[go: up one dir, main page]

JP5958685B2 - Powder molded body manufacturing method, rotating machine part manufacturing method, and rotating machine part - Google Patents

Powder molded body manufacturing method, rotating machine part manufacturing method, and rotating machine part Download PDF

Info

Publication number
JP5958685B2
JP5958685B2 JP2012031035A JP2012031035A JP5958685B2 JP 5958685 B2 JP5958685 B2 JP 5958685B2 JP 2012031035 A JP2012031035 A JP 2012031035A JP 2012031035 A JP2012031035 A JP 2012031035A JP 5958685 B2 JP5958685 B2 JP 5958685B2
Authority
JP
Japan
Prior art keywords
powder
rotating machine
magnet
soft magnetic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012031035A
Other languages
Japanese (ja)
Other versions
JP2013169085A (en
Inventor
前田 徹
前田  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012031035A priority Critical patent/JP5958685B2/en
Publication of JP2013169085A publication Critical patent/JP2013169085A/en
Application granted granted Critical
Publication of JP5958685B2 publication Critical patent/JP5958685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、モータや発電機といった回転機の永久磁石に利用される回転機用磁石、永久磁石を具える回転機用部品、及び回転機に関する。特に、トルクの向上や励磁電圧の向上に寄与することができる回転機用磁石、回転機用部品、及び回転機に関するものである。   The present invention relates to a rotating machine magnet used for a permanent magnet of a rotating machine such as a motor or a generator, a rotating machine part including the permanent magnet, and a rotating machine. In particular, the present invention relates to a rotating machine magnet, a rotating machine part, and a rotating machine that can contribute to an improvement in torque and an excitation voltage.

モータの永久磁石として、希土類磁石が広く利用されている(例えば、特許文献1の明細書0027)。希土類磁石は、Nd(ネオジム)-Fe(鉄)-B(ホウ素)といったR-Fe-B系合金(R:希土類元素)やSm(サマリウム)-Fe-N(窒素)系合金といったR-Fe-N系合金の粉末と結合樹脂との混合物を成形したボンド磁石が挙げられる。ボンド磁石は、焼結磁石に比較して、形状の自由度が高く、所望の形状に容易に成形することができる。   Rare earth magnets are widely used as permanent magnets for motors (for example, specification 0027 of Patent Document 1). Rare earth magnets are R-Fe-B alloys (R: rare earth elements) such as Nd (neodymium) -Fe (iron) -B (boron) and R-Fe such as Sm (samarium) -Fe-N (nitrogen) alloys. Examples thereof include a bonded magnet formed by molding a mixture of -N based alloy powder and a binding resin. Bond magnets have a higher degree of freedom in shape than sintered magnets, and can be easily formed into a desired shape.

一方、特許文献2は、成形性に優れる上に、磁石特性に優れる希土類磁石が得られる磁石用粉末として、希土類元素とFeとを含む合金(例えば、Sm2Fe17)を水素化して、Fe含有相中に希土類元素の水素化物の相(例えば、SmH2)が離散して存在する組織を有する多相粉末を提案している。この磁石用粉末を利用することで、相対密度が高い粉末成形体が得られ、この緻密な粉末成形体に脱水素処理、適宜窒化処理を順に施すことで、磁性相の割合が高く、磁石特性に優れる希土類磁石が得られる。 On the other hand, Patent Document 2 discloses an alloy containing rare earth elements and Fe (e.g., Sm 2 Fe 17 ) as a magnet powder from which a rare earth magnet having excellent magnet characteristics and excellent magnet characteristics is obtained. A multiphase powder having a structure in which rare earth element hydride phases (for example, SmH 2 ) exist discretely in the contained phase has been proposed. By using this magnet powder, a powder compact with a high relative density can be obtained. By subjecting this dense powder compact to dehydrogenation and nitriding as appropriate, the proportion of the magnetic phase is high and the magnet characteristics are high. Rare earth magnets excellent in the above can be obtained.

特開2008-301666号公報JP 2008-301666 A 特開2011-137218号公報JP 2011-137218 A

モータや発電機といった回転機において、特性の向上が望まれている。例えば、モータではトルクの向上、発電機では、励磁電圧の向上が望まれる。   Improvement of characteristics is desired in rotating machines such as motors and generators. For example, an improvement in torque is desired for a motor, and an excitation voltage is desired for a generator.

上記回転機の特性を向上する手法として、ロータとステータとの間に形成されるエアギャップ、代表的には、永久磁石の一面とコイルが配置されるティース(磁極)の端面とがつくるエアギャップを大きくすることが考えられる。   As a method for improving the characteristics of the rotating machine, an air gap formed between the rotor and the stator, typically an air gap formed by one surface of a permanent magnet and an end surface of a tooth (magnetic pole) on which a coil is arranged. It is conceivable to increase

特許文献1では、モータの回転軸を法線とする円板状の面内にエアギャップが存在するアキシャルギャップ型モータを開示している。このモータは、ロータ本体を傘状とし、モータの回転軸に対してロータ本体の表面が傾斜して配置され、この傾いたロータ本体の表面に断面長方形状の永久磁石が固定されたロータと、ステータ本体を断面台形状とし、モータの回転軸に対してステータ本体の表面が傾斜して配置され、この傾いた表面に断面長方形状のティースが設けられたステータとを具える。上記構成により、永久磁石におけるエアギャップを形成する一面と、ティースにおけるエアギャップを形成する端面とがいずれもモータの回転軸に対して傾斜して配置され、結果として、エアギャップも傾斜して配置される。従って、このモータと同じ外径(=ロータ本体の外径=ステータ本体の外径)を有するモータであって、上述の永久磁石の一面とこの一面に対向配置されたティースの端面とがモータの回転軸に直交して配置された形態(以下、従来形態1と呼ぶ)と比較して、両面間に設けられるエアギャップが大きく、トルクを向上できる。しかし、ロータ本体を傘状とし、その外周縁寄りに永久磁石が配置されることで、ロータの重量バランスに偏りが生じ、この偏りによって、永久磁石が設けられたロータの外周側領域が回転軸方向に揺れて、上記エアギャップを所望の大きさに維持できない恐れがある。エアギャップを所望の大きさに維持できないことで、トルクを十分に向上できない。   Patent Document 1 discloses an axial gap type motor in which an air gap exists in a disc-shaped plane with the rotation axis of the motor as a normal line. In this motor, the rotor body has an umbrella shape, and the surface of the rotor body is inclined with respect to the rotation axis of the motor, and a rotor in which a permanent magnet having a rectangular cross section is fixed to the surface of the inclined rotor body; The stator body has a trapezoidal cross section, and the stator body surface is inclined with respect to the rotation axis of the motor, and the inclined surface is provided with a stator having a rectangular cross section. With the above configuration, one surface forming the air gap in the permanent magnet and the end surface forming the air gap in the teeth are both inclined with respect to the rotation axis of the motor, and as a result, the air gap is also inclined. Is done. Therefore, the motor has the same outer diameter as this motor (= the outer diameter of the rotor body = the outer diameter of the stator body), and one surface of the permanent magnet and the end surface of the teeth arranged opposite to the one surface are the motor. Compared with a configuration (hereinafter referred to as conventional configuration 1) arranged perpendicular to the rotation axis, the air gap provided between both surfaces is large, and the torque can be improved. However, because the rotor body is umbrella-shaped and the permanent magnets are arranged near the outer peripheral edge thereof, the weight balance of the rotor is biased. There is a possibility that the air gap cannot be maintained in a desired size by shaking in the direction. The torque cannot be improved sufficiently because the air gap cannot be maintained at a desired size.

一方、モータの回転軸を母線とする円筒状の外周面内にエアギャップが設けられるラジアルギャップ型モータでは、エアギャップがモータの回転軸に平行するように設けられた形態(以下、従来形態2と呼ぶ)が代表的である。この形態では、インナーロータタイプを例にすると、ロータの外径とロータにおけるモータの回転軸方向に沿った長さ(軸長)によって、エアギャップの大きさが一義に決められる。従って、エアギャップを大きくするには、ロータの外径を大きくすること、及び軸長を長くすることの少なくとも一方を行えばよいが、いずれにしても、モータの大型化を招く。従って、この形態では、モータのサイズによってトルクが制限され、トルクを向上することが難しい。   On the other hand, in a radial gap type motor in which an air gap is provided in a cylindrical outer peripheral surface with the rotation axis of the motor as a bus, the air gap is provided so as to be parallel to the rotation axis of the motor (hereinafter referred to as the conventional embodiment 2). Is called). In this embodiment, taking the inner rotor type as an example, the size of the air gap is uniquely determined by the outer diameter of the rotor and the length (axial length) of the rotor along the direction of the rotation axis of the motor. Accordingly, in order to increase the air gap, at least one of increasing the outer diameter of the rotor and increasing the shaft length may be performed, but in any case, the motor is increased in size. Therefore, in this embodiment, the torque is limited by the size of the motor, and it is difficult to improve the torque.

また、上述したボンド磁石は、結合樹脂が存在するため、磁性相が少なく、磁気特性に劣ることから、トルクや励磁電圧の更なる向上が難しい。   Moreover, since the above-mentioned bond magnet has a binding resin, it has a small magnetic phase and is inferior in magnetic characteristics, so that it is difficult to further improve torque and excitation voltage.

そこで、本発明の目的の一つは、トルクの向上や励磁電圧の向上に寄与することができる回転機用磁石、及び回転機用部品を提供することにある。また、本発明の他の目的は、高いトルクや高い励磁電圧が得られる回転機を提供することにある。   Therefore, one of the objects of the present invention is to provide a rotating machine magnet and a rotating machine part that can contribute to an improvement in torque and an excitation voltage. Another object of the present invention is to provide a rotating machine capable of obtaining high torque and high excitation voltage.

上述の多相粉末は、成形性に優れることから、種々の形状に成形可能である。そこで、上述の多相粉末を用いて特定の形状に成形した磁石(圧粉磁石)とすることで、上記目的を達成する。   Since the above-described multiphase powder is excellent in moldability, it can be molded into various shapes. Then, the said objective is achieved by setting it as the magnet (powder magnet) shape | molded in the specific shape using the above-mentioned multiphase powder.

本発明の磁石は、ロータとステータとの間にエアギャップを有する回転機に用いられるものであり、希土類元素とFeとを含有する合金粉末から構成され、かつ、上記合金粉末の充填率が80体積%以上である。そして、本発明回転機用磁石は、上記エアギャップを形成する面が、回転機の回転軸に対して、非平行かつ非直交に配置される傾斜面を有する。   The magnet of the present invention is used for a rotating machine having an air gap between a rotor and a stator, and is composed of an alloy powder containing a rare earth element and Fe, and the filling rate of the alloy powder is 80. Volume% or more. And the magnet for rotary machines of this invention has the inclined surface by which the surface which forms the said air gap is arrange | positioned non-parallel and non-orthogonal with respect to the rotating shaft of a rotary machine.

本発明の回転機用部品は、永久磁石を具える回転機に用いられるものであり、上記永久磁石として上記本発明回転機用磁石を具える。また、この回転機用部品は、軟磁性材料から構成され、上記回転機用磁石を支持する軟磁性部材を具える。   The rotating machine component of the present invention is used in a rotating machine including a permanent magnet, and includes the above-described rotating machine magnet as the permanent magnet. The rotating machine component includes a soft magnetic member made of a soft magnetic material and supporting the rotating machine magnet.

本発明の回転機は、上記本発明回転機用磁石を具える。或いは、本発明の回転機は、上記本発明回転機用部品を具える。   The rotating machine of the present invention includes the magnet for the rotating machine of the present invention. Or the rotating machine of this invention comprises the said components for rotating machines of this invention.

本発明回転機用磁石及び本発明回転機用部品は、回転機に組み付けられたとき、回転機を構成する別の構成部材(代表的には、コイルを具えるティース)との間に形成されるエアギャップの少なくとも一部が、回転機の回転軸に対して傾斜するように配置される。このエアギャップは、回転機の外径を一定とする場合、上述の従来形態1及び従来形態2のエアギャップのいずれよりも大きい。従って、本発明回転機用磁石を具える本発明回転機や本発明回転機用部品を具える本発明回転機(以下、本発明回転機等と呼ぶ)は、上記従来形態1や従来形態2と比較して、モータの場合、トルクを向上することができ、発電機の場合、励磁電圧を向上することができる。   The magnet for a rotating machine of the present invention and the component for a rotating machine of the present invention are formed between another component member (typically, a tooth including a coil) constituting the rotating machine when assembled to the rotating machine. At least a part of the air gap is disposed to be inclined with respect to the rotation axis of the rotating machine. This air gap is larger than any of the air gaps of the above-described conventional embodiment 1 and conventional embodiment 2 when the outer diameter of the rotating machine is constant. Therefore, the present rotating machine including the magnet for the rotating machine of the present invention and the rotating machine of the present invention including the parts for the rotating machine of the present invention (hereinafter, referred to as the present rotating machine, etc.) In the case of a motor, the torque can be improved, and in the case of a generator, the excitation voltage can be improved.

また、本発明回転機用磁石自体が傾斜面を具えることで、ロータ本体やステータ本体を平板状(代表的には、いわゆるアキシャルギャップ型回転機の場合)や円筒状(代表的には、いわゆるラジアルギャップ型回転機の場合)などの簡易な形状とすることができる。そのため、本発明の磁石を利用すると、ロータ本体やステータ本体をモータの回転軸に対して傾斜するような形状にしたり、傾斜するように配置したりする必要が無い。従って、本発明回転機等は、ロータを安定して回転でき、この点からも特性に優れる。   Further, since the magnet for a rotating machine of the present invention itself has an inclined surface, the rotor body and the stator body can be flat (typically in the case of a so-called axial gap type rotating machine) or cylindrical (typically, A simple shape such as a so-called radial gap type rotating machine can be used. Therefore, when the magnet of the present invention is used, it is not necessary to make the rotor main body and the stator main body incline with respect to the rotation axis of the motor or to incline them. Therefore, the rotating machine of the present invention can stably rotate the rotor, and is excellent in characteristics from this point.

更に、本発明回転機用磁石は、上述の特定の合金粉末の充填率が十分に高く、ボンド磁石に比較して磁気特性に優れる(例えば、磁束密度が十分に大きい)ことからも、本発明回転機等は、トルクや励磁電圧を向上することができる。   Furthermore, the magnet for a rotating machine of the present invention has a sufficiently high filling rate of the above-mentioned specific alloy powder, and is excellent in magnetic properties as compared to a bonded magnet (for example, a sufficiently high magnetic flux density). A rotating machine or the like can improve torque and excitation voltage.

本発明の一形態として、上記合金粉末は、RE=Y,La,Pr,Nd,Sm,Dy及びCeから選択される1種以上の元素、Me=Fe又はFeとCo,Ni,Mn及びTiから選択される1種以上の元素、x=1.5〜3.5とするとき、RE2Me14B,RE2Me14C,RE2Me17Nx,RE1Me12Nx及びRE1Me12から選択される1種以上の合金から構成される形態が挙げられる。 As one form of the present invention, the alloy powder includes one or more elements selected from RE = Y, La, Pr, Nd, Sm, Dy and Ce, Me = Fe or Fe and Co, Ni, Mn and Ti. One or more elements selected from x, from 1.5 to 3.5, from RE 2 Me 14 B, RE 2 Me 14 C, RE 2 Me 17 N x , RE 1 Me 12 N x and RE 1 Me 12 The form comprised from the 1 or more types of selected alloy is mentioned.

RE2Me14B,RE2Me14C,RE2Me17Nx,RE1Me12Nx,RE1Me12(x=1.5〜3.5)はいずれも、磁気特性に優れることから、上記形態の回転機用磁石や回転機用部品は、トルクや励磁電圧の更なる向上に寄与することができ、上記形態の回転機は、トルクや励磁電圧を更に向上することができる。 RE 2 Me 14 B, RE 2 Me 14 C, RE 2 Me 17 N x , RE 1 Me 12 N x , RE 1 Me 12 (x = 1.5 to 3.5) are all excellent in magnetic properties. The rotating machine magnet and the rotating machine part can contribute to further improvement of the torque and the excitation voltage, and the rotating machine of the above configuration can further improve the torque and the excitation voltage.

本発明回転機用部品の一形態として、磁性粉末を加圧成形した成形体から構成された形態が挙げられる。この形態は、上記回転機用磁石が上記多相粉末を加圧成形した成形体(圧粉成形体)から構成され、上記軟磁性部材が軟磁性金属粉末を加圧成形した成形体から構成される。そして、この回転機用部品は、上記回転機用磁石と、上記軟磁性部材との間に、上記軟磁性部材を構成する軟磁性金属粉末と上記合金粉末とが混合して存在する混合領域を具える。   As one form of the parts for a rotating machine of the present invention, a form constituted by a molded body obtained by pressure-molding magnetic powder can be mentioned. In this form, the rotating machine magnet is composed of a compact (compact compact) in which the multiphase powder is pressure-molded, and the soft magnetic member is composed of a compact compact in which soft magnetic metal powder is compacted. The The rotating machine component includes a mixing region in which the soft magnetic metal powder and the alloy powder constituting the soft magnetic member are mixed and exist between the rotating machine magnet and the soft magnetic member. Have.

本発明者は、成形性に優れる上述の多相粉末と、圧粉成形体に用いられる純鉄粉や鉄合金粉などの軟磁性金属粉末とを同時に成形して脱水素処理、更に適宜窒化処理などの熱処理を施したところ、多相粉末に脱水素処理が施されて生成された再結合合金粉末(或いは更に窒化処理を施された合金粉末)から構成され、上述の傾斜面を有する磁石領域と、軟磁性金属粉末から構成される軟磁性領域とを有する部材が得られた。得られた部材は、上述の合金粉末から構成される磁石領域(磁石)と、軟磁性金属粉末から構成される領域(軟磁性部材)とに明瞭な境界が無く、各領域を構成する粉末が交じり合った領域:混合領域が形成されて、両領域が結合されていた。   The present inventor simultaneously forms the above-mentioned multiphase powder having excellent formability and soft magnetic metal powder such as pure iron powder and iron alloy powder used in the compacted body to perform dehydrogenation treatment, and further appropriately nitriding treatment. The magnet region having the above-mentioned inclined surface, which is composed of a recombined alloy powder (or an alloy powder further subjected to nitriding treatment) produced by performing dehydrogenation treatment on the multiphase powder when subjected to heat treatment such as And the member which has a soft-magnetic area | region comprised from a soft-magnetic metal powder was obtained. The obtained member has no clear boundary between the magnet region (magnet) composed of the above-described alloy powder and the region (soft magnetic member) composed of the soft magnetic metal powder, and the powder constituting each region is Interlaced area: A mixed area was formed, and both areas were joined.

混合領域を具える上記形態は、上述の多相粉末と軟磁性金属粉末とを同時成形した後熱処理を施すことで得られたものといえる。この製造方法により得られた上記形態は、永久磁石と軟磁性粉末からなる圧粉成形体とをそれぞれ別に作製して一体化する場合と比較して、工程数が少なく、回転機用部品の生産性に優れる。また、成形後に得られた粉末成形体に施す脱水素処理や窒化処理といった熱処理は、軟磁性部材に対しては歪み取りのための熱処理として利用でき、この点からも、上記形態は、生産性に優れる。   It can be said that the above-mentioned form having a mixed region was obtained by simultaneously forming the above-mentioned multiphase powder and soft magnetic metal powder and then performing heat treatment. The above-mentioned form obtained by this manufacturing method has fewer steps compared to the case where a permanent magnet and a compacted body made of soft magnetic powder are separately produced and integrated, and produces parts for rotating machines. Excellent in properties. In addition, heat treatment such as dehydrogenation treatment and nitriding treatment applied to the powder compact obtained after molding can be used as heat treatment for strain relief for soft magnetic members. Excellent.

更に、上述のように別々に製造した独立した部材(永久磁石と圧粉成形体)同士を組み合せて一体化する場合、設計上の尤度によって両者間に微小な隙間が生じ得る。一方、上記形態は、上述のように同時成形及び熱処理を経て得られることで、上記微小な隙間が生じ得ない。かつ、成形工程において上述の多相粉末と軟磁性金属粉末との双方が変形して、多相粉末を構成する多相粒子同士、軟磁性金属粉末を構成する金属粒子同士が粒子表面の凹凸によって噛み合うことができる上に、多相粒子と金属粒子同士も噛み合うことができる。従って、多相粒子間、金属粒子間、及び多相粒子と金属粒子間にそれぞれ、所謂ネッキング強度を発現して、粒子同士の結合性に優れる粉末成形体が得られる。この粉末成形体は、上記ネッキング強度の発現及び上記微小な隙間が無いことによって強度に優れ、製造中に崩壊し難い。このような強度に優れる粉末成形体に上述の熱処理を施して得られた上記形態は、強度にも優れる。また、回転機用磁石と軟磁性部材との間に上記微細な隙間が無い上記形態は、磁石の発生磁場のエネルギーロス(漏れ磁場)が実質的に生じないことから、磁気特性にも優れる。更に、多相粉末と軟磁性金属粉末との双方がFe成分を具える場合には、密着性により優れ、回転機用磁石と軟磁性部材間に割れが生じ難いと期待される。   Furthermore, when independent members (permanent magnet and compacted body) manufactured separately as described above are combined and integrated, a minute gap may be generated between the two depending on the design likelihood. On the other hand, since the said form is obtained through simultaneous shaping | molding and heat processing as mentioned above, the said micro clearance gap cannot arise. In addition, both the above-described multiphase powder and soft magnetic metal powder are deformed in the molding step, and the multiphase particles constituting the multiphase powder and the metal particles constituting the soft magnetic metal powder are caused by unevenness on the particle surface. In addition to being able to mesh, multiphase particles and metal particles can also mesh. Therefore, a so-called necking strength is developed between the multiphase particles, between the metal particles, and between the multiphase particles and the metal particles, and a powder compact having excellent bonding properties between the particles can be obtained. This powder molded body is excellent in strength due to the expression of the necking strength and the absence of the minute gaps, and hardly collapses during production. The above-mentioned form obtained by subjecting the powder molded body having excellent strength to the heat treatment described above is also excellent in strength. In addition, the above-described configuration in which the fine gap is not provided between the magnet for a rotating machine and the soft magnetic member is excellent in magnetic characteristics because there is substantially no energy loss (leakage magnetic field) of the generated magnetic field of the magnet. Furthermore, when both the multiphase powder and the soft magnetic metal powder include an Fe component, it is expected that the adhesiveness is excellent and cracking is unlikely to occur between the rotating machine magnet and the soft magnetic member.

本発明回転機用磁石及び回転機用部品は、トルクや励磁電圧の向上に寄与することができる。本発明回転機は、トルクや励磁電圧を向上することができる。   The rotating machine magnet and rotating machine parts of the present invention can contribute to improvement of torque and excitation voltage. The rotating machine of the present invention can improve torque and excitation voltage.

(A)は、実施形態1の回転機用部品を示す概略斜視図、(B)は、その分解斜視図である。(A) is a schematic perspective view showing a rotating machine part of Embodiment 1, and (B) is an exploded perspective view thereof. 試験例1で作製した回転機を説明する説明図である。FIG. 5 is an explanatory view for explaining a rotating machine produced in Test Example 1. (A)は、試験例1で作製した形態Aの磁石の形状を説明する説明図、(B)は、試験例1で作製した形態Bの磁石の形状を説明する説明図である。(A) is an explanatory view for explaining the shape of the magnet of form A produced in Test Example 1, and (B) is an explanatory view for explaining the shape of the magnet of Form B produced in Test Example 1. 実施形態1,2の回転機用部品の製造に用いる成形用金型を説明する説明図である。FIG. 5 is an explanatory view for explaining a molding die used for manufacturing the rotating machine component of the first and second embodiments. (A)は、実施形態3の回転機用部品の平面図、(B)は、この回転機用部材を回転軸に沿った(B)-(B)平面で切断した概略断面図である。(A) is a plan view of a rotating machine component of Embodiment 3, and (B) is a schematic cross-sectional view of the rotating machine member cut along a (B)-(B) plane along the rotation axis. 実施形態3,4の回転機用部品の製造に用いる成形用金型を説明する説明図である。It is explanatory drawing explaining the metal mold | die used for manufacture of the components for rotary machines of Embodiment 3, 4. FIG.

以下、本発明をより詳細に説明する。
[回転機用磁石]
本発明回転機用磁石は、代表的には、特許文献2に記載されるような磁石用粉末、つまり特定の多相粉末を所望の形状に加圧成形後、脱水素処理、適宜窒化処理を経て生成された再結合合金からなる合金粉末や更に窒化された合金からなる合金粉末から構成されたものが挙げられる。具体的な合金組成は、RE=Y,La,Pr,Nd,Sm,Dy及びCeから選択される1種以上の元素、Me=Feのみ、又はCo,Ni,Mn及びTiから選択される1種以上の元素とFeとし、x=1.5〜3.5とするとき、RE2Me14B,RE2Me14C,RE2Me17Nx,RE1Me12Nx及びRE1Me12から選択される1種以上が挙げられる。より具体的には、RE2Me14Bは、Nd2Fe14B、Nd2(Co1Fe13)B、RE2Me14Cは、Nd2Fe14C、RE2Me17Nxは、Sm2Fe17N3、Y2Fe17N3、RE1Me12Nxは、Sm1(Ti1Fe11)N2、Sm1(Mn1Fe11)N2、Y1(Ti1Fe11)N2、Y1(Mn1Fe11)N2、RE1Me12は、Sm1(Ti1Fe11)、Sm1(Mn1Fe11)、Y1(Ti1Fe11)、Y1(Mn1Fe11)などが挙げられる。特に、REがNd又はSmである合金、より具体的にはNd-Fe-B系合金、Sm-Fe-N系合金が磁気特性に優れて好ましい。合金には、製造時に種々の目的(例えば、結晶の成長を制御する、など)で添加した元素:Cu,Al,Cr,Si,Ga,Nbなどを含むことを許容する。
Hereinafter, the present invention will be described in more detail.
[Magnet for rotating machine]
The magnet for a rotating machine of the present invention typically has a magnet powder as described in Patent Document 2, that is, a specific multiphase powder is pressure-molded into a desired shape, and then subjected to dehydrogenation treatment and appropriate nitriding treatment. Examples thereof include an alloy powder made of a recombination alloy produced through the process and an alloy powder made of a nitrided alloy. The specific alloy composition is one or more elements selected from RE = Y, La, Pr, Nd, Sm, Dy and Ce, Me = Fe alone, or selected from Co, Ni, Mn and Ti More than seed element and Fe, when x = 1.5 ~ 3.5, it is selected from RE 2 Me 14 B, RE 2 Me 14 C, RE 2 Me 17 N x , RE 1 Me 12 N x and RE 1 Me 12 One or more of them. More specifically, RE 2 Me 14 B is Nd 2 Fe 14 B, Nd 2 (Co 1 Fe 13 ) B, RE 2 Me 14 C is Nd 2 Fe 14 C, RE 2 Me 17 N x is Sm 2 Fe 17 N 3 , Y 2 Fe 17 N 3 , RE 1 Me 12 N x are Sm 1 (Ti 1 Fe 11 ) N 2 , Sm 1 (Mn 1 Fe 11 ) N 2 , Y 1 (Ti 1 Fe 11 ) N 2 , Y 1 (Mn 1 Fe 11 ) N 2 , RE 1 Me 12 are Sm 1 (Ti 1 Fe 11 ), Sm 1 (Mn 1 Fe 11 ), Y 1 (Ti 1 Fe 11 ), Y 1 (Mn 1 Fe 11 ) and the like. In particular, an alloy in which RE is Nd or Sm, more specifically an Nd—Fe—B alloy or an Sm—Fe—N alloy is preferable because of excellent magnetic properties. Alloys are allowed to contain elements added for various purposes (eg, controlling crystal growth, etc.) during manufacture: Cu, Al, Cr, Si, Ga, Nb, and the like.

本発明回転機用磁石は、当該磁石を構成する合金粉末の充填率が高く、80体積%以上である。充填率は、例えば、後述する粉末成形体の成形工程における相対密度を高めるほど大きくなり易い。充填率が高いほど磁石特性に優れることから、充填率は、85体積%以上がより好ましい。   The magnet for a rotating machine of the present invention has a high filling rate of the alloy powder constituting the magnet and is 80% by volume or more. For example, the filling rate tends to increase as the relative density increases in the molding step of the powder compact to be described later. The higher the filling rate, the better the magnetic properties, so the filling rate is more preferably 85% by volume or more.

本発明回転機用磁石を構成する合金粒子の平均粒径は、10μm〜500μm、更に30μm以上、特に100μm以上350μmが挙げられる。磁石における合金粒子の平均粒径は、原料に用いた多相粉末の平均粒径に依存することから、上記合金粒子が所望の大きさとなるように原料粉末の大きさを調整するとよい。多相粉末を用いて製造された磁石は、焼結体と異なり、粉末の粒界(合金粒子の輪郭)が確認できる。   The average particle diameter of the alloy particles constituting the magnet for a rotating machine of the present invention is 10 μm to 500 μm, further 30 μm or more, and particularly 100 μm or more and 350 μm. Since the average particle size of the alloy particles in the magnet depends on the average particle size of the multiphase powder used for the raw material, the size of the raw material powder may be adjusted so that the alloy particles have a desired size. Unlike a sintered body, a magnet manufactured using a multiphase powder can confirm the grain boundary (alloy particle contour) of the powder.

本発明回転機用磁石の代表的な形状は、円環状体、円環を所定の内角に分割した扇状の柱状体や扇状に類する角柱状体が挙げられる。そして、本発明回転機用磁石では、回転機に組み付けられたときにエアギャップを形成する面(以下、磁石ギャップ面と呼ぶ)が、回転機の回転軸に対して、非平行かつ非直交に配置される傾斜面を有する。この傾斜面は、上記回転軸に直交する平面(=回転軸を法線とする平面)をとり、この平面と傾斜面とがつくる角度(以下、傾斜角と呼ぶ)が0°超90°未満を満たす面である。   Typical shapes of the magnet for a rotating machine of the present invention include an annular body, a fan-shaped columnar body obtained by dividing the ring into predetermined inner angles, and a prismatic body similar to a fan-shaped body. In the magnet for a rotating machine according to the present invention, a surface that forms an air gap when assembled to the rotating machine (hereinafter referred to as a magnet gap surface) is non-parallel and non-orthogonal with respect to the rotating shaft of the rotating machine. It has an inclined surface to be arranged. This inclined surface takes a plane orthogonal to the rotation axis (= plane having the rotation axis as a normal line), and an angle formed by this plane and the inclined surface (hereinafter referred to as an inclination angle) is more than 0 ° and less than 90 ° It is a surface that satisfies.

例えば、アキシャルギャップ型回転機では、傾斜角が0°である形態、つまり、磁石ギャップ面が回転軸に直交するように配置される形態と比較して、傾斜角が大きいほど、磁石ギャップ面が大きくなり、エアギャップを増大できる。但し、傾斜角が大きいほど、磁石の長さ(回転軸方向に沿った長さ)が大きくなり、回転機の大型化を招く。いわゆるアキシャルギャップ型回転機に利用される場合、本発明回転機用磁石の傾斜面の傾斜角は、3°以上30°以下、特に10°以上30°以下が好ましい。   For example, in an axial gap type rotating machine, the larger the tilt angle is, the more the magnet gap surface is compared to the configuration in which the tilt angle is 0 °, that is, the magnet gap surface is arranged so as to be orthogonal to the rotation axis. The air gap can be increased. However, the greater the tilt angle, the larger the magnet length (length along the rotation axis direction), leading to an increase in the size of the rotating machine. When used in a so-called axial gap type rotating machine, the inclination angle of the inclined surface of the magnet for a rotating machine of the present invention is preferably 3 ° to 30 °, particularly preferably 10 ° to 30 °.

一方、ラジアルギャップ型回転機では、傾斜角が90°である形態、つまり、磁石ギャップ面が回転軸に平行するように配置される形態と比較して、傾斜角が小さいほど、磁石ギャップ面が大きくなり、エアギャップを増大できる。但し、傾斜角が小さいほど、磁石の最大幅(回転軸方向に直交する方向に沿った長さ)が大きくなり、回転機の大型化を招く。いわゆるラジアルギャップ型回転機に利用される場合、本発明回転機用磁石の傾斜面の傾斜角は、60°以上87°以下、特に60°以上80°以下が好ましい。   On the other hand, in the radial gap type rotating machine, the smaller the tilt angle, the smaller the magnet gap surface compared to the configuration in which the tilt angle is 90 °, that is, the magnet gap surface is arranged so as to be parallel to the rotation axis. The air gap can be increased. However, the smaller the inclination angle, the larger the maximum width of the magnet (the length along the direction perpendicular to the rotation axis direction), leading to an increase in the size of the rotating machine. When used in a so-called radial gap type rotating machine, the inclination angle of the inclined surface of the magnet for a rotating machine of the present invention is preferably 60 ° to 87 °, particularly preferably 60 ° to 80 °.

磁石ギャップ面に、傾斜角が異なる複数の傾斜面を具えた形態とすることができる。この形態は、磁石ギャップ面を更に大きくし易い。一方、磁石ギャップ面に具える傾斜面が一つである形態は、磁石の形状が簡素であり、成形性、生産性に優れる。磁石ギャップ面は、傾斜面のみで構成された形態、その他、いわゆるアキシャルギャップ型回転機に利用される磁石では、傾斜面と、傾斜角が0°の面(以下、直交面と呼ぶ)とを具える形態、いわゆるラジアルギャップ型回転機に利用される磁石では、傾斜面と、傾斜角が90°の面(以下、平行面と呼ぶ)とを具える形態とすることができる。少なくとも一つの直交面や平行面を具える形態では、直交面や平行面を成形時の受圧面(パンチが押圧する面)とすることができ、成形性に優れる。磁石ギャップ面における傾斜面の面積割合が、60%以上、特に70%以上であると、磁石ギャップ面の面積を十分に大きくすることができる。   It can be set as the form which provided the some inclined surface from which an inclination angle differs in the magnet gap surface. This configuration makes it easier to further increase the magnet gap surface. On the other hand, the form with one inclined surface provided in the magnet gap surface has a simple magnet shape and is excellent in moldability and productivity. The magnet gap surface is configured only by an inclined surface, and in other magnets used in so-called axial gap type rotating machines, an inclined surface and a surface having an inclination angle of 0 ° (hereinafter referred to as an orthogonal surface) The magnet used for the so-called radial gap type rotating machine can be configured to have an inclined surface and a surface having an inclination angle of 90 ° (hereinafter referred to as a parallel surface). In the form having at least one orthogonal surface or parallel surface, the orthogonal surface or parallel surface can be used as a pressure-receiving surface (surface pressed by the punch) during molding, and the moldability is excellent. When the area ratio of the inclined surface in the magnet gap surface is 60% or more, particularly 70% or more, the area of the magnet gap surface can be sufficiently increased.

本発明回転機用磁石が後述する軟磁性部材と独立しており、回転機本体に取り付けられる形態では、上述の傾斜面と対向位置にある面が、回転機本体との接触面となる。この接触面は、いわゆるアキシャルギャップ型回転機に利用される磁石では、回転機の回転軸に直交する(上述の直交面に平行する)ように設けられ、いわゆるラジアルギャップ型回転機に利用される磁石では、回転機の回転軸や上述の平行面に平行するように設けられる。   In the form in which the magnet for a rotating machine of the present invention is independent of a soft magnetic member to be described later and is attached to the rotating machine main body, the surface facing the inclined surface is a contact surface with the rotating machine main body. In a magnet used for a so-called axial gap type rotating machine, this contact surface is provided so as to be orthogonal to the rotation axis of the rotating machine (parallel to the above-described orthogonal plane) and used for a so-called radial gap type rotating machine. The magnet is provided so as to be parallel to the rotating shaft of the rotating machine and the parallel plane described above.

[回転機用部品]
(軟磁性部材)
本発明回転機用部品は、上述の回転機用磁石と、軟磁性部材とを具える。軟磁性部材は、主として、本発明回転機用磁石の機械的な支持部材として、かつ磁気回路を構成するための磁気的な連結部材(ヨーク部材)として機能する。軟磁性部材を構成する軟磁性材料は、Fe,Co,Niなどの強磁性遷移金属や強磁性遷移金属元素を含む合金、酸化鉄などからなるスピネル型フェライトといったセラミックス材料が挙げられる。特に、Fe及び不可避的不純物からなる純鉄、Feを主成分とする鉄合金(例えばFe-Si系合金,Fe-Ni系合金,Fe-Al系合金,Fe-Co系合金,Fe-Cr系合金,Fe-Si-Al系合金,ケイ素鋼などの種々の鋼など)といった鉄基材料は、上記のフェライトよりも飽和磁束密度が高い軟磁性部材を得易い。公知の軟磁性材料が利用できる。
[Rotating machine parts]
(Soft magnetic material)
The rotating machine component of the present invention includes the above-described rotating machine magnet and a soft magnetic member. The soft magnetic member mainly functions as a mechanical support member for the magnet for a rotating machine of the present invention and as a magnetic coupling member (yoke member) for constituting a magnetic circuit. Examples of the soft magnetic material constituting the soft magnetic member include a ceramic material such as a ferromagnetic transition metal such as Fe, Co, and Ni, an alloy containing a ferromagnetic transition metal element, and a spinel ferrite made of iron oxide. In particular, pure iron composed of Fe and inevitable impurities, and iron alloys mainly composed of Fe (eg Fe-Si alloys, Fe-Ni alloys, Fe-Al alloys, Fe-Co alloys, Fe-Cr alloys) Iron-based materials such as alloys, Fe-Si-Al alloys, and various steels such as silicon steel can easily obtain a soft magnetic member having a saturation magnetic flux density higher than that of the ferrite. A known soft magnetic material can be used.

軟磁性部材は、上述の軟磁性材料からなる粉末を加圧成形した粉末成形体に熱処理(主として歪み取りを目的とするもの)を施した圧粉成形体、上記粉末成形体を焼結した焼結体、上述の軟磁性材料からなる板材を積層した積層体などから構成されるものが挙げられる。圧粉成形体では、その外周に補強材を配置する(例えば、帯状の環状体を嵌めるなど)と、強度を高められる。   The soft magnetic member is a powder compact obtained by subjecting a powder compact obtained by pressure-molding the powder made of the soft magnetic material to a heat treatment (mainly for the purpose of removing distortion), and a sintered compact obtained by sintering the powder compact. Examples thereof include a combination and a laminate formed by laminating the above-described soft magnetic materials. In the green compact, the strength can be increased by arranging a reinforcing material on the outer periphery thereof (for example, by fitting a belt-like annular body).

本発明回転機用磁石と軟磁性部材とが独立した部材である場合、接着剤やボルト・ナット、ネジなどの締結部材といった固定材を利用して一体化することができる。その他、軟磁性部材が上述の圧粉成形体である場合には、磁石の製造に利用する多相粉末と、圧粉成形体の製造に利用する軟磁性粉末(特に、金属粉末)とを同時に成形した粉末成形体(以下、複合粉末成形体と呼ぶ)を作製し、この複合粉末成形体に脱水素処理などの熱処理を施すことで、上述の固定材を用いること無く、本発明回転機用磁石と軟磁性部材とが一体化された回転機用部品(本発明回転機用部材の一形態)が得られる。この回転機用部品は、上述の特定の合金粉末から構成され、傾斜面を有する領域(回転機用磁石)と、軟磁性金属粉末から構成される領域(軟磁性部材)と、両領域の間に合金粉末と軟磁性金属粉末とが混合して存在する混合領域とを具え、回転機用磁石と軟磁性部材との境界が不明瞭であり、明確な境界が存在しない。この回転機用部品は、(1)工程数が少なく生産性に優れる、(2)上述のネッキング強度の発現及び微小な隙間が無いことにより高強度である、(3)上述の微細な隙間が無いことで磁気特性に優れる、という特有の効果を奏する。   When the magnet for a rotating machine of the present invention and the soft magnetic member are independent members, they can be integrated using a fixing material such as an adhesive, a fastening member such as a bolt / nut or a screw. In addition, when the soft magnetic member is the above-mentioned green compact, the multiphase powder used for manufacturing the magnet and the soft magnetic powder (particularly metal powder) used for manufacturing the green compact are simultaneously used. A molded powder molded body (hereinafter referred to as a composite powder molded body) is produced, and the composite powder molded body is subjected to a heat treatment such as a dehydrogenation treatment without using the above-described fixing material. A rotating machine component in which a magnet and a soft magnetic member are integrated (one form of the rotating machine member of the present invention) is obtained. This rotating machine component is composed of the above-mentioned specific alloy powder, and includes an area having an inclined surface (magnet for rotating machine), an area consisting of soft magnetic metal powder (soft magnetic member), and a gap between both areas. And a mixed region where the alloy powder and the soft magnetic metal powder are mixed, the boundary between the magnet for the rotating machine and the soft magnetic member is unclear, and there is no clear boundary. This rotating machine component has (1) a small number of processes and excellent productivity, (2) high strength due to the above-mentioned necking strength manifestation and the absence of minute gaps, and (3) the aforementioned minute gaps. There is a unique effect of being excellent in magnetic characteristics when it is not present.

軟磁性部材を構成する金属粒子は、原料に用いた軟磁性金属粉末の組成を維持することから、上述した純鉄や鉄合金などから構成される。   Since the metal particles constituting the soft magnetic member maintain the composition of the soft magnetic metal powder used as a raw material, the metal particles are made of the above-described pure iron, iron alloy, or the like.

軟磁性部材が圧粉成形体である場合、当該圧粉成形体を構成する軟磁性粒子の平均粒径は、適宜選択することができる。軟磁性部材の組成や平均粒径は、原料に用いた軟磁性粉末に依存することから、軟磁性粒子が所望の組成、大きさとなるように原料粉末の大きさを調整するとよい。特に、上述の複合粉末成形体を製造する場合には、軟磁性金属粉末を構成する金属粒子の平均粒径は、10μm〜500μm、更に30μm〜300μm、特に50μm〜200μmであると、成形性に優れる。   When the soft magnetic member is a green compact, the average particle size of the soft magnetic particles constituting the green compact can be selected as appropriate. Since the composition and average particle diameter of the soft magnetic member depend on the soft magnetic powder used as the raw material, the size of the raw material powder is preferably adjusted so that the soft magnetic particles have a desired composition and size. In particular, when producing the above-mentioned composite powder molded body, the average particle diameter of the metal particles constituting the soft magnetic metal powder is 10 μm to 500 μm, more preferably 30 μm to 300 μm, and particularly 50 μm to 200 μm. Excellent.

混合領域の厚さ(いわゆるアキシャルギャップ型回転機に利用される部品の場合、回転軸方向に沿った長さ、いわゆるラジアルギャップ型回転機に利用される部品の場合、回転軸方向に直交する方向に沿った長さ)は、回転機用磁石を構成する合金粒子、及び軟磁性部材を構成する軟磁性金属粒子の大きさに依存する。具体的な厚さは、合金粉末の平均粒径及び軟磁性金属粉末の平均粒径のうち、大きい方の平均粒径と同等以上が挙げられる。この場合、平均粒径が小さい方の粒子が、大きい方の粒子がつくる隙間に十分に介在することができる。より具体的な厚さは、例えば、100μm以上が挙げられる。   Thickness of the mixing zone (in the case of parts used for so-called axial gap type rotating machines, the length along the rotating axis direction, in the case of parts used for so-called radial gap type rotating machines, the direction orthogonal to the rotating axis direction The length along the length depends on the size of the alloy particles constituting the rotating machine magnet and the size of the soft magnetic metal particles constituting the soft magnetic member. The specific thickness may be equal to or greater than the larger average particle size of the average particle size of the alloy powder and the average particle size of the soft magnetic metal powder. In this case, the particles having a smaller average particle diameter can be sufficiently interposed in the gap formed by the larger particles. A more specific thickness is, for example, 100 μm or more.

[回転機]
本発明回転機は、上述の本発明回転機用磁石や本発明回転機用部品を具えたモータ、或いは発電機が挙げられる。より具体的には、いわゆるアキシャルギャップ型回転機(シングルタイプ、ダブルタイプのいずれでもよい)、いわゆるラジアルギャップ型回転機が挙げられる。本発明回転機用磁石は、上記回転機のステータ又はロータにおいて永久磁石として利用され、本発明回転機用部品は、上記回転機のステータ又はロータとして利用される。
[Rotating machine]
Examples of the rotating machine of the present invention include a motor or a generator including the above-described magnet for rotating machine of the present invention and parts for the rotating machine of the present invention. More specifically, a so-called axial gap type rotating machine (either a single type or a double type) or a so-called radial gap type rotating machine may be mentioned. The magnet for a rotating machine of the present invention is used as a permanent magnet in the stator or rotor of the rotating machine, and the component for a rotating machine of the present invention is used as a stator or rotor of the rotating machine.

[製造方法]
本発明回転機用磁石は、例えば、準備工程:原料粉末の準備⇒成形工程:粉末成形体の形成⇒脱水素工程:脱水素熱処理(⇒窒化工程:窒化処理)という工程を経て製造することができる。本発明回転機用部品は、例えば、上述の軟磁性材料からなる軟磁性部材を別途用意して、上述の固定材を用いて本発明回転機用磁石を所定の位置に取り付けることで製造することができる。或いは、本発明回転機用部品が、本発明回転機用磁石と軟磁性部材との一体成形物である場合には、準備工程では、更に、軟磁性部材を構成するための軟磁性金属粉末を用意し、成形工程では、磁石用の原料粉末と軟磁性金属粉末と同時に成形した複合粉末成形体を作製し、脱水素工程や窒化工程では、複合粉末成形体に上述の熱処理を施すことで製造することができる。以下、各工程の概要を説明する。
[Production method]
The magnet for a rotating machine of the present invention can be manufactured, for example, through a process of preparation process: preparation of raw material powder ⇒ molding process: formation of a powder compact ⇒ dehydrogenation process: dehydrogenation heat treatment (⇒ nitriding process: nitriding process). it can. The rotating machine component of the present invention is manufactured, for example, by separately preparing a soft magnetic member made of the above-described soft magnetic material and attaching the rotating machine magnet of the present invention to a predetermined position using the above-described fixing material. Can do. Alternatively, when the component for a rotating machine of the present invention is an integrally molded product of the magnet for the rotating machine of the present invention and a soft magnetic member, the preparation step further includes a soft magnetic metal powder for constituting the soft magnetic member. Prepared in the molding process, producing a composite powder compact that was molded simultaneously with the raw material powder for the magnet and the soft magnetic metal powder. In the dehydrogenation process and nitriding process, the composite powder compact was manufactured by applying the heat treatment described above. can do. Hereinafter, the outline of each process will be described.

(準備工程)
本発明回転機用磁石の原料粉末には、脱水素処理によって再結合合金となる前駆体粉末、具体的には、希土類元素の水素化合物の相とFe含有物の相とが離散して存在する組織を有する多相粒子から構成される多相粉末を準備する。複合粉末成形体を製造する場合には、軟磁性金属粉末も用意する。
(Preparation process)
In the raw material powder of the magnet for a rotating machine of the present invention, a precursor powder that becomes a recombination alloy by dehydrogenation treatment, specifically, a rare earth element hydrogen compound phase and an Fe-containing material phase are discretely present. A multiphase powder composed of multiphase particles having a structure is prepared. When producing a composite powder compact, a soft magnetic metal powder is also prepared.

〔多相粉末〕
多相粉末を構成する各多相粒子は、水素不均化分解状態にある組織、代表的には、Fe含有物の相を母相として(Fe含有物の含有量:60体積%以上)、この母相中に粒状の希土類元素の水素化合物(0体積%超、好ましくは10体積%以上)が分散して存在する組織を有する。上記組織は、代表的には、Fe含有物の相を介して隣り合う希土類元素の水素化合物の相間の間隔が0.5μm以上(好ましくは1μm以上)3μm以下を満たす。Fe含有物は、(1)Fe(純鉄)のみ、(2)Co,Ga,Cu,Al,Si,Cr及びNbから選択される少なくとも一種の元素(以下、置換元素と呼ぶ)とFe、(3)Feを含む化合物(例えば、FeTi,FeMn,Fe3B,Fe2B,FeBなど)とFe、(4)置換元素と上記化合物とFe、という(1)〜(4)のいずれかの形態が挙げられる。
[Multiphase powder]
Each multi-phase particle constituting the multi-phase powder is a structure in a hydrogen disproportionation decomposition state, typically with the phase of the Fe-containing material as the parent phase (Fe-containing content: 60 vol% or more), The matrix has a structure in which granular rare earth element hydrogen compounds (more than 0 vol%, preferably 10 vol% or more) are dispersed. In the above structure, the spacing between the phases of the rare earth element hydrogen compounds adjacent to each other through the Fe-containing material phase is typically 0.5 μm or more (preferably 1 μm or more) and 3 μm or less. Fe content is (1) Fe (pure iron) only, (2) at least one element selected from Co, Ga, Cu, Al, Si, Cr and Nb (hereinafter referred to as a substitution element) and Fe, (3) A compound containing Fe (for example, FeTi, FeMn, Fe 3 B, Fe 2 B, FeB, etc.) and Fe, (4) any one of (1) to (4), which is a substitution element, the above compound and Fe The form is mentioned.

多相粉末は、出発合金粉末に水素化処理を施すことで得られ、その製造には、特許文献2に記載される製造方法を好適に利用できる。   The multiphase powder is obtained by subjecting the starting alloy powder to a hydrogenation treatment, and the production method described in Patent Document 2 can be suitably used for its production.

出発合金は、例えば、上述のRE及びMeを用いて(但しx=2.0〜2.2)、RExMe14B,RExMe14C,RExMe17及びREx/2Me12から選択される1種以上が挙げられる。より具体的には、RExMe14Bは、Nd2Fe14B、Nd2(Co1Fe13)B、RExMe14Cは、Nd2Fe14C、RExMe17は、Sm2Fe17、Y2Fe17、REx/2Me12は、Sm1(Ti1Fe11)、Sm1(Mn1Fe11)、Y1(Ti1Fe11)、Y1(Mn1Fe11)が挙げられる。特に、SmやNdを含む合金は、磁石特性に優れる磁石が得られる。その他、出発合金は、多相組織から再結合合金組織に変化する際に結晶の成長を制御するような元素(上述のCu,Al,Si,Ga,Nbなど)を含むものを許容する。材質の異なる複数種の多相粉末を組み合せて利用することができる。所望の組成の出発合金を用意し、特許文献2に記載されるような公知の粉末の製造方法(ガスアトマイズ法や、粉砕を含む方法など)を利用することで、出発合金粉末が得られる。特に、アトマイズ法は、真球度が高く、成形時の充填性に優れた粉末を製造し易い。 The starting alloy is, for example, selected from RE x Me 14 B, RE x Me 14 C, RE x Me 17 and RE x / 2 Me 12 using the above-mentioned RE and Me (where x = 2.0 to 2.2). 1 type or more is mentioned. More specifically, RE x Me 14 B is Nd 2 Fe 14 B, Nd 2 (Co 1 Fe 13 ) B, RE x Me 14 C is Nd 2 Fe 14 C, RE x Me 17 is Sm 2 Fe 17 , Y 2 Fe 17 , RE x / 2 Me 12 are Sm 1 (Ti 1 Fe 11 ), Sm 1 (Mn 1 Fe 11 ), Y 1 (Ti 1 Fe 11 ), Y 1 (Mn 1 Fe 11 ). In particular, an alloy containing Sm or Nd can provide a magnet having excellent magnet characteristics. In addition, the starting alloy is allowed to contain an element (such as the above-mentioned Cu, Al, Si, Ga, Nb, etc.) that controls crystal growth when changing from a multiphase structure to a recombination alloy structure. A plurality of types of multiphase powders having different materials can be used in combination. A starting alloy powder having a desired composition is prepared, and a starting alloy powder is obtained by using a known powder manufacturing method (such as a gas atomizing method or a method including pulverization) as described in Patent Document 2. In particular, the atomization method is easy to produce a powder having a high sphericity and excellent filling properties at the time of molding.

水素化処理の条件は、雰囲気:水素(H2)のみの単一雰囲気、又は水素(H2)とArやN2といった不活性ガスとの混合雰囲気、温度:不均化温度以上1100℃以下、保持時間:0.5時間以上5時間以下が挙げられる。具体的な温度は、出発合金が例えば、Sm2Fe17,Sm1(Ti1Fe11)、Sm1(Mn1Fe11)などの場合、700℃以上900℃以下、Nd2Fe14B、Nd2(Co1Fe13)B、Nd2Fe14Cなどの場合、750℃以上900℃以下が挙げられる。水素化処理は、公知のHDDR処理における不均化条件を適用することができる。 The conditions for the hydrogenation treatment are as follows: atmosphere: single atmosphere of only hydrogen (H 2 ), or mixed atmosphere of hydrogen (H 2 ) and inert gas such as Ar and N 2 , temperature: disproportionation temperature to 1100 ° C Holding time: 0.5 hours or more and 5 hours or less. The specific temperature is 700 ° C. or more and 900 ° C. or less, Nd 2 Fe 14 B, when the starting alloy is, for example, Sm 2 Fe 17 , Sm 1 (Ti 1 Fe 11 ), Sm 1 (Mn 1 Fe 11 ), etc. In the case of Nd 2 (Co 1 Fe 13 ) B, Nd 2 Fe 14 C, and the like, the temperature may be 750 ° C. or higher and 900 ° C. or lower. For the hydrogenation treatment, the disproportionation conditions in the known HDDR treatment can be applied.

多相粉末は、成形性や充填率を考慮すると、その平均粒径は10μm以上500μm以下が好ましく、30μm以上、更に100μm以上350μm以下が利用し易い。磁石を構成する合金粒子は、粒度が大きいと、表層酸化による磁気特性の劣化を抑えられることから、原料に比較的粒度が大きい多相粉末を用いると、磁気特性に優れる磁石が得られる。多相粉末の大きさは、上記出発合金粉末に依存することから、多相粉末が所望の大きさとなるように、出発合金粉末の大きさ及び水素化条件を調整するとよい。平均粒径が異なる複数の粉末を用いてもよい。微粗混合の粉末を利用することで、粉末成形体の相対密度を高められ、緻密な磁石を形成することができる。   In consideration of moldability and filling rate, the average particle size of the multiphase powder is preferably 10 μm or more and 500 μm or less, more preferably 30 μm or more, and even more preferably 100 μm or more and 350 μm or less. If the alloy particles constituting the magnet have a large particle size, deterioration of magnetic properties due to surface layer oxidation can be suppressed. Therefore, if a multiphase powder having a relatively large particle size is used as a raw material, a magnet having excellent magnetic properties can be obtained. Since the size of the multiphase powder depends on the starting alloy powder, the size of the starting alloy powder and the hydrogenation conditions may be adjusted so that the multiphase powder has a desired size. A plurality of powders having different average particle sizes may be used. By using finely mixed powder, the relative density of the powder compact can be increased, and a dense magnet can be formed.

その他、特許文献2に記載されるように多相粒子の全周を覆うように酸化防止層や絶縁被膜を具える形態とすると、成形時に生じる新生面の酸化防止、磁石の電気抵抗の増大などを図ることができる。絶縁被膜の材質は、適宜選択することができる。電気抵抗が低くてもよい場合(例えば、用途が、低回転で動作するモータや発電機のロータなどの場合)には、絶縁被膜を具えていなくてもよい。絶縁被膜に関する事項は、後述する軟磁性金属粉末についても同様である。   In addition, as described in Patent Document 2, if the form is provided with an anti-oxidation layer and an insulating film so as to cover the entire circumference of the multiphase particles, the anti-oxidation of the new surface generated at the time of molding, the increase in the electric resistance of the magnet, etc. Can be planned. The material of the insulating coating can be selected as appropriate. When the electrical resistance may be low (for example, when the application is a motor operating at a low speed, a rotor of a generator, or the like), the insulating coating may not be provided. The same applies to the soft magnetic metal powder described later.

〔軟磁性金属粉末〕
軟磁性金属粉末は、従来、圧粉成形体に利用されている種々の組成の軟磁性材料からなる粉末が利用できる。上述の鉄基材料、特に、純鉄や添加元素量が少ない鉄合金(例えば、Fe-Si系合金ではSi含有量:2.5質量%以下、その他、Fe-Al系合金、Fe-Ni系合金など)は、成形性に優れる。材質の異なる複数種の軟磁性金属粉末を組み合せて利用することができる。
[Soft magnetic metal powder]
As the soft magnetic metal powder, powders made of soft magnetic materials having various compositions conventionally used for compacted products can be used. The above-mentioned iron-based materials, especially pure iron and iron alloys with a small amount of additive elements (for example, Fe-Si alloys, Si content: 2.5 mass% or less, Fe-Al alloys, Fe-Ni alloys, etc.) ) Is excellent in moldability. A plurality of types of soft magnetic metal powders having different materials can be used in combination.

軟磁性金属粉末を構成する金属粒子の表面に絶縁被膜を具える形態とすることができる。この場合、得られた回転機用部品における軟磁性部材は、金属粒子間に絶縁被膜(又は脱水素処理や引き続き行う窒化処理、後述のアニール処理などの熱処理によって生成された絶縁物)が介在することで電気抵抗が高くなり、例えば、渦電流損を低減できる。   It can be set as the form which provides an insulating film on the surface of the metal particle which comprises soft-magnetic metal powder. In this case, the soft magnetic member in the obtained rotating machine component has an insulating film (or an insulator generated by a heat treatment such as a dehydrogenation process, a subsequent nitriding process, or an annealing process described later) between the metal particles. As a result, the electrical resistance increases, and for example, eddy current loss can be reduced.

軟磁性金属粉末の平均粒径は、10μm〜500μm程度であると、取り扱い易く、成形性にも優れて好ましい。平均粒径が異なる複数の粉末を用いてもよい。特に、硬質な合金粉末を用いる場合には、微粗混合の粉末を利用することで、粉末成形体の相対密度を高められ、緻密な軟磁性部材を形成することができる。   The average particle size of the soft magnetic metal powder is preferably about 10 μm to 500 μm because it is easy to handle and excellent in moldability. A plurality of powders having different average particle sizes may be used. In particular, when a hard alloy powder is used, by using a finely mixed powder, the relative density of the powder compact can be increased and a dense soft magnetic member can be formed.

多相粉末と軟磁性金属粉末とは、平均粒径が異なっていてもよいし、等しくてもよい。両粉末の平均粒径が等しい場合、両粉末の強度や硬度にもよるが、成形時の加圧圧力を調整し易く、かつ加圧を均一的に行えて、寸法精度や外観に優れる複合粉末成形体を得易い。   The average particle size may be different between the multiphase powder and the soft magnetic metal powder, or may be equal. If the average particle size of both powders is the same, it depends on the strength and hardness of both powders, but it is easy to adjust the pressing pressure during molding, and it is possible to uniformly apply pressure, and it is a composite powder with excellent dimensional accuracy and appearance It is easy to obtain a molded body.

(成形工程)
所望の形状の磁石が得られるように成形用金型を選択して、当該成形用金型に上記多相粉末を供給し、加圧・圧縮して粉末成形体(以下、多相粉末成形体と呼ぶ)を形成する。軟磁性部材を具える回転機用部品を形成する場合には、所望の形状の成形用金型に上記多相粉末と上記軟磁性粉末とを積層状態に供給し、同時に加圧・圧縮して複合粉末成形体を形成する。多相粉末及び軟磁性金属粉末の給粉順序は、所望の形状の複合粉末成形体が得られればよく、特に問わない。
(Molding process)
A molding die is selected so as to obtain a magnet having a desired shape, the above-mentioned multiphase powder is supplied to the molding die, and pressed and compressed to form a powder molded body (hereinafter referred to as a multiphase powder molded body). Called). When forming a rotating machine part including a soft magnetic member, the multiphase powder and the soft magnetic powder are supplied to a molding die having a desired shape in a laminated state, and simultaneously pressed and compressed. A composite powder compact is formed. The order of feeding the multiphase powder and the soft magnetic metal powder is not particularly limited as long as a composite powder molded body having a desired shape is obtained.

多相粉末成形体及び複合粉末成形体はいずれも、その相対密度(粉末成形体の真密度に対する実際の密度)が高いほど、最終的に、磁性相の割合が高密度な磁石や軟磁性部材を得易い。従って、いずれの粉末成形体も、その相対密度が85%以上、好ましくは90%以上となるように加圧圧力を調整することが好ましい。多相粉末が上述の酸化防止層を具える形態では、多相粉末成形体の相対密度や複合粉末成形体における多相粉末からなる領域の相対密度を90%〜95%程度にすると、後工程の熱処理によって酸化防止層を除去し易い。   The higher the relative density (actual density with respect to the true density of the powder compact) of both the multiphase powder compact and the composite powder compact, the magnet or soft magnetic member with a high density of the magnetic phase finally Easy to get. Therefore, it is preferable to adjust the pressure so that the relative density of any powder compact is 85% or more, preferably 90% or more. In the form in which the multiphase powder is provided with the above-mentioned antioxidant layer, if the relative density of the multiphase powder molded body or the relative density of the region made of the multiphase powder in the composite powder molded body is about 90% to 95%, the post-process It is easy to remove the antioxidant layer by heat treatment.

上記多相粉末は、従来の圧粉成形体の原料に用いられる軟磁性金属粉末と同様に成形性に優れるため、成形時の圧力を比較的小さくすることができる。例えば、多相粉末成形体及び複合粉末成形体の成形時の圧力はいずれも、8ton/cm2以上15ton/cm2以下が挙げられる。 Since the multiphase powder is excellent in moldability like the soft magnetic metal powder used as a raw material of a conventional compacted body, the pressure during molding can be made relatively small. For example, the pressure during molding of the multiphase powder molded body and the composite powder molded body can be 8 ton / cm 2 or more and 15 ton / cm 2 or less.

希土類元素を含む多相粉末は、特に酸化され易いことから、成形工程は、非酸化性雰囲気とすると、多相粉末や軟磁性金属粉末の酸化を防止できて好ましい。多相粉末が上述の酸化防止層を具える形態では、大気雰囲気といった酸素含有雰囲気で成形工程を行ってもよい。   Since multiphase powders containing rare earth elements are particularly easily oxidized, it is preferable to use a non-oxidizing atmosphere in the molding step because it can prevent oxidation of the multiphase powder and soft magnetic metal powder. In the form in which the multiphase powder includes the above-described antioxidant layer, the forming step may be performed in an oxygen-containing atmosphere such as an air atmosphere.

その他、成形工程では、成形用金型を適宜加熱することで、多相粉末などの変形を促進でき、高密度の粉末成形体や傾斜面を有するなどの複雑な形状の粉末成形体を得易い。また、成形用金型に適宜潤滑剤を塗布することで、粉末成形体を離型し易い。   In addition, in the molding process, by appropriately heating the molding die, it is possible to promote deformation of the multiphase powder, and it is easy to obtain a powder molded body having a complicated shape such as a high-density powder molded body or an inclined surface. . Moreover, it is easy to release the powder compact by applying a lubricant to the molding die as appropriate.

また、成形工程は、多段に加圧・圧縮してもよい。特に、異なる粉末を用いて複合粉末成形体を成形する場合、多段階で加圧すると、成形用金型に既に充填された粉末を崩壊などさせることなく次の粉末を充填でき、精度よく一体成形を行えて好ましい。多段の成形を行う場合、途中の段階では、成形時の圧力を比較的小さくし、ある程度、粉末の移動を完了した後に圧力を大きくすると、(1)多段階に分けて加圧したことによる密度差に起因する応力を緩和できる、(2)成形し易く緻密化し易い、などの利点を有する。具体的な条件は、途中の段階の圧力を1ton/cm2〜3ton/cm2程度とし、途中の段階の成形体(仮成形体)の相対密度が75%以下程度となるように成形することが挙げられる。或いは、成形後の熱処理(脱水素処理など)によって消失可能な材質(例えば、パラフィンなど)からなる保形材を成形途中に適宜、成形用金型内に配置することでも、複合粉末成形体を成形し易い。 Further, the molding process may be pressurized and compressed in multiple stages. In particular, when molding a composite powder compact using different powders, pressurizing in multiple stages allows the next powder to be filled without disrupting the powder already filled in the molding die, and integrated molding with high accuracy. Is preferable. When multi-stage molding is performed, in the middle stage, the pressure at the time of molding is relatively small, and when the pressure is increased to some extent after the movement of the powder is completed, (1) density due to pressurization divided into multiple stages There are advantages such that stress due to the difference can be relieved, and (2) it is easy to mold and densify. The specific conditions are that the intermediate stage pressure is about 1 ton / cm 2 to 3 ton / cm 2, and that the intermediate stage molded body (temporary molded body) has a relative density of about 75% or less. Is mentioned. Alternatively, the composite powder molded body can be formed by appropriately placing a shape-retaining material made of a material (for example, paraffin or the like) that can be lost by heat treatment after molding (such as dehydrogenation) in a molding die. Easy to mold.

得られた多相粉末成形体では、多相粒子同士が噛み合っており、この噛み合いにより強度が高い。複合粉末成形体は、軟磁性金属粉末からなる金属粉末領域と、多相粉末からなる多相粉末領域とを具え、多相粉末領域では、多相粒子同士が噛み合い、金属粉末領域では、金属粒子同士が噛み合う。そして、両領域間は、多相粒子と軟磁性金属粒子とが混ざり合って構成されており、明確な境界が存在しない。この異種の粒子が混ざり合った領域では、多相粒子と金属粒子同士が噛み合っている。従って、得られた複合粉末成形体は、上述の噛み合いによって強度が高く、製造中に崩壊し難い。また、多相粒子と軟磁性金属粒子とが混ざり合った領域の厚さは、上述の両粉末の粒径によって変化し、平均粒径が大きい方の粉末に依存する。   In the obtained multiphase powder molded body, the multiphase particles are meshed with each other, and the meshing provides high strength. The composite powder molded body includes a metal powder region made of soft magnetic metal powder and a multiphase powder region made of multiphase powder. In the multiphase powder region, the multiphase particles mesh with each other, and in the metal powder region, the metal particles Engage with each other. In addition, between the two regions, the multiphase particles and the soft magnetic metal particles are mixed and there is no clear boundary. In the region where the different kinds of particles are mixed, the multiphase particles and the metal particles are meshed with each other. Therefore, the obtained composite powder molded body has high strength due to the above-described meshing and is difficult to disintegrate during production. In addition, the thickness of the region where the multiphase particles and the soft magnetic metal particles are mixed varies depending on the particle diameters of the two powders, and depends on the powder having the larger average particle diameter.

(脱水素工程)
脱水素工程は、多相粉末においては、多相粒子から水素を分離して、希土類元素とFe含有物とを結合させて、多相組織から、再結合合金からなる単相組織とするための工程である。複合粉末成形体に具える軟磁性金属粉末においては、脱水素工程は、成形によって導入された歪みを除去するための工程となる。上記水素の分離のために、脱水素工程における熱処理(脱水素処理)の雰囲気は、不活性雰囲気又は減圧雰囲気といった非水素雰囲気とする。不活性雰囲気は、例えば、ArやN2が挙げられる。減圧雰囲気は、標準の大気雰囲気よりも圧力を低下させた真空状態をいい、その真空度は、100Pa以下が好ましく、最終真空度は、10Pa以下、更に1Pa以下が好ましい。減圧雰囲気とすると、希土類元素の水素化合物が残存し難く、当該水素化合物の残存による磁気特性の低下を抑制でき、磁気特性に優れる磁石が得られる。
(Dehydrogenation process)
In the dehydrogenation step, in the multiphase powder, hydrogen is separated from the multiphase particles, and the rare earth element and the Fe-containing material are combined to form a single-phase structure composed of a recombination alloy from the multiphase structure. It is a process. In the soft magnetic metal powder provided in the composite powder molded body, the dehydrogenation step is a step for removing strain introduced by the molding. For the hydrogen separation, the heat treatment (dehydrogenation treatment) atmosphere in the dehydrogenation step is a non-hydrogen atmosphere such as an inert atmosphere or a reduced pressure atmosphere. Examples of the inert atmosphere include Ar and N 2 . The reduced-pressure atmosphere refers to a vacuum state in which the pressure is lower than that of a standard air atmosphere, and the degree of vacuum is preferably 100 Pa or less, and the final degree of vacuum is preferably 10 Pa or less, and more preferably 1 Pa or less. In a reduced pressure atmosphere, rare earth element hydrogen compounds are unlikely to remain, and a decrease in magnetic properties due to the remaining hydrogen compounds can be suppressed, and a magnet having excellent magnetic properties can be obtained.

脱水素処理の温度は、多相粒子の再結合温度以上とし、組成により異なるものの、代表的には、Smを含む場合、600℃以上、Ndを含む場合、700℃以上が挙げられる。脱水素処理の温度が高いほど、多相粒子では水素を十分に除去して再結合化を進行でき、軟磁性金属粉末を構成する金属粒子では導入された歪みを除去し易い。しかし、脱水素処理の温度は、高過ぎると、希土類元素の揮発や再結合合金の結晶の粗大化が懸念されるため、1000℃以下が好ましい。脱水素処理の保持時間は、10分以上600分以下が挙げられる。脱水素処理の条件は、公知のHDDR処理におけるDR処理の条件を適用できる。   The temperature of the dehydrogenation treatment is not less than the recombination temperature of the multiphase particles and varies depending on the composition, but typically, it includes 600 ° C. or more when Sm is included, and 700 ° C. or more when Nd is included. The higher the dehydrogenation temperature, the more hydrogen can be removed from the multiphase particles and recombination can proceed, and the introduced strain can be easily removed from the metal particles constituting the soft magnetic metal powder. However, if the temperature of the dehydrogenation treatment is too high, there is a concern about volatilization of rare earth elements and coarsening of crystals of the recombination alloy. The retention time for the dehydrogenation treatment is 10 minutes or more and 600 minutes or less. The conditions for the dehydrogenation process can be the conditions for the DR process in the known HDR process.

脱水素工程では、上記粉末成形体に2T以上といった強磁場を印加した状態で脱水素処理を行うことができる。この形態では、再結合合金の結晶核の結晶方位を磁歪により一方向に配向させられることから、回転機用磁石や回転機用部品に具える磁石を配向組織とすることができる。この配向組織(結晶の磁化容易軸(代表的にはc軸)が一方向に配向した組織)によって、磁石特性に優れる磁石とすることができる。磁場が大きいほど配向性を高められることから、印加する磁場は、3T以上、更に3.2T以上、特に4T以上とすることができる。   In the dehydrogenation step, the dehydrogenation treatment can be performed in a state where a strong magnetic field of 2 T or more is applied to the powder compact. In this embodiment, since the crystal orientation of the crystal nuclei of the recombination alloy can be oriented in one direction by magnetostriction, the magnet provided in the rotating machine magnet or the rotating machine part can be an oriented structure. With this orientation structure (a structure in which the easy axis of magnetization (typically c-axis) of the crystal is oriented in one direction), a magnet having excellent magnet characteristics can be obtained. Since the orientation is improved as the magnetic field is increased, the applied magnetic field can be 3 T or more, further 3.2 T or more, particularly 4 T or more.

上記磁場の印加方向は、回転機に形成される磁気回路の磁束方向とすると、得られた磁石の磁気特性を十分に活用できて好ましい。また、磁場の印加方向は、上記粉末成形体を成形するときの成形方向(圧縮方向)と同じであることが好ましい。   The application direction of the magnetic field is preferably the magnetic flux direction of the magnetic circuit formed in the rotating machine, since the magnetic characteristics of the obtained magnet can be fully utilized. Further, the application direction of the magnetic field is preferably the same as the molding direction (compression direction) when molding the powder compact.

上記磁場の印加には、高温超電導磁石を用いると、(1)強磁場を安定に形成できる、(2)磁場の変動を高速で行えることから、(2-1)熱処理時間の短縮、(2-2)結晶粒の粗大化の抑制、(2-3)連続処理が可能、などの利点を有する。この点は、後述する窒化工程における磁場の印加にも適用できる。   When applying a high-temperature superconducting magnet for the application of the magnetic field, (1) a strong magnetic field can be stably formed, (2) the magnetic field can be changed at high speed, and (2-1) heat treatment time is shortened, (2 -2) It has advantages such as suppression of coarsening of crystal grains and (2-3) continuous processing. This point can also be applied to the application of a magnetic field in a nitriding step described later.

多相粉末として、上述のRExMe14B,RExMe14C,REx/2Me12を出発合金とし、例えば、NdなどのREの水素化合物の相と、FeやFe3BなどのFe含有物の相とを具える多相粒子から構成される粉末を用いた場合、上記脱水素処理を経て、RE2Me14BやRE2Me14C、RE1Me12などの合金(再結合合金)の粉末で構成された磁石が得られる。 As a multiphase powder, the above-mentioned RE x Me 14 B, RE x Me 14 C, and RE x / 2 Me 12 are used as starting alloys, for example, a phase of RE hydride such as Nd, Fe, Fe 3 B, etc. When a powder composed of multiphase particles including a phase of Fe-containing material is used, alloys such as RE 2 Me 14 B, RE 2 Me 14 C, RE 1 Me 12 etc. A magnet composed of a powder of (binding alloy) is obtained.

(窒化工程)
一方、多相粉末として、上述のRExMe17及びREx/2Me12を出発合金とし、例えば、SmなどのREの水素化合物の相と、FeやFeTiなどのFe含有物の相とを具える多相粒子から構成される粉末を用いた場合、上記脱水素処理後、更に窒化処理を施すことで、RE2Me17Nx,RE1Me12Nxなどの合金(再結合合金を窒化した合金)の粉末で構成された磁石が得られる。
(Nitriding process)
On the other hand, as a multiphase powder, the above-mentioned RE x Me 17 and RE x / 2 Me 12 are used as a starting alloy, for example, a phase of a hydrogen compound of RE such as Sm and a phase of an Fe-containing material such as Fe or FeTi. When a powder composed of multiphase particles is used, an alloy such as RE 2 Me 17 N x , RE 1 Me 12 N x, etc. A magnet composed of a powder of a nitrided alloy) is obtained.

窒化処理の条件は、特許文献2に記載される条件を利用することができる。具体的には、雰囲気:窒素元素を含有する雰囲気、温度:窒化温度以上窒素不均化温度以下、保持時間:10分以上600分以下が挙げられる。具体的な雰囲気は、(1)窒素のみの単一雰囲気、(2)アンモニア(NH3)雰囲気、(3)窒素(N2)やアンモニアといった窒素元素を含むガスとArといった不活性ガスとの混合ガス雰囲気、その他、(4)上記窒素元素を含むガスと水素(H2)との混合ガス雰囲気、といった(1)〜(4)のいずれかが挙げられる。水素ガスを含有する雰囲気は還元雰囲気であるため、生成した窒化物の酸化や過剰窒化を防止できる。上記窒化温度や窒素不均化温度は、窒化前の合金組成により異なるが、例えば、Sm2Fe17,Sm1Fe11Ti1の場合、200℃以上550℃以下、更に200℃〜450℃、特に200℃〜300℃が挙げられる。 The conditions described in Patent Document 2 can be used as the nitriding conditions. Specifically, atmosphere: atmosphere containing nitrogen element, temperature: nitriding temperature or more and nitrogen disproportionation temperature or less, holding time: 10 minutes or more and 600 minutes or less. Specific atmospheres include (1) a single atmosphere containing only nitrogen, (2) an ammonia (NH 3 ) atmosphere, (3) a gas containing a nitrogen element such as nitrogen (N 2 ) or ammonia, and an inert gas such as Ar. Any one of (1) to (4), such as a mixed gas atmosphere, and (4) a mixed gas atmosphere of a gas containing the nitrogen element and hydrogen (H 2 ) may be mentioned. Since the atmosphere containing hydrogen gas is a reducing atmosphere, the generated nitride can be prevented from being oxidized or excessively nitrided. The nitriding temperature and the nitrogen disproportionation temperature vary depending on the alloy composition before nitriding.For example, in the case of Sm 2 Fe 17 , Sm 1 Fe 11 Ti 1 , 200 ° C. or more and 550 ° C. or less, and further 200 ° C. to 450 ° C., In particular, 200 ° C to 300 ° C can be mentioned.

脱水素工程に加えて窒化工程においても、強磁場を印加した状態で窒化処理を行うことができる。この形態では、再結合合金の結晶格子を一方向に引き伸ばし易く、引き伸ばされたFe原子-Fe原子間にN原子を優先的に侵入させて、理想状態の原子比の窒化物(例えば、Sm2Fe17N3)を得易い。理想状態の原子比の窒化物によって構成され、かつ上述のように配向組織を有する磁石は、磁石特性に更に優れる。磁場が大きいほどN原子の進入方向を制御できることから、印加する磁場は、3T以上、更に3.5T以上、特に3.7T以上、とりわけ4T以上が好ましい。窒化工程における磁場の印加方向も、上述の磁気回路の磁束方向とすることが好ましい。つまり、脱水素工程と窒化工程とでは、磁場の印加方向が同じであることが好ましい。こうすることで、配向組織を維持し易い。 In the nitriding step in addition to the dehydrogenating step, the nitriding treatment can be performed with a strong magnetic field applied. In this form, the crystal lattice of the recombination alloy can be easily stretched in one direction, and N atoms are preferentially penetrated between the stretched Fe atoms-Fe atoms, and nitrides having an ideal atomic ratio (for example, Sm 2 It is easy to obtain Fe 17 N 3 ). A magnet composed of nitride having an atomic ratio in an ideal state and having an oriented structure as described above is further excellent in magnet characteristics. The larger the magnetic field is, the more the magnetic field to be applied can be controlled. Therefore, the applied magnetic field is preferably 3T or more, more preferably 3.5T or more, particularly 3.7T or more, especially 4T or more. The application direction of the magnetic field in the nitriding step is also preferably the magnetic flux direction of the magnetic circuit described above. That is, it is preferable that the application direction of the magnetic field is the same in the dehydrogenation step and the nitridation step. By doing so, it is easy to maintain the oriented structure.

(アニール工程)
複合粉末成形体に脱水素処理を施した場合、脱水素処理後の素材に、更に熱処理(アニール処理)を施すと、脱水素処理によって当該素材に生じ得る熱歪みや界面応力を除去でき、熱歪みや界面応力に起因する特性の劣化などを抑制できる。アニール処理の条件は、雰囲気:不活性雰囲気中、又は減圧雰囲気、温度:250℃〜500℃(好ましくは250℃〜450℃)、保持時間:1分〜600分(好ましくは6分〜60分)が挙げられる。具体的な雰囲気は、脱水素工程で述べた事項を適用することができる。
(Annealing process)
When the composite powder compact is subjected to dehydrogenation treatment, if the material after dehydrogenation treatment is further subjected to heat treatment (annealing treatment), thermal strain and interfacial stress that can occur in the material due to dehydrogenation treatment can be removed, and Degradation of characteristics due to strain and interface stress can be suppressed. The annealing conditions are as follows: atmosphere: inert atmosphere or reduced pressure atmosphere, temperature: 250 ° C. to 500 ° C. (preferably 250 ° C. to 450 ° C.), holding time: 1 minute to 600 minutes (preferably 6 minutes to 60 minutes) ). The matter described in the dehydrogenation process can be applied to the specific atmosphere.

上述の窒化工程を行う場合には、窒化処理がアニール処理の効果を兼ねることから、アニール処理を別途行う必要はなく、省略することができる。   When performing the above-described nitriding step, the nitriding treatment also has the effect of the annealing treatment, so that it is not necessary to perform the annealing treatment separately and can be omitted.

脱水素工程や窒化工程において上述の強磁場を印加した場合、アニール工程でも、脱水素工程などのときと同じ方向に上述のような強磁場(2T以上、好ましくは3T以上)を印加すると、脱水素工程などで揃えられた配向組織を維持し易い。   When the above-described strong magnetic field is applied in the dehydrogenation process or the nitriding process, dehydration can be performed by applying the above-described strong magnetic field (2T or more, preferably 3T or more) in the same direction as in the dehydrogenation process even in the annealing process. It is easy to maintain an aligned structure that is aligned in the elementary process.

以下、図面を参照して本発明のより具体的な実施の形態を説明する。図中、同一符号は同一名称物を示す。   Hereinafter, more specific embodiments of the present invention will be described with reference to the drawings. In the figure, the same reference numerals indicate the same names.

[実施形態1]
本発明回転機用部品として、例えば、図1(A)に示す回転機用部品1Aが挙げられる。回転機用部品1Aは、希土類元素とFeとを含有する合金粉末から構成される回転機用磁石1と、軟磁性金属粉末から構成される軟磁性部材2とを具える。この回転機用部品1Aは、いわゆるアキシャルギャップ型回転機の部品に利用することができる。
[Embodiment 1]
An example of the rotating machine part of the present invention is a rotating machine part 1A shown in FIG. 1 (A). The rotating machine component 1A includes a rotating machine magnet 1 made of an alloy powder containing a rare earth element and Fe, and a soft magnetic member 2 made of a soft magnetic metal powder. This rotating machine part 1A can be used as a part of a so-called axial gap type rotating machine.

ここでは、回転機用部品1Aは、回転機用磁石1と軟磁性部材2とが独立した部材であり、接着剤などによって一体化されている。   Here, in the rotating machine component 1A, the rotating machine magnet 1 and the soft magnetic member 2 are independent members, and are integrated by an adhesive or the like.

この回転機用磁石1は、中央部に貫通孔を具える円筒状体であり、内周面12と、外周面13と、両面12,13間を繋ぎ、軟磁性部材2に取り付けられる円環状の接触面15とを具える。磁石1の内周面12,外周面13は、磁石1が回転機に組み付けられたときに、回転機の回転軸(図1,図3では一点鎖線で示す)に平行に配置され、接触面15は、回転軸に直交に配置される。そして、磁石1は、接触面15との対向側(図1では上側)に回転軸に対して非平行かつ非直交に配置される傾斜面11を具えることを特徴の一つとする。   This rotating machine magnet 1 is a cylindrical body having a through hole in the center, and connects the inner peripheral surface 12, the outer peripheral surface 13, and both surfaces 12 and 13, and is attached to the soft magnetic member 2. With a contact surface 15 of. The inner peripheral surface 12 and the outer peripheral surface 13 of the magnet 1 are arranged in parallel to the rotating shaft of the rotating machine (indicated by a one-dot chain line in FIGS. 1 and 3) when the magnet 1 is assembled to the rotating machine. 15 is arranged orthogonal to the rotation axis. One of the features of the magnet 1 is that it includes an inclined surface 11 that is disposed non-parallel and non-orthogonally with respect to the rotation axis on the side facing the contact surface 15 (upper side in FIG. 1).

傾斜面11は、回転機用磁石1が回転機に組み付けられたときに、回転機において磁石1がつくる磁束を受ける別の磁性部材(代表的には、図2,図3に示すようなコイル部品50における磁性コア51)と共にエアギャップを形成する面として機能する。回転軸に直交する平面(図3では水平面)をとったとき、この平面と傾斜面11とがつくる角:傾斜角θは、0°超90°未満の範囲で適宜選択することができる(ここでは、θ=15°)。特に、傾斜角θが10°以上30°以下であると、成形性に優れる上に、磁石1において回転軸方向の長さが短く、小型な磁石とすることができる。   The inclined surface 11 is another magnetic member (typically a coil as shown in FIGS. 2 and 3) that receives the magnetic flux generated by the magnet 1 in the rotating machine when the rotating machine magnet 1 is assembled to the rotating machine. It functions as a surface that forms an air gap together with the magnetic core 51) of the component 50. When a plane orthogonal to the rotation axis (horizontal plane in FIG. 3) is taken, an angle formed by this plane and the inclined surface 11: the inclination angle θ can be appropriately selected within a range of more than 0 ° and less than 90 ° (here Then, θ = 15 °). In particular, when the inclination angle θ is 10 ° or more and 30 ° or less, the magnet 1 is excellent in moldability, and the magnet 1 has a short length in the rotation axis direction, and can be a small magnet.

また、回転機用磁石1では、エアギャップを形成する磁石ギャップ面は、上述の傾斜面11と、接触面15に平行(つまり回転軸に直交)に設けられ、内周面12に繋がる内側直交面14i、及び外周面13に繋がる外側直交面14oとで構成される。磁石ギャップ面における内側直交面14i及び外側直交面14oの合計面積割合が小さいほど、つまり、傾斜面11の面積割合が大きいほど、エアギャップの形成面積を増大できることから、傾斜面11の面積割合は、60%以上が好ましい(ここでは、70%)。   Further, in the rotating machine magnet 1, the magnet gap surface forming the air gap is provided in parallel to the inclined surface 11 and the contact surface 15 (that is, orthogonal to the rotation axis), and is orthogonal to the inner peripheral surface 12 connected to the inner peripheral surface 12. The surface 14i and the outer orthogonal surface 14o connected to the outer peripheral surface 13 are configured. The smaller the total area ratio of the inner orthogonal surface 14i and the outer orthogonal surface 14o in the magnet gap surface, that is, the larger the area ratio of the inclined surface 11, the greater the air gap formation area, so the area ratio of the inclined surface 11 is 60% or more is preferable (70% here).

この円環状の回転機用磁石1は、例えば、上述のように原料に多相粉末を用意し、所定の形状の成形用金型を用いて、傾斜面を有する円筒状の粉末成形体を形成し、この粉末成形体に上述のように脱水素処理、適宜窒化処理を施すことで製造することができる。成形用金型300は、例えば、図4(A)に示すように貫通孔(ここでは円孔)301hが設けられたダイ301と、対向配置される筒状(ここでは円筒状)の上パンチ302及び下パンチ303と、ダイ301に挿通配置され、貫通孔(内周面12)を形成するための棒状(ここでは円柱状)の太ロッド304とを具えるものが挙げられる。下パンチ303において、上パンチ302との対向面(押圧面)は、上述の傾斜面11及び内側直交面14i及び外側直交面14oを形成できるように、貫通孔301hの軸方向に対して傾斜した面と、貫通孔301hの軸方向に対して直交方向に配置される面(以下、直交押圧面と呼ぶ)とを具えるものを利用するとよい。直交押圧面は、上パンチ302との間で押圧力を多相粉末P1に十分に加えることができ、粉末成形体を寸法精度よく成形できる。   This annular magnet 1 for a rotating machine, for example, prepares a multiphase powder as a raw material as described above, and forms a cylindrical powder molded body having an inclined surface using a molding die of a predetermined shape. The powder molded body can be manufactured by subjecting it to dehydrogenation treatment as appropriate and nitriding treatment as appropriate. For example, as shown in FIG. 4 (A), the molding die 300 includes a die 301 provided with a through-hole (here circular hole) 301h, and a cylindrical (here cylindrical) upper punch disposed oppositely. Examples include 302 and a lower punch 303, and a rod-like (cylindrical in this case) thick rod 304 that is inserted through the die 301 and forms a through-hole (inner peripheral surface 12). In the lower punch 303, the surface (pressing surface) facing the upper punch 302 is inclined with respect to the axial direction of the through hole 301h so that the inclined surface 11, the inner orthogonal surface 14i, and the outer orthogonal surface 14o can be formed. It is preferable to use a surface having a surface and a surface (hereinafter referred to as an orthogonal pressing surface) arranged in a direction orthogonal to the axial direction of the through hole 301h. The orthogonal pressing surface can sufficiently apply a pressing force to the multiphase powder P1 between the upper punch 302 and the powder compact can be molded with high dimensional accuracy.

一方、軟磁性部材2は、回転機の軸となる軸棒10(図2)が挿通される貫通孔:軸孔22を中心部分に具える円板であり、一面が回転機用磁石1が取り付けられる載置面21である。   On the other hand, the soft magnetic member 2 is a circular plate having a through hole: a shaft hole 22 through which a shaft rod 10 (FIG. 2) serving as a shaft of the rotating machine is inserted, and one surface of which is a magnet 1 for the rotating machine. A mounting surface 21 to be attached.

ここでは、軟磁性部材2は、純鉄粉などの軟磁性粉末からなる圧粉成形体としている。この圧粉成形体の製造には、公知の手法が利用できる。   Here, the soft magnetic member 2 is a compacted body made of soft magnetic powder such as pure iron powder. A known method can be used for manufacturing the green compact.

[実施形態2]
或いは、図1(A)に示す回転機用部品1Aの別の形態として、回転機用磁石1(圧粉磁石)と軟磁性部材2(圧粉成形体)とが一体成形された形態が挙げられる。この形態の回転機用部品1Aは、磁石1と軟磁性部材2との間に、回転機用磁石1を構成する上述の合金粉末と軟磁性部材2を構成する軟磁性金属粉末とが混合して存在する混合領域を具える。実施形態2の回転機用部品1Aは、上述の混合領域を具える点以外の構成(例えば、傾斜面11の形状など)は実施形態1と同様であるため、説明を省略する。
[Embodiment 2]
Alternatively, as another form of the rotating machine part 1A shown in FIG. 1 (A), a form in which the rotating machine magnet 1 (powder magnet) and the soft magnetic member 2 (powder compact) are integrally molded can be cited. It is done. In the rotating machine component 1A of this embodiment, the above-described alloy powder constituting the rotating machine magnet 1 and the soft magnetic metal powder constituting the soft magnetic member 2 are mixed between the magnet 1 and the soft magnetic member 2. It has a mixed area that exists. The rotating machine component 1A according to the second embodiment is the same as the first embodiment except for the configuration including the above-described mixing region (for example, the shape of the inclined surface 11), and thus the description thereof is omitted.

実施形態2の回転機用部品1Aは、例えば、図4(C)に示す成形用金型300を利用して、回転機用磁石1の原料である多相粉末P1と、軟磁性部材2の原料である軟磁性金属粉末P2とを用いて複合粉末成形体を形成し、この複合粉末成形体に上述のように脱水素処理、適宜窒化処理を施すことで製造できる。成形用金型300は、更に、太ロッド304の中心に挿通配置されて、軸孔22(図1)を形成するための細い棒状(ここでは円柱状)の細ロッド308を具える。この成形用金型300を用いて複合粉末成形体を形成するには、まず、下パンチ303などを適宜移動して、図4(A)に示すようにダイ301の貫通孔301hの内周面、下パンチ303の押圧面、及び太ロッド304の外周面によって形成した有底筒状の空間に多相粉末P1を充填する。次に、下パンチ303、太ロッド304などを適宜移動して、図4(B)に示すようにダイ301の貫通孔301hの内周面、多相粉末P1及び太ロッド304の一面、及び細ロッド306の外周面によって形成した有底筒状の空間に軟磁性金属粉末P2を充填する。磁性金属粉末P2の充填空間を形成する前に、図4(A)に示す筒状の上パンチ302によって多相粉末P1を軽く押圧して仮成形を行ってもよい。そして、図4(C)に示すように細ロッド308の貫通孔を有する上パンチ302と、下パンチ303及び太ロッド304とによって、多層に積層した多相粉末P1及び磁性金属粉末P2を一体に加圧・圧縮することで、複合粉末成形体が得られる。上述のように多段に押圧すると、精度よく複合粉末成形体を成形できる。   The rotating machine component 1A of the second embodiment uses, for example, a molding die 300 shown in FIG. 4 (C), the multiphase powder P1 that is a raw material of the rotating machine magnet 1, and the soft magnetic member 2. It can be produced by forming a composite powder molded body using the soft magnetic metal powder P2 as a raw material, and subjecting this composite powder molded body to dehydrogenation treatment and appropriate nitriding treatment as described above. The molding die 300 further includes a thin rod-shaped (here, cylindrical) thin rod 308 that is inserted into the center of the thick rod 304 to form the shaft hole 22 (FIG. 1). In order to form a composite powder molded body using this molding die 300, first, the lower punch 303 or the like is moved as appropriate, and the inner peripheral surface of the through hole 301h of the die 301 as shown in FIG. The bottomed cylindrical space formed by the pressing surface of the lower punch 303 and the outer peripheral surface of the thick rod 304 is filled with the multiphase powder P1. Next, the lower punch 303, the thick rod 304, etc. are moved as appropriate, and the inner peripheral surface of the through hole 301h of the die 301, the one surface of the multiphase powder P1 and the thick rod 304, and the fine as shown in FIG. The bottomed cylindrical space formed by the outer peripheral surface of the rod 306 is filled with the soft magnetic metal powder P2. Before forming the space filled with the magnetic metal powder P2, the multiphase powder P1 may be lightly pressed by the cylindrical upper punch 302 shown in FIG. Then, as shown in FIG. 4 (C), the multi-phase powder P1 and the magnetic metal powder P2 laminated in a multilayer are integrally formed by the upper punch 302 having the through hole of the thin rod 308, the lower punch 303 and the thick rod 304. A composite powder compact is obtained by pressurizing and compressing. When pressed in multiple stages as described above, a composite powder molded body can be molded with high accuracy.

[実施形態3]
別の本発明回転機用部品として、例えば、図5に示す回転機用部品1Rが挙げられる。回転機用部品1Rは、希土類元素とFeとを含有する合金粉末から構成される回転機用磁石1と、軟磁性金属粉末から構成される軟磁性部材2とを具える。この回転機用部品1Rは、いわゆるラジアルギャップ型回転機の部品に利用することができる。
[Embodiment 3]
Another rotating machine component of the present invention is, for example, a rotating machine component 1R shown in FIG. The rotating machine component 1R includes a rotating machine magnet 1 made of an alloy powder containing a rare earth element and Fe, and a soft magnetic member 2 made of a soft magnetic metal powder. This rotating machine part 1R can be used as a part of a so-called radial gap type rotating machine.

ここでは、回転機用部品1Rは、回転機用磁石1と軟磁性部材2とが独立した部材であり、接着剤などによって一体化されている。   Here, in the rotating machine component 1R, the rotating machine magnet 1 and the soft magnetic member 2 are independent members, and are integrated by an adhesive or the like.

この回転機用磁石1は、一対の筒状体1Ru,1Rdを組み合せて構成されている。各筒状体1Ru,1Rdは、中央部に、軸孔22を有する円筒状の軟磁性部材2が挿通配置される貫通孔を具える円錐台状の外観を有する異形筒体であり、軟磁性部材2の外周面と接触する接触面となる内周面12と、内周面12と非平行な外周面とを具える。この外周面は、磁石1が回転機に組み付けられたときに回転機の回転軸(軸棒10の中心軸)に対して非平行かつ非直交に配置される傾斜面11となり、磁石ギャップ面として機能する。また、ここでは、磁石ギャップ面は、実質的に傾斜面11のみから構成される(磁石ギャップ面における傾斜面11の面積割合:100%)。磁石1は、一対の筒状体1Ru,1Rdを組み合せることで、図5(B)に示すように回転軸方向の中央部の幅が広く、端面に向かうにつれて幅が狭まる太鼓状体となっている。   This rotating machine magnet 1 is configured by combining a pair of cylindrical bodies 1Ru, 1Rd. Each cylindrical body 1Ru, 1Rd is a deformed cylindrical body having a frustoconical appearance having a through-hole through which a cylindrical soft magnetic member 2 having a shaft hole 22 is inserted and arranged at the center. An inner peripheral surface 12 serving as a contact surface that contacts the outer peripheral surface of the member 2 and an outer peripheral surface that is non-parallel to the inner peripheral surface 12 are provided. This outer peripheral surface becomes an inclined surface 11 arranged non-parallel and non-orthogonal to the rotation axis of the rotating machine (the central axis of the shaft rod 10) when the magnet 1 is assembled to the rotating machine, and serves as a magnet gap surface. Function. Here, the magnet gap surface is substantially composed only of the inclined surface 11 (area ratio of the inclined surface 11 in the magnet gap surface: 100%). By combining a pair of cylindrical bodies 1Ru, 1Rd, the magnet 1 becomes a drum-like body with a wide central portion in the direction of the rotation axis and a narrower width toward the end face as shown in FIG. ing.

この形態では、傾斜角θは、回転機の回転軸に直交する平面(図5(B)では水平面)をとったとき、この平面と傾斜面11とがつくる角とし、その大きさは、0°超90°未満の範囲で適宜選択することができる(ここでは、θ=75°)。特に、傾斜角θが60°以上80°以下であると、成形性に優れる上に、磁石1において回転軸に直交する方向の最大幅が短く、小型な磁石とすることができる。なお、図5(B)では、傾斜角θがわかり易いように磁石1を誇張して示す。   In this embodiment, the inclination angle θ is an angle formed by this plane and the inclined surface 11 when taking a plane orthogonal to the rotation axis of the rotating machine (horizontal plane in FIG. 5 (B)), and the magnitude thereof is 0 It can be appropriately selected within the range of more than 90 ° and less than 90 ° (here, θ = 75 °). In particular, when the inclination angle θ is 60 ° or more and 80 ° or less, the mold 1 is excellent in moldability and the magnet 1 has a short maximum width in the direction perpendicular to the rotation axis, and can be a small magnet. In FIG. 5B, the magnet 1 is shown exaggerated so that the inclination angle θ can be easily understood.

この円錐台状の筒状体1Ru,1Rdは、例えば、上述のように原料に多相粉末を用意し、所定の形状の成形用金型を用いて、傾斜面を有する筒状の粉末成形体を形成し、この粉末成形体に上述のように脱水素処理、適宜窒化処理を施すことで製造することができる。成形用金型400は、例えば、図6(D)に示すように貫通孔(ここでは、傾斜角θに応じた傾斜面を有する断面台形状の孔)401hが設けられたダイ401と、対向配置される筒状(ここでは円筒状)の上パンチ402及び下パンチ403と、ダイ401に挿通配置され、貫通孔(内周面12)を形成するための棒状(ここでは円柱状)の太ロッド(この形態では、図6(D)に示す二つの太ロッド404,405を一体にしたもの)とを具えるものが挙げられる。上パンチの押圧面、及び下パンチの押圧面は、筒状体1Ru,1Rdの円環状の端面形状に応じて適宜選択するとよい。   The frustoconical cylindrical bodies 1Ru, 1Rd are prepared by, for example, preparing a multiphase powder as a raw material as described above, and using a molding die having a predetermined shape, a cylindrical powder molded body having an inclined surface. And can be produced by subjecting this powder compact to a dehydrogenation treatment and a suitable nitriding treatment as described above. For example, as shown in FIG.6 (D), the molding die 400 is opposed to a die 401 provided with a through hole (here, a trapezoidal hole having an inclined surface corresponding to the inclination angle θ) 401h. A cylindrical (here cylindrical) upper punch 402 and lower punch 403, and a rod-like (here cylindrical) thicker that is inserted through the die 401 and forms a through hole (inner peripheral surface 12). A rod (in this embodiment, including two thick rods 404 and 405 shown in FIG. 6D) may be used. The pressing surface of the upper punch and the pressing surface of the lower punch may be appropriately selected according to the annular end surface shape of the cylindrical bodies 1Ru and 1Rd.

一方、軟磁性部材2は、回転機の軸となる軸棒10が挿通される貫通孔:軸孔22を中心部分に具える円柱体であり、その外周面が、回転機用磁石1を構成する筒状体1Ru,1Rdが取り付けられる載置面21である。軟磁性部材2は、実施形態1と同様に純鉄粉などの軟磁性粉末からなる圧粉成形体としている。   On the other hand, the soft magnetic member 2 is a cylindrical body having a through-hole: shaft hole 22 through which the shaft 10 serving as the shaft of the rotating machine is inserted, and the outer peripheral surface thereof constitutes the rotating machine magnet 1 This is a mounting surface 21 to which the cylindrical bodies 1Ru and 1Rd to be mounted are attached. The soft magnetic member 2 is a compact formed body made of soft magnetic powder such as pure iron powder as in the first embodiment.

なお、回転機の別の構成部品である磁性コア61において、回転機用磁石1の磁気ギャップ面(ここでは傾斜面11)に対向配置されて、磁石1と共にエアギャップを形成する面は、図5(B)に示すように磁石ギャップ面と相似な傾斜形状とする。   In addition, in the magnetic core 61, which is another component of the rotating machine, the surface that is disposed opposite to the magnetic gap surface (the inclined surface 11 in this case) of the rotating machine magnet 1 and forms an air gap together with the magnet 1 is shown in FIG. As shown in 5 (B), the inclined shape is similar to the magnet gap surface.

[実施形態4]
或いは、図5に示す回転機用部品1Rの別の形態として、回転機用磁石1(圧粉磁石)と軟磁性部材2(圧粉成形体)とが一体成形された形態が挙げられる。この形態の回転機用部品1Rは、磁石1と軟磁性部材2との間に、回転機用磁石1を構成する上述の合金粉末と軟磁性部材2を構成する軟磁性金属粉末とが混合して存在する混合領域を具える。実施形態4の回転機用部品1Rは、上述の混合領域を具える点以外の構成(例えば、傾斜面11の形状など)は実施形態3と同様であるため、説明を省略する。
[Embodiment 4]
Alternatively, another form of the rotating machine component 1R shown in FIG. 5 is a form in which the rotating machine magnet 1 (a dust magnet) and the soft magnetic member 2 (a dust compact) are integrally molded. In the rotating machine component 1R of this embodiment, the above-described alloy powder constituting the rotating machine magnet 1 and the soft magnetic metal powder constituting the soft magnetic member 2 are mixed between the magnet 1 and the soft magnetic member 2. It has a mixed area that exists. The rotating machine component 1R of the fourth embodiment is the same as that of the third embodiment except for the configuration including the above-described mixing region (for example, the shape of the inclined surface 11), and thus the description thereof is omitted.

実施形態4の回転機用部品1Rは、上述の円錐台状の筒状体1Ru(又は筒状体1Rd)と、筒状体1Ru(1Rd)と同じ長さを有する円柱状の軟磁性部材2とが一体化され、中央部に軸孔22を有する異形状の立体を二つ組み合せて構成される。この異形状の立体は、例えば、図6(A)に示す成形用金型400を利用して、回転機用磁石1の原料である多相粉末P1と、軟磁性部材2の原料である軟磁性金属粉末P2とを用いて複合粉末成形体を形成し、この複合粉末成形体に上述のように脱水素処理、適宜窒化処理を施すことで製造できる。成形用金型400は、下パンチ403が複数の分割片(下パンチ片403a,403b)によって構成されると共に、太ロッド404,405の中心に挿通配置されて、軸孔22(図5)を形成するための細い棒状(ここでは円柱状)の細ロッド408を更に具える。この成形用金型400を用いて複合粉末成形体を形成するには、まず、下パンチ403などを適宜移動して、図6(A)に示すようにダイ401の貫通孔401hに挿通された下パンチ片403aの内周面、太ロッド404の端面、及び細ロッド408の外周面によって形成した有底筒状の空間に軟磁性金属粉末P2を充填する。次に、図6(B)に示すように対向配置された太ロッド404,405の端面で軟磁性金属粉末P2を軽く押圧して仮成形を行う。次に、下パンチ片403aなどを適宜移動して、図6(C)に示すようにダイ401の貫通孔401hの内周面、軟磁性金属粉末P2及び太ロッド404の外周面、及び下パンチ403(下パンチ片403a,403b)の押圧面によって形成した有底筒状の空間に多相粉末P1を充填する。そして、図6(D)に示すように上パンチ402及び太ロッド405と下パンチ403及び太ロッド404とによって、同心状に配置した軟磁性金属粉末P2及び多相粉末P1を一体に加圧・圧縮することで、複合粉末成形体が得られる。上述のように多段で押圧すると、精度よく複合粉末成形体を成形できる。   The rotating machine component 1R according to the fourth embodiment includes a truncated cone-shaped cylindrical body 1Ru (or cylindrical body 1Rd) and a cylindrical soft magnetic member 2 having the same length as the cylindrical body 1Ru (1Rd). Are integrated, and two differently shaped solid bodies having a shaft hole 22 at the center are combined. This irregularly shaped solid is obtained by using, for example, a molding die 400 shown in FIG. 6 (A), a multiphase powder P1 that is a raw material of a rotating machine magnet 1, and a soft material that is a raw material of a soft magnetic member 2. It can be produced by forming a composite powder compact using magnetic metal powder P2 and subjecting this composite powder compact to dehydrogenation treatment and appropriate nitriding treatment as described above. In the molding die 400, the lower punch 403 is constituted by a plurality of divided pieces (lower punch pieces 403a and 403b), and is inserted through the centers of the thick rods 404 and 405 to form the shaft hole 22 (FIG. 5). A thin rod-shaped rod 408 (here, a cylindrical shape) is further provided. In order to form a composite powder molded body using the molding die 400, first, the lower punch 403 or the like is appropriately moved and inserted into the through hole 401h of the die 401 as shown in FIG. 6 (A). The bottomed cylindrical space formed by the inner peripheral surface of the lower punch piece 403a, the end surface of the thick rod 404, and the outer peripheral surface of the thin rod 408 is filled with the soft magnetic metal powder P2. Next, as shown in FIG. 6 (B), the soft magnetic metal powder P2 is lightly pressed at the end surfaces of the thick rods 404 and 405 arranged to face each other, and temporary molding is performed. Next, the lower punch piece 403a and the like are appropriately moved, and as shown in FIG. 6C, the inner peripheral surface of the through hole 401h of the die 401, the outer peripheral surface of the soft magnetic metal powder P2 and the thick rod 404, and the lower punch A bottomed cylindrical space formed by the pressing surface of 403 (lower punch pieces 403a and 403b) is filled with the multiphase powder P1. Then, as shown in FIG. 6 (D), the soft magnetic metal powder P2 and the multiphase powder P1 arranged concentrically by the upper punch 402 and the thick rod 405 and the lower punch 403 and the thick rod 404 are integrally pressed and A composite powder molded body is obtained by compression. When pressed in multiple stages as described above, a composite powder molded body can be molded with high accuracy.

次に、試験例を挙げて、本発明回転機用磁石を具える本発明回転機の特性を説明する。   Next, the characteristics of the rotating machine of the present invention including the magnet for rotating machine of the present invention will be described with reference to test examples.

[試験例1]
実施形態1,2の回転機用部品1Aを作製し、この回転機用部品1Aを回転機(ここでは発電機)のロータとし、この回転機用部品1Aを具える回転機の特性を調べた。
[Test Example 1]
A rotating machine part 1A according to Embodiments 1 and 2 was manufactured, and the rotating machine part 1A was used as a rotor of a rotating machine (here, a generator), and characteristics of the rotating machine including the rotating machine part 1A were examined. .

ここでは、軸棒10を回転機の軸とし、軟磁性部材2をロータ本体とし、傾斜面11を具える回転機用磁石1を界磁とし、固定子を擬似したコイル部品50(図2)を具える回転機を作製した。   Here, the axial part 10 is the axis of the rotating machine, the soft magnetic member 2 is the rotor body, the rotating machine magnet 1 having the inclined surface 11 is the field, and the coil component 50 imitating the stator (FIG. 2) A rotating machine comprising

回転機用磁石1は、以下のようにして製造した。原料として、平均粒径100μmの粉末であって、Fe,Fe3B,Fe2BなどからなるFe含有物中に、粒状のNdH2が離散して存在する組織を有する合金からなる多相粉末を用意した。この多相粉末は、希土類-鉄-ホウ素合金(Nd2Fe14B)からなる平均粒径100μmのガスアトマイズ粉に熱処理(粉末焼鈍:1050℃×120分、高濃度アルゴン中)を施した後、一旦冷却し、更に水素(H2)雰囲気中、800℃×1時間で水素化処理を施して製造した。この多相粉末を上述したような成形用金型(図4参照)を用いて、傾斜した面を具える円筒状の粉末成形体を形成した(成形時の圧力10ton/cm2)。また、磁石1と軟磁性部材2とを一体成形する試料では、上述の多相粉末と後述の純鉄粉とを用いて、有底筒状の複合粉末成形体を形成した(一体成形時の圧力10ton/cm2)。得られた粉末成形体、及び複合粉末成形体における多相粉末で形成した領域の相対密度を調べたところ、90%であった。相対密度の測定は、特許文献2に記載されるように、実際の密度を市販の密度測定装置で測定し、真密度は演算により求めた。 The rotating machine magnet 1 was manufactured as follows. As a raw material, a powder having an average particle size of 100 μm, and a multiphase powder made of an alloy having a structure in which granular NdH 2 is discretely present in an Fe-containing material made of Fe, Fe 3 B, Fe 2 B, etc. Prepared. This multiphase powder was subjected to heat treatment (powder annealing: 1050 ° C. × 120 minutes, in high concentration argon) to gas atomized powder having an average particle diameter of 100 μm made of a rare earth-iron-boron alloy (Nd 2 Fe 14 B), The mixture was once cooled and then subjected to hydrogenation treatment at 800 ° C. for 1 hour in a hydrogen (H 2 ) atmosphere. A cylindrical powder compact having an inclined surface was formed from the multiphase powder using a molding die as described above (see FIG. 4) (pressure at molding 10 ton / cm 2 ). In addition, in the sample in which the magnet 1 and the soft magnetic member 2 are integrally molded, a bottomed cylindrical composite powder molded body was formed using the above-described multiphase powder and pure iron powder described later (at the time of integral molding). Pressure 10ton / cm 2 ). When the relative density of the region formed with the multiphase powder in the obtained powder compact and composite powder compact was examined, it was 90%. For the measurement of the relative density, as described in Patent Document 2, the actual density was measured with a commercially available density measuring device, and the true density was obtained by calculation.

得られた粉末成形体及び複合粉末成形体を水素雰囲気中で750℃まで昇温し、その後、真空(VAC)に切り替えて、真空(VAC)中(最終真空度:1.0Pa)、750℃×60minで脱水素処理を施した。この工程により、傾斜面11を有する円筒状の磁石1(図1)、又は傾斜面11を有する円筒状の磁石1(図1)と円板状の軟磁性部材2とを有する回転機用部品1Aが得られた。得られた磁石1は、Nd2Fe14Bが主相(85体積%以上)であり、脱水素処理により水素が除去されたことが確認できた。 The obtained powder compact and composite powder compact were heated to 750 ° C. in a hydrogen atmosphere, then switched to vacuum (VAC), in vacuum (VAC) (final vacuum: 1.0 Pa), 750 ° C. × Dehydrogenation treatment was performed for 60 minutes. Through this process, a cylindrical magnet 1 having an inclined surface 11 (FIG. 1), or a cylindrical magnet 1 having an inclined surface 11 (FIG. 1) and a disk-shaped soft magnetic member 2 are used. 1A was obtained. In the obtained magnet 1, Nd 2 Fe 14 B was the main phase (85% by volume or more), and it was confirmed that hydrogen was removed by the dehydrogenation treatment.

軟磁性部材2は、原料として、平均粒径50μmの純鉄粉(ヘガネスAB社製 ABC100.30)を用いた。軟磁性部材2を別体とした試料では、別途用意した成形用金型を用いて原料粉末を加圧圧縮して(成形時の圧力:10ton/cm2)、円板状の粉末成形体を作製し、更に熱処理(350℃×2時間、Ar雰囲気)を施すことで製造した。なお、平均粒径はいずれも、レーザ回折式粒度分布装置により、積算重量が50%となる粒径(50%粒径)を測定した。 For the soft magnetic member 2, pure iron powder (ABC100.30 manufactured by Höganäs AB) having an average particle diameter of 50 μm was used as a raw material. In the sample with the soft magnetic member 2 as a separate body, the raw material powder is pressed and compressed using a separately prepared molding die (pressure during molding: 10 ton / cm 2 ), and a disk-shaped powder compact is obtained. It was manufactured by heat treatment (350 ° C. × 2 hours, Ar atmosphere). In addition, as for the average particle diameter, the particle diameter (50% particle diameter) at which the integrated weight is 50% was measured with a laser diffraction particle size distribution apparatus.

得られた磁石1及び回転機用部品1Aに具える磁石1において合金粉末の充填率Vfを調べたところ、87体積%であり、80体積%以上であることが確認できた。充填率Vfは、以下のように求める。磁石1において、任意の直交する3軸(x,y,z)を法線とする3つの方向の面を、各方向につき5か所以上切り出し、切り出した各切断面について平面充填率を、光学顕微鏡などによって観察して測定する。x軸方向の各切断面における平面充填率をそれぞれVx1〜Vx5…、y軸方向の各切断面における平面充填率をそれぞれVy1〜Vy5…、z軸方向の各切断面における平面充填率をそれぞれVz1〜Vz5…とする。そして、各軸方向の平面充填率の平均値をそれぞれVx_ave,Vy_ave,Vz_aveとするとき、充填率Vfは、Vf=√(Vx_ave×Vy_ave×Vz_ave)とする。また、軟磁性部材2における軟磁性金属粉末(ここでは純鉄粉)の充填率を同様にして測定した。その結果を表1に示す。   When the filling rate Vf of the alloy powder in the magnet 1 provided in the obtained magnet 1 and the rotating machine component 1A was examined, it was confirmed that it was 87% by volume and 80% by volume or more. The filling rate Vf is obtained as follows. In magnet 1, five or more planes in three directions normal to any three orthogonal axes (x, y, z) are cut out in five or more locations in each direction. Observe and measure with a microscope. The plane filling rate at each cut surface in the x-axis direction is Vx1 to Vx5, respectively, the plane filling rate at each cut surface in the y-axis direction is Vy1 to Vy5, respectively, and the plane filling rate at each cut surface in the z-axis direction is Vz1, respectively. ~ Vz5 ... When the average values of the plane filling rates in the respective axial directions are Vx_ave, Vy_ave, and Vz_ave, the filling rate Vf is Vf = √ (Vx_ave × Vy_ave × Vz_ave). Further, the filling rate of the soft magnetic metal powder (here, pure iron powder) in the soft magnetic member 2 was measured in the same manner. The results are shown in Table 1.

コイル部品50は、図2に示すように軟磁性材料(溶製 電磁軟鉄(SUY-0))からなる柱状(ここでは直方体状)の磁性コア51と、磁性コア51の外周に巻線(エナメル被覆を具える銅線)を螺旋状に巻回して構成されたコイル52とを具える。磁性コア51におけるエアギャップを形成する面(回転機用磁石1の傾斜面11に対向配置される面)は、磁石1の傾斜面11と同様な角度を有する傾斜面51sと、磁石の内側直交面14i及び外側直交面14oと同様に回転機の回転軸(軸棒10の中心軸)に対して直交するように配置された内側直交面51i及び外側直交面51oとにより構成される。   As shown in FIG. 2, the coil component 50 includes a columnar (here, rectangular parallelepiped) magnetic core 51 made of a soft magnetic material (melted electromagnetic soft iron (SUY-0)), and a winding (enamel) on the outer periphery of the magnetic core 51. And a coil 52 formed by spirally winding a copper wire having a coating. The surface forming the air gap in the magnetic core 51 (the surface facing the inclined surface 11 of the magnet 1 for a rotating machine) and the inclined surface 51s having the same angle as the inclined surface 11 of the magnet 1 are orthogonal to the inner side of the magnet. Like the surface 14i and the outer orthogonal surface 14o, the inner orthogonal surface 51i and the outer orthogonal surface 51o are arranged so as to be orthogonal to the rotation axis of the rotating machine (the central axis of the shaft 10).

回転機用磁石1及び軟磁性部材2を具える回転機用部材1Aの仕様、コイル部品50の仕様は、以下の通りである(図2,図3参照)。傾斜面11を具える磁石1を具える回転機用部材1Aを構成部材とする回転機を試料No.1-1,1-2とする。試料No.1-1は、軟磁性部材2が別部材である試料、試料No.1-2は、磁石1と軟磁性部材2とが一体成形された試料である。なお、回転機の回転軸方向(図2,図3では上下方向)に沿った長さを「長さ」、回転機の回転軸方向に直交方向(図2,図3では水平方向)の長さを「幅」と呼ぶ。   The specifications of the rotating machine member 1A including the rotating machine magnet 1 and the soft magnetic member 2 and the specifications of the coil component 50 are as follows (see FIGS. 2 and 3). The rotating machines having the rotating machine member 1A including the magnet 1 including the inclined surface 11 as constituent members are referred to as sample Nos. 1-1 and 1-2. Sample No. 1-1 is a sample in which the soft magnetic member 2 is a separate member, and Sample No. 1-2 is a sample in which the magnet 1 and the soft magnetic member 2 are integrally formed. The length along the rotation axis direction of the rotating machine (vertical direction in FIGS. 2 and 3) is `` length '', and the length in the direction orthogonal to the rotation axis direction of the rotating machine (horizontal direction in FIGS. 2 and 3). This is called “width”.

(回転機用磁石)
最大長さlmax1=15mm 傾斜角θ=15°
幅W1=10mm、傾斜面11の水平方向の長さW11=7mm、内側直交面14iの幅W14i=外側直交面14oの幅W14o=1.5mm
内径r12(内周面12の直径)=40mm、外径r13(外周面13の直径)=60mm
(軟磁性部材)
軟磁性部材の外径r2=60mm
軸棒10(軸孔22)の直径r10=5mm
(コイル部品)
磁性コア51の最大長さl51=25mm
磁性コア51の幅W51=10mm、傾斜面51sの水平方向の長さ=7mm、内側直交面51iの幅=外側直交面51oの幅=1.5mm
コイル52のターン数:N=25
回転機用磁石1とコイル部品50とのエアギャップ:g=1mm
(Magnet for rotating machine)
Maximum length l max1 = 15mm Tilt angle θ = 15 °
Width W 1 = 10 mm, horizontal length W 11 of inclined surface 11 = 7 mm, inner orthogonal surface 14 i width W 14i = outer orthogonal surface 14 o width W 14o = 1.5 mm
Inner diameter r 12 (diameter of inner peripheral surface 12) = 40 mm, outer diameter r 13 (diameter of outer peripheral surface 13) = 60 mm
(Soft magnetic material)
Soft magnetic member outer diameter r 2 = 60mm
Diameter of shaft rod 10 (shaft hole 22) r 10 = 5 mm
(Coil parts)
Maximum length of magnetic core 51 l 51 = 25mm
Width W 51 = 10 mm of the magnetic core 51, the horizontal length = 7 mm of the inclined surface 51 s, the width of the inner orthogonal plane 51i = outer orthogonal surfaces 51o width = 1.5 mm
Number of turns of coil 52: N = 25
Air gap between rotating machine magnet 1 and coil component 50: g = 1 mm

比較として、回転機用磁石1と同じ形状・大きさであって、ボンド磁石からなるもの、即ち、傾斜面を有するボンド磁石を用意した。このボンド磁石は、市販のNd2Fe14B粉末(平均粒径50μm)とバインダ樹脂(ポリエチレン樹脂の粉末)を用意し、この粉末と樹脂との混合物を用いて作製した。傾斜面を有するボンド磁石を、試料No.1-1と同じ軟磁性部材2に取り付けて回転機用部品を作製し、この回転機用部品と、試料No.1-1と同じコイル部品50とを具える回転機を試料No.1-100とする。試料No.1-1に具える磁石1、試料No.1-100に具えるボンド磁石のように傾斜面を有する磁石を形態Aと呼ぶ。 As a comparison, a bond magnet having the same shape and size as the rotating machine magnet 1, that is, a bond magnet having an inclined surface was prepared. This bond magnet was prepared using a commercially available Nd 2 Fe 14 B powder (average particle size 50 μm) and a binder resin (polyethylene resin powder), and using a mixture of this powder and resin. A bonded magnet having an inclined surface is attached to the same soft magnetic member 2 as in sample No. 1-1 to produce a rotating machine part, and this rotating machine part and the same coil part 50 as in sample No. 1-1 Rotating machine with sample No.1-100. A magnet having an inclined surface such as the magnet 1 provided in the sample No. 1-1 and the bonded magnet provided in the sample No. 1-100 is referred to as form A.

別の比較として、磁石及びコイル部品の磁性コアにおいて、エアギャップを形成する面が、回転機の回転軸に対して直交方向に配置される形態、つまり、エアギャップを形成する面が平面で構成されるものを用意した。具体的には、図3(B)に示すように、端面が矩形状面である直方体状の磁石100と、同じく端面が矩形状面である直方体状の磁性コア510とを用意した。磁石100における一方の矩形状の端面101、磁性コア510における一方の矩形状の端面511とが対向配置されて、両端面101,511に挟まれる空間がエアギャップになる。磁石100のように、エアギャップを形成する面が回転軸に直交する平面で構成される磁石を形態Bと呼ぶ。   As another comparison, in the magnetic core of the magnet and the coil component, the surface that forms the air gap is arranged in a direction orthogonal to the rotation axis of the rotating machine, that is, the surface that forms the air gap is a flat surface. Prepared what will be. Specifically, as shown in FIG. 3 (B), a rectangular parallelepiped magnet 100 whose end face is a rectangular surface and a rectangular parallelepiped magnetic core 510 whose end face is also a rectangular surface were prepared. One rectangular end surface 101 of the magnet 100 and one rectangular end surface 511 of the magnetic core 510 are arranged to face each other, and a space between the both end surfaces 101 and 511 becomes an air gap. A magnet in which the surface that forms the air gap, such as the magnet 100, is configured by a plane orthogonal to the rotation axis is referred to as form B.

形態Bの磁石100の幅W100及び磁性コア510の幅W510は、形態Aの磁石の幅W1及び磁性コア51の幅W51と同じとし(10mm)、形態Bの磁石100の長さl100は、磁石1の最大長さlmax1と最短長さとの平均値、形態Bの磁性コア510の長さl510は、磁性コア51の最大長さl51と最短長さとの平均値とした。磁性コア510は、形状以外の点を除いて磁性コア51と同様である。 Width W 510 of the width W 100 and magnetic core 510 of the magnet 100 of Form B, the same city as the width W 51 of the width W 1 and the magnetic core 51 of the magnet in the form A (10 mm), the length of the magnet 100 form B l 100 is the average value of the maximum length l max1 of the magnet 1 and the shortest length, the length l 510 of the magnetic core 510 of form B is the average value of the maximum length l 51 of the magnetic core 51 and the shortest length did. The magnetic core 510 is the same as the magnetic core 51 except for the points other than the shape.

この形態Bの磁石であって、上述した試料No.1-1の磁石1に利用した原料と同じ多相粉末を用い、試料No.1-1と同様の成形条件及び脱水素条件で作製した磁石(主としてNd2Fe14Bからなる圧粉磁石)と、上述した試料No.1-100のボンド磁石に利用した原料と同じ原料を用いて作製したボンド磁石とをそれぞれ用意した。この形態Bの圧粉磁石を試料No.1-1と同じ軟磁性部材2に接着剤により取り付けて回転機用部品を作製し、この回転機用部品と、磁性コア510にコイル52(巻き数=25)が配置されたコイル部品とを具える回転機を試料No.1-111とする。形態Bのボンド磁石を試料No.1-1と同じ軟磁性部材2に接着剤により取り付けて回転機用部品を作製し、この回転機用部品と、磁性コア510にコイル52(巻き数=25)が配置されたコイル部品とを具える回転機を試料No.1-112とする。上述した試料No.1-1の磁石1に利用した原料と同じ多相粉末及び上述の純鉄粉とを一体成形して、形態Bの圧粉磁石と軟磁性部材2とを一体に具える回転機用部品と、磁性コア510にコイル52(巻き数=25)が配置されたコイル部品とを具える回転機を試料No.1-113とする。 This form B magnet was prepared using the same multiphase powder as the raw material used for the magnet 1 of the sample No. 1-1 described above, under the same molding conditions and dehydrogenation conditions as the sample No. 1-1. A magnet (a dust magnet mainly made of Nd 2 Fe 14 B) and a bonded magnet manufactured using the same raw material as that used for the bonded magnet of Sample No. 1-100 described above were prepared. The powder magnet of this form B is attached to the same soft magnetic member 2 as in sample No. 1-1 with an adhesive to produce a rotating machine part, and this rotating machine part and the magnetic core 510 are provided with a coil 52 (the number of turns). = No. 1-111 is a rotating machine provided with a coil component in which 25) is arranged. A bonded magnet of form B is attached to the same soft magnetic member 2 as sample No. 1-1 with an adhesive to produce a rotating machine component, and this rotating machine component and a magnetic core 510 are provided with a coil 52 (the number of turns = 25). Sample No. 1-112 is a rotating machine provided with a coil component in which is provided). The same multi-phase powder as the raw material used for the magnet 1 of the sample No. 1-1 described above and the pure iron powder described above are integrally formed, and the powder magnet of form B and the soft magnetic member 2 are integrally provided. A rotating machine including a rotating machine component and a coil component in which a coil 52 (the number of turns = 25) is arranged on a magnetic core 510 is referred to as Sample No. 1-113.

用意した各試料の回転機用部品を駆動装置(図示せず)によって60r.p.mで回転させ、このときのコイル部品に具えるコイル52の最大励磁電圧を測定した。その結果を表1に示す。また、試料No.1-100,1-111,1-112,1-113について、試料No.1-1,1-2と同様にして、各試料に具える磁石中の磁石成分の充填率、軟磁性部材における軟磁性粉末の充填率を測定した。その結果も表1に示す。   The prepared rotating machine parts of each sample were rotated at 60 rpm by a driving device (not shown), and the maximum excitation voltage of the coil 52 included in the coil parts at this time was measured. The results are shown in Table 1. For sample Nos. 1-100, 1-111, 1-112, and 1-113, in the same way as sample Nos. 1-1 and 1-2, the filling rate of the magnet component in the magnet included in each sample The filling rate of the soft magnetic powder in the soft magnetic member was measured. The results are also shown in Table 1.

Figure 0005958685
Figure 0005958685

表1に示すように、外径が同じ大きさの回転機同士を比較すると、エアギャップを形成する面に傾斜面を具える形態Aの磁石を構成要素とする回転機用部品を具える回転機は、エアギャップを形成する面が回転軸に直交する面で構成される形態Bの磁石を具える場合と比較して、励磁電圧が高いことが分かる。特に、特定の合金粉末から構成される圧粉磁石を具える試料No.1-1,1-2は、ボンド磁石を具える試料No.1-100よりも励磁電圧が高いことが分かる。この理由は、試料No.1-1,1-2に具える磁石は、試料No.1-100に具えるボンド磁石よりも磁性相の割合が高く、磁石特性に優れるため、と考えられる。   As shown in Table 1, when rotating machines with the same outer diameter are compared with each other, the rotating machine has a rotating machine component comprising a form A magnet having an inclined surface on the surface forming the air gap. It can be seen that the excitation voltage is higher in the machine than in the case where the surface forming the air gap is provided with a magnet of form B configured by a surface orthogonal to the rotation axis. In particular, it can be seen that Sample Nos. 1-1 and 1-2 including a dust magnet made of a specific alloy powder have a higher excitation voltage than Sample No. 1-100 including a bond magnet. The reason for this is considered that the magnets provided in sample Nos. 1-1 and 1-2 have a higher magnetic phase ratio and superior magnet characteristics than the bonded magnets provided in sample No. 1-100.

また、試料No.1-1,1-2を比較すると、磁石と軟磁性部材とが一体成形された回転機用部品を具える試料No.1-2の回転機は、磁石と軟磁性部材とが別部材である試料No.1-1の回転機に比較して、励磁電圧が高いことが分かる。また、試料No.1-2を観察したところ、磁石と軟磁性部材との間に、磁石を構成する合金粉末と、軟磁性部材を構成する軟磁性金属粉末とが混合した領域を有していた。このことから、試料No.1-2は、磁石と軟磁性部材との間に実質的に隙間が存在せず、当該隙間における漏れ磁束が実質的に生じなかったため、励磁電圧が高くなったと考えられる。   In addition, comparing Samples Nos. 1-1 and 1-2, the rotating machine of Sample No. 1-2, which includes a rotating machine part in which a magnet and a soft magnetic member are integrally formed, has a magnet and a soft magnetic member. It can be seen that the excitation voltage is higher than the rotating machine of sample No. 1-1, which is a separate member. Further, when sample No. 1-2 was observed, it had a region where the alloy powder constituting the magnet and the soft magnetic metal powder constituting the soft magnetic member were mixed between the magnet and the soft magnetic member. It was. From this, it is considered that Sample No. 1-2 has a high excitation voltage because there is substantially no gap between the magnet and the soft magnetic member, and substantially no leakage magnetic flux is generated in the gap. It is done.

本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、回転機用磁石の仕様(長さ、幅、高さ、傾斜面の傾斜角度、傾斜面の面積、形状、組成)、製造条件(熱処理時の温度、雰囲気、磁場の印加など)、軟磁性部材の仕様(形状、組成など)などを適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, the specifications of the magnet for a rotating machine (length, width, height, angle of inclination of the inclined surface, area, shape, composition of the inclined surface), manufacturing conditions (temperature during heat treatment, atmosphere, application of magnetic field, etc.), soft The specifications (shape, composition, etc.) of the magnetic member can be changed as appropriate.

本発明回転機は、例えば、ハイブリッド自動車(HEV)やハードディスクドライブ(HDD)などに具備される高速モータなどの各種のモータ、その他、発電機を構築することができる。本発明回転機用磁石及び本発明回転機用部品は、ハイブリッド自動車(HEV)やハードディスクドライブ(HDD)などに具備される高速モータなどの各種のモータや発電機の構成部品(特に、ロータ)に好適に利用することができる。   The rotating machine of the present invention can construct various motors such as a high-speed motor provided in, for example, a hybrid vehicle (HEV) and a hard disk drive (HDD), and other generators. The magnet for a rotating machine of the present invention and the parts for a rotating machine of the present invention are used for various motors such as a high-speed motor provided in a hybrid vehicle (HEV), a hard disk drive (HDD), and the like (particularly a rotor). It can be suitably used.

1 回転機用磁石 1A,1R 回転機用部品 1Ru,1Rd 筒状体
10 軸棒 11 傾斜面 12 内周面 13 外周面 14i 内側直交面
14o 外側直交面 15 接触面
2 軟磁性部材 21 載置面 22 軸孔
50 コイル部品 51,510,61 磁性コア 52 コイル
51s 傾斜面 51i 内側直交面 51o 外側直交面
100 磁石 101,511 端面
300,400 成形用金型 301,401 ダイ 301h,401h 貫通孔
302,402 上パンチ 303,403 下パンチ 403a,403b 下パンチ片
304,404,405 太ロッド 308,408 細ロッド
P1 多相粉末 P2 軟磁性金属粉末
1 Magnet for rotating machine 1A, 1R Parts for rotating machine 1Ru, 1Rd Cylindrical body
10 Shaft bar 11 Inclined surface 12 Inner peripheral surface 13 Outer peripheral surface 14i Inner orthogonal surface
14o Outer orthogonal surface 15 Contact surface
2 Soft magnetic member 21 Mounting surface 22 Shaft hole
50 Coil parts 51,510,61 Magnetic core 52 Coils
51s Inclined surface 51i Inner orthogonal surface 51o Outer orthogonal surface
100 Magnet 101,511 End face
300,400 Mold 301,401 Die 301h, 401h Through hole
302,402 Upper punch 303,403 Lower punch 403a, 403b Lower punch piece
304,404,405 Thick rod 308,408 Thin rod
P1 Multiphase powder P2 Soft magnetic metal powder

Claims (8)

貫通孔が設けられたダイと、対向配置される上パンチ及び下パンチとを具える成形用金型を用いて磁性粉末を加圧成形して、ロータとステータとの間にエアギャップを有する回転機に用いられる回転機用磁石と、軟磁性材料から構成され、前記回転機用磁石を支持する軟磁性部材を具える回転機用部品に用いられる粉末成形体を製造する粉末成形体の製造方法であって、
前記下パンチの押圧面、又は前記ダイの内周面は、前記貫通孔の軸方向に対して傾斜した金型側傾斜面を有し、この金型側傾斜面と前記貫通孔の軸方向に直交する平面とがつくる角の角度が3°以上30°以下、又は60°以上87°以下であり、
前記回転機用磁石の原料として、希土類元素の水素化合物の相とFe含有物の相とを具える多相粉末を用意し、前記軟磁性部材の原料として軟磁性金属粉末を用意し、各粉末を前記成形用金型に積層状態に充填する準備工程と、
前記成形用金型に充填された前記多相粉末と前記軟磁性金属粉末とを同時に加圧圧縮して、前記粉末成形体を製造する成形工程とを具え、
前記成形工程では、
前記粉末成形体の相対密度が85%以上となるように加圧圧縮すると共に、前記金型側傾斜面によって前記多相粉末を成形する粉末成形体の製造方法。
Rotating with an air gap between the rotor and the stator by pressing the magnetic powder using a molding die comprising a die provided with a through hole and an upper punch and a lower punch arranged opposite to each other. and rotating turning point for a magnet used in the machine, it is composed of a soft magnetic material, the production of the powder compact for producing a powder compact for use in rotary machine parts Ru comprising a soft magnetic member for supporting the magnet the rotating machine A method,
The pressing surface of the lower punch or the inner peripheral surface of the die has a mold side inclined surface inclined with respect to the axial direction of the through hole, and the mold side inclined surface and the axial direction of the through hole are in the axial direction. The angle formed by the orthogonal plane is 3 ° or more and 30 ° or less, or 60 ° or more and 87 ° or less,
A multi-phase powder comprising a rare earth element hydrogen compound phase and an Fe-containing material phase is prepared as a raw material for the rotating machine magnet, and a soft magnetic metal powder is prepared as a raw material for the soft magnetic member. A preparatory step of filling the molding die in a laminated state;
A step of simultaneously compressing and compressing the multiphase powder and the soft magnetic metal powder filled in the molding die to produce the powder compact,
In the molding step,
A method for producing a powder compact, wherein the powder compact is compressed and compressed so that the relative density of the powder compact is 85% or more, and the multiphase powder is molded by the mold-side inclined surface.
前記下パンチの押圧面は、更に、前記金型側傾斜面に連なり、前記貫通孔の軸方向に対して直交方向に配置される直交押圧面を具える請求項1に記載の粉末成形体の製造方法。  2. The powder molded body according to claim 1, wherein the pressing surface of the lower punch further includes an orthogonal pressing surface arranged in a direction orthogonal to the axial direction of the through-hole and connected to the mold-side inclined surface. Production method. 前記成形用金型を加熱した状態で加圧圧縮する請求項1又は請求項2に記載の粉末成形体の製造方法。  The manufacturing method of the powder compact | molding | casting of Claim 1 or Claim 2 compressed and compressed in the state which heated the said metal mold | die. 前記希土類元素は、Nd又はSmであり、  The rare earth element is Nd or Sm;
前記軟磁性金属粉末は、純鉄、Fe−Co系合金、Fe−Si系合金、Fe−Al系合金、及びFe−Ni系合金から選択される1種以上である請求項1〜請求項3のいずれか1項に記載の粉末成形体の製造方法。  The soft magnetic metal powder is at least one selected from pure iron, Fe-Co alloy, Fe-Si alloy, Fe-Al alloy, and Fe-Ni alloy. The manufacturing method of the powder molded object of any one of these.
請求項1〜請求項4のいずれか1項に記載の粉末成形体の製造方法によって製造された粉末成形体に脱水素処理を施す工程を具える回転機用部品の製造方法。  The manufacturing method of the components for rotary machines which provide the process of performing a dehydrogenation process to the powder compact manufactured by the manufacturing method of the powder compact of any one of Claims 1-4. 請求項1〜請求項4のいずれか1項に記載の粉末成形体の製造方法によって製造された粉末成形体に脱水素処理を施す工程と、  A step of performing a dehydrogenation treatment on the powder molded body produced by the method for producing a powder molded body according to any one of claims 1 to 4,
前記脱水素処理を施した素材に窒化処理、又はアニール処理を施す工程とを具える回転機用部品の製造方法。  A method of manufacturing a rotating machine part comprising a step of performing nitriding treatment or annealing treatment on the material subjected to the dehydrogenation treatment.
ロータとステータとの間にエアギャップを有する回転機に用いられる回転機用磁石と、
軟磁性材料から構成され、前記回転機用磁石を支持する軟磁性部材とを具え、
前記回転機用磁石は、
希土類元素とFeとを含有する合金粉末から構成され、かつ、前記合金粉末の充填率が80体積%以上であり、
前記エアギャップを形成する面が、前記回転機の回転軸に対して、非平行かつ非直交に配置される傾斜面と、前記傾斜面に連なり、前記回転軸に対して直交方向に配置される直交面とを具え、
前記傾斜面と前記回転軸に直交する平面とがつくる傾斜角が3°以上30°以下であり、
前記回転機用磁石と前記軟磁性部材との間に、前記軟磁性部材を構成する軟磁性金属粉末と前記合金粉末とが混合して存在する混合領域を具える回転機用部品。
A magnet for a rotating machine used in a rotating machine having an air gap between the rotor and the stator ;
A soft magnetic member made of a soft magnetic material and supporting the magnet for the rotating machine;
The rotating machine magnet is:
It is composed of an alloy powder containing a rare earth element and Fe, and the filling rate of the alloy powder is 80% by volume or more,
Surface forming the air gap, with respect to the rotational axis of the rotating machine, an inclined surface disposed in a non-parallel and non-orthogonal, continuous with the inclined surface is arranged in a direction perpendicular to the rotational axis and the orthogonal plane ingredients example,
An inclination angle formed by the inclined surface and a plane orthogonal to the rotation axis is 3 ° or more and 30 ° or less,
A rotating machine component comprising a mixed region in which the soft magnetic metal powder and the alloy powder constituting the soft magnetic member are mixed and present between the rotating machine magnet and the soft magnetic member .
ロータとステータとの間にエアギャップを有する回転機に用いられ、一対の円錘台状の異形筒体を重ね合せて構成される回転機用磁石と、
軟磁性材料から構成され、各異形筒体の内側に一体化されて、前記各異形筒体を支持する円筒状の軟磁性部材とを具え、
前記一対の異形筒体は、前記回転機の回転軸方向における中央部分の幅が広く、端面に向かうにつれて幅が狭まるように組み合わされ、
前記各異形筒体は、
希土類元素とFeとを含有する合金粉末から構成され、かつ、前記合金粉末の充填率が80体積%以上であり、
前記エアギャップを形成する面が、前記回転機の回転軸に対して、非平行かつ非直交に配置され、前記回転軸に直交する平面に対する傾斜角が60°以上87°である傾斜面を具え、
前記各異形筒体と各円筒状の軟磁性部材との間に、前記軟磁性部材を構成する軟磁性金属粉末と前記合金粉末とが混合して存在する混合領域を具える回転機用部品。
Used in a rotating machine having an air gap between a rotor and a stator, and a magnet for a rotating machine configured by superposing a pair of truncated cone-shaped cylindrical bodies ;
Composed of a soft magnetic material, integrated inside each deformed cylindrical body, and comprising a cylindrical soft magnetic member that supports each deformed tubular body,
The pair of deformed cylindrical bodies are combined such that the width of the central portion in the rotation axis direction of the rotating machine is wide and the width is narrowed toward the end face,
Each of the modified cylindrical bodies is
It is composed of an alloy powder containing a rare earth element and Fe, and the filling rate of the alloy powder is 80% by volume or more,
Surface forming the air gap, with respect to the rotational axis of the rotating machine, it is arranged in non-parallel and non-orthogonal, the angle of inclination with respect to a plane perpendicular to the rotation axis Ru 87 ° der 60 ° or more inclined surfaces ingredients example,
A rotating machine component comprising a mixed region in which the soft magnetic metal powder and the alloy powder constituting the soft magnetic member are mixed and present between the deformed cylindrical body and the cylindrical soft magnetic member .
JP2012031035A 2012-02-15 2012-02-15 Powder molded body manufacturing method, rotating machine part manufacturing method, and rotating machine part Expired - Fee Related JP5958685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012031035A JP5958685B2 (en) 2012-02-15 2012-02-15 Powder molded body manufacturing method, rotating machine part manufacturing method, and rotating machine part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012031035A JP5958685B2 (en) 2012-02-15 2012-02-15 Powder molded body manufacturing method, rotating machine part manufacturing method, and rotating machine part

Publications (2)

Publication Number Publication Date
JP2013169085A JP2013169085A (en) 2013-08-29
JP5958685B2 true JP5958685B2 (en) 2016-08-02

Family

ID=49179059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012031035A Expired - Fee Related JP5958685B2 (en) 2012-02-15 2012-02-15 Powder molded body manufacturing method, rotating machine part manufacturing method, and rotating machine part

Country Status (1)

Country Link
JP (1) JP5958685B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571984B (en) * 2019-08-28 2024-09-06 中车洛阳机车有限公司 Motor disassembly and assembly auxiliary device
DE112023000235T5 (en) 2022-10-24 2024-07-04 Murata Manufacturing Co., Ltd. ROTOR ELEMENT, ROTOR, ELECTRIC LATHE, BRUSHLESS MOTOR AND METHOD FOR MANUFACTURING THE ROTOR ELEMENT

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278919A (en) * 1999-03-19 2000-10-06 Denso Corp Magnet member and production thereof
JP2007037325A (en) * 2005-07-28 2007-02-08 Mitsumi Electric Co Ltd Motor
JP2010207024A (en) * 2009-03-05 2010-09-16 Asmo Co Ltd Rotating electrical machine
JP5059929B2 (en) * 2009-12-04 2012-10-31 住友電気工業株式会社 Magnet powder

Also Published As

Publication number Publication date
JP2013169085A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP7412484B2 (en) Grain boundary engineering of sintered magnetic alloys and compositions derived therefrom
KR101702696B1 (en) Powder for magnet
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
JP4873008B2 (en) R-Fe-B porous magnet and method for producing the same
JP2021122061A (en) Magnet powder containing Sm-Fe-N crystal particles, sintered magnets produced from them, and methods for producing them.
KR101345496B1 (en) Powder for magnet, powder compact, rare earth-iron-boron-based alloy material, method for producing powder for magnet, and method for producing rare earth-iron-boron-based alloy material
WO2011145477A1 (en) Powder for magnetic member, powder compact, and magnetic member
JP2010263172A (en) Rare earth magnet and manufacturing method of the same
WO2013073640A1 (en) Magnetic member and process for producing magnetic member
JPWO2007069454A1 (en) Manufacturing method of radial anisotropic magnet
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
JP2019075493A (en) Magnet junction body
JP2018028123A (en) Method for producing r-t-b sintered magnet
JP2010098080A (en) Method of manufacturing r-t-b system sintered magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JP5958685B2 (en) Powder molded body manufacturing method, rotating machine part manufacturing method, and rotating machine part
JP5304908B2 (en) Manufacturing method of dust core
JP2015008230A (en) Rare earth magnet material, laminated magnet, bonded magnet, compressed magnet, sintered magnet, method for producing rare earth magnet material, method for producing bonded magnet, and method for producing compressed magnet
JP2018029108A (en) Method of manufacturing r-t-b based sintered magnet
JP2016213306A (en) Powder-compact magnetic core, and method for manufacturing powder-compact magnetic core
JP2014160729A (en) Manufacturing method of magnetic member and magnetic member
JP2009290024A (en) Method for manufacturing pressed powder magnetic core
JP6691667B2 (en) Method for manufacturing RTB magnet
JP5051270B2 (en) Powder for magnetic member, powder molded body, and magnetic member
JP4930813B2 (en) Powder for magnetic member, powder molded body, and magnetic member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160607

R150 Certificate of patent or registration of utility model

Ref document number: 5958685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees