JP5972600B2 - Capacitor calibration circuit and capacitor calibration method - Google Patents
Capacitor calibration circuit and capacitor calibration method Download PDFInfo
- Publication number
- JP5972600B2 JP5972600B2 JP2012037394A JP2012037394A JP5972600B2 JP 5972600 B2 JP5972600 B2 JP 5972600B2 JP 2012037394 A JP2012037394 A JP 2012037394A JP 2012037394 A JP2012037394 A JP 2012037394A JP 5972600 B2 JP5972600 B2 JP 5972600B2
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- capacitance
- voltage
- current
- calibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 title claims description 408
- 238000000034 method Methods 0.000 title claims description 18
- 239000002184 metal Substances 0.000 claims description 44
- 229910052751 metal Inorganic materials 0.000 claims description 44
- 238000004364 calculation method Methods 0.000 claims description 20
- 238000005259 measurement Methods 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims 2
- 230000000052 comparative effect Effects 0.000 claims 1
- 239000002131 composite material Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Description
本発明の実施形態は、交流高電圧を印加して用いるコンデンサの静電容量を校正するためのコンデンサ校正用回路およびコンデンサ校正方法に関する。 Embodiments described herein relate generally to a capacitor calibration circuit and a capacitor calibration method for calibrating the capacitance of a capacitor used by applying an alternating high voltage.
従来、交流高電圧の電圧を測定するには分圧器が必要である。分圧器を校正するには基準となる分圧器が必要であるが、世界最高レベルの高電圧を測定する分圧器に対応する参照用分圧器(参照器)は存在していない。よって、低電圧で校正された要素を必要個数直列接続して高電圧分圧器を構成する必要がある。 Conventionally, a voltage divider is required to measure an alternating high voltage. To calibrate the voltage divider, a reference voltage divider is required, but there is no reference voltage divider (reference device) corresponding to the voltage divider that measures the world's highest level of high voltage. Therefore, it is necessary to configure a high voltage divider by connecting a necessary number of elements calibrated at a low voltage in series.
高電圧の分圧器に用いられる分圧要素は、電圧印加による分圧要素の特性変化を避ける必要があり、この分圧素子には線形な電気的受動素子が望ましいため、抵抗、リアクトル、コンデンサなどが考えられる。 The voltage dividing element used in the high voltage divider needs to avoid changes in the characteristics of the voltage dividing element due to voltage application. Since this voltage dividing element is preferably a linear electric passive element, a resistor, a reactor, a capacitor, etc. Can be considered.
分圧素子に抵抗を用いるとジュール熱により特性値が温度変化するため精度が悪化する。
また、分圧素子として、磁路を閉鎖しないリアクトルを用いた場合では、外部の影響を受けやすく不安定である。また、閉鎖磁路として鉄心を用いると、鉄心の非線形性や鉄損失の影響を強く受けるため最適ではない。
If a resistor is used for the voltage dividing element, the temperature deteriorates because the characteristic value changes due to Joule heat.
Further, when a reactor that does not close the magnetic path is used as the voltage dividing element, it is susceptible to external influences and is unstable. Also, using an iron core as a closed magnetic path is not optimal because it is strongly influenced by the non-linearity of the iron core and iron loss.
そのため、分圧素子としては、エネルギーを消費しないコンデンサが多用されるが、コンデンサを用いた分圧器を高電圧化するためには、コンデンサの電極間距離を広くする必要があり静電容量が低下してしまう。また、静電容量を大きくするために極間絶縁に高誘電率材料を用いたコンデンサでは、誘電体の特性の影響を強く受け、静電容量に電圧特性が生じるため精度が悪化してしまう。 For this reason, capacitors that do not consume energy are often used as voltage dividing elements, but in order to increase the voltage of the voltage divider using the capacitors, it is necessary to increase the distance between the electrodes of the capacitors, resulting in lower capacitance. Resulting in. In addition, a capacitor using a high dielectric constant material for inter-electrode insulation in order to increase the capacitance is strongly influenced by the characteristics of the dielectric, and the voltage characteristics are generated in the capacitance, so the accuracy deteriorates.
また、コンデンサを用いた場合、気中放電を抑止するための高電圧シールドが必要となり、対地対向面積が増加するため対地ストレー容量も増加する。一般には50〜200pC程度の高圧ガスコンデンサを垂直に積層し、直系1m以上の高圧シールドを頂上の電圧印加部に設ける。 In addition, when a capacitor is used, a high-voltage shield is required to suppress air discharge, and the ground-facing area increases, so the ground stray capacity also increases. Generally, high-pressure gas capacitors of about 50-200pC are stacked vertically, and a high-voltage shield of direct line 1m or more is provided at the top voltage application section.
そのため分圧要素の主静電容量は対地ストレー容量を無視できるほど大きくできない。また、高電圧コンデンサでは、電極を支持する絶縁物にも高電圧が印加されるため、コンデンサ表面を流れる漏れ電流も大きい。 For this reason, the main capacitance of the voltage dividing element cannot be increased to such an extent that the ground stray capacity can be ignored. Moreover, in a high voltage capacitor, since a high voltage is applied also to the insulator which supports an electrode, the leakage current which flows on the capacitor | condenser surface is also large.
漏れ電流は印加電圧と非線形に増加するため、印加電圧が高くなると誤差を大きく含むことになる。これらの現象を抑止するため、精密コンデンサは一般的に主静電容量と表面漏れ電流およびストレー容量をバイパスする3端子型コンデンサとすることが多い。ストレー容量をキャンセルする静電容量校正方法としては、例えば、標準コンデンサの一端を容量計の信号入力端子に接続するとともに、標準コンデンサの他端を信号入力端子と同電位の電圧を発生するガード電圧出力端子に接続し、この接続状態で、容量計のゼロ調整を行うことが挙げられる。 Since the leakage current increases nonlinearly with the applied voltage, the error increases greatly when the applied voltage increases. In order to suppress these phenomena, the precision capacitor is generally a three-terminal capacitor that bypasses the main capacitance, surface leakage current, and stray capacitance. As a capacitance calibration method for canceling stray capacitance, for example, one end of a standard capacitor is connected to a signal input terminal of a capacitance meter, and the other end of the standard capacitor is a guard voltage that generates a voltage having the same potential as the signal input terminal. Connected to the output terminal, and in this connected state, zero adjustment of the capacity meter is performed.
前述したように、コンデンサを高電圧化する場合、目的とする電圧より低い定格電圧のコンデンサを直列に積層して構築する必要がある。合成静電容量を用いて他のコンデンサの静電容量やtanδを校正する場合、一般的には双方のコンデンサに流れる電流を比較して校正する。 As described above, when the voltage of a capacitor is increased, it is necessary to construct a capacitor having a rated voltage lower than the target voltage by stacking in series. When calibrating the capacitance and tan δ of other capacitors using the synthesized capacitance, the calibration is generally performed by comparing the currents flowing through both capacitors.
この場合、基準となるコンデンサの静電容量やtanδを正確に把握する必要がある。超高電圧では、それよりも低い高電圧の基準となるコンデンサを直列接続してコンデンサを高電圧化する必要がある。 In this case, it is necessary to accurately grasp the capacitance and tan δ of the reference capacitor. In the ultra-high voltage, it is necessary to increase the voltage of the capacitor by connecting in series a capacitor serving as a reference for a lower high voltage.
しかしながら、あらかじめ校正されたコンデンサ分圧素子を直列接続した高電圧分圧器では、自身の電界を緩和するための高圧シールドが必要となり、中間点であるコンデンサ接続部にも電位板がしばしば設けられる。 However, a high voltage voltage divider in which capacitor voltage dividing elements calibrated in advance are connected in series requires a high voltage shield for relaxing its own electric field, and a potential plate is often provided also at the capacitor connecting portion which is an intermediate point.
積層されたコンデンサの場合、上部コンデンサの3端子の2端子あるいは接地端子(ガード端子)を下部側コンデンサの高圧側端子に接続する必要がある。そのため、積層した回路での上部コンデンサの静電容量の測定値が校正時の測定値と異なってしまう可能性がある。 In the case of stacked capacitors, it is necessary to connect the three terminals of the upper capacitor or the ground terminal (guard terminal) to the high voltage side terminal of the lower capacitor. Therefore, the measured value of the capacitance of the upper capacitor in the stacked circuit may be different from the measured value at the time of calibration.
また、上下2個のコンデンサの接続点には接続のための一定面積が必要であり、この接続点と対地間のストレー容量が無視できないものとなる。
つまり、高圧シールドや接続点と対地間のストレー容量により、上下コンデンサの分圧比はそれぞれのコンデンサについて単独で校正した値の単純和とならず、上部コンデンサには、下部コンデンサに流入する電流と、接続点と対地間のストレー容量に流れる電流との合成電流が流れる。また、下部コンデンサには、高圧シールドと接続点間のストレー容量に流れる電流と上端コンデンサに流れる電流との合成電流が流れる。
このため、上部コンデンサに過剰な電圧が印加されたり、下段側コンデンサに上段側コンデンサの漏れ電流有効電流成分が流れて位相誤差が拡大したりする。
In addition, a fixed area for connection is required at the connection point between the upper and lower capacitors, and the stray capacity between the connection point and the ground cannot be ignored.
In other words, due to the high voltage shield and the stray capacitance between the connection point and the ground, the voltage division ratio of the upper and lower capacitors is not the simple sum of the values calibrated independently for each capacitor, the upper capacitor has the current flowing into the lower capacitor, A combined current of the current flowing through the stray capacitance between the connection point and the ground flows. In addition, a combined current of a current flowing in the stray capacitance between the high voltage shield and the connection point and a current flowing in the upper end capacitor flows in the lower capacitor.
For this reason, an excessive voltage is applied to the upper capacitor, or the leakage current effective current component of the upper capacitor flows through the lower capacitor and the phase error increases.
また、上部コンデンサのガード電極に流れる電流を下部コンデンサにも流す必要があるので、上部コンデンサと下部コンデンサとの合成静電容量のtanδが大きくなる。よって、上下段のコンデンサの電圧は、それぞれのコンデンサに生ずる電圧のスカラー和ではなくベクトル和として求める必要があるため、上下部のコンデンサの印加電圧と各コンデンサの分圧電圧との間には位相差が生じてしまう。 In addition, since the current flowing through the guard electrode of the upper capacitor needs to flow through the lower capacitor, the combined electrostatic capacitance tan δ of the upper capacitor and the lower capacitor is increased. Therefore, the voltage of the upper and lower capacitors must be obtained as a vector sum rather than a scalar sum of the voltages generated in each capacitor, so there is a potential between the applied voltage of the upper and lower capacitors and the divided voltage of each capacitor. A phase difference will occur.
コンデンサを積層した場合における接続点とのストレー容量をキャンセルする従来手法はないので、大型の高圧コンデンサを直列に積み上げて更なる高電圧化したコンデンサの静電容量を校正するためには、それぞれのコンデンサの静電容量をあらかじめ校正し、それぞれのコンデンサを積層しても、各コンデンサの静電容量の測定値にずれが生じないと仮定されていた。 There is no conventional method for canceling the stray capacitance with the connection point when capacitors are stacked, so in order to calibrate the capacitance of capacitors with higher voltage by stacking large high-voltage capacitors in series, It was assumed that the capacitance values of the capacitors were not calibrated even if the capacitances of the capacitors were calibrated in advance and the capacitors were stacked.
しかしながら、コンデンサを高電圧化すると、上述のように対地ストレー容量が無視できなくなり、各コンデンサ単体の静電容量の校正値と積層した状態での静電容量の校正値との間に誤差が生じてしまう。特に、損失が十分小さいコンデンサは、高電圧化により静電容量が低下し、対地静電容量の影響が校正精度に強く影響してしまう。これら誤差要因の多くは対地ストレー容量に起因するため、ストレー容量の精密な把握またはキャンセルが必要である。 However, when the voltage of the capacitor is increased, the ground stray capacitance cannot be ignored as described above, and an error occurs between the capacitance calibration value of each capacitor and the capacitance calibration value in the stacked state. End up. In particular, a capacitor having a sufficiently small loss has a lower capacitance due to a higher voltage, and the influence of the capacitance to the ground strongly affects the calibration accuracy. Many of these error factors are caused by the ground stray capacity, so it is necessary to accurately grasp or cancel the stray capacity.
積層したコンデンサの合成静電容量を精密に校正するには、上記の要因を積層状態で測定すれば解決するが、積層コンデンサの上下コンデンサの接続点に流入または流出する電流を高電位のまま測定する方法がなかった。また、電圧基準器のない高電圧での静電容量の直接の校正を行なってはいなかった。 To accurately calibrate the composite capacitance of stacked capacitors, the above factors can be solved by measuring them in the stacked state, but the current flowing into or out of the connection points of the upper and lower capacitors of the stacked capacitor is measured at a high potential. There was no way to do it. Also, direct calibration of the capacitance at high voltage without a voltage reference was not performed.
本発明が解決しようとする課題は、複数のコンデンサを積層した状態での合成静電容量を精度よく校正することが可能になるコンデンサ校正用回路およびコンデンサ校正方法を提供することにある。 The problem to be solved by the present invention is to provide a capacitor calibration circuit and a capacitor calibration method capable of accurately calibrating a composite capacitance in a state where a plurality of capacitors are stacked.
実施形態によれば、コンデンサ校正用回路は、交流電位点に接続する上部コンデンサと、接地電位点に接続する下部コンデンサと、前記上部コンデンサの電流および前記下部コンデンサの電流の比較を行なう電流比較器と、前記上部コンデンサおよび前記下部コンデンサを中間電位金属板を介して直列接続して積層した回路に交流電圧を印加した場合における、前記上部コンデンサ単体の静電容量の校正値と前記下部コンデンサ単体の静電容量の校正値と前記電流比較器による測定結果で示される前記上部コンデンサの電流および前記下部コンデンサの電流の相関の測定値とをもとに、前記積層した回路の前記上部コンデンサに発生する電圧および前記下部コンデンサに発生する電圧、およびこれらの電圧のベクトル和を演算する電圧演算手段と、前記電圧演算手段により演算した電圧と前記下部コンデンサの電流とをもとに、前記上部コンデンサおよび前記下部コンデンサの前記積層した回路の合成静電容量を演算する静電容量演算手段とをもつ。 According to the embodiment, the capacitor calibration circuit includes an upper capacitor connected to the AC potential point, a lower capacitor connected to the ground potential point, and a current comparator that compares the current of the upper capacitor and the current of the lower capacitor. And when an AC voltage is applied to a circuit in which the upper capacitor and the lower capacitor are connected in series via an intermediate potential metal plate and an AC voltage is applied, the capacitance calibration value of the upper capacitor alone and the lower capacitor alone Generated in the upper capacitor of the stacked circuit based on the calibration value of capacitance and the measured value of the correlation between the current of the upper capacitor and the current of the lower capacitor indicated by the measurement result by the current comparator Voltage, voltage generated in the lower capacitor, and a voltage calculation method for calculating a vector sum of these voltages And a capacitance calculation means for calculating a combined capacitance of the stacked circuit of the upper capacitor and the lower capacitor based on the voltage calculated by the voltage calculation means and the current of the lower capacitor. .
本発明によれば、複数のコンデンサを積層した状態での合成静電容量を精度よく校正することが可能になる。 According to the present invention, it is possible to accurately calibrate the combined capacitance in a state where a plurality of capacitors are stacked.
以下、実施の形態について、図面を参照して説明する。
(第1の実施形態)
まず、第1の実施形態について説明する。
本実施形態では、上部(上段側)コンデンサと下部(下段側)コンデンサとの接続点に電位板を設け、当該電位板を仮想接地電位とする測定器を高電位部に設ける構成として、上部コンデンサと下部コンデンサとを積層した状態における合成静電容量を精度よく測定することを特徴としている。
Hereinafter, embodiments will be described with reference to the drawings.
(First embodiment)
First, the first embodiment will be described.
In the present embodiment, a potential plate is provided at a connection point between an upper (upper side) capacitor and a lower (lower side) capacitor, and a measuring instrument having the potential plate as a virtual ground potential is provided in a high potential portion. It is characterized by accurately measuring the combined capacitance in a state where the capacitor and the lower capacitor are stacked.
上部コンデンサ単体の静電容量を校正すれば、上下部のコンデンサの積層状態で上段のコンデンサに流れる電流と上部コンデンサに生ずる分担電圧との関係が分かる。
この状態で上段側コンデンサから流れ出す電流と下段側コンデンサに流れ込む電流とを電位板を基準として比較することにより、上部コンデンサの分担電圧と下部コンデンサの充電電流との関係が分かる。
If the capacitance of the upper capacitor is calibrated, the relationship between the current flowing in the upper capacitor and the shared voltage generated in the upper capacitor in the laminated state of the upper and lower capacitors can be found.
In this state, by comparing the current flowing out from the upper capacitor and the current flowing into the lower capacitor on the basis of the potential plate, the relationship between the shared voltage of the upper capacitor and the charging current of the lower capacitor can be understood.
下段側コンデンサの静電容量は、電位板に電圧を印加することで従来技術を用いて校正可能である。以上の手段により、上下部コンデンサの接続点と対地間にストレー容量が存在しても、下部コンデンサ単体の校正済みの静電容量と下部コンデンサの充電電流とをもとに上部コンデンサの分担電圧が正確に判明するので、上下部コンデンサを積層した回路の合成静電容量が判明する。 The capacitance of the lower capacitor can be calibrated using conventional techniques by applying a voltage to the potential plate. By the above means, even if there is a stray capacitance between the connection point of the upper and lower capacitors and the ground, the shared voltage of the upper capacitor is determined based on the calibrated capacitance of the lower capacitor alone and the charging current of the lower capacitor. Since it is accurately determined, the combined capacitance of the circuit in which the upper and lower capacitors are stacked is determined.
すなわち、上部および下部コンデンサ単体の校正済みの静電容量と下部コンデンサの充電電流とをもとに、積層された上下部コンデンサに印加された電圧が判明する。たとえ、上部コンデンサに漏れ電流のような外部要因による電流が流れ込んでも、上部コンデンサの分担電圧と下部コンデンサの充電電流との関係が判明しているので、合成静電容量および印加電圧の相関性には影響しない。 That is, the voltage applied to the stacked upper and lower capacitors is determined based on the calibrated capacitance of the upper and lower capacitors alone and the charging current of the lower capacitor. Even if a current due to an external factor such as leakage current flows into the upper capacitor, the relationship between the shared voltage of the upper capacitor and the charging current of the lower capacitor is known, so the correlation between the combined capacitance and the applied voltage Has no effect.
本手法によりコンデンサの静電容量を精密に校正できれば、それを基準として電圧測定装置や電力計の校正を精密に行うことが可能となる。そのため測定結果の不確かさを小さくすることが可能となるうえ、特性不変の仮定がないためトレーサビリティーが確保される。 If the capacitance of the capacitor can be accurately calibrated by this method, the voltage measuring device and the wattmeter can be calibrated with reference to that. Therefore, the uncertainty of the measurement result can be reduced, and traceability is ensured because there is no assumption of characteristic invariance.
以下、コンデンサ校正用回路の具体例を説明する。図1は、第1の実施形態におけるコンデンサ校正用回路の一例を示す図である。
本実施形態では、コンデンサ校正用回路は、下部コンデンサ1、中間電位金属板2、上部コンデンサ3、高圧シールド4、電流比較器5、校正用測定器6、交流高電圧源7、分圧器10を有する。
Hereinafter, a specific example of the capacitor calibration circuit will be described. FIG. 1 is a diagram illustrating an example of a capacitor calibration circuit according to the first embodiment.
In this embodiment, the capacitor calibration circuit includes a
下部コンデンサ1と上部コンデンサ3とを積層して、これらのコンデンサの合成静電容量を校正する際は、下部コンデンサ1の上に、当該下部コンデンサ1の直径より十分大きな直径を有する中間電位金属板2が下部コンデンサ1の端子と電気的に絶縁して設けられる。この中間電位金属板2の上には、上部コンデンサ3が端子を絶縁して設置される。上部コンデンサ3の高圧側端子3aには大型の高圧シールド4が載せられている。
When the
上部コンデンサ3の低圧側端子3bと下部コンデンサ1の高圧側端子1aとの間には電流比較器5が接続され、この電流比較器5の接地端子は中間電位金属板2に接続される。
A
上部コンデンサ3の接地端子3cは中間電位金属板2に直接接続される。また、下部コンデンサ1の低圧側端子1bは校正用測定器6を介して接地される。この校正用測定器6は、分圧器10を介して高電位側の高圧シールド4に接続される。
The
また、コンデンサ校正用回路は、校正装置20を備える。この校正装置20は、下部コンデンサ1や上部コンデンサ3の静電容量を校正する静電容量校正部21、下部コンデンサ1や上部コンデンサ3の電圧を演算する電圧演算部22、不揮発性メモリなどの記憶装置23を有する。
The capacitor calibration circuit includes a
次に、第1の実施形態におけるコンデンサ校正用回路によるコンデンサの合成静電容量の校正の手順について説明する。図2は、第1の実施形態におけるコンデンサ校正用回路によるコンデンサの合成静電容量の校正の手順の一例を示すフローチャートである。
まず、下部コンデンサ1単体の静電容量を校正する。下部コンデンサ1単体の静電容量を校正するには、前述したコンデンサ校正用回路の高圧シールド4と中間電位金属板2とを短絡し、かつ電流比較器5を接続しない状態で、中間電位金属板2と下部コンデンサ1の高圧側端子1aとを接続した上で(ステップS1)、中間電位金属板2と対地間に交流高電圧源7より交流高電圧を印加する(ステップS2)。
Next, a procedure for calibrating the composite capacitance of the capacitor by the capacitor calibration circuit in the first embodiment will be described. FIG. 2 is a flowchart illustrating an example of a procedure for calibrating the composite capacitance of the capacitor by the capacitor calibration circuit according to the first embodiment.
First, the capacitance of the
この印加した状態で下部コンデンサ1に流れる電流を図示しない電流測定器などにより測定し、中間電位金属板2の対地電位を分圧器10や図示しないその他の電圧測定器などにより測定し、これらの測定結果が校正装置20に出力される。下部コンデンサ1に流れる電流は校正用測定器6により測定してもよい。校正装置20の静電容量校正部21は、中間電位金属板2の対地電位の値と下部コンデンサ1に流れる電流の測定値との相関を得て、この相関をもとに下部コンデンサ1単体の静電容量を校正する(ステップS3)。この校正した静電容量の値は校正装置20の記憶装置23に記憶される。
次に、上部コンデンサ3単体の静電容量を校正する。上部コンデンサ3単体の静電容量を校正するには、前述したコンデンサ校正用回路の高圧シールド4と中間電位金属板2とを短絡をなくし、前述したコンデンサ校正用回路の中間電位金属板2を接地した上で(ステップS4)、上部コンデンサ3の高圧側端子3aと対地間に交流高電圧源7より交流高電圧を印加する(ステップS5)。
In this applied state, the current flowing through the
Next, the capacitance of the
この印加した状態で上部コンデンサ3に流れる電流を図示しない電流測定器などにより測定し、上部コンデンサ3の高圧側端子3aの対地電位を分圧器10や図示しないその他の電圧測定器などにより測定し、これらの測定結果が校正装置20に出力される。上部コンデンサ3に流れる電流は校正用測定器6により測定してもよい。校正装置20の静電容量校正部21は、上部コンデンサ3の高圧側端子3aの対地電位の値と上部コンデンサ3に流れる電流の測定値との相関を得て、この相関をもとに、上部コンデンサ3単体の静電容量を校正する(ステップS6)。この校正した静電容量の値は校正装置20の記憶装置23に記憶される。
次に、上部コンデンサ3と下部コンデンサ1とを積層した回路の合成静電容量を校正する。合成静電容量を校正するには、上部コンデンサ3の低圧側端子3bに電流比較器5の入力端子の片方を接続し、電流比較器5の接地端子を中間電位金属板2に接続し、また、電流比較器5の他方の入力端子を下部コンデンサ1の高圧側端子1aに接続する。
In this applied state, the current flowing in the
Next, the combined capacitance of the circuit in which the
そして、下部コンデンサ1の低圧側端子1bと対地間に校正用測定器6を接続し、上部コンデンサ3や下部コンデンサ1に所要の電流が流れるよう上部コンデンサ3の高圧側端子3aと対地間に交流高電圧源7より交流高電圧を印加する(ステップS7)。
Then, a
この状態で上部コンデンサ3と下部コンデンサ1とに接続された電流比較器5の出力から、校正装置20は、上部コンデンサ3に流れる電流と下部コンデンサ1に流れる電流との相関、つまり上部コンデンサ3から流れ出す電流と下部コンデンサ1に流れ出す電流との相関を得る(ステップS8)。
In this state, from the output of the
電流比較器5の片方の端子に流れる電流I1、片方の端子側の巻線の巻き数n1、電流比較器5の他方の端子に流れる電流I2、他方の端子側の巻線の巻き数n2の間との間には以下の式(1)に示す関係がある。電流比較器5は、以下の式をもとに、下部コンデンサ1側の電流と上部コンデンサ3側の電流との相関を得る。
The current I1 flowing through one terminal of the
n1×I1=n2×I2 …式(2)
校正装置20の電圧演算部22は、前述した相関、校正用測定器6による下部コンデンサ1の電流の測定値、記憶装置23に記憶される上部コンデンサ3単体の静電容量の校正値をもとに、上部コンデンサ3の印加電圧のベクトルを演算する(ステップS9)。これにより、校正装置20は、下部コンデンサ1に流れ込んだ電流と上部コンデンサ3に印加された電圧との相関を得る。
n1 × I1 = n2 × I2 Formula (2)
The
次に、校正装置20の電圧演算部22は、上部コンデンサ3に流れる電流と下部コンデンサ1に流れる電流との相関、校正用測定器6による下部コンデンサ1の電流の測定値、記憶装置23に記憶される下部コンデンサ1単体の静電容量の校正値をもとに、下部コンデンサ1の印加電圧のベクトルを演算する(ステップS10)。
Next, the
そして、校正装置20の電圧演算部22は、演算済みの上部コンデンサ3の印加電圧のベクトルと下部コンデンサ1の印加電圧のベクトルとのベクトル和を上部コンデンサ3と下部コンデンサ1とを積層した回路の全体の交流高電圧として演算する(ステップS11)。
The
すると、校正装置20の静電容量校正部21は、上部コンデンサ3と下部コンデンサ1とを積層した回路の全体の交流高電圧と校正用測定器6による下部コンデンサ1に流れる電流の測定値との相関を得て(ステップS12)、この相関をもとに、下部コンデンサ1に流れた電流に対する合成静電容量、つまり上部コンデンサ3と下部コンデンサ1とを積層した回路の合成静電容量を演算する(ステップS13)。
Then, the
上部コンデンサ3単体の静電容量の校正値と下部コンデンサ1単体の静電容量の校正値ととから算出される合成静電容量と、ステップS13で演算した合成静電容量との差は、中間電位金属板2と対地間とのストレー容量8である。
The difference between the combined capacitance calculated from the calibration value of the capacitance of the
以上説明した手順では、上部コンデンサ3と下部コンデンサ1とを積層した回路のストレー容量8も考慮して当該回路の合成静電容量を演算することができるので、上部コンデンサ3と下部コンデンサ1とを積層した回路の合成静電容量を正確に把握することが可能となる。
In the procedure described above, the combined capacitance of the circuit can be calculated in consideration of the stray capacitance 8 of the circuit in which the
また、上述のように、下部コンデンサ1に流れる電流に対する合成静電容量を精密に演算できるため、下部コンデンサ1に流れた電流から、印加された交流高電圧を精密に求めることも可能となる。
Further, as described above, since the combined capacitance with respect to the current flowing through the
(第2の実施形態)
次に、第2の実施形態について説明する。なお、以下の各実施形態におけるコンデンサ校正用回路の構成はのうち図1に示したものと同一部分の説明は省略する。
図3は、第2の実施形態におけるコンデンサ校正用回路の一例を示す図である。
本実施形態では、コンデンサ校正用回路は、第1の実施形態で説明した下部コンデンサ1、中間電位金属板2、上部コンデンサ3、高圧シールド4、校正用測定器6、交流高電圧源7、分圧器10を有する他、中間電位金属板2の上に、あらかじめ静電容量が校正された標準コンデンサ9を載せ、この標準コンデンサ9が上部コンデンサ3と並列に接続されている。
(Second Embodiment)
Next, a second embodiment will be described. Note that, in the configuration of the capacitor calibration circuit in each of the following embodiments, the description of the same part as that shown in FIG. 1 is omitted.
FIG. 3 is a diagram illustrating an example of a capacitor calibration circuit according to the second embodiment.
In this embodiment, the capacitor calibration circuit includes the
本実施形態では、第1の実施形態で用いた電流比較器5に代えて、第1の電流比較器5aと第2の電流比較器5bとを備える。上部コンデンサ3の低圧側端子3bと標準コンデンサの低圧側端子9bは、第1の電流比較器5aを介して中間電位金属板2に接続されている。
In the present embodiment, instead of the
上部コンデンサ3の接地端子3cは中間電位金属板2に直接接続する。標準コンデンサ9に接地端子がある場合も同様である。また、下部コンデンサ1の高圧側端子1aは第2の電流比較器5bの入力端子を介して中間電位金属板2に接続される。第2の電流比較器5bの接地端子は中間電位金属板2に接続される。
The
次に、第2の実施形態におけるコンデンサ校正用回路によるコンデンサの合成静電容量の校正の手順について説明する。図4は、第2の実施形態におけるコンデンサ校正用回路によるコンデンサの合成静電容量の校正の手順の一例を示すフローチャートである。
まず、第1の実施形態と同様に、下部コンデンサ1単体の静電容量を校正する。下部コンデンサ1単体の静電容量を校正するには、図3に示したコンデンサ校正用回路の高圧シールド4と中間電位金属板2とを短絡し、かつ電流比較器5aを接続しない状態で、中間電位金属板2と下部コンデンサ1の高圧側端子1aとを接続した上で(ステップS21)、中間電位金属板2と対地間に交流高電圧源7より交流高電圧を印加する(ステップS22)。
Next, a procedure for calibrating the composite capacitance of the capacitor by the capacitor calibration circuit in the second embodiment will be described. FIG. 4 is a flowchart illustrating an example of a procedure for calibrating the composite capacitance of the capacitor by the capacitor calibration circuit according to the second embodiment.
First, as in the first embodiment, the capacitance of the
この印加した状態で下部コンデンサ1に流れる電流を図示しない電流測定器などにより測定し、中間電位金属板2の対地電位を分圧器10や図示しないその他の電圧測定器などにより測定し、これらの測定結果が校正装置20に出力される。下部コンデンサ1に流れる電流は校正用測定器6により測定してもよい。校正装置20の静電容量校正部21は、中間電位金属板2の対地電位の値と下部コンデンサ1に流れる電流の測定値との相関を得て、この相関をもとに下部コンデンサ1単体の静電容量を校正する(ステップS23)。この校正した静電容量の値は校正装置20の記憶装置23に記憶される。
次に、標準コンデンサ9を利用して、上部コンデンサ3単体の静電容量を校正する。上部コンデンサ3単体の静電容量を校正するには、第1の実施形態のような中間電位金属板2の接地は行わずに、前述したコンデンサ校正用回路の高圧シールド4と中間電位金属板2とを短絡をなくし、上部コンデンサ3の高圧側端子3aと対地間に交流高電圧源7より交流高電圧を印加する(ステップS24)。
In this applied state, the current flowing through the
Next, the
この印加した状態で、校正装置20の電圧演算部22は、標準コンデンサ9に流れる充電電流と上部コンデンサ3に流れる充電電流との相関を電流比較器5aから得て、標準コンデンサ9の既知の静電容量の校正値と電流比較器5aにより得た標準コンデンサ9に流れる電流の測定値をもとに標準コンデンサ9および上部コンデンサ3の並列回路の印加電圧を演算できる。
In this application state, the
そして、静電容量校正部21は、この演算した印加電圧の値と、電流比較器5aにより得た上部コンデンサ3に流れる電流の測定値とをもとに、上部コンデンサ3単体の静電容量を校正する(ステップS25)。この校正した静電容量の値は校正装置20の記憶装置23に記憶される。
次に、上部コンデンサ3と下部コンデンサ1とを積層した回路の合成静電容量を校正する。合成静電容量を校正するには、標準コンデンサ9を接続したままで、上部コンデンサ3の低圧側端子3bに電流比較器5bの入力端子の片方を接続し、電流比較器5bの接地端子を中間電位金属板2に接続し、また、電流比較器5bの他方の入力端子を下部コンデンサ1の高圧側端子1aに接続する。
Then, the
Next, the combined capacitance of the circuit in which the
そして、下部コンデンサ1の低圧側端子1bと対地間に校正用測定器6を接続し、上部コンデンサ3、標準コンデンサ9および下部コンデンサ1に所要の電流が流れるように上部コンデンサ3の高圧側端子3aと対地間に交流高電圧源7より交流高電圧を印加する。
Then, a
この状態で上部コンデンサ3と下部コンデンサ1とに接続された電流比較器5bの出力から、校正装置20は、上部コンデンサ3および標準コンデンサ9の並列回路に流れる電流と下部コンデンサ1に流れる電流の相関を得る(ステップS26)。
In this state, from the output of the
校正装置20の電圧演算部22は、前述した相関、校正用測定器6による下部コンデンサ1の電流の測定値、記憶装置23に記憶される上部コンデンサ3単体の静電容量の校正値とをもとに、上部コンデンサ3の印加電圧のベクトルを演算する(ステップS27)。これにより、校正装置20は、下部コンデンサ1に流れ込んだ電流と上部コンデンサ3に印加された電圧との相関を得る。
The
次に、校正装置20の電圧演算部22は、上部コンデンサ3に流れる電流と下部コンデンサ1に流れる電流との相関、校正用測定器6による下部コンデンサ1の電流の測定値、記憶装置23に記憶される下部コンデンサ1単体の静電容量の校正値をもとに、下部コンデンサ1の印加電圧のベクトルを演算する(ステップS28)。
Next, the
そして、校正装置20の電圧演算部22は、演算済みの上部コンデンサ3の印加電圧のベクトルと下部コンデンサ1の印加電圧のベクトルとのベクトル和を上部コンデンサ3と下部コンデンサ1とを積層した回路の全体の交流高電圧として演算する(ステップS29)。
The
すると、校正装置20の静電容量校正部21は、上部コンデンサ3と下部コンデンサ1とを積層した回路の全体の交流高電圧と校正用測定器6による下部コンデンサ1に流れる電流の測定値との相関を得て(ステップS30)、この相関をもとに、下部コンデンサ1に流れた電流に対する合成静電容量、つまり上部コンデンサ3と下部コンデンサ1とを積層した回路の合成静電容量を演算する(ステップS31)。
Then, the
このように、静電容量が既知の標準コンデンサを上部コンデンサと並列に接続すれば、上部コンデンサ単体の静電容量を校正する際に、上部コンデンサを接地しないで、標準コンデンサの静電容量の校正値を用いて交流高電圧を印加した場合における上部コンデンサの印加電圧が判明するので、上部コンデンサ側の中間電位金属板を接地せずに上部コンデンサ3単体の静電容量の校正作業を行うことができる。よって、中間電位金属板を接地することによる上部コンデンサ3の対地ストレー容量の変化および対地電位分布の変化を伴わずに、上部コンデンサおよび下部コンデンサを積層した回路の合成静電容量を校正できるため、第1の実施形態と比較して、合成静電容量の校正の精度を向上させることができる。また、静電容量が校正された高圧コンデンサを更に積層すればUHV(超々高電圧)クラスのコンデンサでも校正精度を向上させることが可能となる。
In this way, if a standard capacitor with a known capacitance is connected in parallel with the upper capacitor, the capacitance of the standard capacitor can be calibrated without grounding the upper capacitor when calibrating the capacitance of the upper capacitor alone. Since the applied voltage of the upper capacitor when the AC high voltage is applied using the value is found, the capacitance of the
(第3の実施形態)
次に、第3の実施形態について説明する。
図5は、第3の実施形態におけるコンデンサ校正用回路の一例を示す図である。
本実施形態では、コンデンサ校正用回路は、第1の実施形態で説明した下部コンデンサ1、中間電位金属板2、上部コンデンサ3、高圧シールド4、電流比較器5、交流高電圧源7を有する他、中間電位金属板2の周囲に大型の中間シールド2aを設け、一切の気中コロナ(corona)を発生させないようになっている。
また、本実施形態では、第1の実施形態で説明した校正用測定器6や分圧器10を設ける代わりに、下部コンデンサ1の低圧側端子1bが電流計11を介して接地されている。
(Third embodiment)
Next, a third embodiment will be described.
FIG. 5 is a diagram illustrating an example of a capacitor calibration circuit according to the third embodiment.
In this embodiment, the capacitor calibration circuit includes the
In this embodiment, the low-
次に、第3の実施形態におけるコンデンサ校正用回路によるコンデンサの合成静電容量の校正の手順について説明する。図6は、第3の実施形態におけるコンデンサ校正用回路によるコンデンサの合成静電容量の校正の手順の一例を示すフローチャートである。
本実施形態では、下部コンデンサ1単体の静電容量と上部コンデンサ3単体の静電容量が校正されていることを前提とし、その校正の手順は特に限定されない。
次に、上部コンデンサ3と下部コンデンサ1とを積層した回路の合成静電容量を校正する。合成静電容量を校正するには、図5に示すように、上部コンデンサ3の低圧側端子3bに電流比較器5の入力端子の片方を接続し、電流比較器5の接地端子を中間電位金属板2に接続し、また、電流比較器5の他方の入力端子を下部コンデンサ1の高圧側端子1aに接続する。
Next, a procedure for calibrating the composite capacitance of the capacitor by the capacitor calibration circuit in the third embodiment will be described. FIG. 6 is a flowchart illustrating an example of a procedure for calibrating the composite capacitance of the capacitor by the capacitor calibration circuit according to the third embodiment.
In this embodiment, assume that the electrostatic capacitance of the
Next, the combined capacitance of the circuit in which the
そして、下部コンデンサ1の低圧側端子1bと対地間に電流計11を接続し、上部コンデンサ3や下部コンデンサ1に所要の電流が流れるよう上部コンデンサ3の高圧側端子3aと対地間に交流高電圧源7より交流高電圧を印加する(ステップS41)。
Then, an
この状態で上部コンデンサ3と下部コンデンサ1とに接続された電流比較器5の出力から、校正装置20は、上部コンデンサ3と下部コンデンサ1に流れる電流の相関を得る(ステップS42)。
両者の差はストレー容量8を流れる電流であり、tanδは限りなく0に近い。
In this state, from the output of the
The difference between the two is the current flowing through the stray capacitance 8, and tan δ is nearly zero.
校正装置20の電圧演算部22は、前述した相関、電流計11による下部コンデンサ1の電流の測定値、記憶装置23に記憶される上部コンデンサ3単体の静電容量の校正値とをもとに、上部コンデンサ3の印加電圧のベクトルを演算する(ステップS43)。これにより、校正装置20は、下部コンデンサ1に流れ込んだ電流と上部コンデンサ3に印加された電圧との相関を得る。
The
校正装置20の電圧演算部22は、上部コンデンサ3に流れる電流と下部コンデンサ1に流れる電流との相関、電流計11による下部コンデンサ1の電流の測定値、記憶装置23に記憶される下部コンデンサ1単体の静電容量の校正値をもとに、下部コンデンサ1の印加電圧のベクトルを演算する(ステップS44)。
The
そして、校正装置20の電圧演算部22は、演算済みの上部コンデンサ3の印加電圧のベクトルと下部コンデンサ1の印加電圧のベクトルとのベクトル和を上部コンデンサ3と下部コンデンサ1とを積層した回路の全体の交流高電圧として演算する(ステップS45)。
The
すると、校正装置20の静電容量校正部21は、上部コンデンサ3と下部コンデンサ1とを積層した回路の全体の交流高電圧と電流計11による下部コンデンサ1に流れる電流の測定値との相関を得て(ステップS46)、この相関をもとに、下部コンデンサ1に流れた電流に対する合成静電容量、つまり上部コンデンサ3と下部コンデンサ1とを積層した回路の合成静電容量を演算する(ステップS47)。
Then, the
このような構成とすれば、第1の実施形態のように、校正用測定器6や分圧器10を設ける必要なしに合成静電容量が校正可能となる。また、下部コンデンサ1を電流計11を介して直接接地するので、校正の精度も確保される。
With such a configuration, the combined capacitance can be calibrated without the need to provide the
これらの各実施形態によれば、複数のコンデンサを積層した状態での合成静電容量を精度よく校正することが可能になるコンデンサ校正用回路を提供することができる。
発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
According to each of these embodiments, it is possible to provide a capacitor calibration circuit that can accurately calibrate the combined capacitance in a state where a plurality of capacitors are stacked.
Although several embodiments of the invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
1…下部コンデンサ、1a…下部コンデンサ高圧側端子、1b…下部コンデンサ低圧側端子、2…中間電位金属板、2a…中間シールド、3…上部コンデンサ、3a…上部コンデンサ高圧側端子、3b…上部コンデンサ低圧側端子、3c…上部コンデンサ接地端子、4…高圧シールド、5,5a,5b…電流比較器、6…校正用測定器、7…交流高電圧源、8…ストレー容量、9…標準コンデンサ、9b…標準コンデンサ低圧側端子、10…分圧器、11…電流計、20…校正装置、21…静電容量校正部、22…電圧演算部、23…記憶装置。
DESCRIPTION OF
Claims (6)
接地電位点に接続する下部コンデンサと、
前記上部コンデンサの電流および前記下部コンデンサの電流の比較を行なう電流比較器と、
前記上部コンデンサおよび前記下部コンデンサを中間電位金属板を介して直列接続して積層した回路に交流電圧を印加した場合における、前記上部コンデンサ単体の静電容量の校正値と前記下部コンデンサ単体の静電容量の校正値と前記電流比較器による測定結果で示される前記上部コンデンサの電流および前記下部コンデンサの電流の相関の測定値とをもとに、前記積層した回路の前記上部コンデンサに発生する電圧および前記下部コンデンサに発生する電圧、およびこれらの電圧のベクトル和を演算する電圧演算手段と、
前記電圧演算手段により演算した電圧と前記下部コンデンサの電流とをもとに、前記上部コンデンサおよび前記下部コンデンサの前記積層した回路の合成静電容量を演算する静電容量演算手段とを備えたことを特徴とするコンデンサ校正用回路。 An upper capacitor connected to the AC high potential point;
A lower capacitor connected to the ground potential point;
A current comparator for comparing the current of the upper capacitor and the current of the lower capacitor;
When an AC voltage is applied to a circuit in which the upper capacitor and the lower capacitor are connected in series via an intermediate potential metal plate and an AC voltage is applied, the calibration value of the capacitance of the upper capacitor alone and the electrostatic capacitance of the lower capacitor alone Based on the calibration value of the capacitance and the measured value of the correlation between the current of the upper capacitor and the current of the lower capacitor indicated by the measurement result by the current comparator, the voltage generated in the upper capacitor of the stacked circuit and Voltage calculation means for calculating the voltage generated in the lower capacitor, and the vector sum of these voltages;
Capacitance calculation means for calculating a combined capacitance of the stacked circuit of the upper capacitor and the lower capacitor based on the voltage calculated by the voltage calculation means and the current of the lower capacitor. Capacitor calibration circuit.
前記上部コンデンサと前記中間電位金属板を短絡して、前記下部コンデンサの高圧側端子を前記中間電位金属板に接続した回路の当該中間電位金属板と接地電位点との間に交流電圧を印加した場合における前記下部コンデンサの電流値の測定結果をもとに前記下部コンデンサ単体の静電容量の校正値を演算することを特徴とする請求項1に記載のコンデンサ校正用回路。 The capacitance calculating means includes
The upper capacitor and the intermediate potential metal plate are short-circuited, and an AC voltage is applied between the intermediate potential metal plate and the ground potential point of the circuit in which the high-voltage side terminal of the lower capacitor is connected to the intermediate potential metal plate. 2. The capacitor calibration circuit according to claim 1, wherein a calibration value of a capacitance of the lower capacitor unit is calculated based on a measurement result of a current value of the lower capacitor in the case.
前記上部コンデンサおよび前記下部コンデンサを前記中間電位金属板を介して直列接続して積層した回路の前記中間電位金属板を接地した状態で前記上部コンデンサの高圧側端子に交流電圧を印加した場合における前記上部コンデンサの電流の測定値をもとに前記上部コンデンサ単体の静電容量の校正値を演算することを特徴とする請求項2に記載のコンデンサ校正用回路。 The capacitance calculating means includes
Wherein in a case where the upper capacitor and the lower capacitor was applied to the intermediate potential metal plate alternating voltage to the high voltage side terminal of said upper capacitor while grounding the circuits formed by laminating serially connected via the intermediate potential metal plate 3. The capacitor calibration circuit according to claim 2, wherein a calibration value of the capacitance of the upper capacitor is calculated based on a measured value of the current of the upper capacitor.
前記上部コンデンサの電流および前記標準コンデンサの電流の比較測定を行なう標準コンデンサ側電流比較器をさらに備え、
前記静電容量演算手段は、
前記標準コンデンサの静電容量と、前記上部コンデンサおよび前記下部コンデンサを前記中間電位金属板を介して直列接続して積層した回路の前記中間電位金属板を接地しない状態で前記上部コンデンサの高圧側端子に交流電圧を印加した場合における前記標準コンデンサ側電流比較器による測定結果で示される、前記上部コンデンサの電流および前記標準コンデンサの電流の相関とをもとに、前記上部コンデンサの静電容量の校正値を演算することを特徴とする請求項2に記載のコンデンサ校正用回路。 A standard capacitor with a known capacitance is connected in parallel to the upper capacitor,
A standard capacitor side current comparator for performing a comparative measurement of the current of the upper capacitor and the current of the standard capacitor;
The capacitance calculating means includes
And the capacitance of the standard capacitor, high-voltage side terminal of the upper the upper capacitor capacitor and the lower capacitor in a state in which the not ground the intermediate potential metal plate of the circuit formed by laminating serially connected via the intermediate potential metal plate The capacitance of the upper capacitor is calibrated based on the correlation between the current of the upper capacitor and the current of the standard capacitor, which is indicated by the measurement result of the standard capacitor side current comparator when an AC voltage is applied to the capacitor. 3. The capacitor calibration circuit according to claim 2, wherein a value is calculated.
前記静電容量演算手段は、
前記電圧演算手段により演算した電圧と前記電流計による前記下部コンデンサの電流の測定値とをもとに、前記上部コンデンサおよび前記下部コンデンサの前記積層した回路の合成静電容量を演算する
ことを特徴とする請求項2に記載のコンデンサ校正用回路。 The lower capacitor is connected to a ground potential point via an ammeter,
The capacitance calculating means includes
Based on the voltage calculated by the voltage calculation means and the measured value of the current of the lower capacitor by the ammeter, the combined capacitance of the stacked circuit of the upper capacitor and the lower capacitor is calculated <br / The capacitor calibration circuit according to claim 2, wherein:
前記上部コンデンサおよび前記下部コンデンサを中間電位金属板を介して直列接続して積層した回路に交流電圧を印加した場合における、前記上部コンデンサ単体の静電容量の校正値と前記下部コンデンサ単体の静電容量の校正値と前記電流比較器による測定結果で示される前記上部コンデンサの電流および前記下部コンデンサの電流の相関の測定値とをもとに、前記積層した回路の前記上部コンデンサに発生する電圧および前記下部コンデンサに発生する電圧、およびこれらの電圧のベクトル和を演算し、
前記演算した電圧と前記下部コンデンサの電流とをもとに、前記上部コンデンサおよび前記下部コンデンサの前記積層した回路の合成静電容量を演算することを特徴とするコンデンサ校正方法。 Capacitor calibration for a capacitor calibration circuit having an upper capacitor connected to an AC high potential point, a lower capacitor connected to a ground potential point, and a current comparator for comparing the current of the upper capacitor and the current of the lower capacitor A method,
When an AC voltage is applied to a circuit in which the upper capacitor and the lower capacitor are connected in series via an intermediate potential metal plate and an AC voltage is applied, the calibration value of the capacitance of the upper capacitor alone and the electrostatic capacitance of the lower capacitor alone Based on the calibration value of the capacitance and the measured value of the correlation between the current of the upper capacitor and the current of the lower capacitor indicated by the measurement result by the current comparator, the voltage generated in the upper capacitor of the stacked circuit and Calculate the voltage generated in the lower capacitor, and the vector sum of these voltages,
A capacitor calibration method, comprising: calculating a combined capacitance of the stacked circuit of the upper capacitor and the lower capacitor based on the calculated voltage and a current of the lower capacitor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012037394A JP5972600B2 (en) | 2012-02-23 | 2012-02-23 | Capacitor calibration circuit and capacitor calibration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012037394A JP5972600B2 (en) | 2012-02-23 | 2012-02-23 | Capacitor calibration circuit and capacitor calibration method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013174444A JP2013174444A (en) | 2013-09-05 |
JP5972600B2 true JP5972600B2 (en) | 2016-08-17 |
Family
ID=49267484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012037394A Active JP5972600B2 (en) | 2012-02-23 | 2012-02-23 | Capacitor calibration circuit and capacitor calibration method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5972600B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116298538B (en) * | 2023-05-17 | 2023-08-22 | 新乡市万新电气有限公司 | On-line monitoring method of intelligent capacitance compensation device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10148652A (en) * | 1996-11-15 | 1998-06-02 | Soken Denki Kk | Electronic standard capacitor device |
JP3421524B2 (en) * | 1997-02-17 | 2003-06-30 | 昭和電線電纜株式会社 | How to measure capacitance |
JP2007003407A (en) * | 2005-06-24 | 2007-01-11 | Nf Corp | Method and apparatus for measuring impedance |
-
2012
- 2012-02-23 JP JP2012037394A patent/JP5972600B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013174444A (en) | 2013-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5951005B2 (en) | Method and apparatus for non-contact detection of the potential of an object with two different values of electric flux | |
WO2016036589A1 (en) | Voltage sensor | |
CN110337593B (en) | Method and device for monitoring the loss factor of a condenser bushing | |
BR112016006414B1 (en) | HIGH VOLTAGE DIVIDER | |
RU2645715C2 (en) | Method and device for controlling capacitor bushings for three-phase ac system | |
CN102662110A (en) | Method for testing dielectric loss and capacitance of capacitance type voltage transformer | |
JP5972600B2 (en) | Capacitor calibration circuit and capacitor calibration method | |
US11054486B2 (en) | Method and device for monitoring capacitor bushings for an alternating-current grid | |
Tapiawala et al. | Comprehensive modeling of dry type foil winding transformer to analyse inter turn insulation under lightning impulse voltage | |
JP5198491B2 (en) | Load abnormality detection device | |
JP7013086B2 (en) | Leakage current suppressor | |
JP5150582B2 (en) | 6.6kV ungrounded system ground capacitance measurement method | |
Brubaker et al. | Characterization of equivalent series inductance for dc link capacitors and bus structures | |
Elg et al. | Optimization of the design of a wideband 1000 kV resistive reference divider | |
Modarres et al. | Design and implementation of a resistive MV voltage divider | |
JP2015169440A (en) | Voltage measurement device and voltage measuring method | |
JP2023541180A (en) | Fault detection in shunt capacitor banks | |
JP7276009B2 (en) | DISCHARGE DETECTION DEVICE AND DISCHARGE DETECTION METHOD | |
JP2012233738A (en) | Instrument transformer | |
Aristoy et al. | Effects of stray capacitances on high voltage current transformers | |
JP2018081775A (en) | Method, program and system for detecting state of gas discharge | |
CN107271751A (en) | Alternating current-direct current Capacitor stack out-of-balance current method of testing | |
JP5472741B2 (en) | Frequency variable quadrature bridge | |
JP6320077B2 (en) | Measurement method of partial pressure error | |
Netshiongolwe et al. | Electrical Stress Monitoring of Distribution Transformers using Bushing Embedded Capacitive Voltage Dividers and Rogowski Coils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131205 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131212 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131219 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131226 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140109 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160614 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160713 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5972600 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |