JP5962407B2 - Ipm型電動回転機 - Google Patents
Ipm型電動回転機 Download PDFInfo
- Publication number
- JP5962407B2 JP5962407B2 JP2012221236A JP2012221236A JP5962407B2 JP 5962407 B2 JP5962407 B2 JP 5962407B2 JP 2012221236 A JP2012221236 A JP 2012221236A JP 2012221236 A JP2012221236 A JP 2012221236A JP 5962407 B2 JP5962407 B2 JP 5962407B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic flux
- permanent magnet
- rotor
- torque
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004907 flux Effects 0.000 claims description 162
- 230000002093 peripheral effect Effects 0.000 claims description 37
- 230000035699 permeability Effects 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 description 30
- 238000010586 diagram Methods 0.000 description 26
- 230000008859 change Effects 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000004804 winding Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000003313 weakening effect Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000005347 demagnetization Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Description
例えば、駆動源として内燃機関と共にハイブリッド自動車(HEV:Hybrid Electric Vehicle)に搭載されたり、単独の駆動源として電気自動車(EV:Electric Vehicle)に搭載される、駆動用モータの場合には、低速回転域で大トルクを発生するのと同時に、広い可変速特性を備えることが要求される。
ところで、HEVやEVでは、一般的に、電動回転機の低速回転・低負荷領域が常用領域である。このことから、車載の電動回転機のトルクに貢献する割合は、電機子電流の大小に応じたリラクタンストルクよりもマグネットトルクの方が大きくなり、高効率化のために高磁力の永久磁石を多く使用する傾向にある。
このような傾向から、電動回転機としては、エネルギ変換効率の向上、特に、低速回転・低負荷領域の常用領域における効率向上のために、高残留磁束密度のネオジム磁石を回転子の鉄心内部に埋め込んだ永久磁石式の同期モータであるIPM(Interior Permanent Magnet)型が多用されている。このIPM型電動回転機では、外周面側に向かって開くV字形になるように永久磁石を回転子内に埋め込むことにより、マグネットトルクに加えて、リラクタンストルクも積極的に利用できる磁気回路にすることが提案されている(例えば、特許文献1、2)。また、IPM型電動回転機では、回転子内にV字形に埋め込む永久磁石の外周面側のd軸(永久磁石の中心軸)上に空隙を形成することも提案されている(例えば、特許文献3、4)。
しかしながら、HEVやEVでは、電動回転機の常用領域が低速回転・低負荷領域であることから、その領域に寄与するマグネットトルクを大きくするために、特許文献1〜4に記載のようなIPM型モータにおいても、高磁力の永久磁石の使用量を多くする傾向にある。これは、レアアースの使用量の低減という課題の解決を妨げる方向である。
また、特許文献3、4に記載のような空隙を回転子内に形成すると、磁路の形成を妨げてしまい、トルクの向上に寄与することはできない。
そこで、本発明は、永久磁石の使用量を削減しつつ高効率な回転駆動を実現して、低コストかつ高エネルギ密度の電動回転機を提供することを目的としている。
さらに、永久磁石を空隙に置換することで、磁石磁束を低減して高速回転側での誘起電圧定数を低減することができ、高速回転側での出力を向上させることができる。また、軽量化することができ、イナーシャを低減することができる。
また、磁石磁束の低減により、弱め界磁領域を削減(弱め界磁量を低減)することができ、磁気歪みとなる空間高調波を低減することができる。このため、永久磁石内での渦電流の発生を制限して発熱を抑えることができ、永久磁石の温度変化による減磁を抑制して耐熱グレードを下げて低コスト化することができる。
このため、電機子磁束によるリラクタンストルクをより有効活用することができ、重畳する高調波を抑えることができる。したがって、トータルの平均トルクを増加させることができるとともに、トルクリプルを低減することができる。さらに、空隙の拡大による軽量化を進めてイナーシャをより低減できる。また、12次と24次の高調波トルクを低減することができ、特に12次の高調波トルクを大幅に低減して、登坂加速時におけるジャダーの発生を抑制するとともに、電磁騒音も大幅に低減することができる。
この結果、高エネルギ密度で高品質に回転駆動する低コストの電動回転機を実現することができる。
図1において、電動回転機(モータ)10は、概略円筒形状に形成された固定子(ステータ)11と、この固定子11内に回転自在に収納されて軸心に一致する回転駆動軸13が固設されている回転子(ロータ)12と、を備えている。この電動回転機10は、例えば、ハイブリッド自動車(HEV)や電気自動車(EV)において、内燃機関と同様の駆動源として、あるいは車輪ホイール内に搭載するのに好適な性能を有している。
回転子12は、外周面12aに向かって開くV字型になるように、一対で1組の永久磁石16を1磁極として埋め込むIPM(Interior Permanent Magnet)構造になるように作製されている。この回転子12は、図面の表裏方向に延在する平板状の永久磁石16の角部16aを嵌め込んで不動状態に収容するV字空間17が外周面12aに対面するように形成されている。
V字空間17は、永久磁石16を嵌め込み収容する空間17aと、その永久磁石16の幅方向の両側方に位置して磁束の回り込みを制限するフラックスバリアとして機能する空間17b、17c(以下ではフラックスバリア17b、17cともいう)と、を備えるように形成されている。このV字空間17には、永久磁石16を高速回転時の遠心力に抗して位置決め保持することができるように、空間17c間で法線方向に延長されて外周側と内周側とを連結支持するセンタブリッジ20が形成されている。
これにより、電動回転機10は、固定子11のスロット18内のコイルに通電してステータティース15から対面する回転子12内に磁束を通すことにより回転駆動させることができる。このとき、電動回転機10(固定子11と回転子12)は、永久磁石16との間に生じる吸引力と反発力に起因するマグネットトルクに加えて、磁束が通過する磁路を最短にしようとするリラクタンストルクとの総合トルクにより回転駆動することができる。よって、電動回転機10は、通電入力する電気的エネルギを、固定子11に対して回転子12と一体回転する回転駆動軸13から、機械的エネルギとして出力することができる。
なお、固定子11と回転子12は、ケイ素鋼などの電磁鋼板材料の薄板を所望の出力トルクに応じた厚さになるように軸方向に重ねており、その積層状態を維持するようにカシメ19などにより一体物に作製されている。
この永久磁石16の磁路(磁石磁束Ψm)は、図3に磁束線図として図示するように、1磁極を構成する一対の永久磁石16の表裏面のN極とS極から鉛直方向に出て繋げる経路を取り、特に、固定子11側では対応するステータティース15からその背面側を通過する経路になる。
これにより、この電動回転機10では、図2に示すように、ステータティース15から回転子12内に進入する電機子磁束Ψrを、V字空間17の外周側に回り込まないように大きく内周(軸心)側に迂回させてステータティース15に戻る経路を取るように形成されている。要するに、電動回転機10は、回転子12がd軸空隙付きV字型IPMモータに構築されている。
また、この電動回転機10は、d軸に対応するステータティース15から進入する電機子磁束Ψrにトルクリプル増加原因となる5次や7次の空間高調波が多く重畳しないように、回転子12側の外周面に、そのステータティース15の内周面15aと平行方向(軸心方向)に延長されるセンタ溝21が形成されている。
Pp:極対数、Ψm:電機子(ステータティース15)鎖交磁石磁束、
id:線電流のd軸成分、iq:線電流のq軸成分、
Ld:d軸インダクタンス、Lq:q軸インダクタンス
この種の電動回転機では、最大負荷駆動時には高トルク・高効率駆動の実現のために電流位相角を進角させて駆動させている。関連技術の回転子12Aでは、図5Bおよび図6Bの磁束ベクトル図に示すように、V字空間17(磁極)の外周側に位置するd軸付近の小領域A1において、磁石磁束Ψmと電機子磁束Ψrが逆磁界の関係になって、リラクタンストルクTrがマグネットトルクTmを打ち消し(相殺し)つつ駆動する状態にある。要するに、この磁極外周側小領域A1は、図7に示すように、磁石磁束Ψmと電機子磁束Ψrとが挟角90度以上で逆向きの位置関係で対向する干渉領域であり、この磁極外周側小領域A1に隣接する永久磁石16のd軸側の範囲Bで発生する磁石磁束Ψmを抑え込む(打ち消す)のに電機子磁束Ψrが浪費されている。
このことから、この磁極外周側小領域A1に対応する永久磁石16のd軸側範囲Bは、トルクTに積極的に寄与していないと言うことができ、その永久磁石16におけるd軸側範囲Bの部分を削減しつつ同等の突極比を維持する磁気回路とすることで、永久磁石16自体の磁石量を低減することができる。
ここで、トルクTは、上記式(1)であるため、永久磁石16の磁石量を減らした場合にはリラクタンストルクTrを大きくすることで、永久磁石16の磁石量を減らさない場合と同等にすることができる。このリラクタンストルクTrは、d軸インダクタンスLdとq軸インダクタンスLqとの差、すなわち、突極比を大きくすることで増加させることができる。
よって、本実施形態の回転子12では、永久磁石16のd軸側範囲Bを透磁率の小さな空隙(制限領域)に置き換えることで、永久磁石16の磁石量を低減しつつ突極比を増加させて置換前と同等以上のトルクTを得ることができる。見方を換えると、リラクタンストルクTrは、永久磁石16のd軸側範囲Bで発生する磁石磁束Ψmを抑え込むのに浪費されていた電機子磁束Ψrを有効活用することで大きくすることができ、永久磁石16の磁石量を削減しても同等のトルクTを得ることができる。
β:電流位相角度、Ia:相電流値
磁路MP1は、固定子11側のステータティース15からエアギャップGを介して回転子12Aに鎖交して磁極間に進入した後に、回転方向進行側(図中左側)の磁極を形成する近接側の永久磁石16を内周側から抜ける経路を取る。さらに、この磁路MP1は、その磁極の外周側領域A2を通過して、再度エアギャップGを介してステータティース15に戻る経路を取る。
磁路MP2は、磁路MP1と同様に磁極間に進入した後に、回転方向進行側の磁極を形成する離隔側の永久磁石16を内周側から抜けて、その磁極の外周側領域A2を通過して、再度エアギャップGを介してステータティース15に戻る経路を取る。
反対に、一対の永久磁石16の中心側(磁極内端部)を削って外側に寄せた場合には、その中心側に大きなフラックスバリアが存在して磁極の両側に磁束経路を分散させることができ、磁極外周側領域A2の右側の経路も含めて積極的に有効活用してその領域A2を満遍なく磁束が通過できる。この構造の場合には、回転方向後進側の磁極の永久磁石16を外周側から内周側に向かって抜けた後、隣接する磁極の永久磁石16のN極・S極間を結合する磁路MP3も取ることができる。この磁路MP3では、磁路MP1と同様の経路を通って、回転方向進行側の磁極の外周側領域A2を通過することができ、磁束の分散化効率が高い。
このことから、回転子12は、磁極を形成する一対の永久磁石16の埋設構造として、リラクタンストルクTrを発生させる電機子磁束Ψrを妨げないようにV字型を維持しつつ、両端側(磁極外端部)に寄せる形状を採用するのが好適である。さらに、その一対の永久磁石16の間(磁極内端部)には、磁束が短絡経路を取るのを制限するフラックスバリア17cを形成する構造を採用するのが好適である。また、回転子12のd軸上の外周面には、固定子11側のステータティース15から進入する電機子磁束Ψrの飽和を制限する、言い換えると、その磁束Ψrを分散させるセンタ溝21を形成する構造を採用するのが好適である。このような構造を採用することにより、回転子12は、q軸磁路(磁束)を分散化させてq軸インダクタンスLqを大きくし、リラクタンストルクTrを積極的に利用することができる。
具体的には、極数Pと、回転子12の軸心から外周面までの外半径R1とを固定値として、磁極外端部に設置する永久磁石16の長さWpmを変数(内端側端辺の位置を変位)とし、下記の式(3)で算出する比率δを変化させて決定する。この決定要素として、比率δに対する、最大負荷時のトルクTのper unit単位での変化と、そのトルクTの変動幅であるトルクリプル(torque ripple)の低減率の変化とを磁界解析してグラフ表示すると、図11のようになる。なお、per unit単位では、例えば、1.0[p.u.]の場合に同等であることを意味している。
δ=(P×Wpm)/R1 ・・・(3)
図11では、比率δ=1.84が長さWpmを短縮しない形状寸法(磁石低減量0%)の永久磁石16の場合であり、比率δ=1.38の寸法形状(磁石低減量24.7%)の場合に非短縮時と同等(1.0[p.u.])のトルクTを得ることができることが分かる。この永久磁石16は、常用の低速回転負荷時においても、比率δ=1.38とすることで、同等のトルクTを得ることができる。
ここで、この図11では、V字空間17の内外端側に同等の大きさのフラックスバリア17b、17dを備える関連技術の回転子12Aを比較対象としている。これに対して、本実施形態の回転子12の場合には、フラックスバリア17cとセンタ溝21を備えることで、電機子磁束Ψrを効果的に分割して振り分けることができる。このため、この回転子12では、リラクタンストルクTrを有効に発生させることができ、永久磁石16が同等の長さWpmである比率δ=1.84でもトルクTが向上するとともにトルクリプルも低減されている。すなわち、図11では、この回転子12の構造で永久磁石16の長さWpmを短縮させて、比率δに対するトルクTとトルクリプルの変化を図示している。なお、関連技術の回転子12Aの構造のまま永久磁石16の長さWpmを短縮する場合には、比率δ=1.84から比率δ=1.38付近までトルクTの大きな変化はない(1.0[p.u.])ものと想定される。
そこで、電動回転機10は、同等のトルクTとなる、永久磁石16の長さWpmを短縮して比率δ=1.38の寸法形状に形成するd軸空隙付きV字型のIPMモータの場合と、永久磁石16を短縮しないV字型のIPMモータの場合とで磁界解析すると、図13および図14に示すように、マグネットトルクTmとリラクタンストルクTrの比率が変化して同等のトルクTを出力可能なことが分かる。なお、d軸空隙付きV字型のIPMモータは、大きな空隙のフラックスバリア17cをd軸側に備える構造であり、単なるV字型のIPMモータは、小さなフラックスバリア17dをd軸側に備える構造である。
この図13は、低負荷領域でのトルクTm、Trの割合を図示しており、図14は、最大負荷領域でのトルクTm、Trの割合を図示している。いずれでも、d軸空隙付きV字型のIPMモータの場合には、永久磁石16を短縮するためにマグネットトルクTmが小さくなるのに代わって、リラクタンストルクTrが大きくなっていることが分かる。すなわち、電動回転機10は、d軸付近の永久磁石16に置換して大きな空隙空間のフラックスバリア17cやセンタ溝21を形成することで、図6Bと図7に示す磁極外周側小領域A1で電機子磁束Ψrを打ち消す磁石磁束Ψmを少なくすることができている。この結果、電動回転機10は、q軸インダクタンスLqを大きくしてd軸インダクタンスLdとの差(突極比)を非短縮V字型のIPMモータよりも大きくすることができ、リラクタンストルクTrを有効活用して同等のトルクTを確保することができている。
形成する一対の永久磁石16の外周側の小領域A1に集中していた電機子磁束Ψrを、その磁極外周側小領域A1を通過する磁路Mr1からV字空間17のd軸側空間17cの内周側を迂回する磁路Mr2にも効果的に分割(分流)させることができる。この結果、電動回転機10は、磁石磁束Ψmと電機子磁束Ψr(d軸・q軸)の磁気的干渉を低減して、磁極外周側小領域A1の回転方向進行側(図中左側)で局所的に磁気飽和状態になってしまうことを回避してトルクTの発生に効果的に寄与させることができる。
これに対して、例えば、図18の磁束線図に示すように、回転子12の軸心側に拡大させていないフラックスバリア17eの場合には、合成磁束Ψsを十分に分割させることができずに、磁極外周側小領域A1の回転方向進行側(図中左側)での局所的な磁気飽和を回避することができていない。なお、低負荷駆動時の合成磁束Ψsは、電機子磁束Ψrよりも磁石磁束Ψmの割合が大きい。
さらに、構造A、Bでは、1つのステータティース15にギャップGを介して鎖交する磁束波形をフーリエ級数展開して、11次と13次の空間高調波成分の含有率を比較すると、図21に示すように、構造Aの方が構造Bよりも、低減できていることが分かる。なお、この図21には、構造A、Bの1歯鎖交磁束の基本波形成分を正規化してper unit単位で図示している。
以下に、トルクリプルの発生原因について説明すると、3相出力(電力)P(t)とトルクτ(t)は、角速度をωm、各相の誘起起電力をEu(t)、Ev(t)、Ew(t)、角相の電流をIu(t)、Iv(t)、Iw(t)とすると、次の式(4)、式(5)で求めることができる。
P(t)=Eu(t)Iu(t)+Ev(t)Iv(t)+Ew(t)Iw(t) ・・・(4)
τ(t)=P(t)/ωm
=[Eu(t)Iu(t)+Ev(t)Iv(t)+Ew(t)Iw(t)] ・・・(5)
3相トルクは、U相、V相、W相のそれぞれのトルクの和であり、mを電流の高調波成分、nを電圧の高調波成分を表すものとし、U相電流Iu(t)を次の式(6)と置くと、U相トルクτu(t)は次の式(7)のように表すことができる。
6f=n±m(f:自然数)、s=nαn+mβm、t=nαn−mβm
と、置くと、次の式(8)のように表すことができる。
また、この誘起電圧は、磁束を時間微分して求めることができることから、各誘起電圧に含まれる高調波の次数と1相1極磁束に含まれる高調波も同じ次数成分が発生することになる。その結果、3相交流モータにおいては、磁束(誘起電圧)に含まれる空間高調波次数nと相電流に含まれる時間高調波次数mとの組み合わせが6fになるときに、その6f次成分のトルクリプルが発生していることになる。
よって、3相モータのトルクリプルは、上述するように、1相1極における磁束波形における空間高調波nと相電流の時間高調波mにおいては、n±m=6f(f:自然数)のときに発生することから、例えば、11次と13次の空間高調波(n=11、13)が重畳していると相電流の基本波(m=1)との合わせにより12次の高調波トルクが発生することが分かる。
まず、図1に戻って、この回転子12の構造は、フラックスバリア17cの軸心側の端部壁面位置の軸心からの法線方向の離隔距離R2を変化させて、その外周面までの外半径R1と内周面までの内半径R3に対する比率R2/R1、R3/R2をパラメータとしたときに得られる、図22、図23に示すトルク特性により決定する。ここで、回転子12の寸法形状は、回転駆動軸13の圧入時の電磁鋼板に掛かる圧縮応力に起因するミゼス応力で透磁率(磁束の通り易さ)が悪化することから、そのミゼス応力を考慮した数値で決定している。なお、この図22、図23は、図18の比較構造Bを基準として、最大負荷時に得られるトルクをper unit単位で図示している。
いる。
さらに、図23からは、R3/R2が0.54〜0.82の範囲A内で構造B以上のトルクが得られることが分かり、好ましくは、傾向の変化する位置付近の0.60〜0.81の範囲B内、より好ましくは、トルクが5%程度増加する0.72〜0.77程度の範囲C内になるように、フラックスバリア17cの軸心側端部位置の離隔距離R2を決定する。
これにより、図17における磁路MP2の磁路幅を十分に確保することができ、その磁路MP2で磁気飽和が発生することがないようにフラックスバリア17cのサイズを決定することができる。
したがって、永久磁石16の使用量を削減しつつ、d軸側での電機子磁束Ψrや磁石磁束Ψmを有効に活用して、大きなマグネットトルクTmとリラクタンストルクTrを得ることができる。また、誘起電圧定数の低減による高速回転側での出力の増加を図ることができるとともに、永久磁石16の渦電流に起因する発熱を抑えて温度変化による減磁を抑制して耐熱グレードを下げることによるコスト削減をすることができる。
また、フラックスバリア17cの軸心側端部までの離隔距離R2を回転子12の外半径R1と内半径R3との関係(寸法形状)が0.56≦R2/R1≦0.84、かつ、0.54≦R3/R2≦0.82になるようにすることで、大きなトルクTを効率よく発生させることができる。
この結果、固定子11内の回転子12を低コストに作製して高エネルギ密度で高品質に回転駆動させることができる。
本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらすすべての実施形態をも含む。さらに、本発明の範囲は、各請求項により画される発明の特徴の組み合わせに限定されるものではなく、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
11 固定子
12 回転子
12a 外周面
13 回転駆動軸
15 ステータティース
16 永久磁石
16a 角部
17 V字空間
17b、17c フラックスバリア
18 スロット
20 センタブリッジ
21 センタ溝
A1 磁極外周側小領域
A2 磁極外周側領域
B d軸側範囲
G エアギャップ
MP0、MP1〜MP3、Mr1、Mr2 磁路
R1 外半径
R2 フラックスバリア17cの軸心側端部壁面の軸心からの離隔距離
R3 内半径
Ψm 磁石磁束
Ψr 電機子磁束
Ψs 合成磁束
Claims (2)
- 永久磁石が埋め込まれて駆動軸と一体回転する回転子と、該回転子を相対回転自在に収納して当該回転子に対面する複数のティース間のスロットにコイルを収容して電機子として機能する固定子と、を備える電動回転機であって、
前記永久磁石が形成する磁極毎の該永久磁石の中心軸に一致する磁束方向のd軸側まで当該永久磁石を存在させた場合に、該d軸側において前記電機子が発生する電機子磁束を打ち消す方向の磁石磁束を発生する範囲の前記永久磁石を、透磁率の小さな空隙に置き換えて、
前記回転子の軸心から外周面までの外半径をR1、前記回転子の軸心から前記空隙の該軸心側端部までの法線方向の長さをR2、前記回転子の前記駆動軸を嵌め込む内周面までの内半径をR3とした場合に、
0.56≦R2/R1≦0.84、かつ、0.54≦R3/R2≦0.82
の関係を満たす寸法形状に形成したことを特徴とするIPM型電動回転機。 - 毎極毎相スロット数q=2の構造の場合、
前記回転子の半径方向の前記永久磁石の大きさをWpm、前記永久磁石が形成する磁極数をPとしたとき、
1.38≦(P×Wpm)/R1<1.84
を満たすことを特徴とする請求項1に記載のIPM型電動回転機。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012221236A JP5962407B2 (ja) | 2012-10-03 | 2012-10-03 | Ipm型電動回転機 |
DE102013219067.0A DE102013219067B4 (de) | 2012-09-28 | 2013-09-23 | Elektrische drehmaschine mit innenliegenden dauermagneten |
DE102013219022.0A DE102013219022B4 (de) | 2012-09-28 | 2013-09-23 | Elektrische Drehmaschine mit innenliegenden Dauermagneten |
DE102013219106.5A DE102013219106B4 (de) | 2012-09-28 | 2013-09-24 | Elektrische drehmaschine mit innenliegenden dauermagneten |
DE102013219260.6A DE102013219260B4 (de) | 2012-09-28 | 2013-09-25 | Elektrische Drehmaschine mit innenliegenden Dauermagneten |
DE102013219222.3A DE102013219222B4 (de) | 2012-09-28 | 2013-09-25 | Elektrische Drehmaschine mit innenliegenden Dauermagneten |
CN201310451355.8A CN103715851B (zh) | 2012-09-28 | 2013-09-27 | Ipm型旋转电动机 |
CN201310451292.6A CN103715798B (zh) | 2012-09-28 | 2013-09-27 | Ipm型旋转电动机 |
CN201310451456.5A CN103715852B (zh) | 2012-09-28 | 2013-09-27 | Ipm型旋转电动机 |
CN201310451713.5A CN103715800B (zh) | 2012-09-28 | 2013-09-27 | Ipm型旋转电动机 |
CN201310449982.8A CN103715797B (zh) | 2012-09-28 | 2013-09-27 | Ipm型旋转电动机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012221236A JP5962407B2 (ja) | 2012-10-03 | 2012-10-03 | Ipm型電動回転機 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014075881A JP2014075881A (ja) | 2014-04-24 |
JP5962407B2 true JP5962407B2 (ja) | 2016-08-03 |
Family
ID=50749668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012221236A Active JP5962407B2 (ja) | 2012-09-28 | 2012-10-03 | Ipm型電動回転機 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5962407B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108462263B (zh) * | 2018-03-29 | 2024-04-30 | 广东美芝制冷设备有限公司 | 电机、压缩机及制冷设备 |
CN113424401A (zh) * | 2019-02-22 | 2021-09-21 | 三菱电机株式会社 | 电动机、压缩机及空调装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007146251A2 (en) * | 2006-06-12 | 2007-12-21 | Remy International, Inc. | Electric machine with interior permanent magnets |
JP5288698B2 (ja) * | 2006-10-20 | 2013-09-11 | 株式会社東芝 | 永久磁石式リラクタンス型回転電機 |
JP5479978B2 (ja) * | 2010-03-30 | 2014-04-23 | アイシン・エィ・ダブリュ株式会社 | 回転電機 |
JP5708181B2 (ja) * | 2010-05-12 | 2015-04-30 | 株式会社デンソー | 回転電機のロータ |
JP5480176B2 (ja) * | 2011-02-03 | 2014-04-23 | アイシン・エィ・ダブリュ株式会社 | 回転電機用回転子 |
-
2012
- 2012-10-03 JP JP2012221236A patent/JP5962407B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014075881A (ja) | 2014-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014072995A (ja) | Ipm型電動回転機 | |
JP5958305B2 (ja) | Ipm型電動回転機 | |
JP5479978B2 (ja) | 回転電機 | |
US9059621B2 (en) | Electric rotating machine | |
US20130119810A1 (en) | Electric rotating machine | |
JP5857627B2 (ja) | 電動回転機 | |
US20130106227A1 (en) | Electric rotating machine | |
CN108141076B (zh) | 磁铁式转子、具备磁铁式转子的旋转电机以及具备旋转电机的电动汽车 | |
CN103715852A (zh) | Ipm型旋转电动机 | |
JP2009278860A (ja) | 永久磁石回転電機及びそれを用いた電動車両 | |
JP6070032B2 (ja) | Ipm型電動回転機 | |
US7482724B2 (en) | Ipm electric rotating machine | |
JP6015350B2 (ja) | Ipm型電動回転機 | |
CN103715798A (zh) | Ipm型旋转电动机 | |
JP6437706B2 (ja) | Ipm型電動回転機 | |
Wang et al. | Design and experimental verification of an 18-slot/10-pole fractional-slot surface-mounted permanent-magnet machine | |
JP5962407B2 (ja) | Ipm型電動回転機 | |
JP5612632B2 (ja) | 永久磁石回転電機 | |
JP6075034B2 (ja) | Ipm型電動回転機 | |
CN103715797A (zh) | Ipm型旋转电动机 | |
JP6711082B2 (ja) | 回転電機 | |
JP6015331B2 (ja) | Ipm型電動回転機 | |
Zhang et al. | A permanent magnet traction machine with wide high efficiency range for EV application | |
CN103715800A (zh) | Ipm型旋转电动机 | |
JP2010075049A (ja) | 回転電機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150811 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160531 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160613 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5962407 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |