[go: up one dir, main page]

JP5996412B2 - Bis (meth) acryloyl-terminated benzyl ether compound and process for producing the same - Google Patents

Bis (meth) acryloyl-terminated benzyl ether compound and process for producing the same Download PDF

Info

Publication number
JP5996412B2
JP5996412B2 JP2012274474A JP2012274474A JP5996412B2 JP 5996412 B2 JP5996412 B2 JP 5996412B2 JP 2012274474 A JP2012274474 A JP 2012274474A JP 2012274474 A JP2012274474 A JP 2012274474A JP 5996412 B2 JP5996412 B2 JP 5996412B2
Authority
JP
Japan
Prior art keywords
bis
meth
compound
acryloyl
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012274474A
Other languages
Japanese (ja)
Other versions
JP2014118382A (en
Inventor
川辺 正直
正直 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2012274474A priority Critical patent/JP5996412B2/en
Priority to KR1020130154607A priority patent/KR102101873B1/en
Priority to TW102146069A priority patent/TWI600681B/en
Priority to CN201310689562.7A priority patent/CN103864586B/en
Publication of JP2014118382A publication Critical patent/JP2014118382A/en
Application granted granted Critical
Publication of JP5996412B2 publication Critical patent/JP5996412B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Description

本発明は新規なビス(メタ)アクリロイル末端ベンジルエーテル化合物、及びその製造方法とその中間体としての芳香族ビスハロメチル化合物に関する。   The present invention relates to a novel bis (meth) acryloyl-terminated benzyl ether compound, a production method thereof and an aromatic bishalomethyl compound as an intermediate thereof.

近年、電子機器の小型化が進むにつれ、電子素子の高集積化を行うためにプリント配線の多層化が進み、絶縁層と導体層を交互に形成、積層する所謂ビルドアップ工法が多く採用されるようになった。そして、ここで使用される樹脂絶縁材料には、情報の高速処理化、信号の高周波化による熱損失の低減のため、低誘電率であることが要求されるようになってきている。   In recent years, as electronic devices have become more compact, printed wiring has become more multilayered in order to achieve higher integration of electronic elements, and so-called build-up methods in which insulating layers and conductor layers are alternately formed and stacked are often employed. It became so. The resin insulating material used here is required to have a low dielectric constant in order to reduce the heat loss due to high-speed information processing and high-frequency signals.

光又は熱硬化性樹脂組成物としては、特開平6−1938号公報等で知られているが、これらは誘電率が満足できる程度には低くならない。一方、低誘電率を達成する手法として、特開2000−208889号公報や特開2001−126534号公報のように、フィラーを充填する方法や、空孔を持たせるといった技術が知られているが、いずれもパッケージの層間絶縁膜といった用途には、信頼性に劣るといった欠点がある。さらに、特開2004−300326号公報には、特定の不飽和化合物(A)に対して、光重合性の(メタ)アクリレート類(B)、エポキシ基を有する化合物(C)、及び光重合開始剤又は増感剤(D)を含有する光又は熱硬化性樹脂組成物において、硬化後において樹脂として存在することとなる樹脂分100g当たり、メタクリロイル基を50mmol以上含む光又は熱硬化性樹脂組成物が開示されており、低誘電性と高信頼性を両立できるとしている。しかし、最近、求められるようになって来ている低誘電特性には到達することはできなかった。   Light or thermosetting resin compositions are known from JP-A-6-1938 and the like, but these do not decrease to such an extent that the dielectric constant is satisfactory. On the other hand, as a technique for achieving a low dielectric constant, there are known techniques such as a method of filling a filler and a technique of providing voids as disclosed in Japanese Patent Application Laid-Open Nos. 2000-208889 and 2001-126534. Both of them have the drawback of being inferior in reliability in applications such as an interlayer insulating film of a package. Furthermore, JP-A-2004-300366 discloses a photopolymerizable (meth) acrylate (B), a compound having an epoxy group (C), and photopolymerization start for a specific unsaturated compound (A). Light or thermosetting resin composition containing 50 mmol or more of methacryloyl group per 100 g of resin component that will be present as a resin after curing in a light or thermosetting resin composition containing an agent or sensitizer (D) It is disclosed that both low dielectric properties and high reliability can be achieved. However, it has not been possible to reach the low dielectric properties that have recently been required.

一方、携帯電話などに用いられる撮像ユニットは、一般に、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサなどの固体撮像素子と、固体撮像素子の受光面に結像するレンズユニットとで構成される。レンズユニットに含まれるレンズは、近年、安価で成形性に優れる熱又は光硬化性の樹脂で形成されたレンズも用いられている。そして、撮像用のレンズを中心に硬化性樹脂組成物を使用した光学物品及び光学レンズに於いては、種々の光学特性の向上が求められている。光学特性向上で要求されている特性の例を挙げると、例えば、低比重、高透明性、低黄色度、高屈折率、高アッベ数、強靭性などの特性の向上が要求されている。特に、近年、携帯電話などに用いられる撮像ユニットでは、筐体の薄型化及びバッテリーの大容量化からの要求で、薄型化が強く求められている。レンズユニットを構成するレンズの薄肉化を可能にするためには、光学レンズ材料の高屈折率化が必要であった。   On the other hand, an imaging unit used for a cellular phone or the like generally forms an image on a solid-state imaging device such as a charge coupled device (CCD) image sensor or a complementary metal-oxide semiconductor (CMOS) image sensor and a light receiving surface of the solid-state imaging device. It consists of a lens unit. In recent years, lenses made of heat or photo-curing resins that are inexpensive and have excellent moldability are also used as lenses included in the lens unit. In optical articles and optical lenses using a curable resin composition centering on imaging lenses, various optical characteristics are required to be improved. For example, characteristics required for improving optical characteristics are required to improve characteristics such as low specific gravity, high transparency, low yellowness, high refractive index, high Abbe number, and toughness. In particular, in recent years, an imaging unit used in a mobile phone or the like has been strongly demanded to be thin in response to demands from a thin casing and a large battery capacity. In order to make the lens constituting the lens unit thin, it is necessary to increase the refractive index of the optical lens material.

特開2008−94987号公報には、ビスフェノールフルオレン骨格を有する二官能(メタ)アクリレート化合物およびビフェニル骨格を有する単官能(メタ)アクリレート化合物を有する光学材料用高屈折率樹脂組成物およびその硬化物が開示されている。しかし、これから得られる光学レンズは、近年、レンズユニットの薄型化で求められる高屈折率を満たすものではなく、また、寸法安定性についても不足したものであった。   JP 2008-94987 A discloses a high refractive index resin composition for optical materials having a bifunctional (meth) acrylate compound having a bisphenolfluorene skeleton and a monofunctional (meth) acrylate compound having a biphenyl skeleton, and a cured product thereof. It is disclosed. However, the optical lens obtained from this does not satisfy the high refractive index required in recent years for reducing the thickness of the lens unit, and the dimensional stability is insufficient.

特開平6−1938号公報Japanese Patent Laid-Open No. 6-1938 特開2000−208889号公報JP 2000-208889 A 特開2001−126534号公報JP 2001-126534 A 特開2004−300326号公報JP 2004-300366 A 特開2008−94987号公報JP 2008-94987 A

本発明は、高度の誘電特性(低誘電率・低誘電正接)を有し、かつ高いガラス転移温度と難燃性を有する硬化物を与えるビス(メタ)アクリロイル末端ベンジルエーテル化合物を提供することにある。また、本発明はビス(メタ)アクリロイル末端ベンジルエーテル化合物の中間体として有用な芳香族ビスハロメチル化合物を提供することにある。   The present invention provides a bis (meth) acryloyl-terminated benzyl ether compound having a high dielectric property (low dielectric constant / low dielectric loss tangent) and giving a cured product having a high glass transition temperature and flame retardancy. is there. Another object of the present invention is to provide an aromatic bishalomethyl compound useful as an intermediate of a bis (meth) acryloyl-terminated benzyl ether compound.

本発明者らは、大きな平面構造と屈曲部位を持つビスフェノールフルオレン骨格を有するビス(メタ)アクリロイル末端ベンジルエーテル化合物が上記課題を解決するために有効であることを見出し、本発明を完成した。   The present inventors have found that a bis (meth) acryloyl-terminated benzyl ether compound having a bisphenolfluorene skeleton having a large planar structure and a bent part is effective for solving the above problems, and completed the present invention.

下記式(1)で表される芳香族ビスハロメチル化合物は、ビス(メタ)アクリロイル末端ベンジルエーテル化合物の中間体として有用である。

Figure 0005996412

(式中、Ar1は炭素数6〜50の芳香族炭化水素基を表し、Xはハロゲン元素を表し、nは1〜10の数を表し、R1及びR2は独立に炭素数1〜50の炭化水素基を表し、p及びqは独立に0〜2の整数を表す。)
Aromatic Bisuharomechiru compound represented by the following formula (1) is useful as an intermediate bis (meth) acryloyl-terminated benzyl ether compound.
Figure 0005996412

(In the formula, Ar 1 represents an aromatic hydrocarbon group having 6 to 50 carbon atoms, X represents a halogen element, n represents a number of 1 to 10, and R 1 and R 2 are independently 1 to 1 carbon atoms. 50 represents a hydrocarbon group, and p and q independently represent an integer of 0 to 2.)

発明は、下記式(2)で表されるビス(メタ)アクリロイル末端ベンジルエーテル化合物である。

Figure 0005996412

(式(2)中、Ar1は炭素数6〜50の芳香族炭化水素基を表し、Yは水素またはメチル基を表し、nは1〜10の数を表し、R1及びR2は独立に炭素数1〜50の炭化水素基を表し、p及びqは独立に0〜2の整数を表す。)
The present invention is a bis (meth) acryloyl-terminated benzyl ether compound represented by the following formula (2).
Figure 0005996412

(In the formula (2), Ar 1 represents an aromatic hydrocarbon group having 6 to 50 carbon atoms, Y represents hydrogen or a methyl group, n represents a number of 1 to 10, and R 1 and R 2 are independent. Represents a hydrocarbon group having 1 to 50 carbon atoms, and p and q independently represent an integer of 0 to 2.)

更に、本発明は、上記の芳香族ビスハロメチル化合物と、下記式(4)で表される(メタ)アクリル系化合物とを反応させることを特徴とする上記のビス(メタ)アクリロイル末端ベンジルエーテル化合物の製造方法である。

Figure 0005996412

(式中、Yは水素またはメチル基を表し、Zは水素、アルカリ金属、または(メタ)アクリロイル基を表す。) Furthermore, the present invention relates to the above bis (meth) acryloyl-terminated benzyl ether compound characterized by reacting the above aromatic bishalomethyl compound with a (meth) acrylic compound represented by the following formula (4): It is a manufacturing method.
Figure 0005996412

(In the formula, Y represents hydrogen or a methyl group, and Z represents hydrogen, an alkali metal, or a (meth) acryloyl group.)

本発明の大きな平面構造と屈曲部位を持つビスフェノールフルオレン骨格を有するビス(メタ)アクリロイル末端ベンジルエーテル化合物は、これを硬化性化合物として使用することにより、分子内に分子サイズの大きな自由体積を有し、極性基が少ないことに起因して、高度の低誘電率特性の硬化物が得られる。そして、高度の難燃性・耐熱性で誘電率及び誘電正接の小さな材料を実現できるばかりではなく、高屈折率性をはじめとする光学特性に優れ、高い耐熱性と寸法安定性を有している光学材料も得ることができる。   The bis (meth) acryloyl-terminated benzyl ether compound having a bisphenolfluorene skeleton having a large planar structure and a bent portion according to the present invention has a large free volume with a molecular size in the molecule by using it as a curable compound. Due to the small number of polar groups, a cured product having a high low dielectric constant characteristic can be obtained. In addition to being able to realize materials with high flame retardancy and heat resistance and low dielectric constant and dielectric loss tangent, it has excellent optical properties such as high refractive index, high heat resistance and dimensional stability. Optical materials that are present can also be obtained.

本発明の芳香族ビスクロロメチル化合物AのGPCチャートGPC chart of aromatic bischloromethyl compound A of the present invention 本発明の芳香族ビスクロロメチル化合物BのGPCチャートGPC chart of aromatic bischloromethyl compound B of the present invention

以下、本発明を更に説明する。
本発明の式(1)で表される芳香族ビスハロメチル化合物は、その製法は特に限定されるものではないが、芳香族架橋剤とビスフェノールフルオレン系化合物とを反応させて合成することが望ましい。芳香族架橋剤としては、-CH2-Ar1-CH2-で表わされる架橋基を与える化合物が使用でき、ビスハロメチル化合物、ビスヒドロキシメチル化合物等があるが、ビスハロメチル化合物が好ましい。以下、芳香族架橋剤をビスハロメチル化合物で代表して説明するが、式(1)の芳香族ビスハロメチル化合物と区別する必要があるときは、これをビスハロメチル類又は芳香族ビスハロメチル類という。
なお、本明細書中で、同一の記号は特に断りがない限り、同一の意味を有する。
The present invention will be further described below.
The production method of the aromatic bishalomethyl compound represented by the formula (1) of the present invention is not particularly limited, but it is preferable to synthesize the aromatic bishalomethyl compound by reacting an aromatic crosslinking agent with a bisphenolfluorene compound. As the aromatic cross-linking agent, a compound giving a cross-linking group represented by —CH 2 —Ar 1CH 2 — can be used, and there are bishalomethyl compounds, bishydroxymethyl compounds, etc., but bishalomethyl compounds are preferred. Hereinafter, the aromatic crosslinking agent will be described as a representative bishalomethyl compound, but when it is necessary to distinguish from the aromatic bishalomethyl compound of the formula (1), this is referred to as bishalomethyls or aromatic bishalomethyls.
In the present specification, the same symbols have the same meanings unless otherwise specified.

式(1)中のArは炭素数6〜50の芳香族炭化水素基であり、芳香族架橋剤から誘導される構造単位である。芳香族架橋剤が芳香族ビスハロメチル類である場合、好適なものとしては、例えば下記式(3)で表される芳香族ビスハロメチル類を挙げることができるが、これらに限定される訳ではない。 Ar 1 in the formula (1) is an aromatic hydrocarbon group having 6 to 50 carbon atoms, and is a structural unit derived from an aromatic crosslinking agent. In the case where the aromatic crosslinking agent is an aromatic bishalomethyl compound, suitable examples include aromatic bishalomethyl compounds represented by the following formula (3), but are not limited thereto.

Figure 0005996412

(式中、Ar及びXは、式(1)と同意である。)
Figure 0005996412

(In the formula, Ar 1 and X are the same as the formula (1).)

Arの具体例としては、−Ph−、−Ph−Ph−、−Np−、−Np−CH−Np−、−Ph−CH−Ph−、−Ph−C(CH−Ph−、−Ph−CH(CH)−Ph−、−Ph−CH(C)−Ph−、−Ph−Flu−Ph−、及び−Flu(CH−からなる群れから選ばれる炭素数6〜50の芳香族炭化水素基であることが好ましく、より好ましくは、炭素数が6〜20である芳香族炭化水素基である。ここで、Phはフェニレン基(-C-)を表し、Npはナフチレン基(-C10−)を表し、Fluはフルオレニル基を表す。ここで、Ph、NpおよびFluは、置換基を有しても良く、例えば、アルキル基、アルコキシ基、フェニル基である。好ましくは炭素数が1〜6のアルキル基である。特に好ましくは、無置換、メチル置換及びジメチル置換の−Ph−Ph−及び−Ph−である。Xはハロゲン元素を表すが、塩素、臭素、及びヨウ素から選ばれるハロゲン元素が工業的実施に於ける入手の容易さより、好んで使用され、より好ましくは塩素である。 Specific examples of Ar 1 include —Ph—, —Ph—Ph—, —Np—, —Np—CH 2 —Np—, —Ph—CH 2 —Ph—, —Ph—C (CH 3 ) 2 —. Ph -, - Ph-CH ( CH 3) -Ph -, - Ph-CH (C 6 H 5) -Ph -, - Ph-Flu-Ph-, and -Flu (CH 3) 2 - from herd consisting of It is preferably an aromatic hydrocarbon group having 6 to 50 carbon atoms, and more preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms. Here, Ph represents a phenylene group (—C 6 H 4 —), Np represents a naphthylene group (—C 10 H 6 —), and Flu represents a fluorenyl group. Here, Ph, Np and Flu may have a substituent, for example, an alkyl group, an alkoxy group, or a phenyl group. Preferably it is a C1-C6 alkyl group. Particularly preferred are unsubstituted, methyl-substituted and dimethyl-substituted -Ph-Ph- and -Ph-. X represents a halogen element, but a halogen element selected from chlorine, bromine and iodine is preferably used because of its availability in industrial practice, and more preferably chlorine.

式(1)中、nは1〜10の数を表すが、分子量分布を有するときは、平均値(数平均)である。   In formula (1), n represents a number of 1 to 10, but when it has a molecular weight distribution, it is an average value (number average).

上記式(3)で表される芳香族ビスハロメチル類をさらに具体的に例示すると、p−ビスクロロメチルベンゼン、m−ビスクロロメチルベンゼン、p−ビスブロモメチルベンゼン、m−ビスブロモメチルベンゼン、4,4’−ビスクロロメチルビフェニル、4,3’−ビスクロロメチルビフェニル、3,3’−ビスクロロメチルビフェニル、2,2’−ビスクロロメチルビフェニル、4,4’−ビスブロモメチルビフェニル、4,3’−ビスブロモメチルビフェニル、3,3’−ビスブロモメチルビフェニル、2,2’−ビスブロモメチルビフェニル、1,4−ビスクロロメチルナフタレン、1,5−ビスクロロメチルナフタレン、1,6−ビスクロロメチルナフタレン、2,3−ビスクロロメチルナフタレン、2,4−ビスクロロメチルナフタレン、2,5−ビスクロロメチルナフタレン、2,6−ビスクロロメチルナフタレン、2,7−ビスクロロメチルナフタレン、1,4−ビスブロモメチルナフタレン、1,5−ビスブロモメチルナフタレン、1,6−ビスブロモメチルナフタレン、2,3−ビスブロモメチルナフタレン、2,4−ビスブロモメチルナフタレン、2,5−ビスブロモメチルナフタレン、2,6−ビスブロモメチルナフタレン、2,7−ビスブロモメチルナフタレン、9,9−ビスクロロメチルフルオレン、9,9−ビスブロモメチルフルオレン、2,7−ビスクロロメチルフルオレン、2,7−ビスクロロメチル−9,9−ジメチルフルオレン、2,7−ビスクロロメチル−9,9−ジエチルフルオレン、2,7−ビスクロロメチル−9,9−ジ−n−プロピルフルオレン、2,7−ビスクロロメチル−9,9−ジイソプロピルフルオレン、2,7−ビスクロロメチル−9,9−ジ−n−ブチルフルオレン、2,7−ビスクロロメチル−9,9−ジイソブチルフルオレン、2,7−ビスクロロメチル−9,9−ジ−sec−ブチルフルオレン、2,7−ビスクロロメチル−9,9−ジ−tert−ブチルフルオレン、2,7−ビスブロモメチルフルオレン、2,7−ビスブロモメチル−9,9−ジメチルフルオレン、2,7−ビスブロモメチル−9,9−ジエチルフルオレン、2,7−ビスブロモメチル−9,9−ジ−n−プロピルフルオレン、2,7−ビスブロモメチル−9,9−ジイソプロピルフルオレン、2,7−ビスブロモメチル−9,9−ジ−n−ブチルフルオレン、2,7−ビスブロモメチル−9,9−ジイソブチルフルオレン、2,7−ビスブロモメチル−9,9−ジ−sec−ブチルフルオレン、2,7−ビスブロモメチル−9,9−ジ−tert−ブチルフルオレン、2,7−ビスヨードメチルフルオレン、2,7−ビスヨードメチル−9,9−ジメチルフルオレン、2,7−ビスヨードメチル−9,9−ジエチルフルオレン、2,7−ビスヨードメチル−9,9−ジ−n−プロピルフルオレン、2,7−ビスヨードメチル−9,9−ジイソプロピルフルオレン、2,7−ビスヨードメチル−9,9−ジ−n−ブチルフルオレン、2,7−ビスヨードメチル−9,9−ジイソブチルフルオレン、2,7−ビスヨードメチル−9,9−ジ−sec−ブチルフルオレン、2,7−ビスヨードメチル−9,9−ジ−tert−ブチルフルオレン、9,9−ビス(4−クロロメチルフェニル)フルオレン、9,9−ビス(3−クロロメチルフェニル)フルオレン、9,9−ビス(2−クロロメチルフェニル)フルオレンなどが挙げられるが、これらに限定されるものではない。特に好ましくは、p−ビスクロロメチルベンゼン、m−ビスクロロメチルベンゼン、p−ビスブロモメチルベンゼン、m−ビスブロモメチルベンゼン、4,4’−ビスクロロメチルビフェニル、4,3’−ビスクロロメチルビフェニル、3,3’−ビスクロロメチルビフェニル、2,2’−ビスクロロメチルビフェニル、4,4’−ビスブロモメチルビフェニル、4,3’−ビスブロモメチルビフェニル、3,3’−ビスブロモメチルビフェニル及び2,2’−ビスブロモメチルビフェニルならびにそれらのメチル置換体及びジメチル置換体である。   Specific examples of the aromatic bishalomethyls represented by the above formula (3) include p-bischloromethylbenzene, m-bischloromethylbenzene, p-bisbromomethylbenzene, m-bisbromomethylbenzene, 4 , 4'-bischloromethylbiphenyl, 4,3'-bischloromethylbiphenyl, 3,3'-bischloromethylbiphenyl, 2,2'-bischloromethylbiphenyl, 4,4'-bisbromomethylbiphenyl, 4, , 3′-bisbromomethylbiphenyl, 3,3′-bisbromomethylbiphenyl, 2,2′-bisbromomethylbiphenyl, 1,4-bischloromethylnaphthalene, 1,5-bischloromethylnaphthalene, 1,6 -Bischloromethylnaphthalene, 2,3-bischloromethylnaphthalene, 2,4-bischloromethylnaphthalene Talene, 2,5-bischloromethylnaphthalene, 2,6-bischloromethylnaphthalene, 2,7-bischloromethylnaphthalene, 1,4-bisbromomethylnaphthalene, 1,5-bisbromomethylnaphthalene, 1,6 -Bisbromomethylnaphthalene, 2,3-bisbromomethylnaphthalene, 2,4-bisbromomethylnaphthalene, 2,5-bisbromomethylnaphthalene, 2,6-bisbromomethylnaphthalene, 2,7-bisbromomethylnaphthalene 9,9-bischloromethylfluorene, 9,9-bisbromomethylfluorene, 2,7-bischloromethylfluorene, 2,7-bischloromethyl-9,9-dimethylfluorene, 2,7-bischloromethyl -9,9-diethylfluorene, 2,7-bischloromethyl-9,9-di-n-propyl Pyrfluorene, 2,7-bischloromethyl-9,9-diisopropylfluorene, 2,7-bischloromethyl-9,9-di-n-butylfluorene, 2,7-bischloromethyl-9,9-diisobutyl Fluorene, 2,7-bischloromethyl-9,9-di-sec-butylfluorene, 2,7-bischloromethyl-9,9-di-tert-butylfluorene, 2,7-bisbromomethylfluorene, 2, , 7-bisbromomethyl-9,9-dimethylfluorene, 2,7-bisbromomethyl-9,9-diethylfluorene, 2,7-bisbromomethyl-9,9-di-n-propylfluorene, 2, 7-bisbromomethyl-9,9-diisopropylfluorene, 2,7-bisbromomethyl-9,9-di-n-butylfluorene, 2,7-bisbromomethyl 9,9-diisobutylfluorene, 2,7-bisbromomethyl-9,9-di-sec-butylfluorene, 2,7-bisbromomethyl-9,9-di-tert-butylfluorene, 2,7-bis Iodomethylfluorene, 2,7-bisiodomethyl-9,9-dimethylfluorene, 2,7-bisiodomethyl-9,9-diethylfluorene, 2,7-bisiodomethyl-9,9-di-n- Propylfluorene, 2,7-bisiodomethyl-9,9-diisopropylfluorene, 2,7-bisiodomethyl-9,9-di-n-butylfluorene, 2,7-bisiodomethyl-9,9-diisobutyl Fluorene, 2,7-bisiodomethyl-9,9-di-sec-butylfluorene, 2,7-bisiodomethyl-9,9-di-tert-butylfluorene, 9,9- (9)-(4-chloromethylphenyl) fluorene, 9,9-bis (3-chloromethylphenyl) fluorene, 9,9-bis (2-chloromethylphenyl) fluorene, etc. Absent. Particularly preferably, p-bischloromethylbenzene, m-bischloromethylbenzene, p-bisbromomethylbenzene, m-bisbromomethylbenzene, 4,4′-bischloromethylbiphenyl, 4,3′-bischloromethyl Biphenyl, 3,3′-bischloromethylbiphenyl, 2,2′-bischloromethylbiphenyl, 4,4′-bisbromomethylbiphenyl, 4,3′-bisbromomethylbiphenyl, 3,3′-bisbromomethyl Biphenyl and 2,2′-bisbromomethylbiphenyl and their methyl and dimethyl substituents.

式(1)中、p、qは各々独立に0〜2の整数を表す。R1、R2は各々独立に、炭素数1〜50の炭化水素基を表すが、好ましくは炭素数1〜12の脂肪族炭化水素基又は炭素数6〜12の芳香族炭化水素基であり、より好ましくは炭素数1〜12のアルキル基である。 In formula (1), p and q each independently represent an integer of 0 to 2. R 1 and R 2 each independently represents a hydrocarbon group having 1 to 50 carbon atoms, preferably an aliphatic hydrocarbon group having 1 to 12 carbon atoms or an aromatic hydrocarbon group having 6 to 12 carbon atoms. More preferably, it is a C1-C12 alkyl group.

芳香族架橋剤と反応させるビスフェノールフルオレン系化合物としては、下記式(5)で表される化合物が好適である。

Figure 0005996412

(式中、R、R、p及びqは式(1)と同じ意味を有する。) As the bisphenolfluorene compound to be reacted with the aromatic crosslinking agent, a compound represented by the following formula (5) is suitable.
Figure 0005996412

(In the formula, R 1 , R 2 , p and q have the same meaning as in formula (1).)

式(5)で表されるビスフェノールフルオレン系化合物をさらに具体的に例示すると、9,9−ビス(4−ヒドロキシフェニル)フルオレン;9,9−ビス(4−ヒドロキシ−2−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−エチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−t−ブチルフェニル)フルオレンなどの9,9−ビス(アルキルヒドロキシフェニル)フルオレン;9,9−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−2,6−ジメチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)フルオレンなどの9,9−ビス(ジアルキルヒドロキシフェニル)フルオレン;9,9−ビス(4−ヒドロキシ−3−シクロヘキシルフェニル)フルオレンなどの9,9−ビス(シクロアルキルヒドロキシフェニル)フルオレン;9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレンなどの9,9−ビス(アリールヒドロキシフェニル)フルオレンなどが挙げられるが、これらに限定されるものではない。好ましくは、9,9−ビス(4−ヒドロキシフェニル)フルオレン;9,9−ビス(4−ヒドロキシ−2−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)フルオレンである。   Specific examples of the bisphenolfluorene compound represented by the formula (5) include 9,9-bis (4-hydroxyphenyl) fluorene; 9,9-bis (4-hydroxy-2-methylphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis (4-hydroxy-3-ethylphenyl) fluorene, 9,9-bis (4-hydroxy-3-t-butylphenyl) ) 9,9-bis (alkylhydroxyphenyl) fluorene such as fluorene; 9,9-bis (4-hydroxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-hydroxy-2,6-dimethyl) 9,9-bis (phenyl) fluorene, 9,9-bis (4-hydroxy-3,5-di-tert-butylphenyl) fluorene Dialkylhydroxyphenyl) fluorene; 9,9-bis (cycloalkylhydroxyphenyl) fluorene such as 9,9-bis (4-hydroxy-3-cyclohexylphenyl) fluorene; 9,9-bis (4-hydroxy-3-phenyl) Examples include, but are not limited to, 9,9-bis (arylhydroxyphenyl) fluorene such as phenyl) fluorene. Preferably, 9,9-bis (4-hydroxyphenyl) fluorene; 9,9-bis (4-hydroxy-2-methylphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis (4-hydroxy-3,5-dimethylphenyl) fluorene.

本発明の式(1)の芳香族ビスハロメチル化合物は、好適には芳香族ビスハロメチル類と式(5)のビスフェノールフルオレン系化合物とを反応させて合成される(工程A)。   The aromatic bishalomethyl compound of the formula (1) of the present invention is preferably synthesized by reacting an aromatic bishalomethyl compound with a bisphenol fluorene compound of the formula (5) (step A).

この工程Aでは、式(3)の芳香族ビスハロメチル類と式(5)のビスフェノールフルオレン系化合物との使用割合は、当量比(ハロメチル:OHのモル比)で100:20〜100:99であることが好ましい。この範囲内であると、ビスフェノールフルオレン系化合物の全量に近い量が芳香族ビスハロメチル類と反応し、両末端に芳香族ビスハロメチル類中のハロメチル基が残ったモノマー又はオリゴマーとなる。そして、上記当量比を制御することでnの数を制御することができる。このnの値は、1〜10であり更に好ましくは、1.2〜10、更に好ましくは1.2〜8、特に好ましくは1.2〜5である。なお、nは通常、平均値である。本明細書において、平均値の場合は数平均を意味する。   In this step A, the use ratio of the aromatic bishalomethyl compound of the formula (3) and the bisphenolfluorene compound of the formula (5) is 100: 20 to 100: 99 as an equivalent ratio (molar ratio of halomethyl: OH). It is preferable. Within this range, an amount close to the total amount of the bisphenol fluorene compound reacts with the aromatic bishalomethyls, resulting in a monomer or oligomer in which the halomethyl groups in the aromatic bishalomethyls remain at both ends. And the number of n is controllable by controlling the said equivalence ratio. The value of n is 1 to 10, more preferably 1.2 to 10, more preferably 1.2 to 8, and particularly preferably 1.2 to 5. Note that n is usually an average value. In this specification, the average value means number average.

この工程Aでは、ビスフェノールフルオレン系化合物と芳香族ビスハロメチル化合物との反応を促進させるため、アルカリ金属水酸化物の存在下で反応させることがよい。   In this step A, the reaction between the bisphenolfluorene compound and the aromatic bishalomethyl compound is preferably promoted in the presence of an alkali metal hydroxide.

次に、本発明の式(2)で表されるビス(メタ)アクリロイル末端ベンジルエーテル化合物(以下、式(2)のベンジルエーテル化合物又は本発明のベンジルエーテル化合物ともいう。)について説明する。このビス(メタ)アクリロイル末端ベンジルエーテル化合物の製法は特に限定されるものではないが、式(1)で表される芳香族ビスハロメチル化合物と式(4)で表される(メタ)アクリル系化合物とから合成することが望ましい。式(4)において、Zは水素、アルカリ金属または(メタ)アクリロイル基(CH2=C(Y)-C(O)-)を表し、Yは式(2)と同意である。 Next, the bis (meth) acryloyl-terminated benzyl ether compound represented by the formula (2) of the present invention (hereinafter also referred to as the benzyl ether compound of the formula (2) or the benzyl ether compound of the present invention) will be described. The production method of the bis (meth) acryloyl-terminated benzyl ether compound is not particularly limited, but the aromatic bishalomethyl compound represented by the formula (1) and the (meth) acrylic compound represented by the formula (4) It is desirable to synthesize from In the formula (4), Z represents hydrogen, an alkali metal or a (meth) acryloyl group (CH 2 ═C (Y) —C (O) —), and Y is the same as in the formula (2).

本発明のベンジルエーテル化合物の製造において、工程Aで得られた式(1)で表される芳香族ビスハロメチル化合物と(メタ)アクリレート基部分を与える化合物を反応させるのが工業的に有利である。この反応工程を工程Bという。なお、式(1)で表される芳香族ビスハロメチル化合物は、本発明のベンジルエーテル化合物の中間体として有用であるので、中間体ともいう。   In the production of the benzyl ether compound of the present invention, it is industrially advantageous to react the aromatic bishalomethyl compound represented by the formula (1) obtained in Step A with the compound giving the (meth) acrylate group moiety. This reaction process is referred to as process B. In addition, since the aromatic bishalomethyl compound represented by Formula (1) is useful as an intermediate of the benzyl ether compound of this invention, it is also called an intermediate.

式(4)で表される(メタ)アクリル系化合物としては、メタクリル酸、アクリル酸、無水メタクリル酸、無水アクリル酸及びこれらの塩又はこれらの混合物が使用できる。また、アルカリ金属(メタ)アクリレートであれば、反応がより容易に進行する。この場合は、(メタ)アクリル酸リチウム、(メタ)アクリル酸カリウム、又は(メタ)アクリル酸ナトリウムであってよい。   As the (meth) acrylic compound represented by the formula (4), methacrylic acid, acrylic acid, methacrylic anhydride, acrylic anhydride and salts thereof, or a mixture thereof can be used. Moreover, if it is an alkali metal (meth) acrylate, reaction will advance more easily. In this case, it may be lithium (meth) acrylate, potassium (meth) acrylate, or sodium (meth) acrylate.

式(4)において、ZがKである(メタ)アクリル系化合物、例えば(メタ)アクリル酸カリウムを使用するときには、(メタ)アクリル酸エステル類のけん化によって、又は、炭酸カリウムによる(メタ)アクリル酸の中和によって、(メタ)アクリル酸カリウムを調製することが可能であり、前記中和の場合には、炭酸カリウムが(メタ)アクリル酸類に対して過剰であることが好ましい。この場合には、芳香族ビスハロメチル化合物と、(メタ)アクリル酸カリウムとの反応の前に、(メタ)アクリル酸カリウムを単離しなくてもよい。過剰のアルカリは反応を促進する。   In the formula (4), when a (meth) acrylic compound in which Z is K, such as potassium (meth) acrylate, is used, saponification of (meth) acrylic acid esters or (meth) acrylic with potassium carbonate It is possible to prepare potassium (meth) acrylate by neutralization of the acid, and in the case of the neutralization, it is preferable that potassium carbonate is excessive with respect to (meth) acrylic acids. In this case, it is not necessary to isolate potassium (meth) acrylate before the reaction between the aromatic bishalomethyl compound and potassium (meth) acrylate. Excess alkali accelerates the reaction.

工程Bでの式(1)の芳香族ビスハロメチル化合物と式(4)の(メタ)アクリル系化合物との反応は、特に制限されるものではないが、例えばZがHである(メタ)アクリル酸類を極性溶剤中で炭酸カリウムで中和してカリウム塩を調製し、このカリウム塩と芳香族ビスハロメチル化合物を反応させ、形成された副生物のアルカリ金属塩化物を濾過によって分離し、目的のビス(メタ)アクリロイル末端ベンジルエーテル化合物を得る方法が挙げられる。   The reaction of the aromatic bishalomethyl compound of formula (1) and the (meth) acrylic compound of formula (4) in step B is not particularly limited, but for example (meth) acrylic acids in which Z is H Is neutralized with potassium carbonate in a polar solvent to prepare a potassium salt, the potassium salt is reacted with an aromatic bishalomethyl compound, the formed by-product alkali metal chloride is separated by filtration, and the desired bis ( A method for obtaining a (meth) acryloyl-terminated benzyl ether compound is mentioned.

芳香族ビスハロメチル化合物と(メタ)アクリル系化合物との配合割合は、当量比(ハロメチル:(メタ)アクリロイル基類のモル比)で100:95〜100:120であることが好ましく、より好ましくは、100:100〜100:110である。当量比が該範囲内であると、仕込んだ芳香族ビスハロメチル化合物の全量に近い量がアクリル系化合物と反応し、芳香族ビスハロメチル化合物中のハロメチル基が(メタ)アクリレート化され、反応物中にほとんど残存しなくなることにより、これを硬化性樹脂組成物とした場合、硬化反応が十分に進行し、また、良好な誘電特性を示し、熱安定性も良好になるので好ましい。   The blending ratio of the aromatic bishalomethyl compound and the (meth) acrylic compound is preferably 100: 95 to 100: 120 in terms of equivalent ratio (molar ratio of halomethyl: (meth) acryloyl groups), more preferably 100: 100 to 100: 110. When the equivalent ratio is within the above range, an amount close to the total amount of the aromatic bishalomethyl compound charged reacts with the acrylic compound, and the halomethyl group in the aromatic bishalomethyl compound is (meth) acrylated, and is almost completely contained in the reaction product. When this is made into a curable resin composition by not remaining, it is preferable because the curing reaction proceeds sufficiently, exhibits good dielectric properties, and has good thermal stability.

工程Bの反応を行う際には、極性溶剤を使用することがよく、好ましい極性溶剤としては、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド系溶剤、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル、1,3−ジメトキシプロパン、1,2−ジメトキシエタン等のエーテル系溶剤類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、ジメチルスルホキシド、アセトニトリルあるいはその混合溶剤が挙げられる。   When performing the reaction of Step B, it is preferable to use a polar solvent. Preferred polar solvents include alcohols such as methanol, ethanol, propanol and butanol, amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone. Solvents, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, ether solvents such as 1,3-dimethoxypropane, 1,2-dimethoxyethane, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, dimethyl sulfoxide, acetonitrile Or the mixed solvent is mentioned.

工程Bの反応を行う際には、式(4)のアクリル系化合物のMをけん化又は中和によってアルカリ金属の塩とし、反応を促進する方法が好んで用いられる。好ましいアルカリ金属の塩としては、(メタ)アクリル酸リチウム、(メタ)アクリル酸カリウム、又は(メタ)アクリル酸ナトリウム、およびこれらの混合物が挙げられる。アルカリ金属の塩を形成する際のアクリル酸エステル類又はアクリル酸類とアルカリ金属化合物の配合割合は、当量比で1.05〜2.0倍の範囲であることが好ましい。   In carrying out the reaction of the step B, a method of accelerating the reaction by converting M of the acrylic compound of the formula (4) into an alkali metal salt by saponification or neutralization is preferably used. Preferred alkali metal salts include lithium (meth) acrylate, potassium (meth) acrylate, or sodium (meth) acrylate, and mixtures thereof. It is preferable that the blending ratio of the acrylic acid esters or acrylic acids and the alkali metal compound when forming the alkali metal salt is in the range of 1.05 to 2.0 times in terms of equivalent ratio.

工程Bの反応温度および反応時間は、反応に応じ適宜選択すればよいが、それぞれ30〜100℃、0.5〜20時間の範囲であれば十分に反応が進行する。   The reaction temperature and reaction time in step B may be appropriately selected depending on the reaction, but the reaction proceeds sufficiently if they are in the range of 30 to 100 ° C. and 0.5 to 20 hours, respectively.

上記反応により式(3)で表されるビス(メタ)アクリロイル末端ベンジルエーテル化合物を得ることができる。この反応により得られたビス(メタ)アクリロイル末端ベンジルエーテル化合物は、さらに再沈精製あるいは再結晶により精製することにより不純物の含有量を低減できる。   By the above reaction, a bis (meth) acryloyl-terminated benzyl ether compound represented by the formula (3) can be obtained. The content of impurities can be reduced by further purifying the bis (meth) acryloyl-terminated benzyl ether compound obtained by this reaction by reprecipitation purification or recrystallization.

本発明のビス(メタ)アクリロイル末端ベンジルエーテル化合物は、(メタ)アクリロイル基を2つ有するので樹脂原料として有用であり、特に熱硬化性樹脂用の樹脂組成物に配合されるモノマーとして有用である。   The bis (meth) acryloyl-terminated benzyl ether compound of the present invention is useful as a resin raw material because it has two (meth) acryloyl groups, and particularly useful as a monomer blended in a resin composition for a thermosetting resin. .

この樹脂組成物は、ビス(メタ)アクリロイル末端ベンジルエーテル化合物と重合開始剤を必須成分として含むことが望ましい。重合開始剤としては、ビニル化合物の重合開始剤として公知の重合開始剤で良く、紫外線、電子線等の活性エネルギー線の照射またはラジカル重合開始剤を適用できるが、ラジカル重合開始剤(ラジカル重合触媒ともいう。)が好ましい。   This resin composition desirably contains a bis (meth) acryloyl-terminated benzyl ether compound and a polymerization initiator as essential components. The polymerization initiator may be a known polymerization initiator as a polymerization initiator of a vinyl compound, and irradiation with active energy rays such as ultraviolet rays and electron beams or a radical polymerization initiator can be applied. A radical polymerization initiator (radical polymerization catalyst) Also referred to).

本発明のビス(メタ)アクリロイル末端ベンジルエーテル化合物を含む樹脂組成物は、硬化性を有するので、硬化性樹脂組成物ともいう。この硬化性樹脂組成物を硬化させて得られる硬化物は成型物、積層物、注型物、接着剤、塗膜、フィルムとして使用できる。例えば、半導体封止材料の硬化物は注型物又は成型物であり、かかる用途の硬化物を得る方法としては、該化合物を注型、或いはトランスファ−成形機、射出成形機、圧縮成形機などを用いて成形し、さらに80〜230℃で0.5〜10時間に加熱することにより硬化物を得ることができる。また、この硬化性樹脂組成物は活性エネルギー線照射装置を使用して、活性エネルギー線を照射することにより硬化物を得ることができる。   Since the resin composition containing the bis (meth) acryloyl-terminated benzyl ether compound of the present invention has curability, it is also referred to as a curable resin composition. A cured product obtained by curing the curable resin composition can be used as a molded product, a laminate, a cast product, an adhesive, a coating film, or a film. For example, a cured product of a semiconductor sealing material is a cast or molded product. As a method for obtaining a cured product for such use, the compound is cast, or a transfer molding machine, an injection molding machine, a compression molding machine, etc. A cured product can be obtained by molding at 80 to 230 ° C. for 0.5 to 10 hours. Moreover, this curable resin composition can obtain hardened | cured material by irradiating an active energy ray using an active energy ray irradiation apparatus.

本発明のビス(メタ)アクリロイル末端ベンジルエーテル化合物を含む硬化性樹脂組成物は、上述する硬化方法によって硬化させることにより光学物品として適した硬化物を得ることができる。このような光学物品として適した硬化物は、種々の光学特性に優れた光学物品、例えば光学レンズとなる。   The curable resin composition containing the bis (meth) acryloyl-terminated benzyl ether compound of the present invention can be cured by the above-described curing method to obtain a cured product suitable as an optical article. Hardened | cured material suitable as such an optical article turns into an optical article excellent in various optical characteristics, for example, an optical lens.

以下、実施例により本発明を説明するが、本発明はこれらにより制限されるものではない。なお、各例中の部はいずれも重量部である。また、実施例中の測定結果は以下に示す方法により試料調製及び測定を行ったものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not restrict | limited by these. In addition, all the parts in each example are parts by weight. In addition, the measurement results in the examples are those obtained by sample preparation and measurement by the following methods.

1)芳香族ビスハロメチル化合物、及びビス(メタ)アクリロイル末端ベンジルエーテル化合物のGPC純度
分子量及び分子量分布測定はGPC(東ソー製、HLC−8120GPC)を使用し、溶媒:テトラヒドロフラン(THF)、流量:1.0ml/min、カラム温度:40℃で行った。UV検出器(波長:254nm)で検出された各ピークの面積比により算出した。分子量は単分散ポリスチレンによる検量線を用い、ポリスチレン換算分子量として測定を行った。
1) GPC purity of aromatic bishalomethyl compound and bis (meth) acryloyl-terminated benzyl ether compound GPC (manufactured by Tosoh Corporation, HLC-8120GPC) was used for molecular weight and molecular weight distribution measurement, solvent: tetrahydrofuran (THF), flow rate: 1. It was carried out at 0 ml / min and column temperature: 40 ° C. It calculated by the area ratio of each peak detected with the UV detector (wavelength: 254 nm). The molecular weight was measured as a polystyrene-converted molecular weight using a calibration curve of monodisperse polystyrene.

2)芳香族ビスハロメチル化合物、及びビス(メタ)アクリロイル末端ベンジルエーテル化合物の構造
日本電子製JNM−LA600型核磁気共鳴分光装置を用い、13C−NMR及びH−NMR分析により決定した。溶媒としてクロロホルム−dを使用した。NMR測定溶媒であるテトラクロロエタン−dの共鳴線を内部標準として使用した。
2) Structure of aromatic bishalomethyl compound and bis (meth) acryloyl-terminated benzyl ether compound Using a JNM-LA600 type nuclear magnetic resonance spectrometer manufactured by JEOL, the structure was determined by 13 C-NMR and 1 H-NMR analysis. Chloroform-d 1 was used as a solvent. The resonance line of tetrachloroethane -d 2 is an NMR measurement solvent was used as an internal standard.

3)粘度
ビス(メタ)アクリロイル末端ベンジルエーテル化合物を含む硬化性樹脂組成物の粘度は、E型粘度計を使用して、25℃の温度で測定を行った。
3) Viscosity The viscosity of the curable resin composition containing a bis (meth) acryloyl-terminated benzyl ether compound was measured at a temperature of 25 ° C. using an E-type viscometer.

4)誘電率及び誘電正接
硬化性樹脂組成物ワニスを0.2mm厚のスペーサーを挟んだ2枚のガラス板の間に流し込み、高圧水銀ランプを備えたUV照射装置で、照射強度:30mW/cm、UV照射量:6,000mJ/cmでUV硬化を行った。UV硬化を行って得られた平板サンプルをさらに200℃のオーブンで30分間ポストキュアを行い、得られた硬化物平板について諸特性を測定した。また、この厚み0.2mmの平板硬化物を0.3cm×10cmに切り出して試験片を作成し、JIS C2565規格に準拠し、株式会社エーイーティー製、空洞共振器法誘電率測定装置により、絶乾後23℃、湿度50%の室内に24時間保管した後の、2.0GHzの誘電率と誘電正接を測定した。
4) Dielectric constant and dielectric loss tangent A curable resin composition varnish was poured between two glass plates sandwiched by a 0.2 mm thick spacer, and a UV irradiation device equipped with a high-pressure mercury lamp. Irradiation intensity: 30 mW / cm 2 UV curing was performed at a UV irradiation amount of 6,000 mJ / cm 2 . The flat plate sample obtained by performing UV curing was further post-cured in an oven at 200 ° C. for 30 minutes, and various properties of the obtained cured flat plate were measured. Moreover, this flat plate cured product having a thickness of 0.2 mm was cut out to 0.3 cm × 10 cm to create a test piece, conforming to the JIS C2565 standard, manufactured by ATE Co., Ltd., using a cavity resonator method dielectric constant measuring device, The dielectric constant and dielectric loss tangent of 2.0 GHz were measured after storing for 24 hours in a room at 23 ° C. and 50% humidity after absolute drying.

5)線膨張係数(CTE)及びガラス転移温度(Tg)測定用試験片の調製及び測定
硬化性樹脂組成物をシリコンゴム製の200μm厚のスペーサーを介した2枚のガラス基板からなる型の間に流し込むことによって、注型サンプルを作成し、減圧下、気泡を取り除いた。その後、熱硬化型サンプルについては、窒素気流下のイナートオーブンに注型サンプルをセットし、段階的に15分かけて昇温操作を行った後、200℃で60分間熱硬化させた。一方、UV硬化型サンプルについては、高圧水銀ランプを光源とするコンベア式UV照射装置を使用して、UV照射量:6,000mJ/cmでUV硬化を行った。熱硬化サンプル及びUV硬化サンプルのいずれについても、空気気流下、イナートオーブンを使用して、200℃で30分間、ポストキュアを行った。得られた200μm厚の平板から3mm幅の平板サンプルを作成し、CTE測定(TMA法)及びTg測定(DMA法)用の試験片として使用した。
CTE測定(TMA法)は、上記の方法で作成した試験片をTMA(熱機械分析装置)測定装置の分析用プローブにセットし、窒素気流下、昇温速度10℃/分で30℃から360℃までスキャンさせることにより測定を行い、0〜40℃の温度範囲に於ける平均線膨張係数を求めた。
一方、上記の方法で作成した硬化試験片のTgの測定は動的粘弾性測定装置を使用し、昇温速度2℃/minで測定を行い、損失弾性率のピークより決定した。
5) Preparation and measurement of test piece for measurement of linear expansion coefficient (CTE) and glass transition temperature (Tg) Between molds consisting of two glass substrates through a 200 μm thick spacer made of silicon rubber with a curable resin composition A cast sample was made by pouring into a vacuum, and bubbles were removed under reduced pressure. Then, about the thermosetting type | mold sample, the casting sample was set to the inert oven under nitrogen stream, and after performing temperature rising operation over 15 minutes in steps, it was thermoset at 200 degreeC for 60 minutes. On the other hand, the UV curing type sample was UV cured at a UV irradiation amount of 6,000 mJ / cm 2 using a conveyor type UV irradiation apparatus using a high-pressure mercury lamp as a light source. Both the thermosetting sample and the UV curing sample were post-cured at 200 ° C. for 30 minutes using an inert oven under an air stream. A plate sample having a width of 3 mm was prepared from the obtained plate having a thickness of 200 μm and used as a test piece for CTE measurement (TMA method) and Tg measurement (DMA method).
In CTE measurement (TMA method), the test piece prepared by the above method is set on an analysis probe of a TMA (thermomechanical analyzer) measuring device, and from 30 ° C to 360 ° C at a temperature rising rate of 10 ° C / min in a nitrogen stream. The measurement was carried out by scanning up to 0 ° C., and the average linear expansion coefficient in the temperature range of 0 to 40 ° C. was obtained.
On the other hand, the Tg of the cured test piece prepared by the above method was measured using a dynamic viscoelasticity measuring device at a temperature rising rate of 2 ° C./min and determined from the peak of the loss elastic modulus.

6)難燃性の測定
線膨張係数(CTE)及びガラス転移温度(Tg)測定用試験片を作成する際に、作成した平板からサンプリングをおこなった硬化サンプルを用いて、TGA(熱天秤)測定装置を使用して、窒素気流下、昇温速度10℃/分で30℃から600℃までスキャンさせることにより測定を行い、550℃に於けるチャー(炭化物)生成量により下記の通り、難燃性を求めた。
難燃性A:チャー生成量>40wt%
難燃性B:25wt%<チャー生成量≦40wt%
難燃性C:18wt%<チャー生成量≦25wt%
難燃性D:10wt%<チャー生成量≦18wt%
難燃性E:チャー生成量≦10wt%
6) Measurement of flame retardancy TGA (thermobalance) measurement using a cured sample sampled from the prepared flat plate when preparing a test piece for measuring linear expansion coefficient (CTE) and glass transition temperature (Tg) Using a device, measurement is performed by scanning from 30 ° C. to 600 ° C. at a heating rate of 10 ° C./min under a nitrogen stream, and the flame retardancy is as follows according to the amount of char (carbide) produced at 550 ° C. Seeking sex.
Flame retardancy A: Char production> 40wt%
Flame retardancy B: 25 wt% <Char generation amount ≤ 40 wt%
Flame retardancy C: 18 wt% <Char generation amount ≤ 25 wt%
Flame retardancy D: 10 wt% <char generation amount ≤ 18 wt%
Flame retardancy E: Char generation amount ≦ 10wt%

7)YI、Haze及び全光線透過率の測定
YI、Haze及び全光線透過率の測定は、調製した硬化性樹脂組成物ワニスを1.0mm厚のスペーサーを挟んだ2枚のガラス板の間に流し込み、高圧水銀ランプを備えたUV照射装置で、照射強度:30mW/cm、UV照射量:6,000mJ/cmでUV硬化を行った。UV硬化を行って得られた平板サンプルをさらに200℃のオーブンで30分間ポストキュアを行い、得られた硬化物平板について、濁度計及び色差計を使用して測定した。
7) Measurement of YI, Haze, and total light transmittance YI, Haze, and total light transmittance were measured by pouring the prepared curable resin composition varnish between two glass plates with a spacer of 1.0 mm in thickness, UV curing was performed with a UV irradiation apparatus equipped with a high-pressure mercury lamp at irradiation intensity: 30 mW / cm 2 and UV irradiation amount: 6,000 mJ / cm 2 . The plate sample obtained by UV curing was further post-cured in an oven at 200 ° C. for 30 minutes, and the obtained cured plate was measured using a turbidimeter and a color difference meter.

8)屈折率及びアッベ数の測定
屈折率及びアッベ数の測定は、調製した硬化性樹脂組成物ワニスを1.0mm厚のスペーサーを挟んだ2枚のガラス板の間に流し込み、高圧水銀ランプを備えたUV照射装置で、照射強度:30mW/cm、UV照射量:6,000mJ/cmでUV硬化を行った。UV硬化を行って得られた平板サンプルをさらに200℃のオーブンで30分間ポストキュアを行い、硬化物平板を得た。得られた硬化物平板の端面をプリズム加工し、真空乾燥器で、60℃で5時間乾燥させた後、20℃、60%RHの恒温恒湿器の槽内に2日間以上置き、状態調節を行った。カルニュー屈折率計KPR-2000(島津デバイス製造社製)を用いて、25℃にて、屈折率を測定し、得られた屈折率データよりアッベ数を算出した。
8) Measurement of refractive index and Abbe number The refractive index and Abbe number were measured by pouring the prepared curable resin composition varnish between two glass plates with a 1.0 mm-thick spacer between them and equipped with a high-pressure mercury lamp. UV curing was performed with a UV irradiation apparatus at an irradiation intensity of 30 mW / cm 2 and an UV irradiation amount of 6,000 mJ / cm 2 . The flat plate sample obtained by performing UV curing was further post-cured in an oven at 200 ° C. for 30 minutes to obtain a cured product flat plate. The end face of the resulting cured flat plate is prism processed, dried in a vacuum dryer at 60 ° C for 5 hours, and then placed in a thermo-hygrostat bath at 20 ° C and 60% RH for 2 days or more to adjust the condition. Went. Using a Karnew refractometer KPR-2000 (manufactured by Shimadzu Device Manufacturing Co., Ltd.), the refractive index was measured at 25 ° C., and the Abbe number was calculated from the obtained refractive index data.

9)成形性
銅箔光沢面に黒化処理を行った銅張り積層板(銅箔層/コア層=35μm/300μm)の黒化処理を行った銅箔面の上に、硬化性樹脂組成物の未硬化フィルムを積層し、真空ラミネーターを用いて、温度:110℃、プレス圧:0.1MPaで真空ラミネートを行い、黒化処理銅箔とフィルムの接着状態により評価を行った。評価は黒化処理銅箔とフィルムの接着状態が良好であったものを「○」、黒化処理銅箔とフィルムとが容易に剥離することができる接着状態のものを「×」として評価した。
9) Formability A curable resin composition is formed on the copper foil surface of the copper-clad laminate (copper foil layer / core layer = 35 μm / 300 μm) subjected to the blackening treatment on the glossy surface of the copper foil. The uncured film was laminated, vacuum lamination was performed at a temperature of 110 ° C. and a press pressure of 0.1 MPa using a vacuum laminator, and evaluation was performed based on the adhesion state between the blackened copper foil and the film. Evaluation was evaluated as “◯” when the adhesion state of the blackened copper foil and the film was good, and “x” when the blackened copper foil and the film could be easily peeled off. .

実施例1
反応容器に9,9−ビス(4−ヒドロキシフェニル)フルオレン140.16g(0.40モル)、4,4’−ビス(クロロメチル)ビフェニル141.40g(0.88モル)、及び、アセトン1200mlを加え攪拌しながら78℃に昇温した。次いで、78℃に保った反応容器にKOH−MeOH(KOH:0.88モル)を30分かけて滴下した。滴下終了後、さらに78℃で4h攪拌を継続した。4h後、室温まで冷却し、トルエン900mlを加え、さらに10%HClを加えて中和した。その後、水相を分液することにより分離し、さらに水300mlで3回分液洗浄した。
Example 1
In the reaction vessel, 140.16 g (0.40 mol) of 9,9-bis (4-hydroxyphenyl) fluorene, 141.40 g (0.88 mol) of 4,4′-bis (chloromethyl) biphenyl, and 1200 ml of acetone The mixture was heated to 78 ° C. with stirring. Next, KOH-MeOH (KOH: 0.88 mol) was added dropwise to the reaction vessel maintained at 78 ° C. over 30 minutes. After completion of the dropwise addition, stirring was further continued at 78 ° C. for 4 hours. After 4 hours, the mixture was cooled to room temperature, 900 ml of toluene was added, and further 10% HCl was added for neutralization. Thereafter, the aqueous phase was separated by liquid separation, and further separated and washed with 300 ml of water three times.

得られた有機相を蒸留することにより濃縮し、メタノールを加えて生成物を再沈殿した。沈殿を濾過・乾燥し、9,9−ビス(4−ヒドロキシフェニル)フルオレンと4,4’−ビス(クロロメチル)ビフェニルとの反応生成物である芳香族ビスクロロメチル化合物A(2CM−DMBP−BPFZ)169.33gを得た。得られた2CM−DMBP−BPFZは白色紛体であった。   The resulting organic phase was concentrated by distillation and methanol was added to reprecipitate the product. The precipitate was filtered and dried, and aromatic bischloromethyl compound A (2CM-DMBP-), which is a reaction product of 9,9-bis (4-hydroxyphenyl) fluorene and 4,4′-bis (chloromethyl) biphenyl. BPFZ) 169.33 g was obtained. The obtained 2CM-DMBP-BPFZ was a white powder.

生成物の確認をゲル浸透クロマトグラフ(GPC)、赤外線スペクトル(IR)、H核磁気共鳴スペクトル(H−NMR)で行った。その結果、1)GPC測定の結果より、回収された反応生成物では、原料に由来するピークが消失し、高分子量側に新しいピークが生成していること、2)IR測定結果より、フェノール性水酸基に由来するピークが減少していること、3)H−NMR測定結果に於いて、4,4’−ビス(クロロメチル)ビフェニルのクロロメチル基に由来するプロトンの共鳴線が減少し、代わりに、5.02ppm付近にベンジルエーテル基に由来するプロトンの共鳴線が生成していることが確認され、芳香族ビスクロロメチル化合物A(2CM−DMBP−BPFZ)が得られていることを確認した。 The product was confirmed by gel permeation chromatography (GPC), infrared spectrum (IR), and 1 H nuclear magnetic resonance spectrum ( 1 H-NMR). As a result, 1) From the results of GPC measurement, in the recovered reaction product, the peak derived from the raw material disappeared and a new peak was generated on the high molecular weight side. 2) From the IR measurement result, phenolic 3) In the 1 H-NMR measurement results, the proton resonance line derived from the chloromethyl group of 4,4′-bis (chloromethyl) biphenyl is reduced, and the peak derived from the hydroxyl group is reduced. Instead, it was confirmed that a proton resonance line derived from the benzyl ether group was generated around 5.02 ppm, and it was confirmed that the aromatic bischloromethyl compound A (2CM-DMBP-BPFZ) was obtained. did.

図1に2CM−DMBP−BPFZ及び原料である9,9−ビス(4−ヒドロキシフェニル)フルオレンのGPCチャートのGPCチャートを示す。2CM−DMBP−BPFZは実線で示し、9,9−ビス(4−ヒドロキシフェニル)フルオレンは点線で示す。
図1の2CM−DMBP−BPFZのGPC溶出曲線から原料である9,9−ビス(4−ヒドロキシフェニル)フルオレンのピークは消失し、高分子量側にシフトしているのがわかる。
FIG. 1 shows a GPC chart of a GPC chart of 2CM-DMBP-BPFZ and 9,9-bis (4-hydroxyphenyl) fluorene as a raw material. 2CM-DMBP-BPFZ is indicated by a solid line, and 9,9-bis (4-hydroxyphenyl) fluorene is indicated by a dotted line.
It can be seen from the GPC elution curve of 2CM-DMBP-BPFZ in FIG. 1 that the peak of 9,9-bis (4-hydroxyphenyl) fluorene, which is a raw material, disappears and is shifted to the high molecular weight side.

そして、2CM−DMBP−BPFZのn=1以上の成分のGPC純度(面積比)は、下記の通りであった。
n=1成分:7.8%
n=2成分:27.2%
n=3成分:30.6%
n=4成分:18.2%
n=5以上の成分:15.1%
その他の成分(低分子量成分):1.2%
And the GPC purity (area ratio) of the component more than n = 1 of 2CM-DMBP-BPFZ was as follows.
n = 1 component: 7.8%
n = 2 components: 27.2%
n = 3 components: 30.6%
n = 4 components: 18.2%
n = 5 or more: 15.1%
Other components (low molecular weight components): 1.2%

また、2CM−DMBP−BPFZのTGA測定を行ったところ、TGA測定結果に於ける示差熱分析(DTA)曲線には、220℃と271℃に発熱ピークが観察された。そして、220℃の発熱ピークでは0.75wt%、271℃の発熱ピークでは、4.88wt%の重量減少が観察された。また、600℃に於ける、炭化物生成量は、62.2wt%であった。   Further, when TGA measurement of 2CM-DMBP-BPFZ was performed, exothermic peaks were observed at 220 ° C. and 271 ° C. in the differential thermal analysis (DTA) curve in the TGA measurement results. A weight loss of 0.75 wt% was observed at the exothermic peak at 220 ° C. and 4.88 wt% at the exothermic peak at 271 ° C. Moreover, the carbide | carbonized_material production amount in 600 degreeC was 62.2 wt%.

実施例2
反応容器に9,9−ビス(4−ヒドロキシフェニル)フルオレン140.16g(0.40モル)、α,α’−ジクロロ−p−キシレン157.20g(0.88モル)、及び、MEK1200mlを加え攪拌しながら78℃に昇温した。次いで、78℃に保った反応容器にKOH−MeOH(KOH:0.88モル)を30分かけて滴下した。滴下終了後、さらに78℃で4h攪拌を継続した。4h後、室温まで冷却し、トルエン900mlを加え、さらに10%HClを加えて中和した。その後、水相を分液することにより分離し、さらに水300mlで3回分液洗浄した。
Example 2
To the reaction vessel were added 140.16 g (0.40 mol) of 9,9-bis (4-hydroxyphenyl) fluorene, 157.20 g (0.88 mol) of α, α′-dichloro-p-xylene, and 1200 ml of MEK. The temperature was raised to 78 ° C. with stirring. Next, KOH-MeOH (KOH: 0.88 mol) was added dropwise to the reaction vessel maintained at 78 ° C. over 30 minutes. After completion of the dropwise addition, stirring was further continued at 78 ° C. for 4 hours. After 4 hours, the mixture was cooled to room temperature, 900 ml of toluene was added, and further 10% HCl was added for neutralization. Thereafter, the aqueous phase was separated by liquid separation, and further separated and washed with 300 ml of water three times.

得られた有機相を蒸留することにより濃縮し、メタノールを加えて生成物を再沈殿した。沈殿を濾過・乾燥し、9,9−ビス(4−ヒドロキシフェニル)フルオレンとα,α’−ジクロロ−p−キシレンとの反応生成物である芳香族ビスクロロメチル化合物B(2CM−Xy−BPFZ)123.57gを得た。   The resulting organic phase was concentrated by distillation and methanol was added to reprecipitate the product. The precipitate was filtered and dried, and aromatic bischloromethyl compound B (2CM-Xy-BPFZ) which is a reaction product of 9,9-bis (4-hydroxyphenyl) fluorene and α, α′-dichloro-p-xylene. ) 123.57 g was obtained.

生成物の確認をゲル浸透クロマトグラフ(GPC)、赤外線スペクトル(IR)、1H核磁気共鳴スペクトル(H−NMR)で行った。その結果、1)GPC測定の結果より、回収された反応生成物では、原料に由来するピークが消失し、高分子量側に新しいピークが生成していること、2)IR測定結果より、フェノール性水酸基に由来するピークが減少していること、3)H−NMRで、α,α’−ジクロロ−p−キシレンのクロロメチル基に由来するプロトンの共鳴線が減少し、代わりに、5.02ppm付近にベンジルエーテル基に由来するプロトンの共鳴線が生成していることが確認され、芳香族ビスクロロメチル化合物B(2CM−Xy−BPFZ)が得られていることを確認した。 The product was confirmed by gel permeation chromatography (GPC), infrared spectrum (IR), and 1H nuclear magnetic resonance spectrum ( 1 H-NMR). As a result, 1) From the results of GPC measurement, in the recovered reaction product, the peak derived from the raw material disappeared and a new peak was generated on the high molecular weight side. 2) From the IR measurement result, phenolic 3. The peak derived from the hydroxyl group is decreased. 3) In 1 H-NMR, the resonance line of the proton derived from the chloromethyl group of α, α′-dichloro-p-xylene is decreased. It was confirmed that a resonance line of protons derived from the benzyl ether group was generated in the vicinity of 02 ppm, and it was confirmed that aromatic bischloromethyl compound B (2CM-Xy-BPFZ) was obtained.

図2に2CM−Xy−BPFZ及び原料である9,9−ビス(4−ヒドロキシフェニル)フルオレンのGPCチャートのGPCチャートを示す。2CM−Xy−BPFZは実線で示し、9,9−ビス(4−ヒドロキシフェニル)フルオレンは点線で示す。
図2のGPC溶出曲線から、原料である9,9−ビス(4−ヒドロキシフェニル)フルオレンのピークは消失し、高分子量側にシフトしているのが確認された。そして、2CM−Xy−BPFZのn=1以上の成分のGPC純度は、下記の通りであった。
n=1成分:36.3%
n=2成分:28.5%
n=3成分:19.6%
n=4成分:10.6%
n=5以上の成分:4.1%
その他の成分(低分子量成分):0.9%
FIG. 2 shows a GPC chart of a GPC chart of 2CM-Xy-BPFZ and 9,9-bis (4-hydroxyphenyl) fluorene as a raw material. 2CM-Xy-BPFZ is indicated by a solid line, and 9,9-bis (4-hydroxyphenyl) fluorene is indicated by a dotted line.
From the GPC elution curve of FIG. 2, it was confirmed that the peak of 9,9-bis (4-hydroxyphenyl) fluorene, which is a raw material, disappeared and shifted to the high molecular weight side. And the GPC purity of the component more than n = 1 of 2CM-Xy-BPFZ was as follows.
n = 1 component: 36.3%
n = 2 components: 28.5%
n = 3 components: 19.6%
n = 4 components: 10.6%
n = 5 or more: 4.1%
Other components (low molecular weight components): 0.9%

2CM−Xy−BPFZのTGA測定を行ったところ、TGA測定結果に於ける、示差熱分析(DTA)曲線には、219℃と268℃に発熱ピークが観察された。そして、219℃の発熱ピークでは0.81wt%、271℃の発熱ピークでは、5.21wt%の重量減少が観察された。また、600℃に於ける、炭化物生成量は、57.8wt%であった。   When TGA measurement of 2CM-Xy-BPFZ was performed, exothermic peaks were observed at 219 ° C. and 268 ° C. in the differential thermal analysis (DTA) curve in the TGA measurement results. A weight loss of 0.81 wt% was observed at the exothermic peak at 219 ° C. and 5.21 wt% at the exothermic peak at 271 ° C. Moreover, the carbide | carbonized_material production amount in 600 degreeC was 57.8 wt%.

実施例3
反応容器に、炭酸カリウム15.28g(0.11モル)とN,N−ジメチルホルムアミド(DMF)500mlを入れ、加熱・撹拌を行う。反応容器の内温が80℃に達したら、メタクリル酸19.13g(0.22モル)をDMF50mlに溶解させた溶液を30分かけて滴下する。そのままの温度を維持して、1時間反応させる。次に、実施例1で得た2CM−DMBP−BPFZ58.27gをDMF500mlに溶解させた溶液を30分かけて滴下した。滴下終了後、さらに80℃で3h攪拌を継続した。3h後、室温まで冷却し、固体の析出物を濾別した。そして、反応溶液にトルエン2000mlを加えた。その後、反応溶液を水で4回洗浄し、油相を硫酸マグネシウムで乾燥させ、ろ過を行った。得られた有機相を水/メタノールの混合溶媒により、生成物を再沈殿した。
沈殿を濾過・乾燥し、2CM−DMBP−BPFZとメタクリル酸との反応生成物である2MA−DMBP−BPFZ52.64gを得た。
Example 3
In a reaction vessel, 15.28 g (0.11 mol) of potassium carbonate and 500 ml of N, N-dimethylformamide (DMF) are placed and heated and stirred. When the internal temperature of the reaction vessel reaches 80 ° C., a solution prepared by dissolving 19.13 g (0.22 mol) of methacrylic acid in 50 ml of DMF is added dropwise over 30 minutes. The reaction is continued for 1 hour while maintaining the temperature as it is. Next, a solution prepared by dissolving 58.27 g of 2CM-DMBP-BPFZ obtained in Example 1 in 500 ml of DMF was added dropwise over 30 minutes. After completion of dropping, stirring was further continued at 80 ° C. for 3 hours. After 3 h, the mixture was cooled to room temperature, and the solid precipitate was filtered off. Then, 2000 ml of toluene was added to the reaction solution. Thereafter, the reaction solution was washed four times with water, and the oil phase was dried over magnesium sulfate and filtered. The resulting organic phase was reprecipitated with a mixed solvent of water / methanol.
The precipitate was filtered and dried to obtain 52.64 g of 2MA-DMBP-BPFZ which is a reaction product of 2CM-DMBP-BPFZ and methacrylic acid.

生成物の確認をゲル浸透クロマトグラフ(GPC)、赤外線スペクトル(IR)、H核磁気共鳴スペクトル(H−NMR)で行った。その結果、1)GPC測定の結果より、回収された反応生成物では、原料に由来するピークが消失し、高分子量側に新しいピークが生成していること、2)IR測定結果より、カルボニル基が生成していること、H−NMRで、メタクリル基に由来するプロトンの共鳴線を有することが確認され、2MA−DMBP−BPFZが得られていることを確認した。 The product was confirmed by gel permeation chromatography (GPC), infrared spectrum (IR), and 1 H nuclear magnetic resonance spectrum ( 1 H-NMR). As a result, 1) From the results of GPC measurement, in the recovered reaction product, the peak derived from the raw material disappeared and a new peak was generated on the high molecular weight side. 2) From the IR measurement result, the carbonyl group It was confirmed by 1 H-NMR that it had a proton resonance line derived from a methacryl group, and 2MA-DMBP-BPFZ was obtained.

実施例4
反応容器に、炭酸カリウム14.59g(0.105モル)とN,N−ジメチルホルムアミド(DMF)500mlを入れ、加熱・撹拌を行う。反応容器の内温が80℃に達したら、メタクリル酸18.26g(0.21モル)をDMF50mlに溶解させた溶液を30分かけて滴下する。そのままの温度を維持して、1時間反応させる。次に、実施例2で得た2CM−Xy−BPFZ 62.76gをDMF500mlに溶解させた溶液を30分かけて滴下した。滴下終了後、さらに80℃で3h攪拌を継続した。3h後、室温まで冷却し、固体の析出物を濾別した。そして、反応溶液にトルエン2000mlを加えた。その後、反応溶液を水で4回洗浄し、油相を硫酸マグネシウムで乾燥させ、ろ過を行った。得られた有機相を水/メタノールの混合溶媒により、生成物を再沈殿した。
沈殿を濾過・乾燥し、2CM−Xy−BPFZとメタクリル酸との反応生成物である2MA−Xy−BPFZ69.53gを得た。
Example 4
A reaction vessel is charged with 14.59 g (0.105 mol) of potassium carbonate and 500 ml of N, N-dimethylformamide (DMF), and heated and stirred. When the internal temperature of the reaction vessel reaches 80 ° C., a solution prepared by dissolving 18.26 g (0.21 mol) of methacrylic acid in 50 ml of DMF is added dropwise over 30 minutes. The reaction is continued for 1 hour while maintaining the temperature as it is. Next, a solution prepared by dissolving 62.76 g of 2CM-Xy-BPFZ obtained in Example 2 in 500 ml of DMF was added dropwise over 30 minutes. After completion of dropping, stirring was further continued at 80 ° C. for 3 hours. After 3 h, the mixture was cooled to room temperature, and the solid precipitate was filtered off. Then, 2000 ml of toluene was added to the reaction solution. Thereafter, the reaction solution was washed four times with water, and the oil phase was dried over magnesium sulfate and filtered. The resulting organic phase was reprecipitated with a mixed solvent of water / methanol.
The precipitate was filtered and dried to obtain 69.53 g of 2MA-Xy-BPFZ which is a reaction product of 2CM-Xy-BPFZ and methacrylic acid.

生成物の確認をゲル浸透クロマトグラフ(GPC)、赤外線スペクトル(IR)、H核磁気共鳴スペクトル(H−NMR)で行った。その結果、1)GPC測定の結果より、回収された反応生成物では、原料に由来するピークが消失し、高分子量側に新しいピークが生成していること、2)IR測定結果より、カルボニル基が生成していること、H−NMRで、メタクリル基に由来するプロトンの共鳴線を有することが確認され、2MA−Xy−BPFZが得られていることを確認した。 The product was confirmed by gel permeation chromatography (GPC), infrared spectrum (IR), and 1 H nuclear magnetic resonance spectrum ( 1 H-NMR). As a result, 1) From the results of GPC measurement, in the recovered reaction product, the peak derived from the raw material disappeared and a new peak was generated on the high molecular weight side. 2) From the IR measurement result, the carbonyl group It was confirmed by 1 H-NMR that it has a proton resonance line derived from a methacryl group, and 2MA-Xy-BPFZ was obtained.

合成例1
500ml四つ口フラスコ中にビスフェノールフルオレン型エポキシ樹脂231g(エポキシ当量231)と、トリエチルベンジルアンモニウムクロライド450mgと、2,6−ジ−イソブチルフェノール100mgと、アクリル酸72.0gを仕込んで混合し、空気を毎分25mlの速度で吹き込みながら90〜100℃で加熱して溶解させた。この溶液は白濁していたがそのまま徐々に昇温し、120℃に加熱して完全に溶解させた。溶液は次第に透明粘稠になったがそのまま攪拌し続け、この間に酸価を測定して酸価が2.0mgKOH/g未満になるまでこの加熱攪拌を継続した。酸価が目標(酸価0.8)に達するまで8時間を要した。その後、室温まで冷却し、無色透明な固体のビスフェノールフルオレン型エポキシアクリレート樹脂243.6gを得た。
Synthesis example 1
In a 500 ml four-necked flask, 231 g of bisphenolfluorene type epoxy resin (epoxy equivalent 231), 450 mg of triethylbenzylammonium chloride, 100 mg of 2,6-di-isobutylphenol, and 72.0 g of acrylic acid are mixed and mixed. Was dissolved at 90-100 ° C. while blowing at a rate of 25 ml per minute. Although this solution was cloudy, the temperature was gradually raised as it was, and the solution was heated to 120 ° C. to be completely dissolved. Although the solution gradually became transparent and viscous, the stirring was continued as it was, and during this time, the acid value was measured, and this heating and stirring was continued until the acid value became less than 2.0 mgKOH / g. It took 8 hours for the acid value to reach the target (acid value 0.8). Then, it cooled to room temperature and obtained 243.6 g of colorless and transparent solid bisphenolfluorene type epoxy acrylate resins.

実施例5
実施例3で得られた2MA−DMBP−BPFZ 8gと反応性希釈剤としてo−フェニル−フェノキシエチルアクリレート(新中村化学(株)製、商品名:NKエステル A−LEN−10)12g、及び、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン)(チバ・スペシャリティケミカルズ製、商品名:イルガキュア184)0.40gを混合・溶解し硬化性組成物(ワニスA)を得た。
Example 5
8 g of 2MA-DMBP-BPFZ obtained in Example 3 and 12 g of o-phenyl-phenoxyethyl acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester A-LEN-10) as a reactive diluent, and 0.40 g of 1-hydroxycyclohexyl phenyl ketone (product name: Irgacure 184, manufactured by Ciba Specialty Chemicals) was mixed and dissolved as a photopolymerization initiator to obtain a curable composition (varnish A).

調製したワニスAを0.2mm厚のスペーサーを挟んだ2枚のガラス板の間に流し込み、高圧水銀ランプを備えたUV照射装置で、照射強度:30mW/cm、UV照射量:6,000mJ/cmでUV硬化を行った。UV硬化を行って得られた平板サンプルをさらに200℃のオーブンで30分間ポストキュアを行い、得られた硬化物平板について諸特性を測定した。また、この厚み0.2mmの平板硬化物を0.3cm×10cmに切り出して試験片を作成し、2.0GHzの誘電率と誘電正接を測定した。これら測定により得られた結果を表1に示した。 The prepared varnish A was poured between two glass plates with a spacer having a thickness of 0.2 mm, and a UV irradiation apparatus equipped with a high-pressure mercury lamp. Irradiation intensity: 30 mW / cm 2 , UV irradiation amount: 6,000 mJ / cm 2 was UV cured. The flat plate sample obtained by performing UV curing was further post-cured in an oven at 200 ° C. for 30 minutes, and various properties of the obtained cured flat plate were measured. Moreover, this flat-plate hardened | cured material with a thickness of 0.2 mm was cut out to 0.3 cm x 10 cm, the test piece was created, and the dielectric constant and dielectric loss tangent of 2.0 GHz were measured. The results obtained from these measurements are shown in Table 1.

比較例1
合成例1で得られたビスフェノールフルオレン型エポキシアクリレート樹脂8gと反応性希釈剤としてo−フェニル−フェノキシエチルアクリレート(新中村化学(株)製、商品名:NKエステル A−LEN−10)12g、及び、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン)(チバ・スペシャリティケミカルズ製、商品名:イルガキュア184)0.40gを混合・溶解し硬化性組成物(ワニスB)を得た。
Comparative Example 1
8 g of the bisphenolfluorene-type epoxy acrylate resin obtained in Synthesis Example 1 and 12 g of o-phenyl-phenoxyethyl acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester A-LEN-10) as a reactive diluent, and Then, 0.40 g of 1-hydroxycyclohexyl phenyl ketone (product name: Irgacure 184, manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator was mixed and dissolved to obtain a curable composition (varnish B).

調製したワニスBを0.2mm厚のスペーサーを挟んだ2枚のガラス板の間に流し込み、高圧水銀ランプを備えたUV照射装置で、照射強度:30mW/cm、UV照射量:6,000mJ/cmでUV硬化を行った。UV硬化を行って得られた平板サンプルをさらに200℃のオーブンで30分間ポストキュアを行い、得られた硬化物平板について諸特性を測定した。また、この厚み0.2mmの平板硬化物を0.3cm×10cmに切り出して試験片を作成し、2.0GHzの誘電率と誘電正接を測定した。これら測定により得られた結果を表1に示した。
表中、BPF樹脂は、ビスフェノールフルオレン型エポキシアクリレート樹脂である。
The prepared varnish B was poured between two glass plates with a spacer having a thickness of 0.2 mm, and a UV irradiation device equipped with a high-pressure mercury lamp. Irradiation intensity: 30 mW / cm 2 , UV irradiation amount: 6,000 mJ / cm 2 was UV cured. The flat plate sample obtained by performing UV curing was further post-cured in an oven at 200 ° C. for 30 minutes, and various properties of the obtained cured flat plate were measured. Moreover, this flat-plate hardened | cured material with a thickness of 0.2 mm was cut out to 0.3 cm x 10 cm, the test piece was created, and the dielectric constant and dielectric loss tangent of 2.0 GHz were measured. The results obtained from these measurements are shown in Table 1.
In the table, BPF resin is a bisphenolfluorene type epoxy acrylate resin.

Figure 0005996412
Figure 0005996412

実施例6
反応容器に、炭酸カリウム15.28g(0.11モル)とN,N−ジメチルホルムアミド(DMF)500mlを入れ、加熱・撹拌を行う。反応容器の内温が80℃に達したら、アクリル酸15.85g(0.22モル)をDMF50mlに溶解させた溶液を30分かけて滴下する。そのままの温度を維持して、1時間反応させる。次に、9,9−ビス(4−ヒドロキシフェニル)フルオレンと4,4’−ビス(クロロメチル)ビフェニルとの反応生成物である芳香族ビスクロロメチル化合物(実施例1の2CM−DMBP−BPFZ)58.27gをDMF500mlに溶解させた溶液を30分かけて滴下した。滴下終了後、さらに80℃で3h攪拌を継続した。3h後、室温まで冷却し、固体の析出物を濾別した。そして、反応溶液にトルエン2000mlを加えた。その後、反応溶液を水で4回洗浄し、油相を硫酸マグネシウムで乾燥させ、ろ過を行った。得られた有機相を水/メタノールの混合溶媒により、生成物を再沈殿した。
沈殿を濾過・乾燥し、2CM−DMBP−BPFZとアクリル酸との反応生成物である2A−DMBP−BPFZ49.87gを得た。
Example 6
In a reaction vessel, 15.28 g (0.11 mol) of potassium carbonate and 500 ml of N, N-dimethylformamide (DMF) are placed and heated and stirred. When the internal temperature of the reaction vessel reaches 80 ° C., a solution prepared by dissolving 15.85 g (0.22 mol) of acrylic acid in 50 ml of DMF is added dropwise over 30 minutes. The reaction is continued for 1 hour while maintaining the temperature as it is. Next, an aromatic bischloromethyl compound (2CM-DMBP-BPFZ of Example 1) which is a reaction product of 9,9-bis (4-hydroxyphenyl) fluorene and 4,4′-bis (chloromethyl) biphenyl. ) A solution obtained by dissolving 58.27 g in 500 ml of DMF was added dropwise over 30 minutes. After completion of dropping, stirring was further continued at 80 ° C. for 3 hours. After 3 h, the mixture was cooled to room temperature, and the solid precipitate was filtered off. Then, 2000 ml of toluene was added to the reaction solution. Thereafter, the reaction solution was washed four times with water, and the oil phase was dried over magnesium sulfate and filtered. The resulting organic phase was reprecipitated with a mixed solvent of water / methanol.
The precipitate was filtered and dried to obtain 49.87 g of 2A-DMBP-BPFZ which is a reaction product of 2CM-DMBP-BPFZ and acrylic acid.

生成物の確認をゲル浸透クロマトグラフ(GPC)、赤外線スペクトル(IR)、H核磁気共鳴スペクトル(H−NMR)で行ったところ、GPCより回収された反応生成物では、原料に由来するピークが消失し、高分子量側に新しいピークが生成していること、IRよりカルボニル基が生成していること、H−NMRで、アクリル基に由来するプロトンの共鳴線を有することが確認され、2A−DMBP−BPFZが得られていることを確認した。 When the product was confirmed by gel permeation chromatography (GPC), infrared spectrum (IR), and 1 H nuclear magnetic resonance spectrum ( 1 H-NMR), the reaction product recovered from GPC is derived from the raw material. The peak disappeared, a new peak was generated on the high molecular weight side, a carbonyl group was generated from IR, and 1 H-NMR confirmed that it had a proton resonance line derived from an acrylic group. It was confirmed that 2A-DMBP-BPFZ was obtained.

実施例7
反応容器に、炭酸カリウム14.59g(0.105モル)とN,N−ジメチルホルムアミド(DMF)500mlを入れ、加熱・撹拌を行う。反応容器の内温が80℃に達したら、アクリル酸15.13g(0.21モル)をDMF50mlに溶解させた溶液を30分かけて滴下する。そのままの温度を維持して、1時間反応させる。次に、9,9−ビス(4−ヒドロキシフェニル)フルオレンとα,α’−ジクロロ−p−キシレンとの反応生成物である芳香族ビスクロロメチル化合物(実施例2の2CM−Xy−BPFZ)62.76gをDMF500mlに溶解させた溶液を30分かけて滴下した。滴下終了後、さらに80℃で3h攪拌を継続した。3h後、室温まで冷却し、固体の析出物を濾別した。そして、反応溶液にトルエン2000mlを加えた。その後、反応溶液を水で4回洗浄し、油相を硫酸マグネシウムで乾燥させ、ろ過を行った。得られた有機相を水/メタノールの混合溶媒により、生成物を再沈殿した。
沈殿を濾過・乾燥し、2CM−Xy−BPFZとメタクリル酸との反応生成物である2A−Xy−BPFZ54.3gを得た。
Example 7
A reaction vessel is charged with 14.59 g (0.105 mol) of potassium carbonate and 500 ml of N, N-dimethylformamide (DMF), and heated and stirred. When the internal temperature of the reaction vessel reaches 80 ° C., a solution prepared by dissolving 15.13 g (0.21 mol) of acrylic acid in 50 ml of DMF is added dropwise over 30 minutes. The reaction is continued for 1 hour while maintaining the temperature as it is. Next, an aromatic bischloromethyl compound (2CM-Xy-BPFZ of Example 2) which is a reaction product of 9,9-bis (4-hydroxyphenyl) fluorene and α, α′-dichloro-p-xylene A solution obtained by dissolving 62.76 g in 500 ml of DMF was added dropwise over 30 minutes. After completion of dropping, stirring was further continued at 80 ° C. for 3 hours. After 3 h, the mixture was cooled to room temperature, and the solid precipitate was filtered off. Then, 2000 ml of toluene was added to the reaction solution. Thereafter, the reaction solution was washed four times with water, and the oil phase was dried over magnesium sulfate and filtered. The resulting organic phase was reprecipitated with a mixed solvent of water / methanol.
The precipitate was filtered and dried to obtain 54.3 g of 2A-Xy-BPFZ which is a reaction product of 2CM-Xy-BPFZ and methacrylic acid.

生成物の確認をゲル浸透クロマトグラフ(GPC)、赤外線スペクトル(IR)、H核磁気共鳴スペクトル(H−NMR)で行ったところ、GPCより回収された反応生成物では、原料に由来するピークが消失し、高分子量側に新しいピークが生成していること、IRよりカルボニル基が生成していること、H−NMRで、アクリル基に由来するプロトンの共鳴線を有することが確認され、2A−Xy−BPFZが得られていることを確認した。 When the product was confirmed by gel permeation chromatography (GPC), infrared spectrum (IR), and 1 H nuclear magnetic resonance spectrum ( 1 H-NMR), the reaction product recovered from GPC is derived from the raw material. The peak disappeared, a new peak was generated on the high molecular weight side, a carbonyl group was generated from IR, and 1 H-NMR confirmed that it had a proton resonance line derived from an acrylic group. It was confirmed that 2A-Xy-BPFZ was obtained.

実施例8
実施例6で得られた2A−DMBP−BPFZ 8gと反応性希釈剤としてo−フェニル−フェノキシエチルアクリレート(新中村化学(株)製、商品名:NKエステル A−LEN−10)12g、及び、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン)(チバ・スペシャリティケミカルズ製、商品名:イルガキュア184)0.40gを混合・溶解し硬化性組成物(ワニスC)を得た。
Example 8
8 g of 2A-DMBP-BPFZ obtained in Example 6 and 12 g of o-phenyl-phenoxyethyl acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester A-LEN-10) as a reactive diluent, and 0.40 g of 1-hydroxycyclohexyl phenyl ketone (trade name: Irgacure 184, manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator was mixed and dissolved to obtain a curable composition (varnish C).

調製したワニスCを実施例5と同様の手順により、硬化物平板を作成し、諸特性を測定した。また、厚み0.2mmの平板硬化物から0.3cm×10cmの試験片を作成し、2.0GHzの誘電率と誘電正接を測定した。これら測定により得られた結果を表2に示した。   A cured product flat plate was prepared from the prepared varnish C in the same manner as in Example 5, and various properties were measured. Moreover, a 0.3 cm × 10 cm test piece was prepared from a cured flat plate having a thickness of 0.2 mm, and a dielectric constant and a dielectric loss tangent of 2.0 GHz were measured. The results obtained by these measurements are shown in Table 2.

実施例9
実施例7で得られた2A−Xy−BPFZ 8gと反応性希釈剤としてo−フェニル−フェノキシエチルアクリレート(新中村化学(株)製、商品名:NKエステル A−LEN−10)12g、及び、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン)(チバ・スペシャリティケミカルズ製、商品名:イルガキュア184)0.40gを混合・溶解し硬化性組成物(ワニスD)を得た。
Example 9
8 g of 2A-Xy-BPFZ obtained in Example 7 and 12 g of o-phenyl-phenoxyethyl acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester A-LEN-10) as a reactive diluent, and 0.40 g of 1-hydroxycyclohexyl phenyl ketone (product name: Irgacure 184, manufactured by Ciba Specialty Chemicals) was mixed and dissolved as a photopolymerization initiator to obtain a curable composition (varnish D).

調製したワニスDを実施例5と同様の手順により、硬化物平板を作成し、諸特性を測定した。また、厚み0.2mmの平板硬化物から0.3cm×10cmの試験片を作成し、2.0GHzの誘電率と誘電正接を測定した。これら測定により得られた結果を表2に示した。   A cured product flat plate was prepared from the prepared varnish D in the same manner as in Example 5, and various properties were measured. Moreover, a 0.3 cm × 10 cm test piece was prepared from a cured flat plate having a thickness of 0.2 mm, and a dielectric constant and a dielectric loss tangent of 2.0 GHz were measured. The results obtained by these measurements are shown in Table 2.

Figure 0005996412
Figure 0005996412

実施例10
実施例3で得られた2MA−DMBP−BPFZ 11gと反応性希釈剤としてジビニルベンゼン(新日鐵化学(株)製、商品名:DVB960)2g、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(大阪ガスケミカル(株)製、商品名:オグソールEA−0200)1g及び、フェニルチオエチルアクリレート(BIMAX社製、商品名:BX−PTEA)6g、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティケミカルズ製、商品名:イルガキュア184)0.40g、及び、t−ブチルパーオキシ−2−エチルヘキサノエート(日油(株)製、商品名:パーブチルO)0.04gを混合・溶解し硬化性組成物(ワニスE)を得た。
Example 10
11 g of 2MA-DMBP-BPFZ obtained in Example 3 and 2 g of divinylbenzene (manufactured by Nippon Steel Chemical Co., Ltd., trade name: DVB960) as a reactive diluent, 9,9-bis [4- (2-acryloyl) 1 g of oxyethoxy) phenyl] fluorene (manufactured by Osaka Gas Chemical Co., Ltd., trade name: Ogsol EA-0200) and 6 g of phenylthioethyl acrylate (trade name: BX-PTEA, manufactured by BIMAX Co., Ltd.) -Hydroxycyclohexyl phenyl ketone (manufactured by Ciba Specialty Chemicals, trade name: Irgacure 184) 0.40 g and t-butyl peroxy-2-ethylhexanoate (manufactured by NOF Corporation, trade name: perbutyl O) 0.04 g was mixed and dissolved to obtain a curable composition (varnish E).

調製したワニスEを実施例5と同様の手順により、硬化物平板を作成し、諸特性を測定した。また、厚み0.2mmの平板硬化物から0.3cm×10cmの試験片を作成し、2.0GHzの誘電率と誘電正接を測定した。これら測定により得られた結果を表3に示した。   A cured product flat plate was prepared from the prepared varnish E in the same procedure as in Example 5, and various properties were measured. Moreover, a 0.3 cm × 10 cm test piece was prepared from a cured flat plate having a thickness of 0.2 mm, and a dielectric constant and a dielectric loss tangent of 2.0 GHz were measured. The results obtained by these measurements are shown in Table 3.

実施例11
実施例4で得られた2MA−Xy−BPFZ 11gと反応性希釈剤としてジビニルベンゼン(新日鐵化学(株)製、商品名:DVB960)2g、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(大阪ガスケミカル(株)製、商品名:オグソールEA−0200)1g及び、フェニルチオエチルアクリレート(BIMAX社製、商品名:BX−PTEA)6g、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティケミカルズ製、商品名:イルガキュア184)0.40g、及び、t−ブチルパーオキシ−2−エチルヘキサノエート(日油(株)製、商品名:パーブチルO)0.04gを混合・溶解し硬化性組成物(ワニスF)を得た。
Example 11
11 g of 2MA-Xy-BPFZ obtained in Example 4 and 2 g of divinylbenzene (manufactured by Nippon Steel Chemical Co., Ltd., trade name: DVB960) as a reactive diluent, 9,9-bis [4- (2-acryloyl) 1 g of oxyethoxy) phenyl] fluorene (manufactured by Osaka Gas Chemical Co., Ltd., trade name: Ogsol EA-0200) and 6 g of phenylthioethyl acrylate (trade name: BX-PTEA, manufactured by BIMAX Co., Ltd.) -Hydroxycyclohexyl phenyl ketone (manufactured by Ciba Specialty Chemicals, trade name: Irgacure 184) 0.40 g and t-butyl peroxy-2-ethylhexanoate (manufactured by NOF Corporation, trade name: perbutyl O) 0.04 g was mixed and dissolved to obtain a curable composition (varnish F).

調製したワニスFを実施例5と同様の手順により、硬化物平板を作成し、諸特性を測定した。また、厚み0.2mmの平板硬化物から0.3cm×10cmの試験片を作成し、2.0GHzの誘電率と誘電正接を測定した。これら測定により得られた結果を表3に示した。   A cured product flat plate was prepared from the prepared varnish F in the same procedure as in Example 5, and various properties were measured. Moreover, a 0.3 cm × 10 cm test piece was prepared from a cured flat plate having a thickness of 0.2 mm, and a dielectric constant and a dielectric loss tangent of 2.0 GHz were measured. The results obtained by these measurements are shown in Table 3.

Figure 0005996412
Figure 0005996412

Claims (2)

下記式(2)で表されることを特徴とするビス(メタ)アクリロイル末端ベンジルエーテル化合物。
Figure 0005996412

(式中、Ar1は炭素数6〜50の芳香族炭化水素基を表し、Yは水素またはメチル基を表し、nは1〜10の数を表し、R1及びR2は独立に炭素数1〜50の炭化水素基を表す。p、qは独立に0〜2の整数を表す。)
A bis (meth) acryloyl-terminated benzyl ether compound represented by the following formula (2):
Figure 0005996412

(In the formula, Ar 1 represents an aromatic hydrocarbon group having 6 to 50 carbon atoms, Y represents hydrogen or a methyl group, n represents a number of 1 to 10, and R 1 and R 2 independently represent the number of carbon atoms. And represents a hydrocarbon group of 1 to 50. p and q independently represent an integer of 0 to 2.)
下記式(1)で表される芳香族ビスハロメチル化合物と、下記式(4)で表される(メタ)アクリル系化合物とを反応させることを特徴とする請求項1に記載のビス(メタ)アクリロイル末端ベンジルエーテル化合物の製造方法。
Figure 0005996412

(式中、Ar 1 は炭素数6〜50の芳香族炭化水素基を表し、Xはハロゲン元素を表し、nは1〜10の数を表し、R 1 及びR 2 は独立に炭素数1〜50の炭化水素基を表す。p、qは独立に0〜2の整数を表す。)
Figure 0005996412

(式中、Yは水素またはメチル基を表し、Zは水素、アルカリ金属、または(メタ)アクリロイル基を表す。)
The bis (meth) acryloyl according to claim 1, wherein an aromatic bishalomethyl compound represented by the following formula (1) is reacted with a (meth) acrylic compound represented by the following formula (4): A method for producing a terminal benzyl ether compound.
Figure 0005996412

(In the formula, Ar 1 represents an aromatic hydrocarbon group having 6 to 50 carbon atoms, X represents a halogen element, n represents a number of 1 to 10, and R 1 and R 2 are independently 1 to 1 carbon atoms. Represents a hydrocarbon group of 50. p and q independently represent an integer of 0 to 2.)
Figure 0005996412

(In the formula, Y represents hydrogen or a methyl group, and Z represents hydrogen, an alkali metal, or a (meth) acryloyl group.)
JP2012274474A 2012-12-17 2012-12-17 Bis (meth) acryloyl-terminated benzyl ether compound and process for producing the same Expired - Fee Related JP5996412B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012274474A JP5996412B2 (en) 2012-12-17 2012-12-17 Bis (meth) acryloyl-terminated benzyl ether compound and process for producing the same
KR1020130154607A KR102101873B1 (en) 2012-12-17 2013-12-12 bis ether compounds having fluorene backbone and resin composition
TW102146069A TWI600681B (en) 2012-12-17 2013-12-13 Diethyl ether compounds and resin compositions having a tau skeleton
CN201310689562.7A CN103864586B (en) 2012-12-17 2013-12-17 Bis ether compound and resin combination with fluorene skeleton

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274474A JP5996412B2 (en) 2012-12-17 2012-12-17 Bis (meth) acryloyl-terminated benzyl ether compound and process for producing the same

Publications (2)

Publication Number Publication Date
JP2014118382A JP2014118382A (en) 2014-06-30
JP5996412B2 true JP5996412B2 (en) 2016-09-21

Family

ID=51173541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274474A Expired - Fee Related JP5996412B2 (en) 2012-12-17 2012-12-17 Bis (meth) acryloyl-terminated benzyl ether compound and process for producing the same

Country Status (1)

Country Link
JP (1) JP5996412B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170139325A1 (en) * 2014-07-02 2017-05-18 Hitachi Chemical Company, Ltd. Photosensitive refractive index-adjusting transfer film
JP6444819B2 (en) * 2015-07-01 2018-12-26 大阪ガスケミカル株式会社 Fluorene oligomer and resin additive comprising the same
JP7362442B2 (en) * 2018-11-21 2023-10-17 大阪ガスケミカル株式会社 Fluorene derivatives and their production methods and uses
CN110156981B (en) * 2019-06-18 2021-04-13 吉林大学 Polyether ketone polymer and preparation method and application thereof
KR20230149333A (en) * 2021-05-04 2023-10-26 에스에이치피피 글로벌 테크놀러지스 비.브이. Capped bisphenol polyether oligomers and compositions, methods of making and articles made therefrom

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884258B2 (en) * 2009-09-18 2016-03-15 Jnc株式会社 Liquid crystal aligning agent, liquid crystal aligning film, method for producing liquid crystal aligning film, and liquid crystal display element

Also Published As

Publication number Publication date
JP2014118382A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
CN103864586B (en) Bis ether compound and resin combination with fluorene skeleton
KR100305875B1 (en) Low birefringency organo optical parts
JP4847006B2 (en) New fluorene-containing resin
JP6820646B2 (en) Bisphenols having a fluorene skeleton and methods for producing them, and polyarylate resins, (meth) acrylate compounds and epoxy resins derived from the bisphenols.
JP5996412B2 (en) Bis (meth) acryloyl-terminated benzyl ether compound and process for producing the same
US9550723B2 (en) Radically curable compound, method for producing radically curable compound, radically curable composition, cured product of the same, and resist-material composition
TWI583668B (en) A composition containing a phenolic hydroxyl group, a resin containing a (meth) acryloyl group, a hardened composition, a hardened product and a
JP2022167558A (en) Divinylbenzyl fluorene compound and method for producing the same, curable resin composition obtained from the same, curable resin cured product, optical article, and imaging device
JP6006631B2 (en) Curable resin composition and cured product containing bis (meth) acryloyl-terminated benzyl ether compound
US10550217B2 (en) Polymerizable resin composition comprising reactive silsesquioxane compound
TW201038523A (en) Adamantane compound
JP2015025075A (en) Polymerizable composition containing reactive silicone compound
WO2014156778A1 (en) Curable resin composition, method for molding same, and molded article of same
JP5797147B2 (en) Aromatic dihydroxy compound, vinyl benzyl ether compound, and curable composition containing the same
KR102588912B1 (en) Active energy ray curable composition and plastic lens
EP3031793B1 (en) Fluorinated aromatic compound, method for its production, curable material, its cured product, and optical member
TWI725190B (en) Viscosity lowering agent for high refractive index polymerizable compound and polymerizable composition containing the same
JP2017061665A (en) Calixarene compound, composition, production method thereof, curing agent for epoxy resin, epoxy resin composition, laminate, semiconductor encapsulant, and semiconductor device
TW202446823A (en) Method for producing vinyl resin, vinyl resin and composition thereof, cured product, prepreg, resin sheet and laminate
CN119562978A (en) Multifunctional vinyl resin, method for producing same, multifunctional vinyl resin composition, and cured product thereof
US20250101181A1 (en) Resin composition and production method therefor, and cured product of resin composition
KR100266734B1 (en) Low birefringency organo optical parts
JP4793346B2 (en) Reactive polymer compound and production method thereof
JP2020097670A (en) Composition, adhesive agent including the same, cured product thereof and manufacturing method thereof
JP2010265368A (en) Novel tetrakisphenol derivative monomer, process for producing the same, and (co) polymer obtained therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160824

R150 Certificate of patent or registration of utility model

Ref document number: 5996412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees