JP5964639B2 - Amorphous alloy plastic working method and plastic working apparatus - Google Patents
Amorphous alloy plastic working method and plastic working apparatus Download PDFInfo
- Publication number
- JP5964639B2 JP5964639B2 JP2012092263A JP2012092263A JP5964639B2 JP 5964639 B2 JP5964639 B2 JP 5964639B2 JP 2012092263 A JP2012092263 A JP 2012092263A JP 2012092263 A JP2012092263 A JP 2012092263A JP 5964639 B2 JP5964639 B2 JP 5964639B2
- Authority
- JP
- Japan
- Prior art keywords
- amorphous alloy
- film
- amorphous
- temperature
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/006—Amorphous articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/18—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/006—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/11—Making amorphous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/04—Amorphous alloys with nickel or cobalt as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metal Rolling (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Fuel Cell (AREA)
- Continuous Casting (AREA)
Description
本発明はアモルファス合金(金属ガラスも含む。アモルファス化率が100 %でないものも含む)を塑性加工するための方法および装置に関するものであり、あらかじめ予熱した基材上に噴射によってアモルファス合金を生成し、直後に、例えば溝付きロールで圧延することでアモルファス合金を塑性変形するものである。 The present invention relates to a method and an apparatus for plastic working an amorphous alloy (including metallic glass, including those having a non-amorphization rate of 100%), and forms an amorphous alloy by injection on a preheated substrate. Immediately after that, the amorphous alloy is plastically deformed by, for example, rolling with a grooved roll.
アモルファス合金は耐食性、耐摩耗性、軟磁性、触媒性等の多くの優れた性能を持ちながらも工業部材として大きくは展開されなかった。その理由の一つとしてほとんど塑性変形しないことがあげられる。 Although amorphous alloys have many excellent performances such as corrosion resistance, wear resistance, soft magnetism, and catalytic properties, they have not been widely developed as industrial members. One of the reasons is that it hardly plastically deforms.
アモルファス合金の一種である金属ガラスの塑性変形については、下記のような先行技術文献がある。 Regarding plastic deformation of metallic glass, which is a kind of amorphous alloy, there are the following prior art documents.
アモルファス合金は、常温では大きな弾性変形と高い破断強度を有するが、塑性変形能がほとんどなく、昇温しても容易に構造緩和や結晶化して脆性破壊する欠点がある。一方、金属ガラスはガラス遷移温度まで昇温することで、過冷却液体であるニュートン粘性状態になり、低ひずみ速度なら均一成形加工が可能で、各種の製品に応用されている(上記非特許文献1)。アモルファス合金は金属ガラスよりも高強度、高軟磁気特性、高耐食性等の優れた特性を持つので、もしこれを塑性加工できれば一層の工業材料への適用が進むであろう。しかし現状は、高強度・低ヤング率・高弾性限ひずみという特徴を持つアモルファス合金を塑性変形しようとしても伸びはほとんどなく破断するという欠点が解決できていない。そこで単ロール法やスパッタリング法により作成した金属ガラスを再加熱し過冷却液体状態とするか、もしくはナノ結晶化することで塑性加工している(上記非特許文献2)。 An amorphous alloy has large elastic deformation and high breaking strength at room temperature, but has almost no plastic deformability, and has a drawback that it easily undergoes structural relaxation or crystallization and brittle fracture even at elevated temperatures. On the other hand, when the metallic glass is heated to the glass transition temperature, it becomes a supercooled liquid Newtonian viscous state, and can be uniformly formed at a low strain rate and applied to various products (the above non-patent document). 1). Amorphous alloys have superior properties such as higher strength, higher soft magnetic properties, and higher corrosion resistance than metallic glass, so if they can be plastically processed, they will be applied to more industrial materials. However, at present, even if an amorphous alloy having the characteristics of high strength, low Young's modulus, and high elastic limit strain is plastically deformed, there is almost no elongation and it cannot be solved. Therefore, plastic processing is performed by reheating a metal glass prepared by a single roll method or a sputtering method to form a supercooled liquid state or by nanocrystallization (Non-Patent Document 2).
金属ガラスでないアモルファス合金については、過冷却液体状態となる温度領域が極めてせまいため、金属ガラスと同様の方法によっては塑性加工することができない。そのようなアモルファス合金は溶融状態の金属を急冷することによって製造するが、急冷過程を経てアモルファスとなったものを、常温から再度加熱・昇温しても、過冷却液相状態にはならずに結晶化してしまうため、アモルファスのまま塑性加工することは不可能である。従来のアモルファス合金の製造手法(いわゆる単ロール法・双ロール法など)は、溶融金属を常温まで急速冷却するものであるため、製作したアモルファス合金をどのように加熱等しても、アモルファスのまま塑性加工できる状態にはなり得ない。 An amorphous alloy that is not metallic glass cannot be plastically processed by the same method as metallic glass because the temperature range in which it is in a supercooled liquid state is extremely narrow. Such an amorphous alloy is manufactured by rapidly cooling a molten metal. However, even if an amorphous material that has undergone a rapid cooling process is heated and heated again from room temperature, it does not enter a supercooled liquid phase state. Therefore, it is impossible to carry out plastic processing in an amorphous state. Conventional methods for producing amorphous alloys (so-called single roll method, twin roll method, etc.) are those that rapidly cool molten metal to room temperature, so that even if the manufactured amorphous alloy is heated, it remains amorphous. It cannot be ready for plastic working.
本発明は、金属ガラス以外のアモルファス合金についても塑性加工を可能にする方法および装置を提供するものである。 The present invention provides a method and apparatus that enables plastic working even for amorphous alloys other than metallic glass.
本発明は、加熱した基材の表面に噴射(溶射)によってアモルファス合金皮膜を形成し、その直後に(たとえば、当該アモルファス合金の冷却中にそれが結晶化温度以下になった時点以降に)、当該アモルファス合金が塑性流動性のある温度域を下回らない間に、当該皮膜を圧縮加工(プレス加工や圧延加工等を含む)することを特徴とする。 The present invention forms an amorphous alloy film by spraying (spraying) on the surface of a heated substrate, and immediately after that (for example, after the time when the amorphous alloy is cooled to below the crystallization temperature). While the amorphous alloy does not fall below a temperature range having plastic fluidity, the film is subjected to compression processing (including pressing and rolling).
アモルファス合金は、前記のとおり金属ガラスを除けば、常温になったものを加熱・昇温しても過冷却液相状態にはならず、塑性加工することは不可能である。しかし、噴射(溶射)によって基材上にアモルファス合金皮膜を形成する場合には、その形成の直後に、当該皮膜がまだ常温まで温度降下しない間に、ガラス遷移温度付近を比較的緩速で冷却される時間帯を設けることができる。発明者らは、その時間帯のその温度域でならアモルファス合金を圧縮加工できる可能性があると仮説を立てて試験を行い、本発明に至った。
すなわち、噴射の対象となる基材を加熱しておくことにより、所定温度(結晶化温度付近)以下でのアモルファス合金皮膜の冷却を緩速にすれば、上述の時間帯においてアモルファス合金を塑性流動性のある温度域にしばらく保つことができる。その間に圧縮加工を施せば、アモルファス合金の皮膜を、仮説どおり塑性変形させることが確かめられた。
この方法によれば、常温において高強度・低ヤング率・高弾性限ひずみという特徴を有し、過冷却液体状態となる温度領域が極めてせまいアモルファス合金(金属ガラスでないもの)についても、金属ガラスについてと同様に塑性加工することが可能になる。塑性加工の施されたアモルファス合金皮膜は、基材からその後に剥離して、あるいは用途によっては剥がさずに基材とともに、最終製品にしたりその前段階の中間製品にしたりすることができる。
As described above, with the exception of metallic glass, an amorphous alloy does not enter a supercooled liquid phase even when heated to an elevated temperature, and cannot be plastically processed. However, when an amorphous alloy film is formed on a substrate by spraying (spraying), immediately after the formation, the temperature near the glass transition temperature is cooled relatively slowly while the film still does not drop to room temperature. Time zone can be provided. The inventors have made a hypothesis that the amorphous alloy may be compression-processed in the temperature range of the time zone, and have conducted a test and have arrived at the present invention.
That is, if the amorphous alloy film is cooled slowly below a predetermined temperature (near the crystallization temperature) by heating the base material to be sprayed, the amorphous alloy is plastically flowed in the above-mentioned time zone. It can be kept for a while in the temperature range. If compression processing was performed during that time, it was confirmed that the amorphous alloy film could be plastically deformed as hypothesized.
According to this method, the amorphous glass (non-metallic glass), which has the characteristics of high strength, low Young's modulus, and high elastic limit strain at room temperature, is extremely narrow in the supercooled liquid state. It becomes possible to perform plastic working in the same manner as in FIG. The amorphous alloy film that has been subjected to plastic working can be peeled off from the base material later, or can be made into a final product or an intermediate product in the previous stage together with the base material without being peeled depending on the application.
発明の加工方法は、上記のアモルファス合金が、塑性流動性のある温度域であってガラス遷移温度直下にある間に上記のとおり圧縮加工するのが望ましい。
ガラス遷移温度の直下であって結晶化温度を超えなければ、アモルファス(非晶質)化した合金が結晶質に変わることがないからである。
In the processing method of the invention, it is desirable that the amorphous alloy is compressed as described above while it is in a temperature range having plastic fluidity and immediately below the glass transition temperature.
This is because the amorphous (amorphous) alloy does not change to crystalline unless it is directly below the glass transition temperature and exceeds the crystallization temperature.
またとくに、金属粉末を、溶射ガンにより火炎とともに噴射して溶融させるとともに、火炎が母材に達する前から冷却ガス(ミストを含む)で冷却する態様によって(つまり、そのようなガス冷却式の溶射ガンを用いて)上記の噴射を行うのがよい。
金属粉末を火炎とともに噴射・溶融させるだけの一般的な噴射では、溶融した金属粒子を非晶質にすることが難しいが、上記のように母材に達する前の火炎を冷却ガスで冷却する方式の噴射を行うなら、溶融金属粒子を所定温度にまで急冷して非晶質にすることが容易である。したがって、この方法によれば、金属ガラスでないアモルファス合金の皮膜を基材上に形成してその塑性加工を行うことも、円滑に実施できる。
In particular, metal powder is sprayed and melted with a flame by a spray gun, and cooled by a cooling gas (including mist) before the flame reaches the base material (that is, such gas-cooled thermal spraying). The above injection should be performed (using a gun).
It is difficult to make the molten metal particles amorphous by spraying and melting metal powder together with the flame, but as described above, the flame before it reaches the base material is cooled with a cooling gas. If injection is performed, it is easy to rapidly cool the molten metal particles to a predetermined temperature to make them amorphous. Therefore, according to this method, it is possible to smoothly carry out the plastic working by forming an amorphous alloy film that is not metal glass on the substrate.
上記の基材として金属薄板を用い、上記の圧縮加工として、溝付きロールによる圧縮圧延を行うこととすると有利である。なお、溝付きロールの「溝」は各種の凹部(およびそれに隣接する凸部)を含むものであり、したがって「溝付きロール」にはあらゆる形状の異形ロールが含まれる。
金属薄板である基材の表面上に噴射によってアモルファス合金皮膜を形成し、当該基材ごとアモルファス合金皮膜を圧延機に通して上記のように圧縮圧延を行うと、アモルファス合金皮膜の連続的な塑性加工を行うことができる。基材である金属薄板は、用途によっては分離せずにおいてもよいが、以下に示すように剥離してアモルファス合金皮膜から分離するのもよい。
It is advantageous to use a metal thin plate as the base material and perform compression rolling with a grooved roll as the compression processing. The “groove” of the grooved roll includes various concave portions (and convex portions adjacent thereto), and therefore the “grooved roll” includes irregularly shaped rolls of all shapes.
When an amorphous alloy film is formed on the surface of a substrate that is a thin metal plate by spraying, and the amorphous alloy film is passed through a rolling mill with the substrate, the amorphous plastic film is continuously plasticized. Processing can be performed. The thin metal plate as the base material may not be separated depending on the use, but may be separated from the amorphous alloy film as shown below.
上記の圧縮加工と同時に、または当該圧縮加工の後に、上記基材からアモルファス合金皮膜を剥離するのも好ましい。
アモルファス合金皮膜を剥離すると、一般的にはその後に各種の用途に広く使用することが容易になる。なお、基材からアモルファス合金皮膜を剥離するためには、上記噴射の前に基材の表面に分離剤を塗布または噴霧しておくとよい。また、金属薄板を基材とする場合には、圧延の際に、上下のロールが径差を有していて上下一方のロールのみが駆動される異径片駆動の圧延機を使用すると、基材から皮膜が剥離しやすい。
It is also preferable to peel the amorphous alloy film from the base material simultaneously with the compression processing or after the compression processing.
When the amorphous alloy film is peeled off, it is generally easy to use it for various purposes thereafter. In order to peel the amorphous alloy film from the base material, it is preferable to apply or spray a separating agent on the surface of the base material before the jetting. Further, when a metal thin plate is used as a base material, if a different diameter single-drive rolling mill in which the upper and lower rolls have a diameter difference and only one of the upper and lower rolls is driven during rolling is used, The film is easy to peel from the material.
本発明はたとえば、加熱した金属薄板の表面に噴射によってNi72-Mo4.5-Nb10-B13-Cu0.5(%Atom)のアモルファス合金皮膜を形成し、当該アモルファス合金を300℃〜500℃の温度に保った状態で、上記の噴射後7秒以内に、荷重10トン以上の圧縮圧延をすることとして実施するとよい。
それによって、上記成分のアモルファス合金皮膜の塑性加工を行うことができる。
In the present invention, for example, an amorphous alloy film of Ni72-Mo4.5-Nb10-B13-Cu0.5 (% Atom) is formed on the surface of a heated metal thin plate by spraying, and the amorphous alloy is heated to a temperature of 300 ° C. to 500 ° C. In this state, it is preferable to carry out compression rolling with a load of 10 tons or more within 7 seconds after the injection.
Thereby, plastic processing of the amorphous alloy film of the above components can be performed.
上記した塑性加工方法を行うためには、上記金属薄板の供給手段、当該金属薄板の予熱手段、アモルファス合金皮膜形成のための噴射機、圧延機、アモルファス合金皮膜の温度制御手段を含む装置を使用するのがよい。
このような装置を使用すれば、供給され予熱される金属薄板の表面に噴射によってアモルファス合金皮膜を形成したうえ溝付きロールにより圧縮圧延を行って当該皮膜を塑性加工する、という一連の工程を円滑に実現することができる。
In order to perform the above-described plastic working method, an apparatus including a supply means for the metal thin plate, a preheating means for the metal thin plate, an injector for forming an amorphous alloy film, a rolling mill, and a temperature control means for the amorphous alloy film is used. It is good to do.
If such an apparatus is used, a series of processes in which an amorphous alloy film is formed on the surface of a thin metal sheet to be supplied and preheated by spraying, and then the film is subjected to compression rolling with a grooved roll to plastically process the film is smoothly performed. Can be realized.
本発明によればアモルファス合金薄板を塑性変形させ、最終製品形状に加工するかもしくは最終製品の予成形を行うことができる。 According to the present invention, an amorphous alloy sheet can be plastically deformed and processed into a final product shape, or the final product can be preformed.
開発した超急冷遷移噴射技術を活用すれば、噴射直後にガラス遷移温度近傍の高温状態で、アモルファス合金を塑性加工できる可能性がある。そこでガラス遷移温度近傍で、圧縮加工である圧延により塑性変形できないか世界で始めて試験を行った。一般的には、結晶化温度は加熱時にアモルファスが結晶化状態に転移する温度をいうが、冷却時は過冷却液体から結晶化状態に転移する温度を意味する。一方、ガラス遷移温度も一般的には加熱時にアモルファス状態から過冷却液体に転移する温度を言うが、冷却時では過冷却液体がアモルファス化する温度を示す。 If the developed ultra-quenching transition injection technology is utilized, there is a possibility that the amorphous alloy can be plastically processed at a high temperature near the glass transition temperature immediately after injection. Therefore, we tested for the first time in the world whether plastic deformation could occur by rolling, which is a compression process, near the glass transition temperature. In general, the crystallization temperature refers to a temperature at which the amorphous transitions to a crystallized state during heating, but means a temperature at which the amorphous transitions from a supercooled liquid to a crystallized state during cooling. On the other hand, the glass transition temperature generally refers to the temperature at which the amorphous state transitions to the supercooled liquid during heating, and indicates the temperature at which the supercooled liquid becomes amorphous during cooling.
図1に溝形(溝付き)ロール圧延機を使ったアモルファス合金半溶融圧縮圧延法を示す。圧延機入側で基材に溶射された半溶融金属は、300℃〜500℃の高温のまま圧延機に噛み込み、溝形形状を付与するものである。ワークロールはロール軸受鋼にてなり、上下とも直径125mmである。最終製品として燃料電池のセパレータを想定し、上ワークロールには、溝幅1.0mm、山幅1.0mm、深さ0.6mm、長さ(周方向)121mmの溝を幅方向に53本設置した。なお基材については、その強度の影響も調査するため、引張強度400MPaのSS400と引張強度300MPaのSPHCの2種類を使用した。噴射した材料はアモルファス合金のNi72-Mo4.5-Nb10-B13-Cu0.5(%Atom)で、結晶化温度は520℃であり、500℃以下で圧延すれば結晶化を防止できる。 Figure 1 shows the amorphous alloy semi-melt compression rolling method using a grooved (grooved) roll mill. The semi-molten metal sprayed onto the base material on the entrance side of the rolling mill is bitten into the rolling mill at a high temperature of 300 ° C. to 500 ° C. to give a groove shape. The work roll is made of roll bearing steel and has a diameter of 125mm both above and below. Assuming a fuel cell separator as the final product, the upper work roll was provided with 53 grooves in the width direction with a groove width of 1.0 mm, a peak width of 1.0 mm, a depth of 0.6 mm, and a length (circumferential direction) of 121 mm. In order to investigate the influence of the strength of the base material, two types of SS400 having a tensile strength of 400 MPa and SPHC having a tensile strength of 300 MPa were used. The injected material is Ni72-Mo4.5-Nb10-B13-Cu0.5 (% Atom), an amorphous alloy, and the crystallization temperature is 520 ° C. If it is rolled below 500 ° C, crystallization can be prevented.
本発明の装置は、アモルファス合金の板厚300μm 以上の製造を可能とする大型超急冷遷移制御噴射機(すなわち噴射装置。冷却能力;最大百万度/秒以上。図2)を装備した連続製造設備(図3)である。図2の大型超急冷遷移制御噴射機は、幅方向(紙面と直角の方向)に均等間隔で材料噴射孔が複数配列されて、その外側(紙面の左右両側)にガス噴射孔があり、そこからガスを火炎として噴射し材料を溶融するとともに、水ミスト等で急冷をする構造をもったガスガンであって、幅方向に均一に材料を噴射する為、幅方向に均一厚みの薄板が出来るものである。 The apparatus of the present invention is a continuous production equipped with a large ultra-quick transition control injector (that is, an injection device. Cooling capacity: more than 1 million degrees per second. Fig. 2) that enables the production of amorphous alloy with a thickness of 300 µm or more. Equipment (FIG. 3). 2 has a plurality of material injection holes arranged at equal intervals in the width direction (perpendicular to the paper surface), and gas injection holes on the outer side (left and right sides of the paper surface). A gas gun that has a structure in which gas is injected as a flame to melt the material and is cooled rapidly with water mist, etc., and the material is injected uniformly in the width direction, so that a thin plate with a uniform thickness in the width direction can be formed It is.
図2の大型超急冷遷移制御噴射機は、つぎのように構成されている。すなわち、
a) 材料粒子を含む火炎1の横断面を横長(幅約300mm)のものにするよう、溶射ガンの前面(下面)に、材料粒子噴射口5および火炎噴射口6・7(に連なる各噴射口)を、幅方向の直線に沿ってそれぞれ複数個連続的に配置している。
b) それら材料粒子噴射口5および火炎噴射口6・7をはさむ両側の位置に、火炎1を整流し冷却するための窒素ガス(不活性ガス)2の噴射口8を、上記直線に沿って複数個連続的に配置している。
c) 上記の材料粒子噴射口5、火炎噴射口6・7および不活性ガス2の噴射口8をはさむ両側の位置に、火炎1を冷却するための水ミスト3の噴射口4を、上記直線に沿ったスリットとして、ミストノズルに設けている。
The large ultra-quick transition control injector of FIG. 2 is configured as follows. That is,
a) In order to make the cross-section of the flame 1 containing material particles horizontally long (approx. 300 mm in width), each spray connected to the material particle injection port 5 and the flame injection ports 6 and 7 (on the front surface (bottom surface)) A plurality of mouths) are continuously arranged along a straight line in the width direction.
b) Nitrogen gas (inert gas) 2 injection ports 8 for rectifying and cooling the flame 1 at positions on both sides of the material particle injection port 5 and the flame injection ports 6 and 7 along the straight line. A plurality are continuously arranged.
c) At the positions on both sides of the material particle injection port 5, the flame injection ports 6 and 7 and the inert gas 2 injection port 8, the injection port 4 of the water mist 3 for cooling the flame 1 is connected to the straight line. The mist nozzle is provided as a slit along the line.
水ミスト3の噴射口4は、噴射するミスト3が上記火炎1に接近するように角度を定めていて、かつその角度は材料粒子の化学成分等に応じて変更することができる。また、窒素ガス2および水ミスト3の噴射圧力も同様に変更可能である。窒素ガス2および水ミスト3の作用によって、火炎(材料粒子を含む火炎)1の冷却速度は40万〜100万℃/秒に達する。
なお、水ミスト3は、高火力の火炎1との接触によって酸素と水素とに分解し、火炎1中の酸素量を過剰気味にするため、火炎噴射口7から噴射される酸素の量を減らし、完全燃焼に必要な酸素量の50〜80%とする。
The angle of the injection port 4 of the water mist 3 is determined so that the mist 3 to be injected approaches the flame 1, and the angle can be changed according to the chemical composition of the material particles. Moreover, the injection pressure of the nitrogen gas 2 and the water mist 3 can be changed similarly. Due to the action of the nitrogen gas 2 and the water mist 3, the cooling rate of the flame (flame including material particles) 1 reaches 400,000 to 1 million ° C./second.
The water mist 3 is decomposed into oxygen and hydrogen by contact with the flame 1 with a high thermal power, and the amount of oxygen in the flame 1 is reduced so that the amount of oxygen injected from the flame injection port 7 is reduced. , 50-80% of the amount of oxygen required for complete combustion.
アモルファス合金皮膜を連続的に塑性加工するための設備を図3に示す。
この設備は、金属製の薄板基材の表面に溶射によってアモルファス合金皮膜を形成し、その後に溝付きロールで圧延をし、さらに塑性変形させたアモルファス合金皮膜(薄板)を薄板基材から剥離して回収するものである。以下、この設備について詳説する。
A facility for continuously plastic working an amorphous alloy film is shown in FIG.
This equipment forms an amorphous alloy film on the surface of a metal thin plate substrate by thermal spraying, then rolls it with a grooved roll, and then peels the amorphous alloy film (thin plate) that has been plastically deformed from the thin plate substrate. To collect. This facility will be described in detail below.
図3の設備を構成する基本的な機器とその機能は、つぎのとおりである。
ペイオフリール11: 薄板基材コイルを受け入れるためのものである。
表面研磨装置12: コンプレッサーで作った圧縮エアーを使って基材表面に研削材を噴射するものである。
分離剤塗布及び噴霧装置13: アモルファス合金薄板と薄板基材を分離し易くするため分離材を塗布する装置である。薄板基材加熱装置16と超急冷遷移制御噴射機17との間に設けるのもよい。
予熱機14: 薄板基材を常温から350℃程度まで加熱するものである。今回はプロパンバーナーを幅方向に2列配列した。
レベラー15: 薄板基材の加熱により崩れた形状の補正を行うものである。
薄板基材加熱・均熱装置16: 薄板を200~500℃に加熱するものである。薄板加熱温度が200℃より低い場合は、噴射により生成したアモルファス合金を圧延する場合、塑性流動性が不足しアモルファス皮膜が割れる。一方、薄板基材を500℃より高く加熱すると、合金粉末を溶融したものを大型超急冷遷移制御噴射機にて噴射時に結晶化温度以上になるためアモルファス合金皮膜が生成しない。ここでの設備は赤外線方式を採用した。
大型超急冷遷移制御噴射機17: アモルファス合金皮膜作製装置で、本アモルファス合金皮膜およびアモルファス合金薄板製造の根幹をなす装置である。構成等は前記(図2参照)のとおりである。
集塵機19: 圧延機前面に設置している集塵機は、噴射後のアモルファス合金残粉の回収と大型超急冷遷移制御噴射機で使用した余剰ガスを回収するものである。アモルファス合金粉末を溶融するために使用するガスエネルギーは全体の10%以下である。そのために余剰ガスの回収を行わないと、圧延機周りの雰囲気温度は450℃、薄板基材上のアモルファス合金皮膜表面は600℃以上にもなり、アモルファス化した皮膜が結晶化しはじめる。集塵機内部は大量のガスを回収するため高温となる為、集塵機は勿論、集塵機前の配管内も含めて水ミストで冷却し集塵機内温度が80℃以下になるよう制御している。集塵のためのフードは、薄板基材の通過位置の左右と、圧延機の上部を囲む位置とに設け、それらに向けて冷却用の水ミストを噴射する。各集塵フードに接続された吸引ダクト内にも冷却用の水ミストを噴射し、そのダクトを通じて吸引ガスを集塵機本体に送っている。
溝形ロール圧延機18: アモルファス合金皮膜を薄板基材とともに圧下し、溝形の塑性加工を施すものである。アモルファス合金皮膜内の一貫孔・空孔を潰し、表面の平滑度を高める作用もある。
薄板基材巻取り機20: アモルファス合金皮膜から分離させた薄板基材を巻き取る。
アモルファス合金薄板巻き取り機21: 分離したアモルファス合金皮膜を薄板として巻き取るものである。
The basic equipment and functions of the equipment shown in FIG. 3 are as follows.
Payoff reel 11: For receiving a thin base coil.
Surface polishing device 12: Abrasive material is sprayed onto the surface of a substrate using compressed air produced by a compressor.
Separating agent application and spraying device 13: A device for applying a separating material to facilitate separation of the amorphous alloy thin plate and the thin plate base material. It may be provided between the thin plate base material heating device 16 and the ultra rapid cooling transition control injector 17.
Preheater 14: Heats the thin plate substrate from room temperature to about 350 ° C. This time, two rows of propane burners were arranged in the width direction.
Leveler 15: This corrects the shape collapsed by heating the thin plate substrate.
Thin plate substrate heating / soaking device 16: Heats the thin plate to 200-500 ° C. When the thin plate heating temperature is lower than 200 ° C., when rolling an amorphous alloy produced by injection, the plastic fluidity is insufficient and the amorphous film is cracked. On the other hand, when the thin plate base material is heated to a temperature higher than 500 ° C., an amorphous alloy film is not generated because the molten alloy powder becomes higher than the crystallization temperature at the time of injection by a large ultra-quick transition control injector. The equipment here adopted an infrared system.
Large super rapid transition control injector 17: Amorphous alloy film production device that forms the basis of the production of amorphous alloy film and amorphous alloy sheet. The configuration and the like are as described above (see FIG. 2).
Dust collector 19: A dust collector installed on the front face of the rolling mill collects the residual powder of the amorphous alloy after the injection and recovers the surplus gas used in the large-scale ultra-quenching transition control injector. The gas energy used to melt the amorphous alloy powder is less than 10% of the total. Therefore, if the surplus gas is not recovered, the ambient temperature around the rolling mill is 450 ° C., the surface of the amorphous alloy film on the thin plate substrate is 600 ° C. or more, and the amorphous film starts to crystallize. Since the inside of the dust collector becomes hot because a large amount of gas is collected, the dust collector and the piping before the dust collector are cooled with water mist and the temperature inside the dust collector is controlled to be 80 ° C or lower. Hoods for dust collection are provided at the left and right of the passage position of the thin plate base material and at the position surrounding the upper part of the rolling mill, and water mist for cooling is sprayed toward them. Water mist for cooling is also injected into suction ducts connected to each dust collection hood, and suction gas is sent to the dust collector body through the ducts.
Groove roll rolling machine 18: An amorphous alloy film is pressed together with a thin plate base material to perform groove-shaped plastic working. It also has the effect of crushing consistent holes and vacancies in the amorphous alloy film and increasing the surface smoothness.
Thin plate substrate winder 20: Winds the thin plate substrate separated from the amorphous alloy film.
Amorphous alloy thin plate winder 21: Winds the separated amorphous alloy film as a thin plate.
図示の設備には、さらに下記のような設備を追加してもよい。すなわち、
アモルファス合金薄板加熱装置: 分離させたアモルファス合金薄板を塑性流動温度域で保持するもの。
温間加工機: 塑性流動温度に保持したアモルファス合金薄板をさらに加工して成型するもの。
The following facilities may be added to the illustrated facilities. That is,
Amorphous alloy thin plate heating device: A device for holding a separated amorphous alloy thin plate in the plastic flow temperature range.
Warm processing machine: A machine that further processes and molds an amorphous alloy sheet kept at a plastic flow temperature.
図3の装置を用いるアモルファス合金薄板の塑性加工は次のように行う。
すなわち、まず、薄板基材をペイオフリール11からテンションリール(巻取機20)にまでかけた状態にしたうえペイオフリール11を起動して、薄板基材を図示左から右の向きに送る。送られる薄板基材に対し、表面研磨や分離材の塗布をし、予熱および形状補正をしたうえ所定温度に加熱・均熱化し、大型超急冷遷移制御噴射機17でアモルファス合金皮膜を形成する。
その後すぐにアモルファス合金皮膜および薄板基材を圧延機18で圧延する。圧延の際の圧延温度は、当該合金皮膜がアモルファス(金属ガラスでない)であっても金属ガラスであっても、塑性流動体領域(温度300〜500℃)であり、溝付きロール圧延機での圧下率はアモルファス合金薄板の厚みの10〜50%で圧延速度は2〜20m/分である。アモルファス皮膜の表面温度は熱電対等で測定し、それに応じて、予熱機14または加熱・均熱装置16により薄板基材の加熱を制御する。
圧延後、分離した薄板基材とアモルファス合金薄板とをそれぞれ巻取機20・21にて巻き取る。またアモルファス合金薄板巻き取り機の前に、アモルファス合金薄板予熱装置と温間加工機を置いて、アモルファス合金薄板にさらに塑性加工を加えるのもよい。
The plastic working of the amorphous alloy sheet using the apparatus shown in FIG. 3 is performed as follows.
That is, first, the thin plate base material is placed from the payoff reel 11 to the tension reel (winding machine 20), the payoff reel 11 is activated, and the thin plate base material is fed from the left to the right in the drawing. The thin plate substrate to be fed is subjected to surface polishing or application of a separating material, preheated and corrected in shape, heated and soaked to a predetermined temperature, and an amorphous alloy film is formed by the large super rapid cooling transition control injector 17.
Immediately thereafter, the amorphous alloy film and the thin plate base material are rolled by a rolling mill 18. The rolling temperature at the time of rolling is a plastic fluid region (temperature of 300 to 500 ° C.) regardless of whether the alloy film is amorphous (not metallic glass) or metallic glass. The rolling reduction is 10 to 50% of the thickness of the amorphous alloy sheet, and the rolling speed is 2 to 20 m / min. The surface temperature of the amorphous film is measured with a thermocouple or the like, and the heating of the thin plate substrate is controlled by the preheater 14 or the heating / soaking device 16 accordingly.
After rolling, the separated thin plate base material and amorphous alloy thin plate are wound up by winders 20 and 21, respectively. Further, an amorphous alloy thin plate preheating device and a warm processing machine may be placed in front of the amorphous alloy thin plate winder to further plastically process the amorphous alloy thin plate.
図4に圧延入側温度、圧延出側温度、荷重等に関するチャートを示す。基材として板厚2mmのSS400をロールギャップ約1.8mmの設定で通し、その時の圧延荷重は15tonfである。接触式温度形で測定している噴射前基材表面温度は安定していないが、実績から概ね300℃で一定である。排ガス温度が上がって下がるまでの間に噴射し、アモルファス合金を約300μm噴射後約5秒にて溝付ロールで圧縮圧延した。噴射前の圧延荷重は15tonfが、噴射中の圧延荷重は最大25tonf〜30tonfまで上昇している。時間が経過するにつれて圧延荷重が増加するのは、ロールが加熱され膨張するためと考えている。圧延出側温度(圧延後皮膜温度)はほぼ一定の310℃であり、ガラス遷移温度以下で圧延していることがわかる。 FIG. 4 shows a chart relating to the rolling entry temperature, rolling exit temperature, load, and the like. SS400 with a plate thickness of 2 mm is passed as a base material with a roll gap of about 1.8 mm, and the rolling load at that time is 15 tons. Although the substrate surface temperature before jetting measured by the contact temperature type is not stable, it is generally constant at 300 ° C. from the results. Injection was performed until the temperature of the exhaust gas increased and decreased, and the amorphous alloy was compressed and rolled with a grooved roll in about 5 seconds after injection of about 300 μm. The rolling load before injection is 15 tonf, and the rolling load during injection is increased up to 25 tonf to 30 tonf. The reason why the rolling load increases with time is considered to be that the roll is heated and expands. It can be seen that the rolling exit temperature (film temperature after rolling) is substantially constant 310 ° C., and rolling is performed at a temperature lower than the glass transition temperature.
図5に溝形ロール圧延後のアモルファス合金皮膜の外観を示すが、綺麗に溝形に圧縮変形されていることがわかる。特徴としてアモルファス皮膜のみならず基材まで溝形変形しており、一般に転写と呼ばれている現象が起きている。引張強度400MPaのSS400と引張強度300MPaのSPHCの2種類の基材を比較した場合、軟質なSPHCを基材とした方が、溝形圧延後のアモルファス皮膜の溝が深くなることを確認した。ただし、SPHCは軟質であるため、平坦度の良好なサンプルを得るには中延びを抑えるためのプロフィール制御を行う必要がある。 FIG. 5 shows the appearance of the amorphous alloy film after groove roll rolling, and it can be seen that the film is beautifully compressed and deformed into a groove. As a feature, not only the amorphous film but also the groove shape is deformed up to the base material, and a phenomenon generally called transfer occurs. When comparing two types of base materials, SS400 with a tensile strength of 400 MPa and SPHC with a tensile strength of 300 MPa, it was confirmed that the groove of the amorphous film after channel rolling becomes deeper when soft SPHC is used as the base material. However, since SPHC is soft, it is necessary to perform profile control to suppress the elongation in order to obtain a sample with good flatness.
図6に、上記のとおり溝形圧延したアモルファス合金皮膜(基材と分離したものの断面)の光学顕微鏡写真を示す。高荷重で溝形圧延するも良質なアモルファス皮膜が形成されている。 FIG. 6 shows an optical micrograph of the amorphous alloy film (cross section separated from the substrate) that has been groove-rolled as described above. A good quality amorphous film is formed even when rolling with high load.
上記に示した光学顕微鏡写真では圧延後のアモルファス皮膜の溝深さや形状が明瞭でなかったため、図7に示すようにアモルファス合金皮膜の表裏と基材SS400表面の溝深さを粗さ計で測った。溝深さはアモルファス皮膜の表面が0.07mm、裏面が0.05mm、基材SS400は0.07mmであった。ロールに付けた溝深さは0.6mmなので、圧延中にアモルファス合金は完全充満していないか、圧延後にスプリングバックしている可能性がある。というのはアモルファス合金の表面は裏面より粗度が悪いためである。またアモルファス裏面の溝深さは0.05mmと基材の溝深さ0.07mmに比べ小さいためである。 Since the groove depth and shape of the amorphous film after rolling were not clear in the optical micrograph shown above, the groove depths on the front and back surfaces of the amorphous alloy film and the surface of the base material SS400 were measured with a roughness meter as shown in FIG. It was. The groove depth was 0.07 mm on the surface of the amorphous film, 0.05 mm on the back surface, and 0.07 mm on the base material SS400. Since the groove depth attached to the roll is 0.6 mm, there is a possibility that the amorphous alloy is not completely filled during rolling or is spring-backed after rolling. This is because the surface of the amorphous alloy has a lower roughness than the back surface. Further, the groove depth on the amorphous back surface is 0.05 mm, which is smaller than the groove depth of the base material 0.07 mm.
従来、アモルファス合金はガラス遷移温度以下では粘性はなく数パーセント以下の弾性変形しかしないため、ほとんど塑性変形能しないと考えられていた。しかしながら今回の結果から、ガラス遷移温度以下でもアモルファス合金が粘性をもつという新しい事象の可能性がある。従来のアモルファス合金の製造手法は、常温まで急速冷却するものであるため、アモルファス合金形成直後の流動性や塑性変形能を調査することができない。しかし我々発明者らが行った噴射直後に圧延で塑性変形させるプロセスによって初めて、アモルファス合金形成直後の流動性や塑性変形能を調査することができた。
上記した溝形圧延材のアモルファス化率をDSCにて測定すると約80%と高く、噴射急冷却時に十分アモルファス化している。つまり溝形圧延中にガラス遷移温度以上の過冷却液層状態であった可能性は小さい。
超急冷却大型遷移制御噴射ガンによってアモルファス合金皮膜を作成した直後に半溶融圧延圧縮することで、従来不可能だと言われてアモルファス合金の塑性加工が可能になった原理は、噴射直後にガラス遷移点直下でアモルファス合金の弾性域で強圧下することで表層が昇温する等により過冷却液層状態となるためと推定している。
Conventionally, it has been considered that amorphous alloys have almost no plastic deformation ability because they are not viscous and have only a few percent elastic deformation below the glass transition temperature. However, from this result, there is a possibility of a new phenomenon that the amorphous alloy has viscosity even below the glass transition temperature. Since the conventional amorphous alloy manufacturing method rapidly cools to room temperature, the fluidity and plastic deformability immediately after the formation of the amorphous alloy cannot be investigated. However, the fluidity and plastic deformability immediately after the formation of the amorphous alloy could be investigated for the first time by the process of plastic deformation by rolling immediately after injection performed by the inventors.
When the amorphization rate of the above-mentioned grooved rolled material is measured by DSC, it is as high as about 80% and is sufficiently amorphized during jet quenching. That is, the possibility of being in a supercooled liquid layer state higher than the glass transition temperature during the groove rolling is small.
The principle that plastic processing of amorphous alloys, which was said to be impossible in the past, was achieved by applying semi-molten rolling compression immediately after forming an amorphous alloy film with a super-cooled large transition control spray gun. It is presumed that the supercooled liquid layer is brought about when the surface layer is heated by being strongly pressed in the elastic region of the amorphous alloy just below the transition point.
14 予熱機(予熱手段)
16 加熱・均熱装置
17 噴射機
18 圧延機
20・21 巻取り機
14 Preheating machine (preheating means)
16 Heating and soaking equipment
17 Injection machine
18 Rolling mill
20, 21 Winder
Claims (7)
および、当該皮膜が、上記噴射時から圧縮加工のときまで組成流動性のある温度域を下回らず、かつ、結晶化温度以上にならないように、上記噴射前の基材を加熱しておくこと
を特徴とするアモルファス合金の塑性加工方法。 Forming an amorphous alloy film on the surface of the substrate by spraying, and immediately after that, compressing the film while the amorphous alloy does not fall below the temperature range of plastic fluidity ;
And heating the base material before the injection so that the film does not fall below the temperature range having composition fluidity from the time of the injection to the time of compression processing and does not exceed the crystallization temperature. A method for plastic processing of an amorphous alloy.
It is an apparatus for the plastic working method according to any one of claims 4 to 6 , wherein said thin metal sheet supplying means, said thin metal sheet preheating means, an injector for forming an amorphous alloy film, a rolling mill, an amorphous material An amorphous alloy plastic processing apparatus comprising temperature control means for an alloy film.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012092263A JP5964639B2 (en) | 2012-04-13 | 2012-04-13 | Amorphous alloy plastic working method and plastic working apparatus |
PCT/JP2013/061062 WO2013154183A1 (en) | 2012-04-13 | 2013-04-12 | Plastic working method and plastic working device for amorphous alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012092263A JP5964639B2 (en) | 2012-04-13 | 2012-04-13 | Amorphous alloy plastic working method and plastic working apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013221167A JP2013221167A (en) | 2013-10-28 |
JP5964639B2 true JP5964639B2 (en) | 2016-08-03 |
Family
ID=49327741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012092263A Expired - Fee Related JP5964639B2 (en) | 2012-04-13 | 2012-04-13 | Amorphous alloy plastic working method and plastic working apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5964639B2 (en) |
WO (1) | WO2013154183A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106488809B (en) * | 2013-12-20 | 2019-06-04 | 耶鲁大学 | Method and system for making bulk metallic glass sheet |
WO2019088154A1 (en) | 2017-11-01 | 2019-05-09 | 臼井国際産業株式会社 | Thin-sheet molded-member having fine three-dimensional surface pattern, fuel cell separator, and method and facility for manufacturing same |
JP2019084585A (en) | 2017-11-01 | 2019-06-06 | 木内 学 | Sheet-like molded member having fine three-dimensional surface shape, separator for fuel cell, and method and apparatus for manufacturing the same |
JP7298403B2 (en) * | 2019-09-06 | 2023-06-27 | 株式会社デンソー | Plasma spray equipment |
CN114000137A (en) * | 2021-11-03 | 2022-02-01 | 南京工程学院 | Device for pressing zinc-aluminum alloy powder by steel plate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0688196A (en) * | 1992-07-29 | 1994-03-29 | Ishikawajima Harima Heavy Ind Co Ltd | Processing method of surface of sprayed metal |
JP5260878B2 (en) * | 2007-01-17 | 2013-08-14 | 株式会社中山製鋼所 | Method for forming amorphous film by thermal spraying |
JP4579317B2 (en) * | 2008-07-15 | 2010-11-10 | 株式会社中山製鋼所 | Amorphous film forming apparatus and method |
JP5548948B2 (en) * | 2009-06-08 | 2014-07-16 | トピー工業株式会社 | Composite material in which a metal glass sprayed coating layer is formed on a thin metal substrate and method for producing the same |
-
2012
- 2012-04-13 JP JP2012092263A patent/JP5964639B2/en not_active Expired - Fee Related
-
2013
- 2013-04-12 WO PCT/JP2013/061062 patent/WO2013154183A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2013221167A (en) | 2013-10-28 |
WO2013154183A1 (en) | 2013-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5964639B2 (en) | Amorphous alloy plastic working method and plastic working apparatus | |
KR102483849B1 (en) | Manufacturing device and method for manufacturing a metal clad plate in a short-term process | |
CN106001160B (en) | A kind of high-purity high production technology led with oxygen-free copper stripe | |
CN113290051B (en) | An asynchronous rolling-partial liquid phase composite method for preparing aluminum/magnesium clad plates | |
CN103966521B (en) | A kind of short route produces the method for atmospheric corrosion resistance Thin Strip Steel | |
CN102069354A (en) | Production process of tin-copper alloy strip | |
CN102019292A (en) | Preparation method of titanium-steel composite plate thin strip | |
CN107282686A (en) | A kind of production technology of short route half-hard state copper belt | |
CN110343900A (en) | A kind of preparation method being flexible coupling with copper belt | |
CN104889163B (en) | A kind of method of pure titanium seamless tubes roll piercing | |
JP5848617B2 (en) | Amorphous plate and manufacturing method thereof | |
Utsunomiya et al. | Deformation of oxide scale on steel surface during hot rolling | |
CN114433625B (en) | Wave-flat cast rolling device and method for double-layer metal composite plate | |
CN102021586A (en) | A kind of production method of single-sided coated steel plate and single-sided coated steel plate | |
CN101947550A (en) | Reverse casting preparation method for magnesium-based aluminum-clad composite plate strip | |
JP6010554B2 (en) | Method and apparatus for manufacturing amorphous plate | |
CN109226293A (en) | A kind of effective nickel-base alloy composite plate of petroleum gas and preparation method thereof | |
CN100374612C (en) | Technology and equipment for continuous production of bimetallic sheets and strips by metal atomization spraying | |
JP3233854U (en) | Pretreatment equipment and pretreatment method for structural steel | |
JP5905265B2 (en) | High production efficiency amorphous sheet manufacturing method and manufacturing equipment | |
CN109686555B (en) | Method and apparatus for producing thermally deformed magnet | |
CN111014288A (en) | Titanium plate rolling method | |
CN1166465C (en) | Warm machining method for making copper or cu alloy pipe | |
JP2006233311A (en) | Method for producing spray-coated steel sheet having excellent corrosion resistance and equipment line for steel sheet | |
Kim et al. | Mechanical behavior of Cu54Ni6Zr22Ti18 bulk amorphous alloy during multi-pass warm rolling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20130823 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160630 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5964639 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |