JP5974821B2 - Nanocomposite thermoelectric conversion material and method for producing the same - Google Patents
Nanocomposite thermoelectric conversion material and method for producing the same Download PDFInfo
- Publication number
- JP5974821B2 JP5974821B2 JP2012233869A JP2012233869A JP5974821B2 JP 5974821 B2 JP5974821 B2 JP 5974821B2 JP 2012233869 A JP2012233869 A JP 2012233869A JP 2012233869 A JP2012233869 A JP 2012233869A JP 5974821 B2 JP5974821 B2 JP 5974821B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric conversion
- conversion material
- nanocomposite thermoelectric
- present
- ingot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006243 chemical reaction Methods 0.000 title description 35
- 239000000463 material Substances 0.000 title description 28
- 239000002114 nanocomposite Substances 0.000 title description 16
- 238000004519 manufacturing process Methods 0.000 title description 8
- 239000012071 phase Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 238000005245 sintering Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- 238000010583 slow cooling Methods 0.000 description 7
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000005191 phase separation Methods 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
本発明は、Mg2(Si,Ge)系ナノコンポジット熱電変換材料およびその製造方法に関する。 The present invention relates to an Mg 2 (Si, Ge) -based nanocomposite thermoelectric conversion material and a method for producing the same.
熱電変換材料のMg2Siは、毒性がなく、資源が豊富であることから、その活用が期待されている。しかしMg2Siは、他の熱電変換材料に比べて相対的に熱電変換効率が低いため、実用化には性能向上が必要であった。 Since the thermoelectric conversion material Mg 2 Si is not toxic and has abundant resources, its utilization is expected. However, since Mg 2 Si has a relatively low thermoelectric conversion efficiency as compared with other thermoelectric conversion materials, it has been necessary to improve performance for practical use.
熱電変換材料の変換効率は下記の無次元性能指数ZTによって表される。また、α2×σ=PFは、出力因子あるいは電気特性と呼ばれる。
ZT=α2×σ×T/κ………変換効率(無次元性能指数)
α2×σ=PF…………………出力因子(電気特性)
α:ゼーベック係数
σ:電気伝導率
κ:熱伝導率
T:絶対温度
The conversion efficiency of the thermoelectric conversion material is represented by the following dimensionless figure of merit ZT. Α 2 × σ = PF is called an output factor or electrical characteristics.
ZT = α 2 × σ × T / κ ... Conversion efficiency (dimensionless figure of merit)
α 2 × σ = PF ………………… Output factor (electrical characteristics)
α: Seebeck coefficient σ: Electrical conductivity κ: Thermal conductivity T: Absolute temperature
Mg2Siは、Siサイトの一部をGeやSnで置換することで熱伝導率が低減し、変換効率(無次元性能指数)が向上することが知られている(非特許文献1)。 Mg 2 Si is known to have a lower thermal conductivity by replacing a part of the Si site with Ge or Sn and to improve the conversion efficiency (dimensionless figure of merit) (Non-patent Document 1).
しかし、上記置換を行っても他の熱電変換材料と比較して熱伝導率を十分に低下させることができなかった。また、他の熱電変換材料では、熱電変換材料のマトリックス中に異種材料をフォノン散乱粒子として分散させた複合化により熱伝導率の低減が検討されているが、Mg2Siの場合は複合化させる材料によっては、かえって電気特性(出力因子)の低下を招くという問題があった。すなわち、各サイトの元素より大きな原子量や異なる原子半径を有する元素で置換することで、フォノン散乱が増大することが考えられるが、置換元素や置換量が不適切であると出力因子が低下してしまう。 However, even if the above substitution was performed, the thermal conductivity could not be sufficiently reduced as compared with other thermoelectric conversion materials. In addition, in other thermoelectric conversion materials, reduction of thermal conductivity has been studied by combining different materials as phonon scattering particles in a matrix of thermoelectric conversion materials, but in the case of Mg 2 Si, it is combined. Depending on the material, there is a problem that the electrical characteristics (output factor) are reduced. In other words, phonon scattering can be increased by substituting with an element having a larger atomic weight or different atomic radius than the element at each site, but if the substitution element or substitution amount is inappropriate, the output factor decreases. End up.
本発明は、元素置換によって変換効率を高めたMg2(Si,Ge)系ナノコンポジット熱電変換材料およびその製造方法を提供することを目的とする。 The present invention aims to provide a Mg 2 (Si, Ge) based nanocomposite thermoelectric conversion material and its manufacturing method with improved conversion efficiency by elemental substitution.
上記の目的を達成するために、本発明によれば、組成式Mg2(SixGe1−x)〔0<x≦1〕で表され、SiとGeの含有量比率x/(1−x)が異なる複数の相から成り、各相の結晶粒径が20nm以下であるナノコンポジット熱電変換材料が提供される。 In order to achieve the above object, according to the present invention, the composition ratio is represented by Mg 2 (Si x Ge 1-x ) [0 <x ≦ 1], and the content ratio x / (1- There is provided a nanocomposite thermoelectric conversion material comprising a plurality of phases having different x) and a crystal grain size of each phase of 20 nm or less.
更に、上記目的を達成するために、本発明によれば、組成式Mg2(SixGe1−x)〔0<x≦1〕に対応した比率で成分原料を配合、溶解し、徐冷してインゴットとする工程、上記インゴットを粉砕して粒径20nm超〜100nmの粉末とする工程、および上記粉末を焼結する工程を含むナノコンポジット熱電変換材料の製造方法も提供される。 Furthermore, in order to achieve the above object, according to the present invention, the component raw materials are blended and dissolved at a ratio corresponding to the composition formula Mg 2 (Si x Ge 1-x ) [0 <x ≦ 1], and gradually cooled. There is also provided a method for producing a nanocomposite thermoelectric conversion material comprising a step of forming an ingot, a step of pulverizing the ingot to form a powder having a particle size of more than 20 nm to 100 nm, and a step of sintering the powder.
従来の知見によれば、熱電変換材料Mg2Siは、Siサイトの一部をSiより原子量の大きいGeで置換してMg2(SixGe1−x)〔0<x≦1〕とすることにより、熱伝導率が低減して変換効率ZTが向上する。 According to the conventional knowledge, in the thermoelectric conversion material Mg 2 Si, a part of the Si site is replaced with Ge having an atomic weight larger than that of Si to make Mg 2 (Si x Ge 1-x ) [0 <x ≦ 1]. As a result, the thermal conductivity is reduced and the conversion efficiency ZT is improved.
上記従来の熱電変換材料は単相組織であるのに対して、本発明によれば、組成式Mg2(SixGe1−x)〔0<x≦1〕で表され、SiとGeの含有量比率x/(1−x)が異なる複数の相から成り、各相の結晶粒径が20nm以下であるナノコンポジット組織すなわち20nm以下のナノサイズの複数相が複合している組織とすることにより、更に熱伝導率が低減することを見出して本発明を完成させた。 In contrast to the conventional thermoelectric conversion material having a single-phase structure, according to the present invention, the composition formula Mg 2 (Si x Ge 1-x ) [0 <x ≦ 1], A nanocomposite structure composed of a plurality of phases having different content ratios x / (1-x), and a crystal grain size of each phase being 20 nm or less, that is, a structure in which a plurality of nanosized phases having a size of 20 nm or less are combined. Thus, the present inventors have found that the thermal conductivity is further reduced and completed the present invention.
本発明の望ましい形態によれば、組成式Mg2(SixGe1−x)〔0<x≦1〕において、Geの含有量はSi+Geの総量に対して2〜60at%(x=0.98〜0.40)であり、SiとGeの含有量比率x/(1−x)が異なるa/(1−a)とb/(1−b)〔a≠b〕であるMg2(SiaGe1−a)相とMg2(SibGe1−b)相の2相から成る。各相の結晶粒径は20nm以下である。 According to a preferred embodiment of the present invention, in the composition formula Mg 2 (Si x Ge 1-x ) [0 <x ≦ 1], the Ge content is 2 to 60 at% (x = 0.0) with respect to the total amount of Si + Ge. 98 to 0.40), and Mg 2 (a / (1-a) and b / (1-b) [a ≠ b] having different content ratios x / (1-x) of Si and Ge. It consists of two phases, the Si a Ge 1-a ) phase and the Mg 2 (Si b Ge 1-b ) phase. The crystal grain size of each phase is 20 nm or less.
この場合、望ましくはSi含有量aとbが10at%以上異なる。すなわち、a−b≧10at%であることが望ましい。 In this case, the Si contents a and b are desirably different by 10 at% or more. That is, it is desirable that a−b ≧ 10 at%.
他の材料系で検討されているように異種材料とのナノコンポジット化(絶縁材ナノ粒子をフォノン散乱粒子として分散させる等)によっても熱伝導率の低減が可能な場合もあるが、複合化する異種材料によっては複合則の影響等により電気特性の低下を招く。 As studied in other material systems, thermal conductivity may be reduced by nanocomposite with dissimilar materials (such as dispersing insulating nanoparticles as phonon scattering particles). Depending on the dissimilar materials, the electrical characteristics may be degraded due to the influence of the composite law.
本発明の特徴として、同一組成系内Mg2(SixGe1−x)〔0<x≦1〕で組成比xが異なる複数の相をナノ粒子(20nm以下)として複合化しているので、電気特性を低下させることなく、フォノン散乱効果により熱伝導率を選択的に低減して変換性能を高めることができる。 As a feature of the present invention, a plurality of phases having different composition ratios x in the same composition system Mg 2 (Si x Ge 1-x ) [0 <x ≦ 1] are combined as nanoparticles (20 nm or less). Without deteriorating the electrical characteristics, the thermal conductivity can be selectively reduced by the phonon scattering effect to improve the conversion performance.
本発明のナノコンポジット熱電変換材料の製造方法は、組成式Mg2(SixGe1−x)〔0<x≦1〕に対応した比率で成分原料を配合、溶解し、徐冷してインゴットとする工程、上記インゴットを粉砕して粒径20nm超〜100nmの粉末とする工程、および上記粉末を焼結する工程を含む。 The method for producing a nanocomposite thermoelectric conversion material of the present invention comprises mixing, melting, and gradually cooling component ingots at a ratio corresponding to the composition formula Mg 2 (Si x Ge 1-x ) [0 <x ≦ 1]. A step of crushing the ingot to obtain a powder having a particle size of more than 20 nm to 100 nm, and a step of sintering the powder.
本発明の方法においては、構成相を20nm以下のナノ粒子として生成させて複合化する必要がないため、ナノ粒子生成時に汚染物質の混入や表面酸化などによる電気特性(出力因子)の低下が生ずることがなく、良好な電気特性(PF)を維持しつつ、熱伝導率の低減を選択的に行うことができる。 In the method of the present invention, it is not necessary to form a composite phase as nanoparticles having a size of 20 nm or less and to make a composite. Therefore, when the nanoparticles are generated, the electrical characteristics (output factor) are deteriorated due to contamination or surface oxidation. The thermal conductivity can be selectively reduced while maintaining good electrical characteristics (PF).
溶解からインゴットへの徐冷は、組成式Mg2(SixGe1−x)〔0<x≦1〕の均一な液相である合金溶湯からインゴットへの凝固過程および/または固相のインゴットが室温まで冷却される過程で、Si/Ge比すなわちx/(1−x)比の異なる2種以上の複数相に相分離させるのに十分な時間を確保するための徐冷である。この徐冷は、0.01℃/sec〜10℃/secの範囲の冷却速度とすることが望ましい。相分離させるのに十分な時間を確保するために、徐冷速度の上限は10℃/secとすることが望ましい。これ以下の冷却速度であれば、徐冷の目的からは何ら問題はない。しかし、冷却速度があまり遅いと長時間を要するので実用的な観点から許容されないため、下限は0.01℃とすることが望ましい。また、徐冷は、加熱温度から200℃まで行うことが望ましい。 The slow cooling from melting to ingot is performed by solidification process from molten alloy to ingot and / or solid phase ingot which is a uniform liquid phase of composition formula Mg 2 (Si x Ge 1-x ) [0 <x ≦ 1]. Is a slow cooling to ensure sufficient time for phase separation into two or more phases having different Si / Ge ratios, that is, x / (1-x) ratios, in the process of cooling to room temperature. This slow cooling is desirably performed at a cooling rate in the range of 0.01 ° C./sec to 10 ° C./sec. In order to ensure sufficient time for phase separation, the upper limit of the slow cooling rate is preferably 10 ° C./sec. If the cooling rate is less than this, there is no problem for the purpose of slow cooling. However, if the cooling rate is too slow, it takes a long time and is not allowed from a practical point of view, so the lower limit is preferably set to 0.01 ° C. Further, it is desirable that the slow cooling is performed from the heating temperature to 200 ° C.
本発明のナノコンポジット熱電変換材料は、結晶粒径が20nm以下の複数相から成る複合組織である。しかし、インゴット粉砕の段階では20nm超〜100nmの粒径とすることが適当である。粉砕工程で20nm以下のナノサイズに微細化すると、焼結工程前に汚染物質の混入や表面酸化などが生じて最終的な熱電変換材料の電気特性(出力因子)が低下する虞がある。インゴット粉砕により100nm以下の粒径にすれば、その後の焼結工程において20nm以下のナノサイズの複数相への相分離が起きる。焼結は600℃〜1000℃で行うことができる。
以下、実施例により本発明を更に詳細に説明する。
The nanocomposite thermoelectric conversion material of the present invention is a composite structure composed of a plurality of phases having a crystal grain size of 20 nm or less. However, it is appropriate that the particle size is greater than 20 nm to 100 nm at the stage of ingot grinding. If the pulverization process is refined to a nano size of 20 nm or less, contamination of the contaminants, surface oxidation, and the like may occur before the sintering process, and the electrical characteristics (output factor) of the final thermoelectric conversion material may be reduced. If the particle size is 100 nm or less by ingot grinding, phase separation into nano-sized plural phases of 20 nm or less occurs in the subsequent sintering step. Sintering can be performed at 600 ° C to 1000 ° C.
Hereinafter, the present invention will be described in more detail with reference to examples.
〔実施例1〕
≪配合≫
本発明によりMg2(Si0.6Ge0.4)に対応する比率で金属原料Mg、Si、Geを秤量した。更に、導電率向上の目的でSbを2000ppm添加した。Sbは最終的にナノコンポジット熱電変換材料中に固溶する。
[Example 1]
≪Combination≫
According to the present invention, the metal raw materials Mg, Si, and Ge were weighed at a ratio corresponding to Mg 2 (Si 0.6 Ge 0.4 ). Furthermore, 2000 ppm of Sb was added for the purpose of improving conductivity. Sb finally dissolves in the nanocomposite thermoelectric conversion material.
≪溶解・鋳造≫
加熱炉中で溶解し、るつぼ内に鋳造してそこで徐冷してインゴットを得た。徐冷速度は0.1℃/sec〜2℃/secの範囲であった。
図1に示すように、インゴットは結晶粒径がμmサイズの不均一な組織であった。すなわち、Mg2(Si,Ge)相中に、Ge含有量が4at%以下のμmサイズのSi化合物(Mg2SiやSi等)が存在した。
≪Melting / Casting≫
It melted in a heating furnace, cast into a crucible, and then slowly cooled to obtain an ingot. The slow cooling rate was in the range of 0.1 ° C./sec to 2 ° C./sec.
As shown in FIG. 1, the ingot had a non-uniform structure with a crystal grain size of μm. That is, a μm sized Si compound (Mg 2 Si, Si, etc.) having a Ge content of 4 at% or less was present in the Mg 2 (Si, Ge) phase.
≪粉砕≫
インゴットをボールミルにより粒径100nm以下(1次結晶粒径)まで粉砕して粉末とした。
≪Crushing≫
The ingot was pulverized with a ball mill to a particle size of 100 nm or less (primary crystal particle size) to obtain a powder.
≪焼結≫
粉末をカーボンダイスに充填し、800℃で10min加圧焼結した。
図2に、(A)焼結組織、(B)組成分析チャート([1]Si量大の部位、[2]Si量小の部位)を示す。SiとGeの含有量比x/(1−x)が異なる複数種の相から成る複合組織であり、各相の平均結晶粒径は7nmであった。これによりナノコンポジット熱電変換材料が得られた。
≪Sintering≫
The powder was filled in a carbon die and sintered under pressure at 800 ° C. for 10 minutes.
FIG. 2 shows (A) a sintered structure, (B) a composition analysis chart ([1] site with a large Si content, [2] site with a small Si content). It was a composite structure composed of a plurality of phases having different Si / Ge content ratios x / (1-x), and the average crystal grain size of each phase was 7 nm. As a result, a nanocomposite thermoelectric conversion material was obtained.
〔実施例2〕
実施例1と同じ条件および手順により、ナノコンポジット熱電変換材料を製造した。
ただし、≪配合≫において、実施例1とは異なるSi/Ge比のMg2(Si0.8Ge0.2)に対応する比率で金属原料Mg、Si、Geを秤量した。
[Example 2]
A nanocomposite thermoelectric conversion material was produced under the same conditions and procedures as in Example 1.
However, in << Formulation >>, the metal raw materials Mg, Si, and Ge were weighed at a ratio corresponding to Mg 2 (Si 0.8 Ge 0.2 ) having a Si / Ge ratio different from that in Example 1.
〔比較例1〕
実施例1と同じ条件および手順により、ナノコンポジット熱電変換材料を製造した。
ただし、≪粉砕≫において、インゴットを乳鉢において本発明の範囲外の粒径約100μmに粉砕して粗い粉末とした点のみが実施例1と異なる。
[Comparative Example 1]
A nanocomposite thermoelectric conversion material was produced under the same conditions and procedures as in Example 1.
However, the difference from Example 1 is that, in << Crushing >>, the ingot was crushed to a particle size of about 100 μm outside the range of the present invention in a mortar to obtain a coarse powder.
〔比較例2〕
実施例1と同様に≪配合≫≪溶解・鋳造≫を行って、インゴットを得た。
ただし、実施例1とは異なり、≪粉砕≫≪焼結≫を行わず、インゴットのままのサンプルとして供した。
[Comparative Example 2]
In the same manner as in Example 1, << mixing >><< melting / casting >> was performed to obtain an ingot.
However, unlike Example 1, << Pulverization >><< Sintering >> was not performed and the sample was used as an ingot.
表1に、実施例1、2、比較例1、2で作製した各サンプルについて、仕込み組成、組織、平均結晶粒径、熱伝導率、出力因子をまとめて示す。 Table 1 summarizes the charge composition, structure, average crystal grain size, thermal conductivity, and output factor for each sample prepared in Examples 1 and 2 and Comparative Examples 1 and 2.
比較例1は、変換効率(無次元性能指数)ZTは0.14と低かった。これは、粉砕による粒径が本発明の規定範囲より粗い約100μmであったため、焼結中の相分離が起きず均一組織であり、熱伝導率κが2.3W/mKと大きかったためである。出力因子PFは1.06mW/mK2であった。 In Comparative Example 1, the conversion efficiency (dimensionless figure of merit) ZT was as low as 0.14. This is because the particle size by pulverization was about 100 μm, which is coarser than the specified range of the present invention, so that phase separation during sintering did not occur and the structure was uniform, and the thermal conductivity κ was as large as 2.3 W / mK. . Power factor PF was 1.06mW / mK 2.
それに対して、本発明による実施例1は、変換効率ZTが0.25と比較例1よりも顕著に向上している。しかも、出力因子は1.00mW/mK2であり、比較例1と同等に維持されている。
実施例1は、比較例1と同じ組成であるが、粉砕により本発明の規定範囲の粒径まで微粒化(≦100nm)したため、焼結中に相分離が起きて、ナノサイズ(7nm)の異なる組成(Si/Ge比)の複合組織となり、熱伝導率κが1.2W/mKと比較例1に対して大幅に低下したためである。
On the other hand, Example 1 according to the present invention has a conversion efficiency ZT of 0.25, which is significantly improved as compared with Comparative Example 1. Moreover, the output factor is 1.00 mW / mK 2, which is maintained equivalent to that in Comparative Example 1.
Example 1 has the same composition as Comparative Example 1, but was pulverized to a particle size within the specified range of the present invention (≦ 100 nm), so that phase separation occurred during sintering, resulting in nano-sized (7 nm). This is because composite structures having different compositions (Si / Ge ratio) were obtained, and the thermal conductivity κ was 1.2 W / mK, which was significantly lower than that of Comparative Example 1.
実施例2は、実施例1に対してSi/Ge比をSi0.6Ge0.4からSi0.8Ge0.2に変えたことで、変換効率ZTが0.17と実施例1より低いが、比較例1の0.14よりは確実に向上した。 In Example 2, the Si / Ge ratio was changed from Si0.6Ge0.4 to Si0.8Ge0.2 with respect to Example 1, so that the conversion efficiency ZT was 0.17, which is lower than that of Example 1. It was certainly improved from 0.14 of 1.
比較例2は、鋳造組織のままの粗大(3000nm)で不均一な組織であり、変換効率ZTも0.08と最も低かった。 Comparative Example 2 was a coarse (3000 nm) and non-uniform structure as a cast structure, and the conversion efficiency ZT was 0.08, which was the lowest.
本発明によれば、元素置換によって変換効率を高めたMg2(Si,Ge)系ナノコンポジット熱電変換材料およびその製造方法が提供される。 According to the present invention, Mg 2 (Si, Ge) with increased conversion efficiency by element substitution based nanocomposite thermoelectric conversion material and a method for producing the same.
Claims (4)
上記インゴットを粉砕して粒径20nm〜100nmの粉末とする工程、および
上記粉末を焼結する工程
を含む、請求項1〜3のいずれか1項に記載のナノコンポジット熱電変換材料の製造方法。 Ingredients are blended and dissolved at a ratio corresponding to the composition formula Mg 2 (Si x , Ge 1-x ) [0 <x ≦ 1], and gradually cooled at a cooling rate of 0.01 to 10 ° C./sec. The process of
The manufacturing method of the nanocomposite thermoelectric conversion material of any one of Claims 1-3 including the process of grind | pulverizing the said ingot into a powder with a particle size of 20 nm-100 nm, and the process of sintering the said powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012233869A JP5974821B2 (en) | 2012-10-23 | 2012-10-23 | Nanocomposite thermoelectric conversion material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012233869A JP5974821B2 (en) | 2012-10-23 | 2012-10-23 | Nanocomposite thermoelectric conversion material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014086541A JP2014086541A (en) | 2014-05-12 |
JP5974821B2 true JP5974821B2 (en) | 2016-08-23 |
Family
ID=50789330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012233869A Expired - Fee Related JP5974821B2 (en) | 2012-10-23 | 2012-10-23 | Nanocomposite thermoelectric conversion material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5974821B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017159842A1 (en) * | 2016-03-17 | 2017-09-21 | 三菱マテリアル株式会社 | Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, thermoelectric conversion device, and method for manufacturing magnesium-based thermoelectric conversion material |
JP6853436B2 (en) * | 2016-03-17 | 2021-03-31 | 三菱マテリアル株式会社 | Magnesium-based thermoelectric conversion element, thermoelectric conversion device |
JP6414137B2 (en) | 2016-05-13 | 2018-10-31 | トヨタ自動車株式会社 | Thermoelectric conversion element |
JP2017216388A (en) * | 2016-06-01 | 2017-12-07 | 住友電気工業株式会社 | Thermoelectric material, thermoelectric device, optical sensor, and method for manufacturing thermoelectric material |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4324999B2 (en) * | 1998-11-27 | 2009-09-02 | アイシン精機株式会社 | Thermoelectric semiconductor composition and method for producing the same |
JP2007095897A (en) * | 2005-09-28 | 2007-04-12 | Toshiba Corp | Semiconductor device and manufacturing method thereof |
JP5922323B2 (en) * | 2010-03-29 | 2016-05-24 | 古河機械金属株式会社 | Double-phase thermoelectric conversion material |
JP5750727B2 (en) * | 2010-09-16 | 2015-07-22 | 国立研究開発法人産業技術総合研究所 | Nanocrystalline semiconductor material and manufacturing method thereof |
-
2012
- 2012-10-23 JP JP2012233869A patent/JP5974821B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2014086541A (en) | 2014-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4976566B2 (en) | Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material | |
KR102579525B1 (en) | Semiconductor sintered body, electrical/electronic components, and semiconductor sintered body manufacturing method | |
JP5974821B2 (en) | Nanocomposite thermoelectric conversion material and method for producing the same | |
JP2014022674A (en) | Thermoelectric material | |
JP2016219666A (en) | Thermoelectric material and manufacturing method thereof | |
JP7367928B2 (en) | Thermoelectric conversion material and its manufacturing method | |
Zhao et al. | Effects of WO3 micro/nano-inclusions on the thermoelectric properties of Co4Sb11. 7Te0. 3 skutterudite | |
JP2012174849A (en) | Thermoelectric material | |
JP2014165247A (en) | Method of producing thermoelectric conversion material | |
JP6082663B2 (en) | Thermoelectric conversion material and method for producing the same | |
JP6560061B2 (en) | Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion material | |
JP2012256759A (en) | Clathrate compound and thermoelectric conversion material and production method of thermoelectric conversion material | |
JP6632218B2 (en) | Clathrate compound, thermoelectric conversion material and method for producing the same | |
US10283690B2 (en) | Formation of P-type filled skutterudite by ball-milling and thermo-mechanical processing | |
JP2013161948A (en) | Thermoelectric conversion element, and method for manufacturing thermoelectric conversion element | |
JP6082617B2 (en) | Thermoelectric conversion material and method for producing the same | |
JP2016063034A (en) | Thermoelectric materials and thermoelectric modules | |
JP6821235B2 (en) | Chalcogen compounds, their production methods, and thermoelectric devices containing them | |
JP6155141B2 (en) | Thermoelectric conversion material and method for producing the same | |
JP2018078154A (en) | N-type thermoelectric conversion material and method for manufacturing the same | |
WO2013108661A1 (en) | Thermoelectric material | |
Rabiu et al. | Thermoelectric properties of binary Mg2Sn and ternary Mg2Sn1− xYx (Y= Si, Ge) with the addition of Cu2S | |
JP5705640B2 (en) | Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material | |
JP4373296B2 (en) | Raw material for thermoelectric conversion material, method for producing thermoelectric conversion material, and thermoelectric conversion material | |
JP5653654B2 (en) | Method for manufacturing thermoelectric material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160704 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5974821 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |