JP5973436B2 - Catalyst for oxidizing o-xylene and / or naphthalene to phthalic anhydride - Google Patents
Catalyst for oxidizing o-xylene and / or naphthalene to phthalic anhydride Download PDFInfo
- Publication number
- JP5973436B2 JP5973436B2 JP2013522327A JP2013522327A JP5973436B2 JP 5973436 B2 JP5973436 B2 JP 5973436B2 JP 2013522327 A JP2013522327 A JP 2013522327A JP 2013522327 A JP2013522327 A JP 2013522327A JP 5973436 B2 JP5973436 B2 JP 5973436B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- xylene
- theta
- oxide
- titanium dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/20—Vanadium, niobium or tantalum
- B01J23/22—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/18—Arsenic, antimony or bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/395—Thickness of the active catalytic layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0219—Coating the coating containing organic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0221—Coating of particles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/255—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
- C07C51/265—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/87—Benzo [c] furans; Hydrogenated benzo [c] furans
- C07D307/89—Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
- B01J2235/15—X-ray diffraction
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Furan Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、o−キシレン及び/又はナフタレンを無水フタル酸に酸化するための触媒であって、反応管内に連続して配置され且つ有意な割合の白安鉱を含む三酸化アンチモンを使用して製造された複数の触媒領域を有する触媒に関する。本発明は更に、少なくとも1種の炭化水素及び酸素分子を含むガス流を、有意な割合の白安鉱を含む三酸化アンチモンを使用して製造された触媒に送通する気相酸化方法に関する。 The present invention is a catalyst for the oxidation of o-xylene and / or naphthalene to phthalic anhydride, using antimony trioxide arranged continuously in a reaction tube and containing a significant proportion of white ore. The present invention relates to a catalyst having a plurality of produced catalyst regions. The invention further relates to a gas phase oxidation process in which a gas stream comprising at least one hydrocarbon and oxygen molecules is passed to a catalyst produced using antimony trioxide containing a significant proportion of white ore.
多くのカルボン酸及び/又はカルボン酸無水物は、固定床反応器において、ベンゼン、キシレン、ナフタレン、トルエン又はジュレン等の炭化水素の触媒気相酸化により工業的に製造される。この方法では、例えば、安息香酸、無水マレイン酸、無水フタル酸、イソフタル酸、テレフタル酸又は無水ピロメリット酸を得ることができる。通常は、酸素含有ガスと酸化すべき出発材料の混合物を、触媒床が存在する管に送通する。温度を調整するために、その管は伝熱媒体、例えば塩溶融物に囲まれている。 Many carboxylic acids and / or carboxylic anhydrides are produced industrially in a fixed bed reactor by catalytic gas phase oxidation of hydrocarbons such as benzene, xylene, naphthalene, toluene or durene. In this method, for example, benzoic acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid or pyromellitic anhydride can be obtained. Usually, the mixture of the oxygen-containing gas and the starting material to be oxidized is passed through a tube in which the catalyst bed is present. In order to adjust the temperature, the tube is surrounded by a heat transfer medium, for example a salt melt.
触媒活性組成物がシェルの形態でステアタイト等の不活性の担体材料に施された被覆触媒は、これらの酸化反応用の触媒として有用であることが見出されている。一般に、この触媒は、本質的に同種の化学組成を有し且つシェルの形態で施されている活性組成物の層を有する。また、活性組成物の2つ以上の異なる層を連続して担体に施すこともできる。これらは2層又は複層触媒と称される(例えば、特許文献1(DE19839001A1)参照)。 Coated catalysts in which the catalytically active composition is applied to an inert support material such as steatite in the form of a shell have been found to be useful as catalysts for these oxidation reactions. In general, the catalyst has a layer of active composition having essentially the same chemical composition and applied in the form of a shell. It is also possible to apply two or more different layers of the active composition to the carrier in succession. These are called two-layer or multi-layer catalysts (see, for example, Patent Document 1 (DE19839001A1)).
これらの被覆触媒の触媒活性組成物の触媒活性構成成分としては、二酸化チタン及び五酸化バナジウムが使用されるのが一般的である。また、促進剤として作用して触媒の活性と選択率に影響を及ぼす他の多くの酸化化合物(酸化セシウム、酸化リン及び酸化アンチモンを含む)が少量、触媒活性組成物に存在していてもよい。 As catalytically active components of the catalytically active compositions of these coated catalysts, titanium dioxide and vanadium pentoxide are generally used. Also, a small amount of many other oxidized compounds (including cesium oxide, phosphorus oxide and antimony oxide) that act as promoters and affect the activity and selectivity of the catalyst may be present in the catalytically active composition. .
特許文献2(EP1636161)のように、特定のV2O5/Sb2O3比が設定され且つその三酸化アンチモンが所定の平均粒径を有している場合に、特に高いPAn収率が得られる触媒を得ることができる。 A particularly high PAn yield is obtained when a specific V 2 O 5 / Sb 2 O 3 ratio is set and the antimony trioxide has a predetermined average particle size as in Patent Document 2 (EP 1636161). The resulting catalyst can be obtained.
アンチモン酸化物の存在によりPAn選択率が上昇する;この効果はバナジウム部位の分離と考えられる。 The presence of antimony oxide increases PAn selectivity; this effect is thought to be a separation of the vanadium sites.
触媒の活性組成物に使用されるアンチモン酸化物は、種々のアンチモン(III)、アンチモン(IV)及びアンチモン(V)化合物であってよい;通常は三酸化アンチモン又は五酸化アンチモンが使用される。特許文献3(EP522871)では五酸化アンチモンを使用することが記載されており、特許文献4(US2009/306409)及び特許文献5(EP1636161)では三酸化アンチモンを使用することが開示されている。 The antimony oxide used in the active composition of the catalyst may be various antimony (III), antimony (IV) and antimony (V) compounds; usually antimony trioxide or antimony pentoxide is used. Patent Document 3 (EP 528771) describes the use of antimony pentoxide, and Patent Document 4 (US 2009/306409) and Patent Document 5 (EP 1636161) disclose the use of antimony trioxide.
四酸化アンチモン及び五酸化アンチモンと比較して、三酸化アンチモンは、二酸化チタン上に良好に分散する性質を有しているので、触媒の分布が著しく向上する。三酸化アンチモンは通常、純粋な方安鉱相として使用される(Schubert,U.−A.et al.,Topics in Catalysis,2001,vol.15(2−4),195−200頁参照)。立方体状の方安鉱とは別に、三酸化アンチモンの斜方晶系変性体も存在し、白安鉱として知られている(Golunski、S.E.et al.,Appl.Catal.,1989,vol.48,123−135頁)。 Compared with antimony tetroxide and antimony pentoxide, antimony trioxide has a property of being well dispersed on titanium dioxide, so that the catalyst distribution is remarkably improved. Antimony trioxide is usually used as a pure mannite phase (see Schubert, U.-A. et al., Topics in Catalysis, 2001, vol. 15 (2-4), pages 195-200). Apart from the cubic form of beanite, there is also an orthorhombic modification of antimony trioxide, which is known as Baansu (Golunski, SE et al., Appl. Catal., 1989, vol.48, 123-135).
触媒によって高い選択率で極めて高い転化率が得られる気相酸化用の触媒が依然として必要とされている。 There remains a need for catalysts for gas phase oxidation that can provide very high conversion at high selectivity with the catalyst.
本発明の目的は、o−キシレン及び/又はナフタレンを無水フタル酸に酸化するための触媒であって、低い塩浴温度においてo−キシレン及びフタリドの含有量が低い無水フタル酸の高い収率を可能にする触媒を改良することにある。 The object of the present invention is a catalyst for the oxidation of o-xylene and / or naphthalene to phthalic anhydride, which has a high yield of phthalic anhydride with a low content of o-xylene and phthalide at low salt bath temperatures. It is to improve the catalyst that makes it possible.
この目的は、有意な割合の白安鉱を含む三酸化アンチモンを使用して製造された、o−キシレン及び/又はナフタレンを無水フタル酸に酸化するための触媒により達成される。 This object is achieved by a catalyst for the oxidation of o-xylene and / or naphthalene to phthalic anhydride, produced using antimony trioxide containing a significant proportion of white andesite.
本発明の目的は、o−キシレン及び/又はナフタレンを無水フタル酸に酸化するための触媒であって、粉末X線回折パターンにおいて2シータ=27.7°及び28.4°におけるシグナルの高さの合計に対する2シータ=28.4°におけるシグナルの高さの比が少なくとも0.02である三酸化アンチモンを使用して製造されたことを特徴とする触媒を提供することである。 The object of the present invention is a catalyst for the oxidation of o-xylene and / or naphthalene to phthalic anhydride, the signal height at 2 theta = 27.7 ° and 28.4 ° in the powder X-ray diffraction pattern. It is to provide a catalyst characterized in that it is produced using antimony trioxide having a signal height ratio at 2 Theta = 28.4 ° to the sum of at least 0.02.
2シータ=27.7°におけるシグナルは方安鉱(senarmontite)の指標であり(ASTM Index,No.5−0534/7参照)、2シータ=28.4°におけるシグナルは白安鉱(valentinite)の指標である(ASTM Index,No.11−689参照)。シグナルの高さは、各シグナルの最大強度と測定背景との間の差により得られる。
The signal at 2 theta = 27.7 ° is an indicator of samarmo nt ite (see ASTM Index, No. 5-0534 / 7), and the signal at 2 theta = 28.4 ° is (see ASTM Index, No. 11-689). The signal height is obtained by the difference between the maximum intensity of each signal and the measurement background.
本発明の好ましい実施態様では、上記触媒は、粉末X線回折パターンにおいて2シータ=27.7°及び28.4°におけるシグナルの高さの合計に対する2シータ=28.4°におけるシグナルの高さの比が少なくとも0.03、特に好ましくは少なくとも0.05である三酸化アンチモンを使用して製造される。 In a preferred embodiment of the invention, the catalyst has a signal height at 2 theta = 28.4 ° relative to the sum of the signal height at 2 theta = 27.7 ° and 28.4 ° in the powder X-ray diffraction pattern. Is produced using antimony trioxide having a ratio of at least 0.03, particularly preferably at least 0.05.
本発明に使用されるべき白安鉱の含有量が多い三酸化アンチモンは1つ以上の触媒領域を製造するのに使用することができる。本発明の好ましい実施態様では、触媒は3つ、4つ又は5つの領域を有し、白安鉱の含有量が多い三酸化アンチモンは少なくとも1つの領域を製造するのに使用される。 The antimony trioxide with a high content of white ore to be used in the present invention can be used to produce one or more catalytic regions. In a preferred embodiment of the present invention, the catalyst has three, four or five regions, and antimony trioxide with a high white-anite content is used to produce at least one region.
本発明の触媒は、例えば、高いホットスポット温度を避けるために、好適な上流及び/又は下流の床と組み合わせて、また中間領域と共に使用することができ、その上流及び/又は下流の床及び中間領域は通常、触媒的に不活性か又は活性が低い材料を含んでいてよい。 The catalyst of the present invention can be used in combination with a suitable upstream and / or downstream bed and with an intermediate zone, for example to avoid high hot spot temperatures, the upstream and / or downstream bed and intermediate The region may typically include materials that are catalytically inert or less active.
本発明の触媒は通常、触媒活性組成物がシェルの形態で不活性の担体材料に施されている被覆触媒である。 The catalyst of the present invention is usually a coated catalyst in which the catalytically active composition is applied to an inert support material in the form of a shell.
不活性の担体材料として、芳香族炭化水素をアルデヒド、カルボン酸及び/又はカルボン酸無水物に酸化するための被覆触媒の製造において有利に使用される従来技術における実質的に全ての担体材料を使用することができ、例えば、石英(SiO2)、陶材、酸化マグネシウム、二酸化スズ、炭化ケイ素、ルチル、アルミナ(Al2O3)、ケイ酸アルミニウム、ステアタイト(ケイ酸マグネシウム)、ケイ酸ジルコニウム、ケイ酸セリウム又はこれらの担体材料の混合物である。これらの触媒担体は、例えば、球状物、リング状物、ペレット状物、螺旋状物、管状物、押出物又は破砕材料の形態で使用することができる。これらの触媒担体の寸法は、芳香族炭化水素の気相反応用の被覆触媒を製造するのに通常使用される触媒担体の寸法に対応する。3〜6mmの直径を有する球状物の形態又は5〜9mmの外径及び3〜8mmの長さ及び1〜2mmの壁厚を有するリング状物の形態のステアタイトを使用することが好ましい。 As the inert support material, use substantially all the support materials in the prior art which are advantageously used in the manufacture of coated catalysts for the oxidation of aromatic hydrocarbons to aldehydes, carboxylic acids and / or carboxylic anhydrides For example, quartz (SiO 2 ), porcelain, magnesium oxide, tin dioxide, silicon carbide, rutile, alumina (Al 2 O 3 ), aluminum silicate, steatite (magnesium silicate), zirconium silicate Cerium silicate or a mixture of these carrier materials. These catalyst supports can be used in the form of, for example, a spherical product, a ring product, a pellet product, a spiral product, a tubular product, an extrudate, or a crushed material. The dimensions of these catalyst supports correspond to the dimensions of the catalyst supports normally used to produce a coated catalyst for the gas phase reaction of aromatic hydrocarbons. It is preferred to use steatite in the form of a sphere having a diameter of 3-6 mm or in the form of a ring having an outer diameter of 5-9 mm and a length of 3-8 mm and a wall thickness of 1-2 mm.
本発明の触媒は、少なくとも酸化バナジウム及び二酸化チタンを含み且つ担体材料に1層以上の層で施すことができる触媒活性組成物を含む。この場合には種々の層がそれら化学組成の点で相違し得る。 The catalyst of the present invention comprises a catalytically active composition that includes at least vanadium oxide and titanium dioxide and can be applied to the support material in one or more layers. In this case, the various layers can differ in their chemical composition.
この触媒活性組成物は、触媒活性組成物の全量に対して、V2O5として計算される酸化バナジウムを1〜40質量%、及びTiO2として計算される二酸化チタンを60〜99質量%を含むことが好ましい。好ましい実施態様では、この触媒活性組成物は、Csとして計算されるセシウム化合物を1質量%以下、Pとして計算されるリン化合物を1質量%以下、及びSb2O3として計算される酸化アンチモンを10質量%以下更に含んでいてもよい。触媒活性組成物の化学組成に関する全ての数値は、後者の焼成状態、例えば、450℃で1時間触媒を焼成した後の状態に基づくものである。 This catalytically active composition comprises 1 to 40% by mass of vanadium oxide calculated as V 2 O 5 and 60 to 99% by mass of titanium dioxide calculated as TiO 2 with respect to the total amount of the catalytically active composition. It is preferable to include. In a preferred embodiment, the catalytically active composition comprises 1% by weight or less of a cesium compound calculated as Cs, 1% by weight or less of a phosphorus compound calculated as P, and antimony oxide calculated as Sb 2 O 3. You may further contain 10 mass% or less. All numerical values relating to the chemical composition of the catalytically active composition are based on the latter calcination state, for example, the state after calcination of the catalyst at 450 ° C. for 1 hour.
二酸化チタンは通常、触媒活性物用のアナターゼ型で使用される。二酸化チタンは、15〜60m2/g、特に15〜45m2/g、特に好ましくは13〜28m2/gのBET表面積を有していることが好ましい。使用される酸化チタンは、単一の二酸化チタンでも、複数の二酸化チタンの混合物でもよい。後者の場合、荷重平均のBET表面積の値は個々の二酸化チタンの寄与度を決める。使用される二酸化チタンは、例えば、BET表面積が5〜15m2/gであるTiO2とBET表面積が15〜50m2/gであるTiO2の混合物であることが有利である。 Titanium dioxide is usually used in the anatase form for catalytic actives. Titanium dioxide preferably has a BET surface area of 15 to 60 m 2 / g, in particular 15 to 45 m 2 / g, particularly preferably 13 to 28 m 2 / g. The titanium oxide used may be a single titanium dioxide or a mixture of a plurality of titanium dioxides. In the latter case, the value of the load average BET surface area determines the contribution of the individual titanium dioxide. Titanium dioxide used may, for example, it is advantageous BET surface area TiO 2 and BET surface area is 5 to 15 m 2 / g is a mixture of TiO 2 is 15 to 50 m 2 / g.
好適なバナジウム源は、特に、五酸化バナジウム又はメタバナジン酸アンモニウムである。好適なアンチモン源は、有意な白安鉱含量を有する種々の三酸化アンチモン類である。使用可能なリン源は、特に、リン酸、亜リン酸、次亜リン酸、リン酸アンモニウム又はリン酸エステル、及び特にリン酸二水素アンモニウムである。好適なセシウム源は、酸化物若しくは水酸化物又は熱的に酸化物に転化され得る塩、例えば、カルボン酸塩、特に酢酸塩、マロン酸塩若しくはシュウ酸塩、炭酸塩、炭酸水素塩、硫酸塩又は硝酸塩である。 Suitable vanadium sources are in particular vanadium pentoxide or ammonium metavanadate. Suitable antimony sources are various antimony trioxides having a significant white andesite content. Possible phosphorus sources are in particular phosphoric acid, phosphorous acid, hypophosphorous acid, ammonium phosphate or phosphate ester, and in particular ammonium dihydrogen phosphate. Suitable cesium sources are oxides or hydroxides or salts that can be thermally converted to oxides, such as carboxylates, in particular acetates, malonates or oxalates, carbonates, bicarbonates, sulfates Salt or nitrate.
任意に添加されるセシウム及びリンとは別に、触媒活性組成物は、促進剤として作用して、例えば触媒の活性を減少又は増大させることによりその活性及び選択率に影響を与える他の多くの酸化化合物を少量含んでいてもよい。このような促進剤の例は、アルカリ金属、上述したセシウムの他に特にリチウム、カリウム及びルビジウム(これらは通常その酸化物又は水酸化物の形態で使用される。)、酸化タリウム(I)、酸化アルミニウム、酸化ジルコニウム、酸化鉄、酸化ニッケル、酸化コバルト、酸化マンガン、酸化スズ、酸化銀、酸化銅、酸化クロム、酸化モリブテン、酸化タングステン、酸化イリジウム、酸化タンタル、酸化ニオブ、酸化ヒ素、四酸化アンチモン、五酸化アンチモン及び酸化セリウムである。 Apart from optionally added cesium and phosphorus, the catalytically active composition can act as a promoter, for example many other oxidations that affect its activity and selectivity, for example by reducing or increasing the activity of the catalyst. A small amount of the compound may be contained. Examples of such promoters are alkali metals, in addition to the cesium mentioned above, in particular lithium, potassium and rubidium (these are usually used in the form of their oxides or hydroxides), thallium (I) oxide, Aluminum oxide, zirconium oxide, iron oxide, nickel oxide, cobalt oxide, manganese oxide, tin oxide, silver oxide, copper oxide, chromium oxide, molybdenum oxide, tungsten oxide, iridium oxide, tantalum oxide, niobium oxide, arsenic oxide, tetraoxide Antimony, antimony pentoxide and cerium oxide.
また、上記促進剤の中でも、添加剤としてニオブ及びタングステンの酸化物を触媒活性組成物に対して0.01〜0.50質量%の量で用いることが更に好ましい。 Among the above accelerators, it is more preferable to use niobium and tungsten oxides as additives in an amount of 0.01 to 0.50% by mass based on the catalytically active composition.
被覆触媒の層の形成は、上記促進剤元素源を必要に応じて含むTiO2及びV2O5の懸濁液を流動した担体に噴霧することにより行うことが有利である。懸濁した固形物の凝集物を分散させ均質な懸濁液を得るために、被覆前に懸濁液を十分に長い時間、例えば、2〜30時間、特に12〜25時間撹拌することが好ましい。この懸濁液は通常、20〜50質量%の固形物含有量を有している。この懸濁液の媒体は通常は水性のもの、例えば水それ自体、又は水と混和する有機溶媒(例えば、メタノール、エタノール、イソプロパノール、ホルムアミド等)との水性混合物である。 The formation of the layer of the coated catalyst is advantageously carried out by spraying a suspension of TiO 2 and V 2 O 5 optionally containing the above promoter element source onto a fluidized support. In order to disperse suspended solid agglomerates and obtain a homogeneous suspension, it is preferable to stir the suspension for a sufficiently long time before coating, for example 2 to 30 hours, in particular 12 to 25 hours. . This suspension usually has a solids content of 20-50% by weight. The suspension medium is usually aqueous, eg water per se, or an aqueous mixture with water-miscible organic solvents (eg methanol, ethanol, isopropanol, formamide, etc.).
通常、有機バインダー、好ましくは、アクリル酸−マレイン酸、酢酸ビニル−ラウリン酸ビニル、酢酸ビニル−アクリレート、スチレン−アクリレート及び酢酸ビニル−エチレンの共重合体(有利には水性分散体の形態のもの)を懸濁液に加える。バインダーは固形分含有量が例えば35〜65質量%の水性分散体として市販されている。使用するこのようなバインダー分散体の量は、懸濁液の質量に対して通常2〜45質量%、好ましくは5〜35質量%、特に好ましくは7〜20質量%である。 Usually an organic binder, preferably a copolymer of acrylic acid-maleic acid, vinyl acetate-vinyl laurate, vinyl acetate-acrylate, styrene-acrylate and vinyl acetate-ethylene (advantageously in the form of an aqueous dispersion) Is added to the suspension. The binder is commercially available as an aqueous dispersion having a solid content of, for example, 35 to 65% by mass. The amount of such binder dispersion used is usually from 2 to 45% by weight, preferably from 5 to 35% by weight, particularly preferably from 7 to 20% by weight, based on the weight of the suspension.
担体は、例えば流動床装置又は移動床装置内で、上昇ガス流中、特に空気中で流動化される。これらの装置は通常、流動ガスが浸漬管を介して下方から又は上方から導入される円錐状又は球状の容器を含む。懸濁液はノズルを介して上方から、横から又は下方から流動床に噴霧される。浸漬管の中央に又は同心円状に配置された上昇管を使用することが有利である。担体粒子を上方に送る高いガス速度がその上昇管内部で用いられる。外側のリングでは、そのガス速度は緩和された速度を少しだけ上回っている。結果として粒子は循環方式で垂直に移動する。好適な流動床装置は、例えば、DE−A4006935に記載されている。 The carrier is fluidized in a rising gas stream, in particular in air, for example in a fluid bed apparatus or moving bed apparatus. These devices usually comprise a conical or spherical container into which flowing gas is introduced from below or from above via a dip tube. The suspension is sprayed onto the fluidized bed from above, from the side or from below via a nozzle. It is advantageous to use risers arranged in the center of the dip tube or concentrically. A high gas velocity that feeds the carrier particles upward is used inside the riser. In the outer ring, the gas velocity is slightly above the relaxed velocity. As a result, the particles move vertically in a circulating manner. A suitable fluid bed apparatus is described, for example, in DE-A 4006935.
触媒活性組成物を有する触媒担体の被覆においては、20〜500℃の被覆温度が通常は採用され、被覆は大気圧下又は減圧下で行うことができる。通常、被覆は0℃〜200℃、好ましくは20〜150℃、特に60〜120℃で行う。 In the coating of the catalyst support having the catalytically active composition, a coating temperature of 20 to 500 ° C. is usually employed, and the coating can be performed under atmospheric pressure or reduced pressure. Usually, the coating is carried out at 0 ° C. to 200 ° C., preferably 20 to 150 ° C., in particular 60 to 120 ° C.
触媒活性組成物の層厚は通常0.02〜0.2mm、好ましくは0.05〜0.15mmである。触媒における活性組成物の割合は通常5〜25質量%、大抵7〜15質量%である。 The layer thickness of the catalytically active composition is usually 0.02 to 0.2 mm, preferably 0.05 to 0.15 mm. The proportion of the active composition in the catalyst is usually 5 to 25% by mass, usually 7 to 15% by mass.
このようにして得られた前段階の触媒を>200℃〜500℃の温度で熱処理することにより、バインダーは熱分解及び/又は燃焼によって施された層から放散する。熱処理は気相酸化反応器内でその場で行うことが好ましい。 By heat-treating the previous catalyst thus obtained at a temperature of> 200 ° C. to 500 ° C., the binder is released from the applied layer by pyrolysis and / or combustion. The heat treatment is preferably performed in situ in the gas phase oxidation reactor.
本発明は更に、少なくとも1種の炭化水素及び酸素分子を含むガス流を、粉末X線回折パターンにおいて2シータ=27.7°及び28.4°におけるシグナルの高さの合計に対する2シータ=28.4°におけるシグナルの高さの比が少なくとも0.02である三酸化アンチモンを使用して製造された触媒に送通する気相酸化方法を提供する。 The present invention further provides a gas stream comprising at least one hydrocarbon and oxygen molecules, wherein 2 theta = 28 relative to the sum of the signal heights at 2 theta = 27.7 ° and 28.4 ° in the powder X-ray diffraction pattern. Provided is a gas phase oxidation process that passes through a catalyst made using antimony trioxide having a signal height ratio at 4 ° of at least 0.02.
本発明の好ましい実施態様は、o−キシレン及び/又はナフタレンを無水フタル酸に気相酸化する方法であって、o−キシレン及び/又はナフタレン並びに酸素分子を含むガス流を、粉末X線回折パターンにおいて2シータ=27.7°及び28.4°におけるシグナルの高さの合計に対する2シータ=28.4°におけるシグナルの高さの比が少なくとも0.02である三酸化アンチモンを使用して製造された触媒に送通する方法である。 A preferred embodiment of the present invention is a method for vapor phase oxidation of o-xylene and / or naphthalene to phthalic anhydride, wherein a gas stream comprising o-xylene and / or naphthalene and oxygen molecules is subjected to a powder X-ray diffraction pattern. Manufactured using antimony trioxide wherein the ratio of the signal height at 2 theta = 28.4 ° to the sum of the signal height at 2 theta = 27.7 ° and 28.4 ° is at least 0.02. It is the method of sending to the made catalyst.
三酸化アンチモン中の白安鉱の含有量及び方安鉱の含有量の測定:
測定は粉末X線回折法により行った。このため、三酸化アンチモン粉末をSiemens製の「D5000Theta/Theta」粉末X線回折装置で測定した。測定パラメータは次の通りである:
Measurement of white andesite content and antimony content in antimony trioxide:
The measurement was performed by a powder X-ray diffraction method. For this reason, the antimony trioxide powder was measured with a “D5000 Theta / Theta” powder X-ray diffractometer manufactured by Siemens. The measurement parameters are as follows:
シグナルの高さは、各シグナルの最大強度と測定背景との間の差により得られる。白安鉱の含有量を測定するため、2シータ=27.7°(方安鉱、シグナル高さa)及び28.4°(白安鉱、シグナル高さb)におけるシグナルを採用した。白安鉱の含有量はb/(a+b)であり、方安鉱の含有量はa/(a+b)である。 The signal height is obtained by the difference between the maximum intensity of each signal and the measurement background. Signals at 2 theta = 27.7 ° (Ban'an, signal height a) and 28.4 ° (Hakuan, signal height b) were employed to measure the content of Hakuan. The content of Hakuan ore is b / (a + b), and the content of Hang'an ore is a / (a + b).
例1(本発明)
触媒領域CZ1:
3.38gの炭酸セシウム、459.3gの二酸化チタン(Fuji TA 100C、アナターゼ、BET表面積20m2/g)、196.9gの二酸化チタン(Fuji TA 100、アナターゼ、BET表面積7m2/g)並びに51.4gの五酸化バナジウム及び13.2gの三酸化アンチモン(Merck Selectipur 7835、白安鉱含有量=0.18、方安鉱含有量0.82、99.5%のSb2O3含有量、300質量ppmのAs、500質量ppmのPb、50質量ppmのFe、平均粒子径2μm)を、1869gの脱ミネラル水に懸濁させ、18時間撹拌し、均質に分布させた。酢酸ビニルとラウリン酸ビニルの共重合体を含む有機バインダー78.4gを、50質量%濃度の水性分散体の形態で、この懸濁液に加えた。流動床装置において、この懸濁液820gを、寸法が7mm×7mm×4mmのリング状の2kgのステアタイト(ケイ酸マグネシウム)に噴霧し、乾燥させた。450℃において1時間触媒を焼成した後、ステアタイトリングに施された活性組成物の量は9.1%であった。分析された活性組成物の化学組成は、7.1%のV2O5、1.8%のSb2O3、0.38%のCs、残りがTiO2であった。
Example 1 (Invention)
Catalyst zone CZ1:
Cesium carbonate 3.38 g, titanium dioxide 459.3g (Fuji TA 100C, anatase, BET surface areas 20m 2 /g),196.9g titanium dioxide (Fuji TA 100, anatase, BET surface 7m 2 / g) and 51 .4 g of vanadium pentoxide and 13.2 g of antimony trioxide (Merck Selectipur 7835, white anite content = 0.18, beanite content 0.82, 99.5% Sb 2 O 3 content, 300 mass ppm As, 500 mass ppm Pb, 50 mass ppm Fe, average particle diameter 2 μm) was suspended in 1869 g of demineralized water, stirred for 18 hours, and uniformly distributed. 78.4 g of organic binder containing a copolymer of vinyl acetate and vinyl laurate was added to this suspension in the form of a 50% strength by weight aqueous dispersion. In a fluidized bed apparatus, 820 g of this suspension was sprayed onto 2 kg of steatite (magnesium silicate) in a ring shape with dimensions of 7 mm × 7 mm × 4 mm and dried. After calcining the catalyst for 1 hour at 450 ° C., the amount of active composition applied to the steatite ring was 9.1%. The chemical composition of the active composition analyzed was 7.1% V 2 O 5 , 1.8% Sb 2 O 3 , 0.38% Cs, the rest being TiO 2 .
触媒領域CZ2:
懸濁液の化学組成を変更してCZ1と同様に製造。触媒を450℃で1時間焼成した後、ステアタイトリングに施された活性組成物の量は8.5%であった。分析された活性組成物の化学組成は、7.95%のV2O5、2.7%のSb2O3、0.31%のCs、残りが平均BET表面積が18m2/gのTiO2であった。
Catalytic zone CZ2:
Manufactured in the same way as CZ1 by changing the chemical composition of the suspension. After calcining the catalyst at 450 ° C. for 1 hour, the amount of active composition applied to the steatite ring was 8.5%. The chemical composition of the analyzed active composition was 7.95% V 2 O 5 , 2.7% Sb 2 O 3 , 0.31% Cs, the rest being TiO with an average BET surface area of 18 m 2 / g. 2 .
触媒領域CZ3:
懸濁液の化学組成を変更してCZ1と同様に製造。触媒を450℃で1時間焼成した後、ステアタイトリングに施された活性組成物の量は8.5%であった。分析した活性組成物の化学組成は、7.1%のV2O5、2.4%のSb2O3、0.10%のCs、残りが平均BET表面積が17m2/gのTiO2であった。
Catalyst region CZ3:
Manufactured in the same way as CZ1 by changing the chemical composition of the suspension. After calcining the catalyst at 450 ° C. for 1 hour, the amount of active composition applied to the steatite ring was 8.5%. The chemical composition of the active composition analyzed was 7.1% V 2 O 5 , 2.4% Sb 2 O 3 , 0.10% Cs, the remainder being TiO 2 with an average BET surface area of 17 m 2 / g. Met.
触媒領域CZ4
懸濁液の化学組成を変更し、Fuji TA 100Cの代わりにFuji TA 100CT(アナターゼ、BET表面積27m2/g)を使用してCZ1と同様に製造。触媒を450℃で1時間焼成した後、ステアタイトリングに施された活性組成物の量は9.1%であった。分析した活性組成物の化学組成は、20%のV2O5、0.38%のP、残りが平均BET表面積が23m2/gのTiO2であった。
Catalytic zone CZ4
Manufactured in the same way as CZ1, using a modified chemical composition of the suspension and using Fuji TA 100CT (anatase, BET surface area 27 m 2 / g) instead of Fuji TA 100C. After calcining the catalyst for 1 hour at 450 ° C., the amount of active composition applied to the steatite ring was 9.1%. The chemical composition of the active composition analyzed was 20% V 2 O 5 , 0.38% P, the remainder being TiO 2 with an average BET surface area of 23 m 2 / g.
例2(非本発明)
触媒領域CZ5:
白安鉱の含有量が少ない三酸化アンチモン等級(例えば、Antraco製Triox white 白安鉱含有量=0.015、方安鉱含有量=0.985、99.3%のSb2O3含有量、0.3質量%のAs2O3、0.18質量%のPbO、0.02質量%の酸化鉄、平均粒径1.5μm)を使用したこと以外はCZ1と同様に製造。
Example 2 (non-present invention)
Catalytic zone CZ5:
Antimony trioxide grade with low content of white mine (for example, Tricox white mine content of Antraco = 0.015, content of banyanite = 0.985, 99.3% Sb 2 O 3 content , 0.3 mass% As 2 O 3 , 0.18 mass% PbO, 0.02 mass% iron oxide, average particle size 1.5 μm).
触媒領域CZ6:
白安鉱の含有量が少ない三酸化アンチモン等級(例えば、Antraco製Triox white 白安鉱含有量=0.015、方安鉱含有量=0.985、99.3%のSb2O3含有量、0.3質量%のAs2O3、0.18質量%のPbO、0.02質量%の酸化鉄、平均粒径1.5μm)を使用したこと以外はCZ2と同様に製造。
Catalyst region CZ6:
Antimony trioxide grade with low content of white mine (for example, Tricox white mine content of Antraco = 0.015, content of banyanite = 0.985, 99.3% Sb 2 O 3 content , 0.3 mass% As 2 O 3 , 0.18 mass% PbO, 0.02 mass% iron oxide, average particle size 1.5 μm).
触媒領域CZ7:
白安鉱の含有量が少ない三酸化アンチモン等級(例えば、Antraco製Triox white 白安鉱含有量=0.015、方安鉱含有量=0.985、99.3%のSb2O3含有量、0.3質量%のAs2O3、0.18質量%のPbO、0.02質量%の酸化鉄、平均粒径1.5μm)を使用したこと以外はCZ3と同様に製造。
Catalytic zone CZ7:
Antimony trioxide grade with low content of white mine (for example, Tricox white mine content of Antraco = 0.015, content of banyanite = 0.985, 99.3% Sb 2 O 3 content , 0.3 wt% As 2 O 3 , 0.18 wt% PbO, 0.02 wt% iron oxide, average particle size 1.5 μm).
例3(本発明によるモデル管スケールでのo−キシレンの無水フタル酸への酸化)
o−キシレンの無水フタル酸への触媒酸化を、内径が25mmの管を有する塩浴冷却管型反応器内で行った。反応器の入口から反応器の出口まで、130cmのCZ1、70cmのCZ2、60cmのCZ3及び60cmのCZ4を、長さ3.5m、内径25mmの鉄管に導入した。この鉄管は温度を調整するための塩溶融物に取り囲まれていた;外径が4mmであり内蔵プルアウト式素子を有するシース熱電対が触媒温度の測定するために機能した。
Example 3 (Oxylene to phthalic anhydride oxidation on a model tube scale according to the invention)
Catalytic oxidation of o-xylene to phthalic anhydride was carried out in a salt bath cooling tube reactor having a tube with an inner diameter of 25 mm. From the reactor inlet to the reactor outlet, 130 cm CZ1, 70 cm CZ2, 60 cm CZ3 and 60 cm CZ4 were introduced into an iron tube having a length of 3.5 m and an inner diameter of 25 mm. The iron tube was surrounded by a salt melt to adjust the temperature; a sheath thermocouple with an outer diameter of 4 mm and a built-in pull-out element functioned to measure the catalyst temperature.
30〜100g/標準m3の99.2質量%濃度のo−キシレン負荷を有する4.0標準m3/hの空気を管の頂部から下方に送通した。これにより表1に要約した結果を得た(「PAn収率」は、100%濃度のo−キシレンに対して得られた無水フタル酸の量の質量パーセントの量である。)。 4.0 standard m 3 / h air with a 99.2 wt% concentration of o-xylene loading of 30-100 g / standard m 3 was passed down from the top of the tube. This gave the results summarized in Table 1 ("PAn yield" is the amount in weight percent of the amount of phthalic anhydride obtained for 100% concentration of o-xylene).
例4(モデル管スケールでのo−キシレンの無水フタル酸への酸化(非本発明))
反応器の入口から反応器の出口まで、130cmのCZ5、70cmのCZ6、60cmのCZ7及び60cmのCZ4を含む触媒床を用いたこと以外は例3を参照。
Example 4 (oxidation of o-xylene to phthalic anhydride on a model tube scale (non-present invention))
See Example 3 except that a catalyst bed comprising 130 cm CZ5, 70 cm CZ6, 60 cm CZ7 and 60 cm CZ4 from the reactor inlet to the reactor outlet was used.
表1の例3及び4の比較は、例3における触媒の触媒活性が例4のものよりも高いことを示している。そのため、例3(本発明)の塩浴温度は更に低下させることができ、o−キシレン及びフタリドの含有量が低いPAn収率は、例4(非本発明)よりも著しく高い。
Comparison of Examples 3 and 4 in Table 1 shows that the catalytic activity of the catalyst in Example 3 is higher than that of Example 4. Therefore, Example 3 salt bath temperature of (the present invention) can be further reduced, o- xylene and P A n yields a low content of phthalide is significantly higher than Example 4 (non-invention).
例5(工業的規模でのo−キシレンの無水フタル酸への酸化(本発明))
o−キシレンから無水フタル酸への触媒酸化を、管の内径が25mmの15105本の管を有する塩浴冷却管型反応器で行った。反応器の入口から反応器の出口まで、130cmのCZ1、90cmのCZ2、60cmのCZ3及び60cmのCZ4を導入した。温度データを記録するため、反応器の管の一部に熱電体を取り付けた。0〜100g/標準m3のo−キシレン負荷(純度約99質量%)を有する4.0標準m3/hの空気を管に送通した。反応器の出口のガスにおいてPAn収率を測定し、100%濃度のo−キシレンに対する質量%(反応したo−キシレン1kg当たりのPAnのkg)を表2に示している。
Example 5 (Oxylene oxidation to phthalic anhydride on the industrial scale (invention))
Catalytic oxidation of o-xylene to phthalic anhydride was carried out in a salt bath cooled tube reactor having 15105 tubes with an inner diameter of 25 mm. From the reactor inlet to the reactor outlet, 130 cm CZ1, 90 cm CZ2, 60 cm CZ3 and 60 cm CZ4 were introduced. A thermoelectric was attached to a part of the reactor tube to record the temperature data. 4.0 standard m 3 / h air with 0-100 g / standard m 3 o-xylene loading (purity about 99% by weight) was passed through the tube. The PAn yield was measured in the gas at the outlet of the reactor, and Table 2 shows the mass% (kg of PAn per kg of reacted o-xylene) with respect to 100% concentration of o-xylene.
例6(工業的規模でのo−キシレンの無水フタル酸への酸化(非本発明))
反応器の入口から反応器の出口まで130cmのCZ5、90cmのCZ6、60cmのCZ7及び60cmのCZ4を含む触媒床を用いたこと以外は例5を参照。
Example 6 (Oxylene oxidation to phthalic anhydride on an industrial scale (non-inventive))
See Example 5 except that a catalyst bed comprising 130 cm CZ5, 90 cm CZ6, 60 cm CZ7 and 60 cm CZ4 from the reactor inlet to the reactor outlet was used.
表2の例5及び6の比較は、例5の触媒の触媒活性が例6のものよりも高いことを示している。そのため、例5(本発明)における塩浴温度は更に低下させることができ、o−キシレンとフタリドの含有量が低いPAn収率は例6(非本発明)よりも著しく高い。 Comparison of Examples 5 and 6 in Table 2 shows that the catalytic activity of the catalyst of Example 5 is higher than that of Example 6. Therefore, the salt bath temperature in Example 5 (invention) can be further reduced, and the PAn yield with a low content of o-xylene and phthalide is significantly higher than in Example 6 (non-invention).
Claims (6)
粉末X線回折パターンにおいて2シータ=27.7°及び28.4°におけるシグナルの高さの合計に対する2シータ=28.4°におけるシグナルの高さの比が少なくとも0.02である三酸化アンチモン並びに二酸化チタン及び五酸化バナジウムを使用して製造されたことを特徴とする触媒。 A catalyst for oxidizing o-xylene and / or naphthalene to phthalic anhydride,
Antimony trioxide having a ratio of the signal height at 2 theta = 28.4 ° to the sum of the signal height at 2 theta = 27.7 ° and 28.4 ° in the powder X-ray diffraction pattern is at least 0.02. And a catalyst produced using titanium dioxide and vanadium pentoxide .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10171381.6 | 2010-07-30 | ||
EP10171381 | 2010-07-30 | ||
PCT/IB2011/053327 WO2012014154A1 (en) | 2010-07-30 | 2011-07-26 | Catalyst for oxidation of o-xylene and/or naphthalene to phthalic anhydride |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013539407A JP2013539407A (en) | 2013-10-24 |
JP5973436B2 true JP5973436B2 (en) | 2016-08-23 |
Family
ID=45529478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013522327A Expired - Fee Related JP5973436B2 (en) | 2010-07-30 | 2011-07-26 | Catalyst for oxidizing o-xylene and / or naphthalene to phthalic anhydride |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP2598238A4 (en) |
JP (1) | JP5973436B2 (en) |
KR (1) | KR20130131306A (en) |
CN (1) | CN103025424B (en) |
BR (1) | BR112013001388A2 (en) |
TW (1) | TW201219112A (en) |
WO (1) | WO2012014154A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9029289B2 (en) | 2012-07-16 | 2015-05-12 | Basf Se | Catalyst for preparing carboxylic acids and/or carboxylic anhydrides |
EP2872251A4 (en) * | 2012-07-16 | 2016-03-02 | Basf Se | Catalyst for preparing carboxylic acids and/or carboxylic anhydrides |
EP3013784B1 (en) * | 2013-06-26 | 2018-12-26 | Basf Se | Process for starting up a gas phase oxidation reactor |
EP3107653B1 (en) * | 2014-02-17 | 2023-08-16 | Basf Se | Catalyst system for oxidation of o-xylene and/or naphthalene to phthalic anhydride |
EP2987552A1 (en) * | 2014-08-22 | 2016-02-24 | Basf Se | Catalyst system for oxidation of o-xylene and/or naphthalene to phthalic anhydride |
CN105992647A (en) * | 2014-02-17 | 2016-10-05 | 巴斯夫欧洲公司 | Catalyst system for oxidizing o-xylol and/or naphthalene into phthalic anhydride |
DE102014203725A1 (en) * | 2014-02-28 | 2015-09-03 | Basf Se | Oxidation catalyst with saddle-shaped carrier shaped body |
EP3047904A1 (en) * | 2015-01-22 | 2016-07-27 | Basf Se | Catalyst system for oxidation of o-xylene and/or naphthalene to phthalic anhydride |
DE102017202351A1 (en) * | 2017-02-14 | 2018-08-16 | Clariant International Ltd | Catalyst material for the oxidation of hydrocarbons with antimony-doped titanium dioxide |
EP3655177A4 (en) | 2017-07-18 | 2020-12-02 | HA-International, LLC | Compositions and methods for refractory coatings with ester carriers |
CN112642454A (en) * | 2019-10-12 | 2021-04-13 | 中国石油化工股份有限公司 | Catalyst for preparing phthalic anhydride by oxidizing o-xylene and preparation method thereof |
CN116059995A (en) * | 2021-11-01 | 2023-05-05 | 中国石油化工股份有限公司 | Catalyst for producing homoanhydride from durene, its preparation method and application |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60137438A (en) * | 1983-09-28 | 1985-07-22 | Nitto Chem Ind Co Ltd | Manufacture of metal oxide catalyst containing antimony |
DE4006935A1 (en) | 1990-03-06 | 1991-09-12 | Wacker Chemie Gmbh | Fluidised bed appts. for mixing, drying and coating bulk solids - has support tube concentrically placed around down pipe to form ring shaped aperture in mixing chamber |
US5235071A (en) * | 1991-07-10 | 1993-08-10 | Nippon Shokubai Co., Ltd. | Catalyst for producing phthalic anhydride and process by using the same |
DE19823275A1 (en) * | 1998-05-26 | 1999-12-02 | Basf Ag | Process for the preparation of phthalic anhydride by catalytic gas phase oxidation of x-xylene - / - naphthalene mixtures |
DE19839001A1 (en) | 1998-08-27 | 2000-03-02 | Basf Ag | Shell catalysts for the catalytic gas phase oxidation of aromatic hydrocarbons |
DE19922156A1 (en) * | 1999-05-12 | 2000-08-10 | Basf Ag | Multimetal oxide composition, useful as oxidation catalyst, especially for gas phase production of (meth)acrylic acid, is based on crystallites of constant composition |
DE10323461A1 (en) | 2003-05-23 | 2004-12-09 | Basf Ag | Preparation of aldehydes, carboxylic acids and / or carboxylic anhydrides by means of vanadium oxide, titanium dioxide and antimony oxide-containing catalysts |
DE10323818A1 (en) * | 2003-05-23 | 2004-12-09 | Basf Ag | Catalyst systems for the production of phthalic anhydride |
FR2855516B1 (en) * | 2003-05-27 | 2005-07-08 | Atofina | OXIDATION OF ACRYLIC ACID PROPANE BY USING CATALYSTS MIXED WITH CRYSTALLINE PHASES |
JP4442317B2 (en) * | 2004-05-21 | 2010-03-31 | 三菱化学株式会社 | Method for producing composite oxide catalyst |
WO2006125468A1 (en) | 2005-05-22 | 2006-11-30 | Süd-Chemie AG | Multi-layered catalyst for producing phthalic anhydride |
CN101130535B (en) * | 2006-08-25 | 2010-10-13 | 中国石油化工股份有限公司 | Method for producing phthallic anhydride |
JP2009067621A (en) * | 2007-09-12 | 2009-04-02 | Nippon Shokubai Co Ltd | Oxide particle, dispersion containing the particle, and catalyst using the particle |
DE102008054586A1 (en) * | 2008-12-12 | 2010-06-17 | Basf Se | Process for the continuous production of geometric shaped catalyst bodies K |
-
2011
- 2011-07-26 CN CN201180035813.9A patent/CN103025424B/en active Active
- 2011-07-26 BR BR112013001388A patent/BR112013001388A2/en not_active IP Right Cessation
- 2011-07-26 KR KR1020137004810A patent/KR20130131306A/en not_active Application Discontinuation
- 2011-07-26 WO PCT/IB2011/053327 patent/WO2012014154A1/en active Application Filing
- 2011-07-26 JP JP2013522327A patent/JP5973436B2/en not_active Expired - Fee Related
- 2011-07-26 EP EP11811912.2A patent/EP2598238A4/en not_active Withdrawn
- 2011-07-29 TW TW100127132A patent/TW201219112A/en unknown
Also Published As
Publication number | Publication date |
---|---|
BR112013001388A2 (en) | 2016-05-24 |
TW201219112A (en) | 2012-05-16 |
EP2598238A1 (en) | 2013-06-05 |
JP2013539407A (en) | 2013-10-24 |
KR20130131306A (en) | 2013-12-03 |
CN103025424B (en) | 2016-01-20 |
EP2598238A4 (en) | 2014-08-20 |
WO2012014154A1 (en) | 2012-02-02 |
CN103025424A (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5973436B2 (en) | Catalyst for oxidizing o-xylene and / or naphthalene to phthalic anhydride | |
JP2013511377A (en) | Multilayer catalyst for producing carboxylic acid and / or carboxylic anhydride having vanadium antimonate in at least one catalyst layer, and method for producing phthalic anhydride having low hot spot temperature | |
US9029289B2 (en) | Catalyst for preparing carboxylic acids and/or carboxylic anhydrides | |
JP2007534628A (en) | Method for producing aldehyde, carboxylic acid and / or carboxylic anhydride using catalyst containing vanadium oxide, titanium dioxide and antimony oxide | |
US8859459B2 (en) | Multilayer catalyst for preparing phthalic anhydride and process for preparing phthalic anhydride | |
JP2016529219A (en) | Method for producing phthalic anhydride | |
KR101396072B1 (en) | PRODUCTION OF PHTHALIC ANHYDRIDE BY GAS PHASE OXIDATION OF o-XYLOL IN A PRIMARY AND A SECONDARY REACTOR | |
US20110230668A1 (en) | Catalyst for gas phase oxidations based on low-sulfur and low-calcium titanium dioxide | |
JP6618917B2 (en) | Catalyst system for oxidizing o-xylene and / or naphthalene to phthalic anhydride | |
US9212157B2 (en) | Catalyst for the oxidation of o-xylene and/or naphthalene to phthalic anhydride | |
JP6563410B2 (en) | Catalyst system for oxidizing o-xylol and / or naphthalene to phthalic anhydride | |
US10710054B2 (en) | Multi-zoned catalyst system for oxidation of o-xylene and/or naphthalene to phthalic anhydride | |
JP6466429B2 (en) | Method for starting a gas phase oxidation reactor | |
JP5856089B2 (en) | Titanium dioxide based gas phase oxidation catalyst with low sulfur and calcium content | |
JP2015530228A (en) | Catalyst for producing carboxylic acid and / or carboxylic anhydride | |
JP5879342B2 (en) | Multilayer catalyst for producing phthalic anhydride and method for producing phthalic anhydride | |
EP2987552A1 (en) | Catalyst system for oxidation of o-xylene and/or naphthalene to phthalic anhydride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140722 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150707 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20151006 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20151106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151222 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160322 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160714 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5973436 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |