難な高速回転を、簡便な自律機構で達成することができる。 A preload adjusting structure for a bearing device according to the present invention includes a plurality of rolling bearing type bearings that support a common shaft with respect to a housing, and some or all of the plurality of bearings are angular ball bearings or conical bearings. In roller bearings in which each of these bearings is preloaded in a fixed position preload type, at least one bearing has a shaft so that the inner ring is always tightly fitted to the shaft within the maximum rotational speed of the bearing. The remaining bearings can be moved with respect to the shaft with an interference fit when the inner ring is in a rotation-stopped state and a clearance fit at a high rotation speed higher than a predetermined transition rotational speed less than the maximum rotational speed. As described above, an initial tightening allowance for the inner ring shaft of each bearing is set, and an annular variable width inner ring spacer is provided for positioning and fixing the inner ring of the bearing to the shaft. Is composed of the inner ring divided spacer segment of the annular direction expansion amounts are different two bodies, the inner ring divided spacer segment side of expansion of small has a tapered surface on the outer diameter side, the inner ring spacer side of the expansion of large The divided body has a tapered surface on the inner diameter side, and the axial positioning of the inner ring is performed by fitting these tapered surfaces. For this reason, preload adjustment can be performed with a relatively simple structure without requiring control of temperature and the like from the outside. Moreover, high support rigidity peculiar to the fixed position preload bearing can be given at a low speed, and high speed rotation difficult to achieve with a simple position preload bearing can be achieved with a simple autonomous mechanism.

この発明の工作機械は、この発明の前記いずれかの構成の軸受装置の予圧調整構造を有する軸受スピンドルを備えるので、軸受スピンドルの低速での剛性を高めると共に、高速回転も可能となり、加工精度を向上させることができる。   Since the machine tool of the present invention includes the bearing spindle having the preload adjusting structure for the bearing device having any one of the structures of the present invention, the bearing spindle can be increased in rigidity at a low speed and can be rotated at a high speed, thereby improving machining accuracy. Can be improved.

この発明の一実施形態にかかる軸受装置の予圧調整構造を用いた工作機械主軸装置の断面図である。It is sectional drawing of the machine tool spindle apparatus using the preload adjustment structure of the bearing apparatus concerning one Embodiment of this invention. 同予圧調整構造の部分の拡大断面図である。It is an expanded sectional view of the part of the preload adjustment structure. 同予圧調整構造による予圧調整を表した予圧曲線である。It is the preload curve showing the preload adjustment by the preload adjustment structure. 同予圧調整構造における予圧調整のメカニズムを示す説明図である。It is explanatory drawing which shows the mechanism of the preload adjustment in the same preload adjustment structure. 参考提案例にかかる軸受装置の予圧調整構造の断面図である。It is sectional drawing of the preload adjustment structure of the bearing apparatus concerning a reference proposal example . 同予圧調整構造による予圧調整を表した予圧曲線である。It is the preload curve showing the preload adjustment by the preload adjustment structure. この発明の他の実施形態にかかる軸受装置の予圧調整構造の断面図である。It is sectional drawing of the preload adjustment structure of the bearing apparatus concerning other embodiment of this invention. この発明のさらに他の実施形態にかかる軸受装置の予圧調整構造の断面図である。It is sectional drawing of the preload adjustment structure of the bearing apparatus concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる軸受装置の予圧調整構造の断面図である。It is sectional drawing of the preload adjustment structure of the bearing apparatus concerning further another embodiment of this invention.

この発明の第1の実施形態を図1ないし図4と共に説明する。図1は、この実施形態の軸受装置の予圧調整構造が適用された工作機械主軸装置の一例の断面図を示す。この工作機械主軸装置は、主軸1の前側(同図の左側)に工具(図示せず)が取付けられ、後側(同図の右側)にモータ等の駆動源が回転伝達機構(図示せず)を介して連結される。この主軸1を共通の軸としてハウジング2に対して支持する複数の転がり軸受形の軸受3,4,5が設けられる。工作機械主軸装置における工具取付け側である前側には、ラジアル負荷とアキシアル負荷を受ける2つのアンギュラ玉軸受3,4が背面組合せで配置され、後側にはラジアル荷重を受けながら主軸1の振れ止めを目的とする円筒ころ軸受5が配置される。これらの軸受3〜5は、それぞれ主軸1に嵌め合い固定されている。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a cross-sectional view of an example of a machine tool spindle device to which a preload adjusting structure for a bearing device of this embodiment is applied. In this machine tool spindle apparatus, a tool (not shown) is attached to the front side (left side of the figure) of the spindle 1, and a drive source such as a motor is connected to a rotation transmission mechanism (not shown) on the rear side (right side of the figure). ). A plurality of rolling bearing type bearings 3, 4, 5 that support the main shaft 1 with respect to the housing 2 as a common shaft are provided. Two angular ball bearings 3 and 4 that receive a radial load and an axial load are arranged in the rear side on the front side, which is the tool mounting side in the machine tool spindle device, and the main shaft 1 is steady while receiving the radial load on the rear side. A cylindrical roller bearing 5 for the purpose is arranged. These bearings 3 to 5 are respectively fitted and fixed to the main shaft 1.

2つのアンギュラ玉軸受3,4の内輪3a,4aは、内輪間座6,幅可変内輪間座10と、初期予圧設定用の内輪間座7と、軸受固定ナット13と、主軸1の肩部1aの端面1aaとで軸方向位置が規制されている。幅可変内輪間座10は、2体の内輪間座分割体11,12からなる。外輪3b,4bは、ハウジング2の前側端部に固定された蓋部材14と1つの外輪間座8と、ハウジング2の段差部2aとで軸方向位置が規制されている。後ろ側の円筒ころ軸受5の内輪5aは、主軸1に螺合される軸受固定ナット15と軸受押さえ16と、主軸1の肩部1aの端面1abとで軸方向位置が規制され、外輪5bはハウジング2の後ろ側端部に固定された蓋部材17とハウジング2の段差部2bとで軸方向位置が規制されている。   The inner rings 3a and 4a of the two angular ball bearings 3 and 4 include an inner ring spacer 6, a variable width inner ring spacer 10, an inner ring spacer 7 for setting an initial preload, a bearing fixing nut 13, and a shoulder portion of the main shaft 1. The position in the axial direction is restricted by the end face 1aa of 1a. The variable width inner ring spacer 10 includes two inner ring spacer divided bodies 11 and 12. The positions of the outer rings 3 b and 4 b are restricted by the lid member 14 fixed to the front end portion of the housing 2, one outer ring spacer 8, and the stepped portion 2 a of the housing 2. The inner ring 5a of the cylindrical roller bearing 5 on the rear side is regulated in the axial direction by a bearing fixing nut 15 and a bearing retainer 16 which are screwed to the main shaft 1, and an end surface 1ab of the shoulder 1a of the main shaft 1, and the outer ring 5b is The axial position is regulated by the lid member 17 fixed to the rear end portion of the housing 2 and the stepped portion 2b of the housing 2.

前側のアンギュラ玉軸受3,4と後ろ側の円筒ころ軸受5は、通常、主軸1の剛性を確保するため、組立後の軸受内部すきまを0〜負すきまとするのが一般的である。また、前記各軸受の潤滑には、グリース、ジェット潤滑、エアオイル潤滑等の方法が用いられる。図2は、前記工作機械主軸装置におけるこの実施形態の軸受装置の予圧調整構造が設けられている部分を拡大して示す断面図である。なお、図2では、内輪間座6を省略して、軸受固定ナット13を直接アンギュラ玉軸受3の内輪3aの前側端面に当接させた構造を示している。   In general, the angular contact ball bearings 3 and 4 on the front side and the cylindrical roller bearing 5 on the rear side generally have a 0 to negative clearance in the bearing after assembly in order to ensure the rigidity of the main shaft 1. For the lubrication of the bearings, methods such as grease, jet lubrication, and air oil lubrication are used. FIG. 2 is an enlarged cross-sectional view of a portion of the machine tool spindle device in which the preload adjusting structure of the bearing device of this embodiment is provided. FIG. 2 shows a structure in which the inner ring spacer 6 is omitted and the bearing fixing nut 13 is brought into direct contact with the front end face of the inner ring 3 a of the angular ball bearing 3.

この実施形態の軸受装置の予圧調整構造は、前記2つのアンギュラ玉軸受3,4の運転中の予圧調整を行なうものである。普通、アンギュラ玉軸受を運転すると、先述したように回転に伴う軸受温度上昇(内輪温度上昇>外輪温度上昇)と遠心力により、軸受予圧が増大する。この実施形態の軸受装置の予圧調整構造では、運転中の軸受予圧を、2つのアンギュラ玉軸受3,4のうち、後側のアンギュラ玉軸受4の内輪4aを軸方向に移動させることで、軸受内部すきまを変えて予圧調整する。   The preload adjusting structure of the bearing device of this embodiment performs preload adjustment during operation of the two angular ball bearings 3 and 4. Normally, when the angular ball bearing is operated, the bearing preload increases due to the bearing temperature rise (inner ring temperature rise> outer ring temperature rise) and centrifugal force accompanying rotation as described above. In the preload adjusting structure of the bearing device of this embodiment, the bearing preload during operation is moved by moving the inner ring 4a of the angular ball bearing 4 on the rear side of the two angular ball bearings 3 and 4 in the axial direction. Adjust the preload by changing the internal clearance.

この実施形態の軸受装置の予圧調整構造での特徴は次の2点である。1点目は、アンギュラ玉軸受3,4の内輪3a,4aの嵌め合いである。すなわち、2つのアンギュラ玉軸受3,4のうち、前側のアンギュラ玉軸受3の内輪3aについては最高回転数到達時において締め代が確保される締まり嵌めとし、奥側のアンギュラ玉軸受4の内輪4aについては,予圧調整が必要となる高速域において主軸1との嵌め合いが、すきま嵌めとなるような初期締め代としている。   The features of the preload adjusting structure of the bearing device of this embodiment are the following two points. The first point is the fitting of the inner rings 3a, 4a of the angular ball bearings 3, 4. That is, of the two angular ball bearings 3, 4, the inner ring 3 a of the front angular ball bearing 3 is an interference fit that secures a tightening margin when the maximum rotational speed is reached, and the inner ring 4 a of the inner angular ball bearing 4. The initial tightening allowance is such that the fitting with the main shaft 1 becomes a clearance fit in a high speed range where preload adjustment is required.

特徴の2点目は、奥側のアンギュラ玉軸受4の内輪4aと主軸1の肩部1aとの間に介在させる内輪間座10を、2体の内輪間座分割体11,12からなる幅可変内輪間座として構成したことである。2体の内輪間座分割体11,12のうち、アンギュラ玉軸受4の内輪4a側に配置した内輪間座分割体11は、セラミックス等の密度が小さく線膨張係数の小さな材質で製作され、主軸1の肩部1a側に配置したもう1体の内輪間座分割体12は鋼製とされている。内輪4a側に位置する1体の内輪間座分割体11には、内輪4a側が大径となる角度αの凸のテーパ面11aが形成され、主軸1の肩部1a側に位置するもう1体の内輪間座分割体12には、内輪4a側が大径となる角度αの凹のテーパ面12aがそれぞれ形成されており、これら両内輪間座分割体11,12がそれらのテーパ面11a,12aで嵌め合い状態とされている。 The second feature is that the inner ring spacer 10 interposed between the inner ring 4a of the angular ball bearing 4 on the back side and the shoulder 1a of the main shaft 1 has a width formed by two inner ring spacer divided bodies 11 and 12. It is configured as a variable inner ring spacer. Of two bodies of the inner ring divided spacer segment 11 and 12, the inner ring divided spacer segment 11 disposed on the inner ring 4a side angular ball bearing 4, the density of such ceramics are manufactured by a small material of small linear expansion coefficient, the spindle The other inner ring spacer divided body 12 arranged on the side of the shoulder 1a is made of steel. The one inner ring spacer divided body 11 located on the inner ring 4a side is provided with a convex tapered surface 11a having an angle α with a large diameter on the inner ring 4a side, and another body located on the shoulder 1a side of the main shaft 1. The inner ring spacer divided body 12 is formed with a concave tapered surface 12a having an angle α with a large diameter on the inner ring 4a side, and both the inner ring spacer divided bodies 11 and 12 are tapered surfaces 11a and 12a. It is in a fitted state.

前記テーパ面11a,12aの角度αは、運転中に生じる軸受予圧の増大を緩和するための奥側内輪4aの軸方向移動量と、移動の再現性とを考慮して決定されるが、小さな角度にならないように設定される。そして、内輪4a側に位置する内輪間座分割体11の主軸1との初期嵌め合いは、使用回転速度域において締まり嵌めとならない大きさとされる。また、主軸1の肩部1a側に位置する内輪間座分割体12のもう一体の内輪間座分割体11との初期嵌め合いについては、両内輪間座分割体11,12の組立時の調芯を考慮して若干の締まり嵌めとするのが望ましい。   The angle α of the tapered surfaces 11a and 12a is determined in consideration of the axial movement amount of the inner inner ring 4a for mitigating the increase in bearing preload that occurs during operation, and the reproducibility of the movement, but is small. It is set not to become an angle. And the initial fitting with the main shaft 1 of the inner ring spacer divided body 11 located on the inner ring 4a side is set to a size that does not cause an interference fit in the operating rotational speed range. In addition, the initial fitting of the inner ring spacer divided body 12 positioned on the shoulder 1a side of the main shaft 1 with the other inner ring spacer divided body 11 is adjusted when the inner ring spacer divided bodies 11 and 12 are assembled. It is desirable to have a slight interference fit considering the core.

このように構成された軸受装置の予圧調整構造によって行なわれる運転中の軸受予圧調整は、以下のようになる。
アンギュラ玉軸受3,4の運転開始からある速度までは、両軸受3, 4とも締まり嵌めとなり、軸受剛性も確保されて重切削加工にも対応できる。さらに高速域(すなわち、遷移回転速度以上の高速)になると、前側のアンギュラ玉軸受3の内輪3aは締まり嵌めのままで、奥側のアンギュラ玉軸受4の内輪4aは締まり嵌めからすきま嵌めに移行する。このとき、アンギュラ玉軸受3,4の位置決め用の2体の内輪間座分割体11,12では、線膨張係数、密度、ヤング率の差により,内輪間座分割体11,12間で径方向の膨張量差が生じる。凸のテーパ面11aつまり外径側にテーパ面11aを有する内輪間座分割体11は材質がセラミックス等とされていることから、凹のテーパ面12aつまり内径側にテーパ面12aを有する鋼製の内輪間座分割体12に比べて運転中の径方向膨張量が小さく、テーパはめあい部ではすきまが生じる方向に変化する。すなわち、内輪4a側に位置する内輪間座分割体11には、前記テーパはめあい部のすきまに対応した軸方向への移動が生じる。その結果、奥側のアンギュラ玉軸受4の内輪4aは軸受予圧により軸方向に容易に移動でき、軸受予圧の調整が可能となる。
Bearing preload adjustment during operation performed by the preload adjusting structure of the bearing device configured as described above is as follows.
From the start of operation of the angular ball bearings 3 and 4 to a certain speed, both the bearings 3 and 4 have an interference fit, and the bearing rigidity is ensured to cope with heavy cutting. In a higher speed range (ie, higher than the transition rotational speed), the inner ring 3a of the angular contact ball bearing 3 on the front side remains in an interference fit, and the inner ring 4a of the angular contact ball bearing 4 on the back side shifts from an interference fit to a clearance fit. To do. At this time, in the two inner ring spacer divided bodies 11 and 12 for positioning the angular ball bearings 3 and 4, the radial direction between the inner ring spacer divided bodies 11 and 12 due to differences in linear expansion coefficient, density, and Young's modulus. The difference in expansion amount occurs. Since the inner ring spacer divided body 11 having the convex tapered surface 11a, that is, the tapered surface 11a on the outer diameter side is made of ceramics or the like, it is made of steel having the concave tapered surface 12a, that is, the tapered surface 12a on the inner diameter side. The amount of radial expansion during operation is smaller than that of the inner ring spacer divided body 12, and the taper fits in a direction in which a clearance is generated. That is, the inner ring spacer divided body 11 positioned on the inner ring 4a side is moved in the axial direction corresponding to the clearance of the tapered fitting portion. As a result, the inner ring 4a of the angular contact ball bearing 4 on the back side can be easily moved in the axial direction by the bearing preload, and the bearing preload can be adjusted.

なお、奥側のアンギュラ玉軸受4の内輪4aが高速域で径方向にすきま嵌めとなることは軸受剛性の面で不利となるが、アキシアル方向の予圧は作用している状態を維持するため、軽切削加工が主である高速域も実用上問題はない。また、高速からの減速時においては、増速時とは逆に、内径側にテーパ面12aを有する鋼製の内輪間座分割体12が径方向に収縮することにより、奥側のアンギュラ玉軸受4の内輪4aが予圧増加する側に移動することになる。   In addition, it is disadvantageous in terms of bearing rigidity that the inner ring 4a of the angular contact ball bearing 4 on the back side becomes a clearance fit in the radial direction at a high speed region, but the axial preload maintains a working state, There is no practical problem even in the high-speed range where light cutting is mainly used. Further, when decelerating from a high speed, the steel inner ring spacer divided body 12 having the tapered surface 12a on the inner diameter side is contracted in the radial direction, conversely to the speed increase, so that the angular ball bearing on the back side 4 inner ring 4a moves to the side where preload increases.

この予圧調整方法を概念的に表したのが図3と図4である。図3に示すように、この予圧調整方法では、2 本の予圧曲線を設定できる。1つは重切削加工に対応する曲線Iに相当するもので、奥側のアンギュラ玉軸受4の内輪4aと主軸1間が締まり嵌めとなる領域(実線部)での予圧線図である。2つ目の曲線IIは、高速軽切削加工に対応する線図であり、奥側のアンギュラ玉軸受4の内輪4aと主軸1間がすきま嵌めとなり、2 体の内輪間座分割体11,12の遠心力と温度上昇による膨張差(内輪間座分割体12>内輪間座分割体11)で生じる奥側のアンギュラ玉軸受4の内輪4aの軸方向移動を伴った予圧線図である。   FIG. 3 and FIG. 4 conceptually show this preload adjustment method. As shown in FIG. 3, in this preload adjusting method, two preload curves can be set. One corresponds to the curve I corresponding to heavy cutting, and is a preload diagram in a region (solid line portion) in which the space between the inner ring 4a of the inner angular ball bearing 4 and the main shaft 1 is an interference fit. The second curve II is a diagram corresponding to high-speed light cutting. The inner ring 4a of the inner angular ball bearing 4 and the main shaft 1 have a clearance fit, and the two inner ring spacer divided bodies 11, 12 are provided. FIG. 6 is a preload diagram with axial movement of the inner ring 4a of the inner angular ball bearing 4 on the inner side generated by a difference in expansion due to the centrifugal force and temperature rise (inner ring spacer divided body 12> inner ring spacer divided body 11).

例えば、初期予圧を負荷したA点より運転を開始するとする。運転開始ともに両アンギュラ玉軸受3,4の内輪3a,4aの温度上昇と遠心力により、軸受予圧は増大して行く。B点では奥側のアンギュラ玉軸受4の内輪4aが締まり嵌めからすきま嵌めに移行し、B点より高速側では回転速度上昇による軸受予圧の増加と、2 体の内輪間座分割体11,12による予圧軽減作用のバランスにより予圧線図IIが設定される。よって、B点、C点の回転速度は、奥側のアンギュラ玉軸受4の内輪4aの主軸1との初期嵌め合い(B点)と軸受予圧荷重の上限となる最高回転速度(C点)で設定される。すなわち、A点〜B点の速度域では軸受剛性は高く、重切削加工にも対応できる。B点〜C点の速度域における軸受剛性は、低速時に比べ若干劣るが軽切削加工には十分対応できる。   For example, it is assumed that the operation is started from the point A where the initial preload is loaded. At the start of operation, the bearing preload increases due to the temperature rise and centrifugal force of the inner rings 3a and 4a of the angular ball bearings 3 and 4. At the point B, the inner ring 4a of the angular contact ball bearing 4 on the back side shifts from an interference fit to a clearance fit. On the side higher than the point B, the bearing preload increases due to the increase in rotational speed, and the two inner ring spacer split bodies 11, 12 The preload diagram II is set according to the balance of the preload mitigating action. Therefore, the rotational speeds at points B and C are the initial engagement (point B) with the main shaft 1 of the inner ring 4a of the angular contact ball bearing 4 on the back side and the maximum rotational speed (point C) that is the upper limit of the bearing preload. Is set. That is, the bearing rigidity is high in the speed range from point A to point B, and can cope with heavy cutting. The bearing rigidity in the speed range from point B to point C is slightly inferior to that at low speed, but can sufficiently cope with light cutting.

図4は、2 体の内輪間座分割体11,12による軸受予圧の軽減作用において、両内輪間座分割体11,12の膨張量差および間座テーパ面角度αと内輪4aの軸方向移動量の関係を示したものである。奥側のアンギュラ玉軸受4の内輪4aの初期嵌め合い、温度上昇および遠心力による膨張を考慮した運転中の2体の内輪間座分割体11,12で、運転中の膨張量を小とする内輪4a側に位置する内輪間座分割体11の半径方向膨張量をYc、主軸1の肩部1a側に位置する内輪間座分割体12の半径方向膨張量をYs、テーパ面角度をαとし、2 体の内輪間座分割体11,12の膨張量差による内輪4aの軸方向移動量をXcとすると、
Tanα=(Ys −Yc )/Xc
∴ Xc =(Ys −Yc )/Tanα
の関係が得られる。すなわち、2体の内輪間座分割体11,12の運転中の径方向膨張量(Ys,Yc)を計算で求め、必要な内輪移動量(Xc)から必要とするテーパ面角度αを求めることができる。
FIG. 4 shows the effect of reducing the bearing preload by the two inner ring spacer split bodies 11 and 12, the difference in expansion between the inner ring spacer split bodies 11 and 12, the spacer taper surface angle α and the axial direction of the inner ring 4a. It shows the relationship of the amount of movement. The inner ring spacers 11 and 12 in operation, which take into account the initial fitting of the inner ring 4a of the inner angular ball bearing 4 on the back side, expansion due to temperature rise and centrifugal force, and the amount of expansion during operation are small. The radial expansion amount of the inner ring spacer divided body 11 positioned on the inner ring 4a side is Yc, the radial expansion amount of the inner ring spacer divided body 12 positioned on the shoulder 1a side of the main shaft 1 is Ys, and the taper surface angle is α. , Where Xc is the amount of axial movement of the inner ring 4a due to the difference in expansion between the two inner ring spacer split bodies 11, 12,
Tan α = (Ys−Yc) / Xc
Xc = (Ys-Yc) / Tanα
The relationship is obtained. That is, the amount of radial expansion (Ys, Yc) during operation of the two inner ring spacer divided bodies 11, 12 is obtained by calculation, and the necessary taper surface angle α is obtained from the necessary inner ring movement amount (Xc). Can do.

以上のことから、この予圧調整方法を設計するための手順は次のようになる。
(1) 初期予圧荷重および主軸1と奥側のアンギュラ玉軸4の内輪4aの初期締め代の決定:
重切削加工に必要な軸受剛性と回転速度(B 点)から、初期予圧荷重(A点)と奥側のアンギュラ玉軸受4の内輪4aの初期締め代を決定する。
(2) 奥側のアンギュラ玉軸受4の内輪4aの軸方向移動量(Xc)の設定:
B点での回転速度およびその状態での軸受温度分布において、軸受予圧が0となる初期の軸受内部すきまを計算で求め、その場合の内輪4aの軸方向位置をXa とする。目的とする最高回転速度と、そこで予期される軸受予圧の上限(C点)値から、その状態での軸受内部すきまを求め、その場合の内輪4aの軸方向位置をXb とすると、
Xc=(Xb −Xa )
として求めることができる。
From the above, the procedure for designing this preload adjustment method is as follows.
(1) Determination of initial preload load and initial tightening allowance of the inner ring 4a of the main shaft 1 and the angular ball shaft 4 on the back side:
The initial preload (point A) and the initial tightening allowance of the inner ring 4a of the rear angular ball bearing 4 are determined from the bearing rigidity and rotational speed (point B) required for heavy cutting.
(2) Setting of the axial movement amount (Xc) of the inner ring 4a of the back angular ball bearing 4:
In the rotational speed at point B and the bearing temperature distribution in that state, the initial bearing internal clearance at which the bearing preload becomes zero is obtained by calculation, and the axial position of the inner ring 4a in that case is Xa. From the target maximum rotational speed and the expected upper limit (point C) of the bearing preload, the bearing internal clearance in that state is obtained, and the axial position of the inner ring 4a in that case is Xb.
Xc = (Xb-Xa)
Can be obtained as

(3) 2体の内輪間座分割体11,12のテ―パ角度αを求める:
B点回転速度からC点回転速度までの2 体の内輪間座分割体11,12の膨張量差(Ys−Yc )を計算する。この膨張量差(Ys−Yc )と内輪4aの軸方向移動量(Xc)よりテ―パ角度αを求める。
ここで注意すべき点は、初期の軸受内部すきま等を計算で求める際には、軸受温度、遠心力、内輪4aの嵌め合いを考慮する必要があるということである。また、最高回転速度で予期される軸受温度は、実験であらかじめ求めておく必要があるということである。
(3) Obtain the taper angle α of the two inner ring spacer divided bodies 11 and 12:
The expansion amount difference (Ys−Yc) between the two inner ring spacer divided bodies 11, 12 from the B point rotation speed to the C point rotation speed is calculated. The taper angle α is obtained from the expansion amount difference (Ys−Yc) and the axial movement amount (Xc) of the inner ring 4a.
The point to be noted here is that when calculating the initial bearing internal clearance or the like by calculation, it is necessary to consider the bearing temperature, centrifugal force, and fitting of the inner ring 4a. In addition, the bearing temperature expected at the maximum rotational speed must be obtained in advance through experiments.

このように、この実施形態の軸受装置の予圧調整構造による予圧調整は、前記2体の内輪間座分割体11,12の回転速度に伴う遠心力、および線膨張係数差を利用して奥側のアンギュラ玉軸受4の内輪4aを軸方向に移動させることで軸受予圧を調整するものである。なお、この実施形態ではアンギュラ玉軸受3,4の予圧調整について説明したが、他の例として接触角を持つ円すいころ軸受にもこの予圧調整方法を適用できる。   Thus, the preload adjustment by the preload adjusting structure of the bearing device of this embodiment is performed using the centrifugal force accompanying the rotational speed of the two inner ring spacer split bodies 11 and 12 and the difference in linear expansion coefficient. The bearing preload is adjusted by moving the inner ring 4a of the angular ball bearing 4 in the axial direction. In this embodiment, the preload adjustment of the angular ball bearings 3 and 4 has been described. However, this preload adjustment method can be applied to a tapered roller bearing having a contact angle as another example.

この軸受装置の予圧調整構造によると、以下に列挙する効果が得られる。
(1) 予圧調整のための特別な設備および構造を外輪またはハウジング側に必要とせず、簡単な構成で軸受予圧の調整が可能となる。
(2) 運転中の軸受予圧の増大が緩和されて、さらなる高速化すなわち加工効率の向上、または軸受寿命の延長が図れる。
(3) 初期予圧を大きくでき、低速での主軸剛性を高めるとともに、加工精度の向上が期待できる。
(4) 高速回転下での軸受発熱量を低減できて、結果として主軸の熱変位も低減できる。
According to the preload adjusting structure of this bearing device, the effects listed below can be obtained.
(1) Special equipment and structure for adjusting the preload are not required on the outer ring or the housing side, and the bearing preload can be adjusted with a simple configuration.
(2) Increase in bearing preload during operation is mitigated, and further speeding-up, that is, improvement in machining efficiency, or extension of bearing life can be achieved.
(3) The initial preload can be increased, the spindle rigidity at low speed can be increased, and improvement in machining accuracy can be expected.
(4) The amount of heat generated by the bearing under high-speed rotation can be reduced, and as a result, the thermal displacement of the main shaft can also be reduced.

上記した軸受装置の予圧調整構造を軸受スピンドルに適用した場合、外部からの温度等の制御を必要とせず、比較的簡単な構造で軸受装置の予圧調整を行うことができるので、低速での剛性を高めると共に、高速回転も可能となる。   When the bearing device preload adjustment structure described above is applied to the bearing spindle, the preload adjustment of the bearing device can be performed with a relatively simple structure without the need for external temperature control, etc. And high speed rotation is possible.

また、前記軸受スピンドルを搭載した工作機械では、軸受スピンドルの低速での剛性を高めると共に、高速回転も可能となるので、加工精度を向上させることができる。
また、その工作機械における主軸装置では、前記軸受装置における軸受の移動可能な内輪の軸との嵌め合い状態が締まり嵌めからすきま嵌めに遷移する回転速度を、工作機械に求められる重切削加工での最高回転速度以上に設定しているので、低速での重切削加工と高速での軽切削加工が可能で、加工効率を向上させることができる。
In addition, the machine tool equipped with the bearing spindle can increase the rigidity of the bearing spindle at a low speed and can be rotated at a high speed, so that the machining accuracy can be improved.
Further, in the spindle device in the machine tool, the rotational speed at which the fitting state of the bearing in the bearing device with the shaft of the inner ring where the bearing can move is changed from interference fit to clearance fit in heavy cutting required for the machine tool. Since it is set to be higher than the maximum rotation speed, heavy cutting at low speed and light cutting at high speed are possible, and the processing efficiency can be improved.

また、前記軸受装置の予圧調整方法では、前側のアンギュラ玉軸受3の内輪3aを、このアンギュラ玉軸受3の最高回転速度内で常に主軸1に固定とし、奥側のアンギュラ玉軸受4は、その内輪4aを運転中に軸方向に移動させることで予圧調整を行なうようにしているので、外部からの温度等の制御を必要とせず、比較的簡単な構造で予圧調整を行うことができる。また、低速では定位置予圧軸受特有の高い支持剛性を与え、かつ単なる定位置予圧の軸受では到達困難な高速回転を、簡便な自律機構で達成することができる。   Further, in the preload adjusting method of the bearing device, the inner ring 3a of the front angular ball bearing 3 is always fixed to the main shaft 1 within the maximum rotational speed of the angular ball bearing 3, and the inner angular ball bearing 4 is Since the preload adjustment is performed by moving the inner ring 4a in the axial direction during operation, the preload adjustment can be performed with a relatively simple structure without requiring control of the temperature or the like from the outside. Moreover, high support rigidity peculiar to the fixed position preload bearing can be given at a low speed, and high speed rotation difficult to achieve with a simple position preload bearing can be achieved with a simple autonomous mechanism.

図5および図6は、参考提案例を示す。この軸受装置の予圧調整構造では、先の実施形態に用いた2体の内輪間座分割体11,12の代わりに、図5に示すように軸方向に作用するばね20を用いている。その他の構成は、先の実施形態の場合と同様である。この場合、ばね20が主軸1に対して偏るとアンバランスによる振動が増大するため、ばね20の一部を主軸1に対して締まり嵌めとすることが望ましい。そのために、ばね20として例えば皿ばねなど用いれば良い。 5 and 6 show a reference proposal example . In this preload adjusting structure of the bearing device, a spring 20 acting in the axial direction as shown in FIG. 5 is used instead of the two inner ring spacer divided bodies 11 and 12 used in the previous embodiment. Other configurations are the same as those in the previous embodiment. In this case, if the spring 20 is biased with respect to the main shaft 1, vibration due to unbalance increases, so it is desirable that a part of the spring 20 be an interference fit with respect to the main shaft 1. Therefore, for example, a disc spring may be used as the spring 20.

ばね20を用いたこの参考提案例の場合の予圧線図を図6に示す。この予圧線図を参照して、ばね20を用いた場合の設計の手順を以下に説明する。
(1) C’点は軽切削加工で求められる最高回転速度である。予圧荷重は、あらかじめ実験で求めたこの回転速度に到達可能な予圧荷重となるように選定する。この予圧荷重を負荷できるばね20を選定する。
(2) B’点は重切削加工が求められる上限の回転速度か、あるいはこれよりもわずかに高い回転速度とする。また、B’点では、内輪4aと主軸1との締め代は0となるように設定する。なお、わずかに高い回転速度とした理由は、主軸1と内輪4aの嵌め合い部での摩擦力の影響を考慮するためである。
A preload diagram in the case of this reference proposal example using the spring 20 is shown in FIG. With reference to this preload diagram, the design procedure when the spring 20 is used will be described below.
(1) Point C ′ is the maximum rotational speed required for light cutting. The preload is selected so as to be a preload that can reach this rotational speed obtained in advance through experiments. A spring 20 capable of applying this preload is selected.
(2) Point B ′ is the upper limit rotational speed at which heavy cutting is required, or a slightly higher rotational speed. Further, at the point B ′, the tightening allowance between the inner ring 4a and the main shaft 1 is set to be zero. The reason why the rotational speed is slightly higher is to consider the influence of the frictional force at the fitting portion between the main shaft 1 and the inner ring 4a.

(3) B’−C’点の間では、内輪4aと主軸1はすきま嵌めであり、ばね20からの荷重が軸受の予圧荷重に相当するため、ほぼ一定の値となる。そのため、回転速度を上昇させても軸受内部の荷重が増加することがないため、限界回転速度は容易に高めることができる。
(4) A’−B’点の間では、内輪4aは主軸1に締まり嵌めで嵌め合わされており、軸方向には動かない。そのため、定位置予圧状態となる。その結果、軸受内部の予圧荷重は内輪4aの熱と遠心力による膨張のために、図6のように右上がりの曲線になる。ただし、内輪4aと主軸1は締まり嵌めで固定されているため、軸受による主軸1の支持剛性は高く、重切削加工が可能となる。
(3) Between the points B'-C ', the inner ring 4a and the main shaft 1 are clearance fits, and the load from the spring 20 corresponds to the preload load of the bearing, so that the value is substantially constant. Therefore, since the load inside the bearing does not increase even if the rotational speed is increased, the limit rotational speed can be easily increased.
(4) Between the points A ′ and B ′, the inner ring 4 a is fitted to the main shaft 1 with an interference fit and does not move in the axial direction. Therefore, a fixed position preload state is established. As a result, the preload load inside the bearing becomes an upward curve as shown in FIG. 6 due to the expansion of the inner ring 4a due to heat and centrifugal force. However, since the inner ring 4a and the main shaft 1 are fixed with an interference fit, the support rigidity of the main shaft 1 by the bearing is high, and heavy cutting can be performed.

上記した実施形態および参考提案例では、いずれも高速回転下で内輪4aは主軸1に対してすきま嵌めとなっており、内輪4aに対する主軸1の半径方向への偏りが発生する可能性がある。工作機械用にこれを適用した場合には、加工精度に直結するため、問題となる。これを解決するためには、高速回転下で内輪4aが膨張した際にその外径側で内輪4aを支持し、主軸1との半径方向の偏りを防止する部品を設ければ良い。このような対策を施した実施形態を、図7〜図9に示す。
In the real施形status and references proposed example described above, one also the inner ring 4a is a clearance fit with respect to the main shaft 1 under high speed rotation, it allows the bias of the radial direction of the spindle 1 relative to the inner ring 4a is generated There is sex. When this is applied to a machine tool, it is directly related to machining accuracy, which is a problem. In order to solve this, it is only necessary to provide a component that supports the inner ring 4a on the outer diameter side when the inner ring 4a expands under high-speed rotation and prevents radial deviation from the main shaft 1. Embodiments in which such measures are taken are shown in FIGS.

図7に示す実施形態では、図1〜図4に示した実施形態において、前記内輪4aに隣接する内輪間座分割体11の外径部分の一部に、内輪4aの外径部の外側に突き出す円環部11bを設けている。この円環部11bの内径は、主軸1が静止時には内輪4aの外径とすきま嵌めとなっている。外径側にテーパ面11aを有する内輪間座分割体11の遠心力による膨張が、内輪4aの膨張よりも小さくなるように、内輪間座分割体11の材料を選定すれば、高速回転下では内輪4aが膨張し内輪間座分割体11の突出した円環部11bと締まり嵌めとなり、この部分の半径方向の遊び(ガタ)は無くなる。さらに、内径側にテーパ面12aを有する内輪間座分割体12は、外径側にテーパ面11aを有する内輪間座分割体11に対してテーパ面11a,12aで半径方向に案内されている。そのため、外径側にテーパ面11aを有する内輪間座分割体11と主軸1とが締まり嵌めになっていれば、内輪4aと主軸1との半径方向の遊びを無くすことができる。   In the embodiment shown in FIG. 7, in the embodiment shown in FIGS. 1 to 4, a part of the outer diameter portion of the inner ring spacer divided body 11 adjacent to the inner ring 4 a is disposed outside the outer diameter part of the inner ring 4 a. A protruding annular portion 11b is provided. The inner diameter of the annular portion 11b is a clearance fit with the outer diameter of the inner ring 4a when the main shaft 1 is stationary. If the material of the inner ring spacer divided body 11 is selected so that the expansion due to the centrifugal force of the inner ring spacer divided body 11 having the tapered surface 11a on the outer diameter side is smaller than the expansion of the inner ring 4a, under high speed rotation, The inner ring 4a expands and becomes an interference fit with the protruding annular part 11b of the inner ring spacer divided body 11, and the play (backlash) in the radial direction of this part is eliminated. Further, the inner ring spacer divided body 12 having the tapered surface 12a on the inner diameter side is guided in the radial direction by the tapered surfaces 11a and 12a with respect to the inner ring spacer divided body 11 having the tapered surface 11a on the outer diameter side. Therefore, if the inner ring spacer divided body 11 having the tapered surface 11a on the outer diameter side and the main shaft 1 are tightly fitted, play in the radial direction between the inner ring 4a and the main shaft 1 can be eliminated.

図8に示す実施形態では、図1〜図4に示した実施形態において、両アンギュラ玉軸受3,4間の内輪間座7の外径部から軸方向に突出する円環部7aを設け、この円環部7aの内径が内輪4aの外径と、高速回転下でのみ締まり嵌めとなるように構成している。高速回転下では、内輪4aと締まり嵌めとなり、かつ、内輪4aの軸方向の移動を妨げない程度の締め代とする必要がある。主軸1が静止時には、前記内輪間座7の外径部から軸方向に突出する円環部7aと内輪4aとはすきま嵌めとする必要がある。さらに、前記内輪間座7の材質には、内輪4aよりも遠心力による膨張が小さくなる材質を選定する必要がある。また、主軸1と前記内輪間座7とは、内輪4aが主軸1とすきま嵌めとなる回転速度域で締まり嵌めとなることが必要となる。同速度域では、前記内輪間座7の円環部7aと内輪4aとはわずかな締まり嵌めとする必要がある。その際、摩擦力が低いほど、内輪4aが自由に動けるため、固体潤滑剤などの表面処理や内輪外径肩部寸法を小さくしたアンギュラ玉軸受4を設置するのが好ましい。   In the embodiment shown in FIG. 8, in the embodiment shown in FIGS. 1 to 4, an annular portion 7 a that protrudes in the axial direction from the outer diameter portion of the inner ring spacer 7 between the angular ball bearings 3 and 4 is provided. The inner diameter of the annular portion 7a is configured to be an interference fit only under the outer diameter of the inner ring 4a and under high speed rotation. Under high-speed rotation, it is necessary to make an interference with the inner ring 4a so that the inner ring 4a does not hinder the axial movement of the inner ring 4a. When the main shaft 1 is stationary, the annular portion 7a protruding in the axial direction from the outer diameter portion of the inner ring spacer 7 and the inner ring 4a need to be fitted with a clearance. Further, as the material of the inner ring spacer 7, it is necessary to select a material that is less expanded by centrifugal force than the inner ring 4a. Further, the main shaft 1 and the inner ring spacer 7 need to have an interference fit in a rotational speed region where the inner ring 4a is a clearance fit with the main shaft 1. In the same speed range, the ring portion 7a of the inner ring spacer 7 and the inner ring 4a need to have a slight interference fit. At that time, the lower the frictional force, the more freely the inner ring 4a can move. Therefore, it is preferable to install the angular ball bearing 4 having a small surface treatment such as a solid lubricant and a smaller outer diameter shoulder of the inner ring.

図9に示す実施形態は、図8に示した実施形態と類似の構造であるが、図8の実施形態における円環部付きの内輪間座7を、2体に分割した構造としている。その他の構成は図8の実施形態の場合と同様である。この内輪間座7において、高速回転下の内輪4aと半径方向に接触するのは、別体とした円環部7aのみである。この場合、遠心力に対する膨張を抑制したいのは別体の円環部7aのみであり、この部品のみをセラミックスなどの軽量かつ高剛性な材料を選んで製作すれば良い。また、前記内輪間座7の間座本体7Aおよび円環部7aはいずれも単純な円環状で、加工精度も向上させ易い。この場合、円環部付きの内輪間座7は、主軸1と絶えず締まり嵌めとなる締め代を選択する。   The embodiment shown in FIG. 9 has a structure similar to that of the embodiment shown in FIG. 8, but the inner ring spacer 7 with an annular portion in the embodiment of FIG. 8 has a structure divided into two bodies. Other configurations are the same as those in the embodiment of FIG. In the inner ring spacer 7, only the ring part 7 a which is a separate member contacts the inner ring 4 a under high speed rotation in the radial direction. In this case, only the separate annular portion 7a is desired to suppress expansion against centrifugal force, and only this part may be manufactured by selecting a light and high rigidity material such as ceramics. Further, the spacer main body 7A and the annular portion 7a of the inner ring spacer 7 are both simple annular shapes, and it is easy to improve the processing accuracy. In this case, the inner ring spacer 7 with an annular portion selects a tightening allowance that is always an interference fit with the main shaft 1.

1…主軸
1a…肩部
2…ハウジング
3…前側アンギュラ玉軸受
3a…内輪
3b…外輪
4…奥側アンギュラ玉軸受
4a…内輪
4b…外輪
7…内輪間座
7a…円環部
7A…間座本体
10…幅可変内輪間座
11,12…内輪間座分割体
11a,12a…テーパ面
11b…円環部
20…ばね
DESCRIPTION OF SYMBOLS 1 ... Main shaft 1a ... Shoulder part 2 ... Housing 3 ... Front side angular contact ball bearing 3a ... Inner ring 3b ... Outer ring 4 ... Back side angular contact ball bearing 4a ... Inner ring 4b ... Outer ring 7 ... Inner ring spacer 7a ... Ring part 7A ... Spacer body DESCRIPTION OF SYMBOLS 10 ... Variable-width inner ring | wheel spacer 11, 12 ... Inner ring spacer division body 11a, 12a ... Tapered surface 11b ... Ring part 20 ... Spring

Claims (6)

共通の軸をハウジングに対して支持する複数の転がり軸受形の軸受を備え、これら複数の軸受のうちの一部または全部の軸受がアンギュラ玉軸受か円すいころ軸受であり、これら各軸受が定位置予圧形式で予圧された軸受装置において、
最低一つの軸受は、内輪が、この軸受の最高回転速度内で常に軸に締まり嵌め状態となるように、軸に固定され、残りの軸受は、内輪が、回転停止状態では締まり嵌めとなり、前記最高回転速度未満の遷移回転速度以上の高速回転ではすきま嵌めとなって軸に対して移動可能となるように、各軸受の内輪の軸に対する初期締め代が設定され、前記軸受の内輪を前記軸に位置決め固定する環状の幅可変内輪間座が設けられ、この幅可変内輪間座は、運転中の径方向膨張量が異なる2体の環状の内輪間座分割体で構成され、膨張量小の側の内輪間座分割体は外径側にテーパ面を有し、膨張量大の側の内輪間座分割体は内径側にテーパ面を有し、これらテーパ面の嵌め合いで前記内輪の軸方向の位置決めが行われることを特徴とする軸受装置の予圧調整構造。
A plurality of rolling bearing type bearings that support a common shaft with respect to the housing are provided, and some or all of the plurality of bearings are angular ball bearings or tapered roller bearings. In the bearing device preloaded in the preload type,
At least one bearing is fixed to the shaft such that the inner ring is always in an interference fit with the shaft within the maximum rotational speed of the bearing, and the remaining bearings are in an interference fit when the rotation is stopped, The initial tightening allowance for the shaft of the inner ring of each bearing is set so that it can move with respect to the shaft by high-speed rotation that is higher than the transition rotational speed less than the maximum rotational speed, and the inner ring of the bearing is An annular variable width inner ring spacer that is positioned and fixed to the inner ring spacer is provided. The variable width inner ring spacer is composed of two annular inner ring spacer divided bodies having different radial expansion amounts during operation, and has a small expansion amount. The inner ring spacer divided body on the side has a tapered surface on the outer diameter side, and the inner ring spacer divided body on the large expansion side has a tapered surface on the inner diameter side, and the shaft of the inner ring is fitted by fitting these tapered surfaces. Bearing preload, characterized in that the positioning is carried out in a direction Integer structure.
請求項1に記載の軸受装置の予圧調整構造において、定位置予圧で予圧される複数の軸受のうち、前記内輪間座分割体に接する側の軸受の内輪の軸との嵌め合いは、前記遷移回転速度未満の低速回転時に締まり嵌めとなり、前記遷移回転速度以上の高速回転時にすきま嵌めとなるように、初期締め代が設定された軸受装置の予圧調整構造。 And have you the preload adjusting structure of the bearing device according to claim 1, among a plurality of bearings that are preloaded in position preloading, fitting between the inner race of the axial side of the bearing in contact with the inner ring divided spacer segment is A preload adjustment structure for a bearing device in which an initial tightening allowance is set so that an interference fit is achieved at a low speed rotation less than the transition rotational speed and a clearance fit is achieved at a high speed rotation greater than the transition rotational speed. 請求項1または請求項2に記載の軸受装置の予圧調整構造において、前記2体の内輪間座分割体のうち、軸受に接する側の内輪間座分割体は、前記外径側のテーパ面を有しかつ運転中の温度上昇および遠心力による径方向膨張量が小さくなる材質とされ、軸肩部に接する側のもう1体の内輪間座分割体は、前記内径側のテーパ面を有しかつ運転中の温度上昇および遠心力による径方向膨張量が大きくなる材質とされている軸受装置の予圧調整構造。 And have you the preload adjusting structure of the bearing device according to claim 1 or claim 2, of the inner ring divided spacer segment of the two bodies, the inner ring divided spacer segment on the side in contact with the bearing, taper of the outer diameter side The inner ring spacer divided body on the side in contact with the shaft shoulder portion has a tapered surface on the inner diameter side. A preload adjustment structure for a bearing device that is made of a material that has a temperature increase during operation and a radial expansion amount due to centrifugal force. 請求項1ないし請求項3のいずれか1項に記載の軸受装置の予圧調整構造において、前記外径側のテーパ面を有する内輪間座分割体はセラミックス製とされ、前記内径側のテーパ面を有する内輪間座分割体は鋼製とされている軸受装置の予圧調整構造。 And have you the preload adjusting structure of the bearing device according to any one of claims 1 to 3, the inner ring divided spacer segment having a tapered surface of the outer diameter side is made of ceramics, the taper of the inner diameter side The inner ring spacer divided body having a surface is a preload adjusting structure of a bearing device made of steel. 請求項1ないし請求項4のいずれか1項に記載の軸受装置の予圧調整構造において、軸受に接する側の内輪間座分割体の外径部に、前記軸受の内輪に向けて突出して内径が前記内輪の外径に嵌まり合う円環部が設けられ、この円環部の初期締め代は、回転停止状態ではすきま嵌めとなり、前記遷移回転速度未満の低速では締まり嵌めとなるように設定された軸受装置の予圧調整構造。 And have you the preload adjusting structure of the bearing device according to any one of claims 1 to 4, the outer diameter of the inner ring divided spacer segment of the side in contact with the bearing, and projects toward the inner ring of the bearing An annular part whose inner diameter fits with the outer diameter of the inner ring is provided, and the initial tightening allowance of the annular part is a clearance fit when the rotation is stopped, and an interference fit when the rotational speed is lower than the transition rotational speed. Preload adjustment structure for the set bearing device. 請求項1ないし請求項5のいずれか1項に記載の軸受装置の予圧調整構造を有する軸受スピンドルを備えたことを特徴とする工作機械。   A machine tool comprising a bearing spindle having the preload adjusting structure for a bearing device according to any one of claims 1 to 5.
JP2012036048A 2012-02-22 2012-02-22 Bearing device preload adjustment structure Active JP6012980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012036048A JP6012980B2 (en) 2012-02-22 2012-02-22 Bearing device preload adjustment structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012036048A JP6012980B2 (en) 2012-02-22 2012-02-22 Bearing device preload adjustment structure

Publications (2)

Publication Number Publication Date
JP2013170656A JP2013170656A (en) 2013-09-02
JP6012980B2 true JP6012980B2 (en) 2016-10-25

Family

ID=49264730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012036048A Active JP6012980B2 (en) 2012-02-22 2012-02-22 Bearing device preload adjustment structure

Country Status (1)

Country Link
JP (1) JP6012980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139719A (en) * 2017-06-27 2019-01-04 斯凯孚公司 Preload in bearing assembly is adjusted

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014216695B4 (en) * 2014-08-22 2022-07-14 Zf Friedrichshafen Ag Spacer tube for a power transmission device of a rotary wing aircraft
KR102185505B1 (en) * 2014-10-08 2020-12-02 두산공작기계 주식회사 Spindle apparatus
EP3375971A1 (en) 2017-03-17 2018-09-19 Sandvik Mining and Construction Oy Rotation unit and method of adjusting bearing clearance
CN107829928A (en) * 2017-12-04 2018-03-23 中昇创举(天津)科技有限公司 Electric oil submerged screw pump
CN108006081A (en) * 2017-12-04 2018-05-08 中昇创举(天津)科技有限公司 Latent oil retarder bearing pre-tightening structure and latent oil retarder
CN110102622B (en) * 2019-03-07 2024-04-26 北京中纺精业机电设备有限公司 Press machine
JP7456792B2 (en) * 2020-02-05 2024-03-27 ファナック株式会社 Spindle device
JP7561532B2 (en) 2020-07-14 2024-10-04 オークマ株式会社 Machine tool spindle unit
CN112664575B (en) * 2020-12-07 2022-07-08 河北汉光重工有限责任公司 Reliably-connected and adjustable bearing pre-tightening structure and assembling and adjusting method
CN116669899B (en) * 2020-12-25 2024-05-14 山崎马扎克公司 Rotating shaft locking device, machining head and compound machining machine
CN113294431B (en) * 2021-04-27 2022-08-30 洛阳轴承研究所有限公司 Thrust bearing group of series connection matched stack
CN113175480B (en) * 2021-05-18 2023-01-06 杰锋汽车动力系统股份有限公司 Hydrogen circulating pump bearing structure
CN116771804A (en) * 2023-06-19 2023-09-19 湖北清研动测装备有限公司 High-speed bearing seat assembly with elastic self-adjusting assembly clearance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135916A (en) * 1987-11-18 1989-05-29 Nippon Seiko Kk Preload adjustable type spindle unit
JPH0632245Y2 (en) * 1989-03-29 1994-08-24 日本精工株式会社 Bearing device
JP2602325B2 (en) * 1989-04-20 1997-04-23 エヌティエヌ株式会社 Variable preload spindle unit
JPH11239902A (en) * 1998-02-26 1999-09-07 Hitachi Via Mechanics Ltd Spindle supporting device for machine tool
JP2001065572A (en) * 1999-08-26 2001-03-16 Nsk Ltd Ceramic combination rolling bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139719A (en) * 2017-06-27 2019-01-04 斯凯孚公司 Preload in bearing assembly is adjusted

Also Published As

Publication number Publication date
JP2013170656A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
JP6012980B2 (en) Bearing device preload adjustment structure
US9422977B2 (en) Bearing mechanism
US20140185974A1 (en) Squeeze film damper
JP2008057657A (en) Main spindle bearing structure of nc automatic lathe
KR102185505B1 (en) Spindle apparatus
JP7206135B2 (en) rolling bearing device
US20160221138A1 (en) Feed apparatus and machine tool
WO2016143578A1 (en) Main shaft device
US20150233420A1 (en) Device including at least one spherical roller bearing, with a pre-loading unit, and a method for applying a pre-load
JP5638331B2 (en) Preload adjustment structure for rolling bearings
JP2012026496A (en) Angular ball bearing, and bearing installation structure
WO2016143577A1 (en) Main shaft device
JP2010091066A (en) Bearing device
JPH0620642B2 (en) Rolling bearing device for machine tool spindle
JP2011133000A (en) Cylindrical roller bearing device
US6158898A (en) Preloading regulating mechanism for rolling bearings
JPH06341431A (en) Variable pre-load device of rolling bearing
JPH10225802A (en) Main spindle device for machine tool
JP2008110426A (en) Spindle device
JP4853419B2 (en) Spindle device
US20130257206A1 (en) Preload control device of magnetic bearing
JP2009008211A (en) Roller bearing-bearing housing assembling body
JPH10286701A (en) Main shaft device for machine tool
JP6710022B2 (en) Variable rigidity bearing, spindle device of machine tool using the variable stiffness bearing, and machining center equipped with the spindle device
JPH0751904A (en) Pre-load adjusting device for spindle bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160921

R150 Certificate of patent or registration of utility model

Ref document number: 6012980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250