[go: up one dir, main page]

JP5988075B2 - Carbon material manufacturing method - Google Patents

Carbon material manufacturing method Download PDF

Info

Publication number
JP5988075B2
JP5988075B2 JP2012021627A JP2012021627A JP5988075B2 JP 5988075 B2 JP5988075 B2 JP 5988075B2 JP 2012021627 A JP2012021627 A JP 2012021627A JP 2012021627 A JP2012021627 A JP 2012021627A JP 5988075 B2 JP5988075 B2 JP 5988075B2
Authority
JP
Japan
Prior art keywords
organic
mass
parts
solvent
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012021627A
Other languages
Japanese (ja)
Other versions
JP2013159515A (en
Inventor
紳 向井
紳 向井
三浦 雄一郎
雄一郎 三浦
荻野 勲
勲 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2012021627A priority Critical patent/JP5988075B2/en
Publication of JP2013159515A publication Critical patent/JP2013159515A/en
Application granted granted Critical
Publication of JP5988075B2 publication Critical patent/JP5988075B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、下水処理、廃液処理、電気二重層キャパシタ用電極、ガスセンサー電極、及び排ガス処理等に用いられる吸着材料、触媒担体、及びカーボンゲルの原料などとして用いられる有機高分子ゲルの製造方法並びにその炭素化物であるカーボンゲルとその製造方法に関する。 The present invention relates to a method for producing an organic polymer gel used as an adsorbent material, a catalyst carrier, and a carbon gel raw material used for sewage treatment, waste liquid treatment, an electric double layer capacitor electrode, a gas sensor electrode, and exhaust gas treatment. In addition, the present invention relates to a carbon gel that is a carbonized product thereof and a method for producing the same.

活性炭などの炭素材料は、微細孔が発達し細孔表面積が大きいため、上下水処理、排ガス処理に用いられる吸着剤や各種電極材料等として好ましく用いられている。炭素材料は、その微細孔をより高度に発達させるために、通常では、炭素化処理で生成した微細孔を有する多孔質炭素材料に対して、さらに、酸化性ガス雰囲気下で加熱したり、アルカリ金属水酸化物等と混合した後に非酸化性ガス雰囲気下で加熱などを行ったりする賦活処理が行われている。 Carbon materials such as activated carbon are preferably used as adsorbents and various electrode materials used for water and sewage treatment and exhaust gas treatment because fine pores develop and the pore surface area is large. In order to further develop the fine pores of carbon materials, normally, porous carbon materials having fine pores generated by carbonization treatment are further heated in an oxidizing gas atmosphere or alkali. An activation treatment is performed such as heating in a non-oxidizing gas atmosphere after mixing with a metal hydroxide or the like.

しかし、近年、環境への関心が高まると同時により高度に微細孔が発達した炭素材料に関心が高まっており、賦活処理を行わないで製造することができる多孔質炭素材料、あるいは高度に細孔が制御された多孔質炭素材料が求められており、このような多孔質炭素材料としてカーボンゲルが注目されている。カーボンゲルは、フェノール類化合物とアルデヒド類化合物とを水溶媒中でゾル−ゲル反応により重合して得られる有機ヒドロキシゲルを乾燥して有機ドライゲルを得、該有機ドライゲルを炭素化処理することにより製造することができる多孔質炭素材料であり、賦活処理を行わなくても高い細孔表面積を得ることができる。さらにこのカーボンゲルには、比較的大きな微細孔が高度に発達しているため、上下水処理で用いられる吸着剤や電極材料として高い性能を得ることができる。ここで有機ヒドロキシゲルとは、三次元網目構造の有機ドライゲルと該有機ドライゲルに蓄えられる水とから構成されるものであり、該三次元網目を形成する有機ドライゲルとしては、例えば、ヘリックス形成によるゼラチン、アルカリ土類金属イオンとの配位結合より架橋を形成するポリアクリル酸、水素結合で架橋する完全けん化ポリビニルアルコール、フェノール性OH基を複数有する芳香族化合物(以下多価フェノール類化合物という)とアルデヒド類化合物を架橋させ形成する多価フェノール樹脂などが知られている。 However, in recent years, interest in the environment has increased, and at the same time, there has been an increase in interest in carbon materials that have developed more highly microscopic pores. Porous carbon materials that can be produced without activation treatment, or highly porous There is a demand for a porous carbon material with controlled slag, and carbon gel is attracting attention as such a porous carbon material. A carbon gel is produced by drying an organic hydroxygel obtained by polymerizing a phenolic compound and an aldehyde compound in a water solvent by a sol-gel reaction to obtain an organic dry gel, and carbonizing the organic dry gel. It is a porous carbon material that can be obtained, and a high pore surface area can be obtained without performing activation treatment. Furthermore, since this carbon gel has highly developed relatively large micropores, high performance can be obtained as an adsorbent or electrode material used in water and sewage treatment. Here, the organic hydroxy gel is composed of an organic dry gel having a three-dimensional network structure and water stored in the organic dry gel. Examples of the organic dry gel forming the three-dimensional network include gelatin by helix formation. , Polyacrylic acid that forms crosslinks by coordination bonds with alkaline earth metal ions, fully saponified polyvinyl alcohol that crosslinks by hydrogen bonds, and aromatic compounds having a plurality of phenolic OH groups (hereinafter referred to as polyhydric phenol compounds) Polyhydric phenol resins that are formed by crosslinking aldehyde compounds are known.

有機ヒドロキシゲルは、例えば、特許文献1に記載されている様に、水を溶媒に用い、多価フェノール類化合物の一種であるレゾルシノール(1,3−ジヒドロキシベンゼン)とホルムアルデヒドをゲル化させる事により得ることができる。該有機ヒドロキシゲルは、その後、超臨界二酸化炭素中若しくは超臨界水中で乾燥することで有機エアロゲルを得ることができる。しかしながら、レゾルシノールの価格が高く、また流体を臨界圧力で処理するため耐圧性に優れた高価な設備が必要であるなど、その製造コストが非常に高いという経済性の問題があった。 For example, as described in Patent Document 1, the organic hydroxygel is obtained by gelling resorcinol (1,3-dihydroxybenzene), which is a kind of polyhydric phenols, and formaldehyde, using water as a solvent. Can be obtained. Thereafter, the organic hydroxygel can be dried in supercritical carbon dioxide or supercritical water to obtain an organic aerogel. However, there is an economic problem that the cost of resorcinol is high and the production cost is very high, for example, an expensive facility with excellent pressure resistance is required because the fluid is processed at a critical pressure.

一方、特許文献2には、多価フェノール類化合物よりも原料コストの低いフェノール(モノヒドロキシベンゼン)とホルムアルデヒドを水溶媒中で重合させる技術が開示されている。当該技術ではレゾルシノールより反応性の劣るフェノールをホルムアルデヒドと重合反応させるために、従来よりも触媒量を増やすことで有機ヒドロキシゲルを得ている。しかしながら、当該技術では、大量の触媒を常時必要とするため、安価なフェノールを用いているにもかかわらず原料費の削減効果は小さいという問題があった。 On the other hand, Patent Document 2 discloses a technique of polymerizing phenol (monohydroxybenzene) and formaldehyde, which have lower raw material costs than polyhydric phenol compounds, in an aqueous solvent. In this technique, an organic hydroxygel is obtained by increasing the amount of catalyst as compared with the conventional method in order to polymerize phenol, which is less reactive than resorcinol, with formaldehyde. However, in this technique, since a large amount of catalyst is always required, there is a problem that the effect of reducing the raw material cost is small even though inexpensive phenol is used.

他方、特許文献3では、フェノールとホルムアルデヒドを塩酸や水酸化ナトリウムなどの強酸、強塩基触媒下で重合させた湿式ゲルを対流乾燥させる炭素キセロゲルの製造法に関する技術が開示されている。この技術では始めの溶液調製時に有機溶剤を添加することで、乾燥時に必要不可欠な有機溶剤による溶媒置換工程を省略し、操作の簡略化を行っている。しかしながら、当該技術に開示された実施例では、酸触媒、強塩基触媒を用いているため、得られる炭素キセロゲルはミクロ多孔質でありメソ孔の発達度は低くなる。これに加えて、極めて高濃度の酸触媒を利用しており、耐腐食性の高い設備が必要不可欠であると同時に、溶媒置換をしないことで大量の触媒が残存し、本来のカーボンゲルの高純度性が損なわれる事、揮発性の高い塩酸が蒸発して環境、人に悪影響を及ぼす等の問題があった。さらに、本手法では、乾燥時の溶媒置換を省略する為に原料フェノールやホルムアルデヒド量に対し過剰の有機溶剤が重合反応において用いられており、その為そのような条件下、実施例に記載されている手法に従って酸触媒下重合反応を行い製造された炭素材料は、水溶媒を用いて得られるカーボンゲル本来の十分なメソ細孔容積・メソ細孔径・表面積・かさ密度を併せ持っているとは言えなかった。 On the other hand, Patent Document 3 discloses a technique relating to a method for producing a carbon xerogel in which a wet gel obtained by polymerizing phenol and formaldehyde under a strong acid or strong base catalyst such as hydrochloric acid or sodium hydroxide is convectively dried. In this technique, an organic solvent is added at the time of initial solution preparation, thereby omitting a solvent replacement step with an organic solvent which is indispensable at the time of drying and simplifying the operation. However, in the examples disclosed in the art, since an acid catalyst and a strong base catalyst are used, the obtained carbon xerogel is microporous and the degree of development of mesopores is low. In addition to this, an acid catalyst with a very high concentration is used, and equipment with high corrosion resistance is indispensable. At the same time, a large amount of catalyst remains without solvent replacement, and the original carbon gel is highly concentrated. There were problems such as loss of purity, and evaporation of highly volatile hydrochloric acid to adversely affect the environment and people. Furthermore, in this method, an excess organic solvent relative to the amount of raw material phenol or formaldehyde is used in the polymerization reaction in order to omit solvent substitution at the time of drying, and as such, it is described in the examples under such conditions. The carbon materials produced by acid-catalyzed polymerization reaction according to the conventional method have sufficient mesopore volume, mesopore diameter, surface area, and bulk density inherent in carbon gel obtained using an aqueous solvent. There wasn't.

特開2002-3211JP2002-3211 特開2005-15649JP2005-15649 特表2011-526634Special table 2011-526634

このように、従来技術は、原料や設備投資に起因する製造コストが非常に高い、もしくは原料の反応性等の問題から効率的に細孔が発達した有機ヒドロキシゲルが製造できないなど、いずれも細孔が高度に発達した有機ヒドロキシゲルあるいはカーボンゲルを提供するものではなかった。 As described above, the conventional technology is very small in production cost due to raw materials and capital investment, or cannot produce organic hydroxy gel with fine pores efficiently due to problems such as raw material reactivity. It did not provide organic hydroxy gel or carbon gel with highly developed pores.

かかる実情において、本発明者らは鋭意検討を行った結果、フェノール類化合物とアルデヒド類化合物とを重合させ有機ヒドロキシゲルを得る工程において、重合時の触媒を弱塩基性触媒とし、水−有機溶媒中における有機溶媒の割合(質量パーセント)を調整して得られる有機ヒドロキシゲルを炭素化処理することによって得られる炭素材料が所望の微細孔を有する事を見出した。 In such a situation, the present inventors have intensively studied. As a result, in the step of polymerizing a phenol compound and an aldehyde compound to obtain an organic hydroxy gel, the polymerization catalyst is a weakly basic catalyst, and a water-organic solvent is used. It has been found that the carbon material obtained by carbonizing the organic hydroxygel obtained by adjusting the proportion (mass percent) of the organic solvent therein has the desired fine pores.

すなわち、本発明は下記(1)〜(6)である。
(1)フェノール類化合物とアルデヒド類化合物を水‐有機溶剤混合溶液中で重合させ乾燥後に炭素化させることにより得られる炭素材料であって、重合時の触媒を弱塩基性触媒とし、水−有機溶媒中における有機溶媒の割合が25 〜 55 質量%であり、60 〜 120℃で重合して得られる有機ヒドロキシゲルを炭素化することを特徴とした炭素材料。
(2)フェノール類化合物がフェノール、アルデヒド類化合物がホルムアルデヒドである請求項1記載の炭素材料。
(3)BET表面積が500 〜 1000 m2/gである上記(1)又は(2)の炭素材料。
(4)平均細孔直径が2 〜 50 nmである上記(1)〜(3)のいずれか1つの炭素材料。
(5)メソ細孔容積が0.5 〜 2 ml/gである上記(1)〜(4)のいずれか1つの炭素材料。
(6)密度が0.5 〜 2 g/cm3である上記(1)〜(5)のいずれか1つの炭素材料。
That is, the present invention includes the following (1) to (6).
(1) A carbon material obtained by polymerizing a phenolic compound and an aldehyde compound in a water-organic solvent mixed solution and then carbonizing after drying. The polymerization catalyst is a weakly basic catalyst, and water-organic The carbon material characterized by carbonizing the organic hydroxygel obtained by superposing | polymerizing at 60-120 degreeC whose ratio of the organic solvent in a solvent is 25-55 mass%.
(2) The carbon material according to claim 1, wherein the phenolic compound is phenol and the aldehyde compound is formaldehyde.
(3) The carbon material according to (1) or (2), wherein the BET surface area is 500 to 1000 m 2 / g.
(4) The carbon material according to any one of (1) to (3) above, having an average pore diameter of 2 to 50 nm.
(5) The carbon material according to any one of (1) to (4) above, wherein the mesopore volume is 0.5 to 2 ml / g.
(6) The carbon material according to any one of (1) to (5) above, wherein the density is 0.5 to 2 g / cm 3 .

本発明によれば、ミクロ孔とメソ孔がともに発達し、かつ高密度の有機ドライゲルあるいは炭素材料を安価に提供することができる。 According to the present invention, both micropores and mesopores can be developed, and a high-density organic dry gel or carbon material can be provided at low cost.

本発明の炭素材料は、フェノール類化合物とアルデヒド類化合物とを水と親水性有機溶媒の複数混合溶媒を用いてゾル−ゲル反応により重合させて有機ヒドロキシゲルを合成するゲル化工程、有機ヒドロキシゲルの乾燥工程、及び、当該有機ヒドロキシゲルを炭素化させる工程により製造される。以下にそれぞれの工程について説明する。 The carbon material of the present invention comprises a gelation step of synthesizing an organic hydroxygel by polymerizing a phenolic compound and an aldehyde compound by a sol-gel reaction using a mixed solvent of water and a hydrophilic organic solvent, an organic hydroxygel The drying step and the step of carbonizing the organic hydroxygel are produced. Each process will be described below.

本発明のゲル化工程は、フェノール類化合物とアルデヒド類化合物とを水と有機溶媒の混合溶媒中でゾルーゲル法により重合させて有機ヒドロキシゲルを合成する工程である。本発明で用いられるフェノール類化合物としては、いずれの価数のものも用いることができる。一価フェノール類化合物ではフェノール、o-クレゾール、m-クレゾール、p-クレゾール、チモール、ナフトール、二価フェノール類化合物ではレゾルシノール、カテコール、ヒドロキノン、ジヒドロキシナフタレン、三価フェノール類化合物ではピロガロール、フロログルシロール等があげられる。このうち、一価フェノール類化合物、より好ましくはフェノールの使用が生産性を高めるうえで好ましい。 The gelation step of the present invention is a step of synthesizing an organic hydroxy gel by polymerizing a phenol compound and an aldehyde compound in a mixed solvent of water and an organic solvent by a sol-gel method. As the phenol compounds used in the present invention, those having any valence can be used. Phenol, o-cresol, m-cresol, p-cresol, thymol, naphthol for monohydric phenol compounds, resorcinol, catechol, hydroquinone, dihydroxynaphthalene for dihydric phenol compounds, pyrogallol, phloroglucylol for trihydric phenol compounds Etc. Of these, the use of a monohydric phenol compound, more preferably phenol, is preferable for increasing productivity.

本発明で用いられるアルデヒド類化合物としては、例えば、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、サリチルアルデヒド、ベンズアルデヒド等などがあげられる。このうち、反応性の高さからホルムアルデヒドを用いることが好ましい。アルデヒド類は予め水溶媒等に溶解させた原料を使用してもかまわない。 Examples of the aldehyde compound used in the present invention include formaldehyde, acetaldehyde, butyraldehyde, salicylaldehyde, benzaldehyde and the like. Among these, it is preferable to use formaldehyde because of its high reactivity. Aldehydes may be a raw material previously dissolved in an aqueous solvent or the like.

本発明で用いられる有機溶媒としては、水に混和できる親水性有機溶媒であれば好ましく、メタノール、エタノール、1-プロパノール、2-プロパノール、ギ酸、1-ブタノール、酢酸、アセトン、テトラヒドロフラン、N,N-ジメチルホルムアミド等があげられる。このうち、汎用性の高さや経済性の面で優れるエタノール、1-プロパノール、2-プロパノールなどの低級アルコールがゾル−ゲル反応を効率的に行う水‐有機溶剤混合溶液を調製しやすい。 The organic solvent used in the present invention is preferably a hydrophilic organic solvent miscible with water, such as methanol, ethanol, 1-propanol, 2-propanol, formic acid, 1-butanol, acetic acid, acetone, tetrahydrofuran, N, N -Dimethylformamide and the like. Among these, it is easy to prepare a water-organic solvent mixed solution in which lower alcohols such as ethanol, 1-propanol, and 2-propanol, which are excellent in versatility and economy, efficiently perform a sol-gel reaction.

本発明では、上記原料溶液中、フェノール類化合物(以下Pともいう)とアルデヒド類化合物(以下Fともいう)との反応割合は特に限定されないが、フェノール類化合物(P)に対するアルデヒド類化合物(F)のモル比(F/P)が、通常1〜3、好ましくは1.5〜2.5、より好ましくは、1.75〜2.25である。モル比が1より小さいと三次元構造を構築する架橋の役割を果たすアルデヒド類化合物の量が少なくなるため目的とする微細構造をもつ有機ヒドロキシゲルを製造しにくくなる。また3より大きいと、アルデヒド類化合物の量が過剰となり目的とする付加・縮合反応を阻害しやすくなると同時に、微細構造内部に残存して不純物となりやすい。 In the present invention, the reaction rate of the phenol compound (hereinafter also referred to as P) and the aldehyde compound (hereinafter also referred to as F) in the raw material solution is not particularly limited, but the aldehyde compound (F) relative to the phenol compound (P) is not limited. ) Molar ratio (F / P) is usually 1 to 3, preferably 1.5 to 2.5, more preferably 1.75 to 2.25. If the molar ratio is less than 1, the amount of aldehyde compounds that play a role of crosslinking to form a three-dimensional structure is reduced, making it difficult to produce an organic hydroxygel having the desired microstructure. On the other hand, if it exceeds 3, the amount of the aldehyde compound becomes excessive and the target addition / condensation reaction tends to be inhibited, and at the same time, it tends to remain inside the microstructure and become an impurity.

本発明では、全溶媒中における有機溶媒の割合が25〜55質量%である水‐有機溶剤混合溶液中でフェノール類化合物とアルデヒド類化合物を重合することを特徴とする。好ましくは有機溶剤の種類によってこの範囲において特定の割合に調整することになるが、エタノールの場合は40 〜 55質量%、1-プロパノールの場合は37 〜 53 質量%、2-プロパノールの場合は27 〜 37 質量%の範囲を挙げることができる。有機溶媒の割合が55質量%より高くなると、有機溶媒の割合が大きくなるためアルデヒド類化合物の反応性が低下し、所望の細孔が得にくい。またこの溶媒比率が規定している値よりも低くなると、水溶媒の割合が大きくなるためフェノール類化合物の反応性が低下し、所望の細孔が得にくい。この溶媒比率は用いるフェノール類化合物の種類、量によっても最適値が変化するため適宜調製条件は調節される。また、水と混合する有機溶媒の種類は1種類に限定されるものではない。 The present invention is characterized in that a phenol compound and an aldehyde compound are polymerized in a water-organic solvent mixed solution in which the ratio of the organic solvent in the total solvent is 25 to 55% by mass. Preferably, it is adjusted to a specific ratio in this range depending on the kind of the organic solvent. In the case of ethanol, it is 40 to 55% by mass, in the case of 1-propanol, 37 to 53% by mass, in the case of 2-propanol, 27%. A range of ~ 37% by weight can be mentioned. When the proportion of the organic solvent is higher than 55% by mass, the proportion of the organic solvent is increased, so that the reactivity of the aldehyde compound is lowered and it is difficult to obtain desired pores. On the other hand, when the solvent ratio is lower than the specified value, the ratio of the aqueous solvent is increased, so that the reactivity of the phenol compound is lowered and it is difficult to obtain desired pores. Since the optimum value of the solvent ratio varies depending on the type and amount of the phenol compound used, the preparation conditions are appropriately adjusted. Further, the type of organic solvent mixed with water is not limited to one.

本発明は、必要により、ゲル化工程においてフェノール類化合物とアルデヒド類化合物との反応時に上記原料溶液に弱塩基性触媒を配合すると、フェノール類化合物とアルデヒド類化合物との反応性を向上させ、3次元網目構造の形成を促進することができるため好ましい。本発明で用いられる弱塩基性触媒としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸カルシウムなどがあげられる。このうち、安全性の高さや経済的な面から炭酸ナトリウムが好ましい。酸性触媒を使用する場合、フェノール類化合物に対して直鎖状に分子が結合するため三次元ネットワーク構造が構築されず、無細孔のノボラック樹脂となり、所望の細孔が得にくい。また水酸化ナトリウム等の強アルカリを使用する場合、弱塩基触媒よりも極めて反応性が高いため、三次元ネットワーク構造が形成される前に硬化し、所望の細孔を得にくい。 The present invention improves the reactivity of the phenolic compound and the aldehyde compound by adding a weakly basic catalyst to the raw material solution during the reaction of the phenolic compound and the aldehyde compound in the gelation step, if necessary. This is preferable because the formation of a three-dimensional network structure can be promoted. Examples of the weakly basic catalyst used in the present invention include sodium carbonate, potassium carbonate, lithium carbonate, sodium hydrogen carbonate, calcium carbonate and the like. Among these, sodium carbonate is preferable from the viewpoint of high safety and economical aspect. When an acidic catalyst is used, molecules are bonded linearly to the phenolic compound, so that a three-dimensional network structure is not constructed and a no-porous novolak resin is obtained, making it difficult to obtain desired pores. In addition, when a strong alkali such as sodium hydroxide is used, the reactivity is extremely higher than that of a weak base catalyst, so that it hardens before a three-dimensional network structure is formed, and it is difficult to obtain desired pores.

弱塩基性触媒を用いる場合、その配合量は、弱塩基性触媒の種類や、該触媒の溶媒への溶解度などを考慮して適宜最適な範囲を選択することができるが、好ましくはフェノール類化合物と該触媒のモル比(P/C)が1〜200、より好ましくは30〜80である。触媒配合量が該範囲内にあるとコロイド粒子が短時間に数多く発生するため、所望の三次元構造が構築されやすくなるので好ましい。 In the case of using a weakly basic catalyst, the blending amount thereof can be appropriately selected in consideration of the type of weakly basic catalyst and the solubility of the catalyst in a solvent. And the catalyst has a molar ratio (P / C) of 1 to 200, more preferably 30 to 80. When the amount of the catalyst is within this range, a large number of colloidal particles are generated in a short time, which is preferable because a desired three-dimensional structure is easily constructed.

ゲル化工程において、ゾル−ゲル反応させる際の反応条件としては特に限定されないが、反応温度は、通常60〜120℃、好ましくは80〜100℃である。反応温度が60℃未満であると、ゾル−ゲル反応に時間がかかり過ぎて、生産性が大幅に低下しやすい。また反応温度が100℃を超えると、溶媒の沸点を超えるため反応容器内の圧力が急激に増加し、高価な圧力容器を利用する必要が生じるため経済的に好ましくない。また、反応時間は、通常7〜240時間、好ましくは24〜120時間である。反応時間が7時間未満であると、ゾル−ゲル反応の進行が不十分であるために有機ヒドロキシゲルの構造が不安定になりやすく強度の低下が生じやすい。また、反応時間が240時間を超えると、反応系中の溶媒の積算蒸発量が大きくなり、これに伴って有機ヒドロキシゲルが収縮して、有機ヒドロキシゲルの特異な構造が失われやすい。 In the gelation step, the reaction conditions for the sol-gel reaction are not particularly limited, but the reaction temperature is usually 60 to 120 ° C, preferably 80 to 100 ° C. When the reaction temperature is less than 60 ° C., the sol-gel reaction takes too much time, and the productivity tends to be greatly reduced. On the other hand, when the reaction temperature exceeds 100 ° C., the boiling point of the solvent is exceeded, so that the pressure in the reaction vessel rapidly increases and an expensive pressure vessel needs to be used, which is economically undesirable. Moreover, reaction time is 7 to 240 hours normally, Preferably it is 24 to 120 hours. If the reaction time is less than 7 hours, the progress of the sol-gel reaction is insufficient, so that the structure of the organic hydroxygel tends to become unstable and the strength tends to decrease. In addition, when the reaction time exceeds 240 hours, the cumulative evaporation amount of the solvent in the reaction system increases, and the organic hydroxy gel contracts accordingly, and the unique structure of the organic hydroxy gel tends to be lost.

前記有機ヒドロキシゲルを乾燥させ有機ドライゲルを得ることができる。当該有機ヒドロキシゲルを構成する微粒子の三次元的ネットワーク構造を保持したまま、三次元的ネットワーク構造中に残存する溶媒を除去できる乾燥方法を適宜選択することができる。本発明で用いられる乾燥方法には、温風乾燥、真空乾燥、凍結乾燥、超臨界乾燥、マイクロ波乾燥等があげられる。このうち、経済性の面から凍結乾燥、温風乾燥、マイクロ波乾燥が好ましい。 The organic hydroxy gel can be dried to obtain an organic dry gel. A drying method capable of removing the solvent remaining in the three-dimensional network structure can be appropriately selected while maintaining the three-dimensional network structure of the fine particles constituting the organic hydroxygel. Examples of the drying method used in the present invention include hot air drying, vacuum drying, freeze drying, supercritical drying, and microwave drying. Among these, lyophilization, warm air drying, and microwave drying are preferable in terms of economy.

本発明における凍結乾燥において、凍結温度としては特に限定されないが、通常-30〜-5℃、このましくは、-15〜-10℃である。凍結温度が該範囲内にあると、一般的に利用される凍結乾燥装置を用いる事ができ、乾燥速度も比較的大きくすることができるため好ましい。また、マイクロ波乾燥を行う場合、マイクロ波の出力としては特に限定されないが、通常0.1〜10 kW/kg、好ましくは0.5〜5 kW/kgである。マイクロ波の出力が該範囲内にあると、溶媒の急激な気化による有機ヒドロキシゲルの構造破壊を抑制することができると共に、乾燥速度も比較的大きくすることができるため好ましい。また、温風乾燥を行う場合、設定温度としては特に限定されないが、通常20〜150℃、好ましくは、30〜90℃である。設定温度が該範囲内にあると、一般的に利用される温風器、乾燥器を用いる事ができ、乾燥速度も比較的大きくすることができるため好ましい。 In the freeze-drying in the present invention, the freezing temperature is not particularly limited, but is usually −30 to −5 ° C., and preferably −15 to −10 ° C. It is preferable that the freezing temperature is within this range because a commonly used freeze-drying apparatus can be used and the drying speed can be relatively increased. Moreover, when performing microwave drying, it is although it does not specifically limit as an output of a microwave, Usually, 0.1-10 kW / kg, Preferably it is 0.5-5 kW / kg. It is preferable that the output of the microwave be within this range because structural destruction of the organic hydroxygel due to rapid vaporization of the solvent can be suppressed and the drying rate can be relatively increased. Moreover, when performing warm air drying, although it does not specifically limit as preset temperature, Usually, 20-150 degreeC, Preferably, it is 30-90 degreeC. It is preferable for the set temperature to fall within this range because a commonly used hot air or dryer can be used and the drying rate can be relatively increased.

本発明における炭素化工程は、上記の有機ドライゲルを非酸化性ガス雰囲気下で加熱することで、熱分解・炭素化させ微細孔を有する炭素材料を製造する工程である。本発明で用いられる炭素化温度としては特に限定されないが、通常200〜1200℃、好ましくは300〜1000℃である。炭素化温度が200℃より低すぎると該有機ドライゲルが十分に熱分解・炭素化されないため好ましくない。逆に炭素化温度が1200℃より高すぎると、熱分解が過度に進んで該有機ドライゲルの構造が崩れやすくなり、構造の破壊や強度の低下が起こりやすくなるため好ましくない。また処理時間としては特に限定されないが、通常1〜20時間、好ましくは、2〜10時間である。処理時間が1時間よりも少ないと、該有機ドライゲルが十分に熱分解・炭素化されないため好ましくない。逆に処理時間が20時間よりも多いと、熱分解が過度に進んで該有機ドライゲルの構造が崩れやすくなり、構造の破壊や強度の低下が起こりやすくなるため好ましくない。 The carbonization step in the present invention is a step of producing a carbon material having fine pores by heating and pyrolyzing the organic dry gel in a non-oxidizing gas atmosphere. Although it does not specifically limit as carbonization temperature used by this invention, Usually, 200-1200 degreeC, Preferably it is 300-1000 degreeC. If the carbonization temperature is too low, it is not preferable because the organic dry gel is not sufficiently pyrolyzed and carbonized. On the contrary, if the carbonization temperature is higher than 1200 ° C., the thermal decomposition proceeds excessively, the structure of the organic dry gel tends to collapse, and the structure is easily broken or the strength is lowered. The treatment time is not particularly limited, but is usually 1 to 20 hours, preferably 2 to 10 hours. A treatment time of less than 1 hour is not preferable because the organic dry gel is not sufficiently pyrolyzed and carbonized. On the other hand, if the treatment time is longer than 20 hours, the thermal decomposition proceeds excessively and the structure of the organic dry gel is liable to be destroyed, and the structure is easily broken and the strength is reduced.

本発明は、以上の方法により、有機ヒドロキシゲルを構成する微粒子の三次元ネットワーク構造が実質的に保たれたまま三次元的ネットワーク構造中に残存する溶媒を除去することができ、乾燥時における構造の破壊が生じない有機ドライゲルが得られる。さらに該有機ドライゲルを炭素化することで三次元ネットワーク構造を保持したまま微細孔を発達させたカーボンゲルを得ることができる。本発明では、該有機ドライゲルあるいはカーボンゲルは、ミクロ孔、メソ孔の発達したものである。本発明で得られる有機ドライゲルあるいはカーボンゲルは、上下水処理、排ガス処理等に用いられる吸着剤および各種電極材料や触媒担体として使用することができる。 The present invention can remove the solvent remaining in the three-dimensional network structure while the three-dimensional network structure of the fine particles constituting the organic hydroxygel is substantially maintained by the above method, and the structure at the time of drying. An organic dry gel is obtained in which no breakage occurs. Further, by carbonizing the organic dry gel, it is possible to obtain a carbon gel in which micropores are developed while maintaining a three-dimensional network structure. In the present invention, the organic dry gel or carbon gel has micropores and mesopores developed. The organic dry gel or carbon gel obtained in the present invention can be used as an adsorbent, various electrode materials, and a catalyst carrier used for water and sewage treatment, exhaust gas treatment, and the like.

本発明より得られる炭素材料は、BET表面積が500 〜 1000 m2/gの炭素材料であることが好ましい。また、メソ平均細孔直径が2 〜 50 nmであることが好ましい。さらに、メソ細孔容積が0.5 〜 2 ml/gである炭素材料であることが好ましい。さらに、その密度が0.5 〜 2 g/cm3の炭素材料であることが好ましい。このように、本発明の炭素材料は、メソ細孔容積が発達し、かつその平均細孔直径が小さく、高い表面積を有している多孔質材料である。したがって、本発明の炭素材料は吸着剤、電極材料、触媒担体の用途に好適である。 The carbon material obtained from the present invention is preferably a carbon material having a BET surface area of 500 to 1000 m 2 / g. The meso average pore diameter is preferably 2 to 50 nm. Further, a carbon material having a mesopore volume of 0.5 to 2 ml / g is preferable. Further, a carbon material having a density of 0.5 to 2 g / cm 3 is preferable. Thus, the carbon material of the present invention is a porous material having a high mesopore volume, a small average pore diameter, and a high surface area. Therefore, the carbon material of the present invention is suitable for use as an adsorbent, an electrode material, and a catalyst carrier.

以下、実施例により本発明を更に詳しく説明するが、本発明は下記の実施例になんら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to the following Example at all.

(実施例1)フェノール類化合物としてフェノール(P)188質量部、アルデヒド類化合物(F)として37質量%ホルムアルデヒド水溶液325質量部(F/Pモル比 = 2)、溶媒として水100質量部、有機溶媒としてエタノール334質量部、触媒として炭酸ナトリウム4質量部を20 mlのガラス瓶に入れ、適度に攪拌後、90℃にて72時間重合反応を行い、有機ヒドロキシゲル950質量部を得た。この有機ヒドロキシゲル中に残存する混合溶媒を、tert-ブチルアルコールで置換したあと、凍結温度-10℃で72時間凍結乾燥を行い、有機ドライゲルを得た。有機ドライゲルを、1000℃で不活性ガス雰囲気下、4時間の熱分解によって本発明の炭素材料を得た。 (Example 1) 188 parts by mass of phenol (P) as a phenol compound, 325 parts by mass of a 37% by weight formaldehyde aqueous solution (F / P molar ratio = 2) as an aldehyde compound (F), 100 parts by mass of water as a solvent, organic 334 parts by mass of ethanol as a solvent and 4 parts by mass of sodium carbonate as a catalyst were placed in a 20 ml glass bottle, and after moderate stirring, a polymerization reaction was performed at 90 ° C. for 72 hours to obtain 950 parts by mass of an organic hydroxygel. The mixed solvent remaining in the organic hydroxygel was replaced with tert-butyl alcohol, and then lyophilized at a freezing temperature of −10 ° C. for 72 hours to obtain an organic dry gel. The carbon material of the present invention was obtained by pyrolyzing the organic dry gel at 1000 ° C. in an inert gas atmosphere for 4 hours.

(実施例2)フェノール類化合物としてフェノール(P)188質量部、アルデヒド類化合物(F)として37質量%ホルムアルデヒド水溶液325質量部(F/Pモル比 = 2)、溶媒として水154質量部、有機溶媒として1-プロパノール298質量部、触媒として炭酸ナトリウム4質量部を20 mlのガラス瓶に入れ、適度に攪拌後、90℃にて72時間重合反応を行い、有機ヒドロキシゲル950質量部を得た。この有機ヒドロキシゲル中に残存する混合溶媒を、tert-ブチルアルコールで置換したあと、凍結温度-10℃で72時間凍結乾燥を行い、有機ドライゲルを得た。有機ドライゲルを、1000℃で不活性ガス雰囲気下、4時間の熱分解によって本発明の炭素材料を得た。 (Example 2) 188 parts by mass of phenol (P) as a phenol compound, 325 parts by mass of a 37% by weight formaldehyde aqueous solution (F / P molar ratio = 2) as an aldehyde compound (F), 154 parts by mass of water as a solvent, organic 298 parts by mass of 1-propanol as a solvent and 4 parts by mass of sodium carbonate as a catalyst were placed in a 20 ml glass bottle, and after moderate stirring, a polymerization reaction was performed at 90 ° C. for 72 hours to obtain 950 parts by mass of an organic hydroxygel. The mixed solvent remaining in the organic hydroxygel was replaced with tert-butyl alcohol, and then lyophilized at a freezing temperature of −10 ° C. for 72 hours to obtain an organic dry gel. The carbon material of the present invention was obtained by pyrolyzing the organic dry gel at 1000 ° C. in an inert gas atmosphere for 4 hours.

(実施例3)フェノール類化合物としてフェノール(P)188質量部、アルデヒド類化合物(F)として37質量%ホルムアルデヒド水溶液325質量部(F/Pモル比 = 2)、溶媒として水184質量部、有機溶媒として2-プロパノール289質量部、触媒として炭酸ナトリウム4質量部を20 mlのガラス瓶に入れ、適度に攪拌後、90℃にて72時間重合反応を行い、有機ヒドロキシゲル950質量部を得た。この有機ヒドロキシゲル中に残存する混合溶媒を、tert-ブチルアルコールで置換したあと、凍結温度-10℃で72時間凍結乾燥を行い、有機ドライゲルを得た。有機ドライゲルを、1000℃で不活性ガス雰囲気下、4時間の熱分解によって本発明の炭素材料を得た。 (Example 3) 188 parts by mass of phenol (P) as a phenolic compound, 325 parts by mass of a 37% by weight aqueous formaldehyde solution (F / P molar ratio = 2) as an aldehyde compound (F), 184 parts by mass of water as a solvent, organic 289 parts by mass of 2-propanol as a solvent and 4 parts by mass of sodium carbonate as a catalyst were placed in a 20 ml glass bottle, and after moderate stirring, a polymerization reaction was carried out at 90 ° C. for 72 hours to obtain 950 parts by mass of an organic hydroxygel. The mixed solvent remaining in the organic hydroxygel was replaced with tert-butyl alcohol, and then lyophilized at a freezing temperature of −10 ° C. for 72 hours to obtain an organic dry gel. The carbon material of the present invention was obtained by pyrolyzing the organic dry gel at 1000 ° C. in an inert gas atmosphere for 4 hours.

(比較例1)フェノール類化合物としてフェノール(P)188質量部、アルデヒド類化合物(F)として37質量%ホルムアルデヒド水溶液325質量部(F/Pモル比 = 2)、溶媒として水329質量部、有機溶媒としてエタノール153質量部、触媒として炭酸ナトリウム4質量部を20 mlのガラス瓶に入れ、適度に攪拌後、90℃にて72時間重合反応を行い、有機ヒドロキシゲル950質量部を得た。この有機ヒドロキシゲル中に残存する混合溶媒を、tert-ブチルアルコールで置換したあと、凍結温度-10℃で72時間凍結乾燥を行い、有機ドライゲルを得た。有機ドライゲルを、1000℃で不活性ガス雰囲気下、4時間の熱分解によって炭素材料を得た。 (Comparative Example 1) 188 parts by mass of phenol (P) as a phenol compound, 325 parts by mass of a 37% by weight aqueous formaldehyde solution (F / P molar ratio = 2) as an aldehyde compound (F), 329 parts by mass of water as a solvent, organic 153 parts by mass of ethanol as a solvent and 4 parts by mass of sodium carbonate as a catalyst were placed in a 20 ml glass bottle, and after moderate stirring, a polymerization reaction was carried out at 90 ° C. for 72 hours to obtain 950 parts by mass of an organic hydroxygel. The mixed solvent remaining in the organic hydroxygel was replaced with tert-butyl alcohol, and then lyophilized at a freezing temperature of −10 ° C. for 72 hours to obtain an organic dry gel. A carbon material was obtained by pyrolyzing the organic dry gel at 1000 ° C. in an inert gas atmosphere for 4 hours.

(比較例2)フェノール類化合物としてフェノール(P)188質量部、アルデヒド類化合物(F)として37質量%ホルムアルデヒド水溶液325質量部(F/Pモル比 = 2)、溶媒として水58質量部、有機溶媒として1-プロパノール375質量部、触媒として炭酸ナトリウム4質量部を20 mlのガラス瓶に入れ、適度に攪拌後、90℃にて72時間重合反応を行い、有機ヒドロキシゲル950質量部を得た。この有機ヒドロキシゲル中に残存する混合溶媒を、tert-ブチルアルコールで置換したあと、凍結温度-10℃で72時間凍結乾燥を行い、有機ドライゲルを得た。有機ドライゲルを、1000℃で不活性ガス雰囲気下、4時間の熱分解によって炭素材料を得た。 (Comparative Example 2) 188 parts by mass of phenol (P) as a phenol compound, 325 parts by mass of a 37% by weight formaldehyde aqueous solution (F / P molar ratio = 2) as an aldehyde compound (F), 58 parts by mass of water as a solvent, organic 375 parts by mass of 1-propanol as a solvent and 4 parts by mass of sodium carbonate as a catalyst were placed in a 20 ml glass bottle, and after moderate stirring, a polymerization reaction was carried out at 90 ° C. for 72 hours to obtain 950 parts by mass of an organic hydroxygel. The mixed solvent remaining in the organic hydroxygel was replaced with tert-butyl alcohol, and then lyophilized at a freezing temperature of −10 ° C. for 72 hours to obtain an organic dry gel. A carbon material was obtained by pyrolyzing the organic dry gel at 1000 ° C. in an inert gas atmosphere for 4 hours.

(比較例3)フェノール類化合物としてフェノール(P)188質量部、アルデヒド類化合物(F)として37質量%ホルムアルデヒド水溶液325質量部(F/Pモル比 = 2)、溶媒として水54質量部、有機溶媒として2-プロパノール368質量部、触媒として炭酸ナトリウム4質量部を20 mlのガラス瓶に入れ、適度に攪拌後、90℃にて72時間重合反応を行い、有機ヒドロキシゲル900質量部を得た。この有機ヒドロキシゲル中に残存する混合溶媒を、tert-ブチルアルコールで置換したあと、凍結温度-10℃で72時間凍結乾燥を行い、有機ドライゲルを得た。有機ドライゲルを、1000℃で不活性ガス雰囲気下、4時間の熱分解によって炭素材料を得た。 (Comparative Example 3) 188 parts by mass of phenol (P) as a phenol compound, 325 parts by mass of a 37% by weight aqueous formaldehyde solution (F / P molar ratio = 2) as an aldehyde compound (F), 54 parts by mass of water as a solvent, organic 368 parts by mass of 2-propanol as a solvent and 4 parts by mass of sodium carbonate as a catalyst were put in a 20 ml glass bottle, and after moderate stirring, a polymerization reaction was performed at 90 ° C. for 72 hours to obtain 900 parts by mass of an organic hydroxygel. The mixed solvent remaining in the organic hydroxygel was replaced with tert-butyl alcohol, and then lyophilized at a freezing temperature of −10 ° C. for 72 hours to obtain an organic dry gel. A carbon material was obtained by pyrolyzing the organic dry gel at 1000 ° C. in an inert gas atmosphere for 4 hours.

(比較例4)フェノール類化合物としてフェノール(P)188質量部、アルデヒド類化合物(F)として37質量%ホルムアルデヒド水溶液325質量部(F/Pモル比 = 2)、溶媒として水522質量部、触媒として炭酸ナトリウム4質量部を20 mlのガラス瓶に入れ、適度に攪拌後、90℃にて72時間重合反応を行い、有機ヒドロキシゲル1000質量部を得た。この有機ヒドロキシゲル中に残存する混合溶媒を、tert-ブチルアルコールで置換したあと、凍結温度-10℃で72時間凍結乾燥を行い、有機ドライゲルを得た。有機ドライゲルを、1000℃で不活性ガス雰囲気下、4時間の熱分解によって炭素材料を得た。 (Comparative Example 4) 188 parts by mass of phenol (P) as a phenol compound, 325 parts by mass of a 37% by weight aqueous formaldehyde solution (F / P molar ratio = 2) as an aldehyde compound (F), 522 parts by mass of water as a solvent, catalyst As follows, 4 parts by mass of sodium carbonate was put in a 20 ml glass bottle, and after moderate stirring, a polymerization reaction was carried out at 90 ° C. for 72 hours to obtain 1000 parts by mass of an organic hydroxygel. The mixed solvent remaining in the organic hydroxygel was replaced with tert-butyl alcohol, and then lyophilized at a freezing temperature of −10 ° C. for 72 hours to obtain an organic dry gel. A carbon material was obtained by pyrolyzing the organic dry gel at 1000 ° C. in an inert gas atmosphere for 4 hours.

(比較例5)フェノール類化合物としてフェノール(P)188質量部、アルデヒド類化合物(F)として37質量%ホルムアルデヒド水溶液325質量部(F/Pモル比 = 2)、溶媒として水34質量部、有機溶媒としてエタノール323質量部、触媒として37質量%塩酸水溶液66質量部を20 mlのガラス瓶に入れ、適度に攪拌後、90℃にて72時間重合反応を行い、有機ヒドロキシゲル900質量部を得た。この有機ヒドロキシゲル中に残存する混合溶媒を、tert-ブチルアルコールで置換したあと、凍結温度-10℃で72時間凍結乾燥を行い、有機ドライゲルを得た。有機ドライゲルを、1000℃で不活性ガス雰囲気下、4時間の熱分解によって炭素材料を得た。 (Comparative Example 5) 188 parts by mass of phenol (P) as a phenol compound, 325 parts by mass of a 37% by weight formaldehyde aqueous solution (F / P molar ratio = 2) as an aldehyde compound (F), 34 parts by mass of water as a solvent, organic 323 parts by mass of ethanol as a solvent and 66 parts by mass of 37% by mass hydrochloric acid solution as a catalyst were placed in a 20 ml glass bottle, and after moderate stirring, a polymerization reaction was performed at 90 ° C. for 72 hours to obtain 900 parts by mass of an organic hydroxygel. . The mixed solvent remaining in the organic hydroxygel was replaced with tert-butyl alcohol, and then lyophilized at a freezing temperature of −10 ° C. for 72 hours to obtain an organic dry gel. A carbon material was obtained by pyrolyzing the organic dry gel at 1000 ° C. in an inert gas atmosphere for 4 hours.

(比較例6)フェノール類化合物としてフェノール(P)188質量部、アルデヒド類化合物(F)として37質量%ホルムアルデヒド水溶液325質量部(F/Pモル比 = 2)、溶媒として水87質量部、有機溶媒としてエタノール323質量部、触媒として37質量%塩酸水溶液3.9質量部を20 mlのガラス瓶に入れ、適度に攪拌後、90℃にて72時間重合反応を行い、有機ヒドロキシゲル900質量部を得た。この有機ヒドロキシゲル中に残存する混合溶媒を、tert-ブチルアルコールで置換したあと、凍結温度-10℃で72時間凍結乾燥を行い、有機ドライゲルを得た。有機ドライゲルを、1000℃で不活性ガス雰囲気下、4時間の熱分解によって炭素材料を得た。 (Comparative Example 6) 188 parts by mass of phenol (P) as a phenol compound, 325 parts by mass of a 37% by weight formaldehyde aqueous solution (F / P molar ratio = 2) as an aldehyde compound (F), 87 parts by mass of water as a solvent, organic 323 parts by weight of ethanol as a solvent and 3.9 parts by weight of a 37% by weight aqueous hydrochloric acid solution as a catalyst were placed in a 20 ml glass bottle, and after moderate stirring, a polymerization reaction was carried out at 90 ° C. for 72 hours to obtain 900 parts by weight of an organic hydroxygel. . The mixed solvent remaining in the organic hydroxygel was replaced with tert-butyl alcohol, and then lyophilized at a freezing temperature of −10 ° C. for 72 hours to obtain an organic dry gel. A carbon material was obtained by pyrolyzing the organic dry gel at 1000 ° C. in an inert gas atmosphere for 4 hours.

(比較例7)フェノール類化合物としてフェノール(P)188質量部、アルデヒド類化合物(F)として37質量%ホルムアルデヒド水溶液325質量部(F/Pモル比 = 2)、溶媒として水36質量部、有機溶媒としてエタノール323質量部、触媒として50w/v%水酸化ナトリウム水溶液27質量部を20 mlのガラス瓶に入れ、適度に攪拌後、90℃にて72時間重合反応を行い、有機ヒドロキシゲル850質量部を得た。この有機ヒドロキシゲル中に残存する混合溶媒を、tert-ブチルアルコールで置換したあと、凍結温度-10℃で72時間凍結乾燥を行い、有機ドライゲルを得た。有機ドライゲルを、1000℃で不活性ガス雰囲気下、4時間の熱分解によって炭素材料を得た。 (Comparative Example 7) 188 parts by mass of phenol (P) as a phenol compound, 325 parts by mass of a 37% by weight formaldehyde aqueous solution (F / P molar ratio = 2) as an aldehyde compound (F), 36 parts by mass of water as a solvent, organic 323 parts by weight of ethanol as a solvent and 27 parts by weight of 50 w / v% aqueous sodium hydroxide solution as a catalyst are placed in a 20 ml glass bottle, and after moderate stirring, a polymerization reaction is carried out at 90 ° C. for 72 hours, and 850 parts by weight of an organic hydroxygel Got. The mixed solvent remaining in the organic hydroxygel was replaced with tert-butyl alcohol, and then lyophilized at a freezing temperature of −10 ° C. for 72 hours to obtain an organic dry gel. A carbon material was obtained by pyrolyzing the organic dry gel at 1000 ° C. in an inert gas atmosphere for 4 hours.

(比較例8)フェノール類化合物としてフェノール(P)188質量部、アルデヒド類化合物(F)として37質量%ホルムアルデヒド水溶液325質量部(F/Pモル比 = 2)、溶媒として水90質量部、有機溶媒としてエタノール323質量部、触媒として50w/v%水酸化ナトリウム水溶液2質量部を20 mlのガラス瓶に入れ、適度に攪拌後、90℃にて72時間重合反応を行い、有機ヒドロキシゲル900質量部を得た。この有機ヒドロキシゲル中に残存する混合溶媒を、tert-ブチルアルコールで置換したあと、凍結温度-10℃で72時間凍結乾燥を行い、有機ドライゲルを得た。有機ドライゲルを、1000度で不活性ガス雰囲気下、4時間の熱分解によって炭素材料を得た。 (Comparative Example 8) 188 parts by mass of phenol (P) as a phenol compound, 325 parts by mass of a 37% by weight formaldehyde aqueous solution (F / P molar ratio = 2) as an aldehyde compound (F), 90 parts by mass of water as a solvent, organic 323 parts by weight of ethanol as a solvent and 2 parts by weight of 50 w / v% aqueous sodium hydroxide solution as a catalyst are placed in a 20 ml glass bottle, and after moderate stirring, a polymerization reaction is carried out at 90 ° C. for 72 hours, and 900 parts by weight of organic hydroxy gel Got. The mixed solvent remaining in the organic hydroxygel was replaced with tert-butyl alcohol, and then lyophilized at a freezing temperature of −10 ° C. for 72 hours to obtain an organic dry gel. A carbon material was obtained by pyrolysis of an organic dry gel at 1000 ° C. for 4 hours in an inert gas atmosphere.

実施例および比較例で得られたカーボンゲルについて、BET表面積およびメソ細孔径容積を以下の方法により測定した。結果を表1に示す。
・BET表面積:全自動ガス吸着装置(77K)にてN2吸脱着等温線を測定し、BET法にて計算して求めた。
・メソ細孔容積:全自動ガス吸着装置(77K)にてN2吸脱着等温線を測定し、Dollimore-Heal法にて計算し求めた。
About the carbon gel obtained by the Example and the comparative example, the BET surface area and the mesopore diameter volume were measured with the following method. The results are shown in Table 1.
-BET surface area: N 2 adsorption / desorption isotherm was measured with a fully automatic gas adsorption device (77K), and calculated by BET method.
-Mesopore volume: N 2 adsorption / desorption isotherm was measured with a fully automatic gas adsorption device (77K), and calculated by the Dollimore-Heal method.

実施例1〜3で得られた炭素材料は、BET表面積、メソ孔細孔容積ともに優れた特性を示した。特に実施例1,3では溶媒組成が好ましい範囲にある条件下弱塩基触媒を用いて重合反応を行なっているため、疎水性のフェノールと親水性のホルムアルデヒドの反応が円滑に進行した結果三次元網目構造が形成され、最終的に得られた炭素材料は表面積・メソ孔容積・密度の観点から好ましい材料が得られた。3次元網目構造を有する一方、比較例1 〜
3は、溶媒組成が最適な範囲外であるため反応性が著しく低下し、ミクロ孔、メソ孔ともに発達した炭素材料の作製は困難だった。比較例4は溶媒が水のみで疎水性のフェノールの反応性が著しく低下したため望ましい炭素材料が得られなかった。また、比較例5 〜 8は、弱塩基触媒よりも反応性が高い高濃度塩酸、高濃度水酸化ナトリウムを触媒に用いているため、所望の構造が構築される前に硬化し無細孔となり、所望の構造が得られなかった。
The carbon materials obtained in Examples 1 to 3 exhibited excellent characteristics in both BET surface area and mesopore pore volume. In particular, in Examples 1 and 3, since the polymerization reaction is performed using a weak base catalyst under conditions where the solvent composition is in a preferable range, the reaction of hydrophobic phenol and hydrophilic formaldehyde smoothly proceeds, resulting in a three-dimensional network. The structure was formed, and the carbon material finally obtained was a preferable material in terms of surface area, mesopore volume and density. While having a three-dimensional network structure, Comparative Example 1 to
In No. 3, the solvent composition was outside the optimum range, so the reactivity was remarkably lowered, and it was difficult to produce a carbon material with both micropores and mesopores. In Comparative Example 4, the desired carbon material could not be obtained because the reactivity of hydrophobic phenol was remarkably lowered when the solvent was only water. In addition, Comparative Examples 5 to 8 use high-concentration hydrochloric acid and high-concentration sodium hydroxide, which are more reactive than weak base catalysts, as the catalyst, so that they harden before becoming the desired structure and become non-porous. The desired structure was not obtained.

Claims (3)

フェノール類化合物とアルデヒド類化合物を水‐有機溶剤混合溶液(但し、前記有機溶剤は水親和性有機溶媒であり、かつ前記混合溶液は界面活性剤を含有する場合を除く)中で重合させて有機ヒドロキシゲルを得る工程、
得られた有機ヒドロキシゲルを乾燥後に炭素化させて炭素材料を得る工程を含む、三次元的ネットワークを有し、かつBET表面積が500〜1000 m 2 /gであり、平均メソ細孔直径が2〜50nmであり、メソ細孔容積が0.5〜2ml/gである炭素材料の製造方法であって、
前記水−有機溶媒混合溶液中における有機溶媒の割合が25〜55質量%であり、
前記重合時の触媒を弱塩基性触媒とし、
前記重合の温度を60 〜120℃の範囲とし、
フェノール類化合物(P)に対するアルデヒド類化合物(F)のモル比(F/P)を1.5〜2.5の範囲とすることを特徴とする炭素材料の製造方法。
A phenolic compound and an aldehyde compound are polymerized in a water-organic solvent mixed solution (provided that the organic solvent is a hydrophilic organic solvent and the mixed solution does not contain a surfactant) and is organically Obtaining a hydroxy gel,
The obtained organic hydroxy gel includes a step of carbonizing after drying to obtain a carbon material , having a three-dimensional network, having a BET surface area of 500 to 1000 m 2 / g, and an average mesopore diameter of 2 A method for producing a carbon material having a mesopore volume of 0.5 to 2 ml / g, which is ˜50 nm ,
The ratio of the organic solvent in the water-organic solvent mixed solution is 25 to 55% by mass,
The catalyst during the polymerization is a weakly basic catalyst,
The polymerization temperature is in the range of 60 to 120 ° C. ,
A method for producing a carbon material, wherein the molar ratio (F / P) of the aldehyde compound (F) to the phenol compound (P) is in the range of 1.5 to 2.5 .
フェノール類化合物がフェノール、アルデヒド類化合物がホルムアルデヒドである請求項1記載の製造方法。 The production method according to claim 1, wherein the phenol compound is phenol and the aldehyde compound is formaldehyde. 前記炭素材料は密度が0.5〜2g/cm3の請求項1〜2のいずれか1項記載の製造方法。 The manufacturing method according to claim 1, wherein the carbon material has a density of 0.5 to 2 g / cm 3 .
JP2012021627A 2012-02-03 2012-02-03 Carbon material manufacturing method Expired - Fee Related JP5988075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021627A JP5988075B2 (en) 2012-02-03 2012-02-03 Carbon material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021627A JP5988075B2 (en) 2012-02-03 2012-02-03 Carbon material manufacturing method

Publications (2)

Publication Number Publication Date
JP2013159515A JP2013159515A (en) 2013-08-19
JP5988075B2 true JP5988075B2 (en) 2016-09-07

Family

ID=49172081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021627A Expired - Fee Related JP5988075B2 (en) 2012-02-03 2012-02-03 Carbon material manufacturing method

Country Status (1)

Country Link
JP (1) JP5988075B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6524461B2 (en) * 2014-10-11 2019-06-05 国立大学法人京都大学 Heat dissipation structure
JP6502712B2 (en) * 2015-03-25 2019-04-17 株式会社平安製作所 Cooling member, cooling structure, heat exchange part, mounting structure, substrate, electronic device using carbon material
JP6999131B2 (en) * 2017-10-05 2022-01-18 大阪瓦斯株式会社 How to make activated carbon
AU2018388633A1 (en) * 2017-12-19 2020-07-09 ImMutriX Therapeutics, Inc. Tailored porosity materials and methods of making and using same
CN117617556A (en) * 2022-08-18 2024-03-01 深圳市合元科技有限公司 Atomizer, electronic atomization device, atomization component and preparation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314223A (en) * 2004-03-30 2005-11-10 Kobe Steel Ltd Porous carbon material and method for producing the same
JP2006319321A (en) * 2005-04-12 2006-11-24 Sumitomo Chemical Co Ltd Activated carbon and manufacturing method thereof
JP2009040646A (en) * 2007-08-10 2009-02-26 Kyoto Univ Method for producing carbon material, and electric double layer capacitor including the carbon material
DE102008030921A1 (en) * 2008-07-02 2010-01-07 Bayerisches Zentrum für Angewandte Energieforschung e.V. Micro- and mesoporous carbon xerogel with characteristic mesopore size and its precursors, and a process for the preparation of these and their use
US8114510B2 (en) * 2009-05-20 2012-02-14 The United States Of America As Represented By The United States Department Of Energy Mesoporous carbon materials
GB0915814D0 (en) * 2009-09-10 2009-10-07 British American Tobacco Co Smoke filtration

Also Published As

Publication number Publication date
JP2013159515A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
US8304465B2 (en) High strength air-dried aerogels
Amaral-Labat et al. Tannin-based xerogels with distinctive porous structures
JP5988075B2 (en) Carbon material manufacturing method
Enterría et al. Nanostructured mesoporous carbons: Tuning texture and surface chemistry
US8513319B2 (en) Mesoporous carbon materials
Braghiroli et al. Kinetics of the hydrothermal treatment of tannin for producing carbonaceous microspheres
Rojas-Cervantes Some strategies to lower the production cost of carbon gels
US20140094572A1 (en) Manufacturing methods for the production of carbon materials
JP6999131B2 (en) How to make activated carbon
JP2006512265A (en) Foam mainly composed of carbon and having a high internal surface area, and method for producing the same
JP2011526634A (en) Microporous and mesoporous carbon xerogels and their precursors having unique mesopore particle sizes, methods for producing said carbon xerogels and their precursors, and uses of said carbon xerogels and their precursors
Rey-Raap et al. Carbon gels and their applications: a review of patents
KR101072617B1 (en) Composition for mesoporous carbon which can control the pore size and its production method
CN105536580A (en) Preparation method of uniform-pore membrane
CN113474285A (en) Method for preparing porous carbonaceous material, porous carbonaceous material and catalyst made of said material
CN110482525B (en) Modified carbon aerogel and preparation method and application thereof
US10017391B2 (en) Direct polymer templating synthesis of mesoporous carbon
Szczurek et al. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels
JP4173061B2 (en) Method for producing organic polymer gel
CN108409352A (en) A kind of soda acid concerted catalysis carbon fiber doping carbon aerogels and preparation method thereof
KR20160146662A (en) Gelled composition for organic monolithic gel, uses thereof and process for preparing same
WO2019222009A1 (en) Processes for making phenolic-aldehyde polymer gels and carbon materials produced therefrom
JPH11217278A (en) Method for producing activated carbon porous body
JP2001288238A (en) Cured phenol resin and active carbon prepared therefrom
Zhao et al. Synthesis of novel monolithic activated carbons from phenol–urea–formaldehyde resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160727

R150 Certificate of patent or registration of utility model

Ref document number: 5988075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees