[go: up one dir, main page]

JP5954493B2 - Continuous heating furnace - Google Patents

Continuous heating furnace Download PDF

Info

Publication number
JP5954493B2
JP5954493B2 JP2015510087A JP2015510087A JP5954493B2 JP 5954493 B2 JP5954493 B2 JP 5954493B2 JP 2015510087 A JP2015510087 A JP 2015510087A JP 2015510087 A JP2015510087 A JP 2015510087A JP 5954493 B2 JP5954493 B2 JP 5954493B2
Authority
JP
Japan
Prior art keywords
radiation surface
fired
combustion
radiation
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015510087A
Other languages
Japanese (ja)
Other versions
JPWO2014163065A1 (en
Inventor
佐藤 公美
公美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Application granted granted Critical
Publication of JP5954493B2 publication Critical patent/JP5954493B2/en
Publication of JPWO2014163065A1 publication Critical patent/JPWO2014163065A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/068Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated heated by radiant tubes, the tube being heated by a hot medium, e.g. hot gases
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B1/00Bakers' ovens
    • A21B1/02Bakers' ovens characterised by the heating arrangements
    • A21B1/06Ovens heated by radiators
    • A21B1/14Arrangement of radiators
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B1/00Bakers' ovens
    • A21B1/42Bakers' ovens characterised by the baking surfaces moving during the baking
    • A21B1/48Bakers' ovens characterised by the baking surfaces moving during the baking with surfaces in the form of an endless band
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path
    • F27B9/24Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path being carried by a conveyor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path
    • F27B9/24Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path being carried by a conveyor
    • F27B9/243Endless-strand conveyor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories or equipment specially adapted for furnaces of these types
    • F27B9/36Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • F27D99/0035Heating indirectly through a radiant surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • F27D2099/0045Radiant burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、燃料を燃焼させて被焼成物を加熱する連続加熱炉に関する。
本願は、2013年4月1日に日本に出願された特願2013−75985号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a continuous heating furnace that burns fuel to heat an object to be fired.
This application claims priority based on Japanese Patent Application No. 2013-75985 for which it applied to Japan on April 1, 2013, and uses the content here.

従来、燃料ガスを燃焼させた燃焼熱で輻射体を加熱し、その輻射体の輻射面からの輻射熱で、搬送される工業材料や食品等の被焼成物を加熱する連続加熱炉が普及している。例えば、煎餅の焼成を行う連続加熱炉では、加熱炉を搬送方向に間隔をあけて複数連設して構成され、煎餅が加熱炉の炉内および炉外を順次通過することで、煎餅の焼成と冷却を交互に繰り返している。こうして、煎餅の表面を焦がし過ぎることなく内部まで伝熱している(例えば、特許文献1)。 Conventionally, a continuous heating furnace in which a radiant body is heated by combustion heat obtained by burning a fuel gas, and a fired object such as industrial material or food to be conveyed is radiated from a radiant surface of the radiant body has been widely used. Yes. For example, in a continuous heating furnace that fires rice crackers, a plurality of heating furnaces are arranged in series in the conveying direction, and the rice crackers sequentially pass through the inside and outside of the heating furnace, thereby firing the rice crackers. And cooling are repeated alternately. Thus, the surface of the rice cracker is transferred to the inside without being burned too much (for example, Patent Document 1).

また、バーナを配する加熱領域と、冷却用の伝熱管を配する冷却領域を、いずれも炉内に設けた連続加熱炉の技術が開示されている(例えば、特許文献2)。この技術では、バーナから噴出する排気ガスを炉内の被焼成物に衝突させて被焼成物を加熱し、加熱領域(徐冷領域)から冷却領域への排気ガスの流れを仕切壁で抑制している。伝熱管にはバーナに供給される前の空気が流通しており、伝熱管によって冷却領域の雰囲気を冷却しつつ、伝熱管を流通する空気が冷却領域の雰囲気の熱によって予熱される。 Moreover, the technique of the continuous heating furnace which provided the heating area | region which arrange | positions a burner, and the cooling area | region which arrange | positions the heat exchanger tube for cooling in the furnace is disclosed (for example, patent document 2). In this technology, the exhaust gas ejected from the burner collides with the material to be fired in the furnace to heat the material to be fired, and the flow of exhaust gas from the heating region (slow cooling region) to the cooling region is suppressed by the partition wall. ing. The air before being supplied to the burner flows through the heat transfer tube, and the air flowing through the heat transfer tube is preheated by the heat of the atmosphere in the cooling region while the heat transfer tube cools the atmosphere in the cooling region.

日本国特許第4890655号公報Japanese Patent No. 4890655 日本国実公昭62−15234号公報Japanese National Publication No. 62-15234

上記の特許文献1に記載の連続加熱炉の場合、被焼成物が炉外で冷却される分、熱損失が生じてしまう。一方、特許文献2に記載の連続加熱炉であれば、冷却時に放熱される熱をバーナに供給する空気の予熱に利用するため、熱効率が高まる。しかし、仕切壁を設けていても、冷却領域内を被焼成物が連続的に通過可能とするためには、冷却領域を密閉することはできない。その結果、加熱領域側からの対流によって冷却領域内の雰囲気の温度が上昇し、被焼成物を十分に冷却することが困難となる。 In the case of the continuous heating furnace described in the above-mentioned Patent Document 1, heat loss occurs as much as the object to be fired is cooled outside the furnace. On the other hand, if it is a continuous heating furnace of patent document 2, since the heat radiated at the time of cooling is utilized for the preheating of the air supplied to a burner, thermal efficiency will increase. However, even if a partition wall is provided, the cooling region cannot be hermetically sealed so that the object to be fired can continuously pass through the cooling region. As a result, the temperature of the atmosphere in the cooling region rises due to convection from the heating region side, and it becomes difficult to sufficiently cool the object to be fired.

本発明は、このような課題に鑑み、被焼成物に対して加熱と冷却を行うにあたって、十分な冷却性能と高い熱効率を両立させることが可能な連続加熱炉を提供することを目的としている。 In view of such problems, an object of the present invention is to provide a continuous heating furnace capable of satisfying both sufficient cooling performance and high thermal efficiency when heating and cooling an object to be fired.

上記課題を解決するために、本発明の連続加熱炉は、炉本体と、炉本体において、被焼成物を搬送する搬送部と、燃焼によって加熱され、搬送部で搬送されている被焼成物に輻射熱を伝熱する第1輻射面を有し、炉本体内に被焼成物の搬送方向に並設された複数の加熱部と、搬送部で搬送されている被焼成物と対向したとき被焼成物から輻射熱を受ける第2輻射面および第2輻射面からの熱により加熱部における燃焼に用いられるガスを予熱するガス流路を有する冷却予熱部と、を備える。 In order to solve the above-mentioned problems, a continuous heating furnace of the present invention includes a furnace body, a transport unit that transports the fired object in the furnace body, and a fired product that is heated by combustion and is transported by the transport unit. A first radiating surface for transferring radiant heat and having a plurality of heating units arranged in parallel in the furnace body in the conveying direction of the object to be baked, and to be baked when facing the object to be baked conveyed by the conveying part And a cooling preheating part having a gas flow path for preheating gas used for combustion in the heating part by heat from the second radiation surface receiving radiation heat from the object.

第1輻射面と第2輻射面は、被焼成物の搬送方向に隣り合って配されてもよい。また、搬送方向における第1輻射面と第2輻射面との間に位置し、搬送方向に垂直な方向において第1輻射面および第2輻射面よりも被焼成物の近くまで延び、第1輻射面と第2輻射面の少なくとも一方に対して垂直、または、傾斜する面を有する遮蔽部をさらに備えてもよい。 The first radiation surface and the second radiation surface may be arranged adjacent to each other in the conveyance direction of the object to be fired. Further, the first radiation surface is located between the first radiation surface and the second radiation surface in the transport direction and extends closer to the object to be fired than the first radiation surface and the second radiation surface in a direction perpendicular to the transport direction. You may further provide the shielding part which has a surface perpendicular | vertical or inclined with respect to at least one of a surface and a 2nd radiation | emission surface.

第1輻射面と第2輻射面は、被焼成物の搬送方向に隣り合って配され、隣り合う第1輻射面と第2輻射面は、搬送方向の両端のうち、互いに近い一端側の方が、他端側よりも搬送部に近くなるように、搬送方向に対して傾斜していてもよい。 The first radiating surface and the second radiating surface are arranged adjacent to each other in the conveying direction of the object to be fired, and the adjacent first radiating surface and second radiating surface are closer to one end side of both ends in the conveying direction. However, you may incline with respect to a conveyance direction so that it may become near a conveyance part rather than the other end side.

被焼成物の表面温度が、被焼成物の中心温度以上で維持されるように、被焼成物の表面から第2輻射面への輻射熱による伝熱量を調整する調整部をさらに備えてもよい。 You may further provide the adjustment part which adjusts the heat transfer amount by the radiant heat from the surface of a to-be-baked thing to the 2nd radiation surface so that the surface temperature of to-be-fired thing is maintained more than the center temperature of a to-be-fired thing.

本発明によれば、被焼成物に対して加熱と冷却を行うにあたって、十分な冷却性能と高い熱効率を両立させることが可能となる。 According to the present invention, it is possible to achieve both sufficient cooling performance and high thermal efficiency when heating and cooling a workpiece.

燃焼加熱システムの外観の例を示した斜視図である。It is the perspective view which showed the example of the external appearance of a combustion heating system. 図1のII‐II線に沿った断面を示した斜視図である。It is the perspective view which showed the cross section along the II-II line | wire of FIG. 燃焼加熱器を説明するための図1のIII(a)‐III(a)線に沿った断面図である。It is sectional drawing along the III (a) -III (a) line | wire of FIG. 1 for demonstrating a combustion heater. 図3Aの破線で囲った部分の拡大図である。It is an enlarged view of the part enclosed with the broken line of FIG. 3A. 突起部を説明するための図である。It is a figure for demonstrating a projection part. 連続加熱炉を説明するための図である。It is a figure for demonstrating a continuous heating furnace. 燃焼加熱システムと冷却予熱部の配置を説明するための斜視図である。It is a perspective view for demonstrating arrangement | positioning of a combustion heating system and a cooling preheating part. 図6AのVI(b)‐VI(b)線に沿った冷却予熱部の断面図である。It is sectional drawing of the cooling preheating part along the VI (b) -VI (b) line | wire of FIG. 6A. 連続加熱炉の概略的な構成を示した機能ブロック図である。It is the functional block diagram which showed the schematic structure of the continuous heating furnace. 調整部の機能を説明するための図である。It is a figure for demonstrating the function of an adjustment part. 調整部の機能を説明するための図である。It is a figure for demonstrating the function of an adjustment part. 本発明に係る連続加熱炉の変形例を説明するための図である。It is a figure for demonstrating the modification of the continuous heating furnace which concerns on this invention. 本発明に係る連続加熱炉の変形例を説明するための図である。It is a figure for demonstrating the modification of the continuous heating furnace which concerns on this invention. 本発明に係る連続加熱炉の変形例を説明するための図である。It is a figure for demonstrating the modification of the continuous heating furnace which concerns on this invention.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

本実施形態の連続加熱炉は、炉内に複数の燃焼加熱システムが設けられている。まず、炉内に配された燃焼加熱システムについて説明し、その後、全体的な連続加熱炉の構成について説明する。 The continuous heating furnace of this embodiment is provided with a plurality of combustion heating systems in the furnace. First, the combustion heating system arranged in the furnace will be described, and then the overall configuration of the continuous heating furnace will be described.

(燃焼加熱システム100(加熱部))
図1は、燃焼加熱システム100の外観例を示した斜視図であり、図2は、図1のII‐II線に沿った断面を示した斜視図である。本実施形態における燃焼加熱システム100は、都市ガス等と燃焼用酸化剤ガスとしての空気とが本体容器に供給される前に混合される予混合タイプとするが、かかる場合に限定されず、所謂、拡散燃焼を行う拡散タイプであってもよい。
(Combustion heating system 100 (heating unit))
FIG. 1 is a perspective view showing an example of the appearance of the combustion heating system 100, and FIG. 2 is a perspective view showing a cross section taken along the line II-II in FIG. The combustion heating system 100 in the present embodiment is a premixed type in which city gas or the like and air as a combustion oxidant gas are mixed before being supplied to the main body container. Alternatively, a diffusion type that performs diffusion combustion may be used.

図1および図2に示すように、燃焼加熱システム100は、複数(ここでは2つ)の燃焼加熱器110を連設してなり、都市ガス等と空気との混合ガス(以下、「燃料ガス」という)の供給を受けて、それぞれの燃焼加熱器110で燃料ガスが燃焼することで発熱する。そして、燃焼加熱システム100では、その燃焼によって生じた排気ガスが回収される。 As shown in FIGS. 1 and 2, the combustion heating system 100 includes a plurality of (in this case, two) combustion heaters 110 connected in series, and a mixed gas (hereinafter referred to as “fuel gas”) of city gas or the like and air. ”) And the fuel gas burns in each combustion heater 110 to generate heat. In the combustion heating system 100, exhaust gas generated by the combustion is recovered.

また、両燃焼加熱器110間の接続部位には、連設された燃焼加熱器110内の密閉空間を連通する火移り部102が形成されている。ただし、気体中で用いる場合、密閉空間を必ずしも完全に密閉する必要はない。 Further, a fire transfer portion 102 that communicates with a sealed space in the combustion heater 110 provided continuously is formed at a connection portion between the both combustion heaters 110. However, when used in gas, it is not always necessary to completely seal the sealed space.

本実施形態の燃焼加熱システム100では、例えば、イグナイタ(図示せず)等の点火装置による1回の点火によって、火移り部102を通じて連設する燃焼加熱器110に火炎が広がって点火される。上記したように、燃焼加熱システム100には2つの燃焼加熱器110が設けられるが、両燃焼加熱器110は同一の構成であるため、以下では、一方の燃焼加熱器110についてのみ説明する。 In the combustion heating system 100 of the present embodiment, for example, a single flame is ignited by an ignition device such as an igniter (not shown), and the flame is spread and ignited in the combustion heater 110 continuously provided through the fire transfer unit 102. As described above, the combustion heating system 100 is provided with the two combustion heaters 110. Since both the combustion heaters 110 have the same configuration, only one of the combustion heaters 110 will be described below.

図3Aおよび図3Bは、燃焼加熱器110を説明するための説明図である。図3Aは、図1のIII(a)‐III(a)線に沿った断面図であり、図3Bは、図3Aの破線で囲った部分の拡大図である。図3B中、白抜き矢印は燃料ガスの流れを、ハッチングした矢印は排気ガスの流れを、黒色で塗りつぶした矢印は熱の移動を示す。 3A and 3B are explanatory diagrams for explaining the combustion heater 110. FIG. 3A is a cross-sectional view taken along line III (a) -III (a) in FIG. 1, and FIG. 3B is an enlarged view of a portion surrounded by a broken line in FIG. 3A. In FIG. 3B, the white arrow indicates the flow of fuel gas, the hatched arrow indicates the flow of exhaust gas, and the arrow filled with black indicates the movement of heat.

図3Aおよび図3Bに示すように、燃焼加熱器110は、加熱板120と、配置板122と、仕切板124と、断熱部126と、燃焼室128と、密閉部130と、封止部132と、断熱材134と、第1配管部136と、第2配管部138と、導入部140と、導出部142とを含んで構成される。 As shown in FIGS. 3A and 3B, the combustion heater 110 includes a heating plate 120, an arrangement plate 122, a partition plate 124, a heat insulating portion 126, a combustion chamber 128, a sealing portion 130, and a sealing portion 132. And a heat insulating material 134, a first piping part 136, a second piping part 138, an introduction part 140, and a lead-out part 142.

加熱板120は、耐熱性および耐酸化性が高い素材、例えば、ステンレス鋼(SUS)や、熱伝導率が高い素材、例えば、黄銅等で形成される薄板状の部材である。加熱板120は、第1輻射面120aを有する。第1輻射面120aは、略矩形に形成され(図1参照)、燃焼によって生じる熱によって加熱され、被焼成物に輻射熱を伝熱する。 The heating plate 120 is a thin plate member formed of a material having high heat resistance and oxidation resistance, such as stainless steel (SUS), or a material having high thermal conductivity, such as brass. The heating plate 120 has a first radiation surface 120a. The first radiation surface 120a is formed in a substantially rectangular shape (see FIG. 1), is heated by heat generated by combustion, and transfers radiant heat to the object to be fired.

加熱板120の外壁部120bは、第1輻射面120aの外周で屈曲して第1輻射面120aに垂直かつ第1輻射面120aから離隔する方向(図3A中、下方向)に起立し(延び)、燃焼加熱システム100の側面を形成する。 The outer wall portion 120b of the heating plate 120 is bent at the outer periphery of the first radiation surface 120a and stands up (extends in the direction perpendicular to the first radiation surface 120a and away from the first radiation surface 120a (downward in FIG. 3A)). ), Forming the side of the combustion heating system 100.

本実施形態においては、2つの燃焼加熱器110の加熱板120を一体に成形している(図2参照)。そして、加熱板120は、外壁部120bの内面を側面とし、第1輻射面120aの裏面120cを底面とする穴を形成し、この穴の内部に、2つの燃焼加熱器110それぞれの構成要素が配される。 In the present embodiment, the heating plates 120 of the two combustion heaters 110 are integrally formed (see FIG. 2). The heating plate 120 forms a hole with the inner surface of the outer wall portion 120b as a side surface and the back surface 120c of the first radiation surface 120a as a bottom surface, and the components of the two combustion heaters 110 are formed in the hole. Arranged.

配置板122は、耐熱性および耐酸化性が高い素材、例えば、ステンレス鋼や、熱伝導率が低い素材等で形成される平板状の部材である。配置板122は、加熱板120の外壁部120bの内側において、加熱板120の第1輻射面120aの裏面120cと略平行に対向して配置される。 The arrangement plate 122 is a flat member formed of a material having high heat resistance and oxidation resistance, such as stainless steel or a material having low thermal conductivity. The arrangement plate 122 is arranged inside the outer wall portion 120b of the heating plate 120 so as to face the back surface 120c of the first radiation surface 120a of the heating plate 120 substantially in parallel.

仕切板124は、加熱板120と同様、耐熱性および耐酸化性が高い素材、例えば、ステンレス鋼や、熱伝導率が高い素材、例えば、黄銅等で形成される薄板状の部材である。仕切板124は、加熱板120の外壁部120bの内側において、加熱板120の裏面120cと、配置板122との間に、配置板122と略平行に対向して配置される。 Like the heating plate 120, the partition plate 124 is a thin plate-like member formed of a material having high heat resistance and oxidation resistance, such as stainless steel, or a material having high thermal conductivity, such as brass. The partition plate 124 is disposed on the inner side of the outer wall portion 120 b of the heating plate 120 between the back surface 120 c of the heating plate 120 and the arrangement plate 122 so as to face the arrangement plate 122 substantially in parallel.

配置板122と仕切板124は、互いに対向する面の外周(外形)の輪郭が大凡等しく、それぞれ、トラック形状(長方形の2つの短辺それぞれを線対称な円弧(半円)に変えた形状)をなしている。 The arrangement plate 122 and the partition plate 124 have substantially the same outer peripheries (outer shapes) of the opposing surfaces, and each has a track shape (a shape in which the two short sides of the rectangle are changed to line-symmetrical arcs (semicircles)). I am doing.

加熱板120、配置板122、および仕切板124は、それらの間に空隙が形成されれば、互いに傾いて対向するよう配置されてもよい。また、加熱板120、配置板122、および仕切板124の厚みに制限はなく、平板に限らず凹凸に形成されてもよい。 The heating plate 120, the arrangement plate 122, and the partition plate 124 may be arranged so as to be opposed to each other as long as a gap is formed therebetween. Moreover, there is no restriction | limiting in the thickness of the heating plate 120, the arrangement | positioning board 122, and the partition plate 124, You may form in unevenness not only in a flat plate.

断熱部126は、断熱性が高い(断熱性を有する)素材、例えば、セラミックなどで形成される薄板状の部材である。断熱部126は、外周部126aと、底面部126bとを有する。 The heat insulating portion 126 is a thin plate member formed of a material having high heat insulating properties (having heat insulating properties), for example, ceramic. The heat insulating portion 126 has an outer peripheral portion 126a and a bottom surface portion 126b.

外周部126aは、仕切板124の外周側に位置し、仕切板124の外周に沿って、加熱板120と配置板122の対向方向(図3A中、上下方向)に延びている。底面部126bは、外周部126aの配置板122側(図3A中、下側)の部位から屈曲して連続する部位であって、配置板122の中心に向かって延在し、加熱板120と対向するよう配置される。 The outer peripheral portion 126 a is located on the outer peripheral side of the partition plate 124, and extends along the outer periphery of the partition plate 124 in the facing direction of the heating plate 120 and the arrangement plate 122 (vertical direction in FIG. 3A). The bottom surface portion 126b is a portion that is bent and continuous from a portion of the outer peripheral portion 126a on the arrangement plate 122 side (lower side in FIG. 3A), and extends toward the center of the arrangement plate 122. Arranged to face each other.

なお、断熱部126は、底面部126bを底面、外周部126aの内面を側面とする穴126cを形成しており、この穴126cの輪郭は、配置板122および仕切板124の外形と相似となるトラック形状をなしている。そして、外周部126aは、配置板122の外周面122aおよび仕切板124の外周面124aと、穴126cを介して一定間隔を維持して離れている。 The heat insulating portion 126 has a hole 126c having a bottom surface portion 126b as a bottom surface and an inner surface of the outer peripheral portion 126a as a side surface, and the outline of the hole 126c is similar to the outer shape of the arrangement plate 122 and the partition plate 124. It has a track shape. And the outer peripheral part 126a is spaced apart from the outer peripheral surface 122a of the arrangement | positioning board 122 and the outer peripheral surface 124a of the partition plate 124 via the hole 126c.

燃焼室128は、図3Bに示すように、外周部126aと、配置板122および仕切板124それぞれの外周面122a、124aとの間に位置し、外周面122a、124aに面する。すなわち、燃焼室128は、外周面122a、124a、加熱板120、および断熱部126で囲まれ、外周部126aに沿った、外周部126aの内側に位置する空間(すなわち穴126cと重なる空間)となっている。 As shown in FIG. 3B, the combustion chamber 128 is located between the outer peripheral portion 126a and the outer peripheral surfaces 122a and 124a of the arrangement plate 122 and the partition plate 124, and faces the outer peripheral surfaces 122a and 124a. That is, the combustion chamber 128 is surrounded by the outer peripheral surfaces 122a and 124a, the heating plate 120, and the heat insulating portion 126, and a space located inside the outer peripheral portion 126a along the outer peripheral portion 126a (that is, a space overlapping the hole 126c). It has become.

密閉部130は、断熱部126よりも断熱性が低い素材、例えば、ステンレス鋼などで形成される薄板状の部材で構成することができる。本実施形態においては、2つの燃焼加熱器110の密閉部130を一体に成形している(図2参照)。 The sealing part 130 can be configured by a thin plate-like member formed of a material having a lower heat insulating property than the heat insulating part 126, for example, stainless steel. In the present embodiment, the sealing portions 130 of the two combustion heaters 110 are integrally formed (see FIG. 2).

また、密閉部130は、図3Bに示すように、第1輻射面120aの裏面120cとの接触部分に、裏面120cの面方向(以下、単に「面方向」と称す)に延びる屈曲部130aを有し、屈曲部130aが、加熱板120の裏面120cに溶接やロウ付けなどで接合されている。そのため、密閉部130によって、燃焼室128の断熱部126側へのガス漏れが防止または抑制される。 Further, as shown in FIG. 3B, the sealing portion 130 has a bent portion 130a extending in the surface direction of the back surface 120c (hereinafter simply referred to as “surface direction”) at the contact portion of the first radiation surface 120a with the back surface 120c. The bent portion 130a is joined to the back surface 120c of the heating plate 120 by welding or brazing. Therefore, gas leakage to the heat insulation part 126 side of the combustion chamber 128 is prevented or suppressed by the sealing part 130.

一方、断熱部126は、接触するいずれの部材とも接合されておらず、密閉部130によって、断熱部126の外周部126aおよび底面部126bを、燃焼室128の反対側から覆われて支持されている。その結果、断熱部126は、接触するいずれの部材とも接合されていないものの、配置板122や密閉部130によって、密閉部130との相対的な位置ずれがないように、その移動が規制されている。 On the other hand, the heat insulating portion 126 is not joined to any member that comes into contact, and the outer peripheral portion 126a and the bottom surface portion 126b of the heat insulating portion 126 are covered and supported by the sealing portion 130 from the opposite side of the combustion chamber 128. Yes. As a result, although the heat insulating portion 126 is not joined to any member in contact, the movement of the heat insulating portion 126 is restricted by the arrangement plate 122 or the sealing portion 130 so that there is no relative displacement from the sealing portion 130. Yes.

封止部132は、加熱板120の第1輻射面120aと反対側に配される平板状の部材である。本実施形態においては、加熱板120と同様、2つの燃焼加熱器110の封止部132を一体に形成している(図2参照)。そして、封止部132は、密閉部130と離れた位置で、加熱板120の外壁部120bの延びる方向(図3A中、下方向)の端部に固定され、密閉部130との間の空間に断熱性を有するウールなどの断熱材134を封止する。 The sealing portion 132 is a flat plate member disposed on the opposite side of the heating plate 120 from the first radiation surface 120a. In the present embodiment, like the heating plate 120, the sealing portions 132 of the two combustion heaters 110 are integrally formed (see FIG. 2). And the sealing part 132 is fixed to the edge part of the extending direction (downward in FIG. 3A) of the outer wall part 120b of the heating plate 120 at a position away from the sealing part 130, and is a space between the sealing part 130 A heat insulating material 134 such as wool having heat insulating properties is sealed.

このように、燃焼加熱システム100の本体容器は、加熱板120の穴126cを封止部132で閉塞してなり、外周面(加熱板120の外壁部120bの外表面)の面積より上下壁面(加熱板120の第1輻射面120aおよび封止部132の外表面)の面積の方が大きい。つまり、上下壁面は、本体容器の外表面の大部分を占める。 As described above, the main body container of the combustion heating system 100 is formed by closing the hole 126c of the heating plate 120 with the sealing portion 132, and the upper and lower wall surfaces (outer surfaces (outer surfaces of the outer wall portion 120b of the heating plate 120)) The area of the first radiation surface 120a of the heating plate 120 and the outer surface of the sealing portion 132) is larger. That is, the upper and lower wall surfaces occupy most of the outer surface of the main body container.

第1配管部136は、燃料ガスが流通する配管であり、第2配管部138は、排気ガスが流通する配管である。第2配管部138は、第1配管部136内部に配される。すなわち、第1配管部136と第2配管部138は、燃焼加熱器110との接続部分において二重管を形成する。 The first piping portion 136 is a piping through which fuel gas flows, and the second piping portion 138 is a piping through which exhaust gas flows. The second piping unit 138 is disposed inside the first piping unit 136. That is, the first piping part 136 and the second piping part 138 form a double pipe at the connection part with the combustion heater 110.

配置板122、断熱部126、密閉部130、封止部132には、厚さ方向に貫通する貫通孔122d、126d、130d、132dが設けられている。貫通孔122d、126d、130d、132dは、配置板122、断熱部126、密閉部130、封止部132それぞれの面方向の中心部において、互いに重なり合う位置関係となっている。貫通孔122d、126d、130d、132dには、第1配管部136が挿通される。そして、第1配管部136の端部は、配置板122の仕切板124側の面と同一面をなす位置で置板122の貫通孔122dに固定され、第1配管部136のうち、密閉部130の貫通孔130dに挿通された部分は、貫通孔130dに溶接やロウ付けなどで接合される。 The arrangement plate 122, the heat insulating portion 126, the sealing portion 130, and the sealing portion 132 are provided with through holes 122d, 126d, 130d, and 132d penetrating in the thickness direction. The through holes 122d, 126d, 130d, and 132d have a positional relationship in which they overlap each other in the center portions in the surface direction of the arrangement plate 122, the heat insulating portion 126, the sealing portion 130, and the sealing portion 132. The first piping part 136 is inserted through the through holes 122d, 126d, 130d, and 132d. And the edge part of the 1st piping part 136 is fixed to the through-hole 122d of the mounting plate 122 in the position which makes the same surface as the surface at the side of the partition plate 124 of the arrangement | positioning board 122, and it is a sealing part among the 1st piping parts 136. A portion inserted through the through hole 130d of 130 is joined to the through hole 130d by welding or brazing.

また、仕切板124には、配置板122の貫通孔122dと重なり合う位置に、貫通孔122dよりも径が小さく、厚さ方向に貫通する排気孔124bが設けられている。排気孔124bには、第2配管部138が挿通され、第2配管部138の端部は、仕切板124の第1輻射面120a側の面と同一面をなす位置で排気孔124bに固定されている。 Further, the partition plate 124 is provided with an exhaust hole 124b having a diameter smaller than that of the through hole 122d and penetrating in the thickness direction at a position overlapping the through hole 122d of the arrangement plate 122. The second piping part 138 is inserted into the exhaust hole 124b, and the end of the second piping part 138 is fixed to the exhaust hole 124b at a position that is flush with the surface on the first radiation surface 120a side of the partition plate 124. ing.

第2配管部138の端部は、第1配管部136の端部よりも第1輻射面120a側に突出し、かつ、加熱板120から離れており、仕切板124は、面方向の中心側において第2配管部138の端部に固定されることで、加熱板120および配置板122と一定間隔を維持しつつ離れている。 The end of the second piping part 138 protrudes to the first radiation surface 120a side from the end of the first piping part 136 and is separated from the heating plate 120, and the partition plate 124 is located on the center side in the surface direction. By being fixed to the end of the second piping part 138, the heating plate 120 and the arrangement plate 122 are separated from each other while maintaining a constant interval.

導入部140は、配置板122と仕切板124との間の空隙によって形成され、第1配管部136に連通している。燃料ガスは、第1配管部136を通って配置板122の貫通孔122dから導入部140に流入する。すなわち、配置板122の貫通孔122dは、燃料ガスを導入部140に流入させる流入孔となっている。そして、導入部140は、配置板122の貫通孔122d(流入孔)から流入した燃料ガスを、燃焼室128に向けて放射状に導く。 The introduction part 140 is formed by a gap between the arrangement plate 122 and the partition plate 124 and communicates with the first piping part 136. The fuel gas passes through the first piping part 136 and flows into the introduction part 140 from the through hole 122d of the arrangement plate 122. That is, the through hole 122 d of the arrangement plate 122 is an inflow hole through which the fuel gas flows into the introduction part 140. The introduction unit 140 guides the fuel gas flowing in from the through hole 122 d (inflow hole) of the arrangement plate 122 radially toward the combustion chamber 128.

また、導入部140の出口側(燃焼室128側)の流路は、仕切板124の外周端部に配された突起部124cによって複数に仕切られている。 Further, the flow path on the outlet side (combustion chamber 128 side) of the introduction part 140 is divided into a plurality of parts by a protruding part 124 c arranged on the outer peripheral end part of the partition plate 124.

図4は、突起部124cを説明するための図であり、燃焼室128の斜視図および燃焼室128を囲む部材の断面図を示す。なお、ここでは、理解を容易とするため、加熱板120を取り除いて示し、仕切板124の隠れている部分の輪郭線を破線で示す。 FIG. 4 is a view for explaining the protrusion 124 c, and shows a perspective view of the combustion chamber 128 and a cross-sectional view of members surrounding the combustion chamber 128. Here, for easy understanding, the heating plate 120 is removed and the outline of the hidden portion of the partition plate 124 is indicated by a broken line.

図4に示すように、突起部124cは、仕切板124の周方向に一定間隔で設けられており、隣接する突起部124c間に流路124dが形成されている。これにより、導入部140と燃焼室128とは、その連通部分の断面積が狭められた流路124dによって連通する。このとき、隣接する突起部124cの間隔、すなわち、流路124dの幅が流路断面の代表寸法となる。ここで、燃料ガスの消炎距離dは、管壁モデルの径の大きさで表され、下記の数式1により求められる。
d=2λ・Nu1/2/(Cp・ρu・Su) …数式1
As shown in FIG. 4, the protrusions 124c are provided at regular intervals in the circumferential direction of the partition plate 124, and a flow path 124d is formed between adjacent protrusions 124c. Thereby, the introducing | transducing part 140 and the combustion chamber 128 are connected by the flow path 124d by which the cross-sectional area of the communication part was narrowed. At this time, the interval between the adjacent projections 124c, that is, the width of the flow path 124d becomes the representative dimension of the cross section of the flow path. Here, the extinguishing distance d of the fuel gas is expressed by the size of the diameter of the tube wall model, and is obtained by the following mathematical formula 1.
d = 2λ · Nu 1/2 / (Cp · ρu · Su) Equation 1

数式1において、λは熱伝導率、Nuはヌセルト数、Cpは定圧比熱、ρuは燃料ガスの密度、Suは燃焼速度である。流路124dの幅が消炎距離d以下となるように設計されているため、燃焼室128において安定した燃焼が可能となっている。 In Equation 1, λ is the thermal conductivity, Nu is the Nusselt number, Cp is the constant pressure specific heat, ρu is the density of the fuel gas, and Su is the combustion rate. Since the width of the flow path 124d is designed to be equal to or less than the extinguishing distance d, stable combustion is possible in the combustion chamber 128.

流路124dから燃焼室128に流入した燃料ガスは、図3Bに示すように、燃焼室128において外周部126aに衝突して一時的に滞留する。上記の点火装置は、2つの燃焼加熱器110のうちの一方の燃焼加熱器110における燃焼室128に設けられており、点火装置が導入部140から導入される燃料ガスに点火すると、火移り部102を介して他方の燃焼加熱器110における燃焼室128内の燃料ガスにも点火する。 As shown in FIG. 3B, the fuel gas flowing into the combustion chamber 128 from the flow path 124d collides with the outer peripheral portion 126a in the combustion chamber 128 and temporarily stays there. The ignition device is provided in the combustion chamber 128 of one combustion heater 110 of the two combustion heaters 110. When the ignition device ignites the fuel gas introduced from the introduction unit 140, a fire transfer unit The fuel gas in the combustion chamber 128 in the other combustion heater 110 is also ignited via 102.

こうして、燃焼室128では、流入孔(配置板122の貫通孔122d)から流入した燃料ガスが燃焼する。そして、双方の燃焼室128で燃焼が継続し、燃焼によって生成された排気ガスは、導出部142に導かれる。 In this way, in the combustion chamber 128, the fuel gas flowing in from the inflow hole (the through hole 122d of the arrangement plate 122) burns. Combustion continues in both combustion chambers 128, and the exhaust gas generated by the combustion is guided to the derivation unit 142.

導出部142は、加熱板120と仕切板124とを側壁とし、加熱板120と仕切板124との間の空隙によって形成された流路である。導出部142は、燃焼室128に連続するとともに第2配管部138に連通しており、燃焼室128における燃焼によって生じた排気ガスを、燃焼室128から面方向の中心側に集約し、仕切板124の排気孔124bから第2配管部138を介して燃焼加熱器110外に導く。 The lead-out part 142 is a flow path formed by a gap between the heating plate 120 and the partition plate 124 with the heating plate 120 and the partition plate 124 as side walls. The derivation unit 142 is continuous with the combustion chamber 128 and communicates with the second piping unit 138, and collects exhaust gas generated by combustion in the combustion chamber 128 from the combustion chamber 128 toward the center in the plane direction, From the exhaust hole 124b of 124, it guide | induces out of the combustion heater 110 via the 2nd piping part 138.

加熱板120は、第1輻射面120aの裏面120cから、燃焼室128における燃焼熱と、燃焼室128および導出部142を流通する排気ガスの熱によって加熱される。そして、第1輻射面120aからの輻射熱によって被焼成物が加熱される。 The heating plate 120 is heated from the back surface 120c of the first radiation surface 120a by the combustion heat in the combustion chamber 128 and the heat of the exhaust gas flowing through the combustion chamber 128 and the outlet portion 142. Then, the object to be fired is heated by the radiant heat from the first radiating surface 120a.

また、仕切板124は比較的熱伝導し易い素材で形成されているため、導出部142を流通する排気ガスは、仕切板124を介して導入部140を流通する燃料ガスに伝熱する(図3B参照)。特に、導出部142を流れる排気ガスと導入部140を流れる燃料ガスとが、仕切板124を挟んで対向流(カウンタフロー)となっているため、排気ガスの熱で燃料ガスを効率的に予熱することが可能となり、高い熱効率を得ることができる。 Further, since the partition plate 124 is formed of a material that is relatively easy to conduct heat, the exhaust gas flowing through the outlet portion 142 conducts heat to the fuel gas flowing through the introduction portion 140 via the partition plate 124 (see FIG. 3B). In particular, the exhaust gas flowing through the lead-out portion 142 and the fuel gas flowing through the introduction portion 140 form a counterflow with the partition plate 124 interposed therebetween, so that the fuel gas is efficiently preheated with the heat of the exhaust gas. And high thermal efficiency can be obtained.

同様に、第2配管部138を流通する排気ガスは、第2配管部138を通じて第1配管部136を流れ、対向流となっている燃料ガスに伝熱して予熱する。このように燃料ガスを予熱してから燃焼する、所謂、超過エンタルピ燃焼によって、燃料ガスの燃焼を安定化し、不完全燃焼によって生じるCO(一酸化炭素)の濃度を極低濃度に抑えることができる。 Similarly, the exhaust gas flowing through the second piping section 138 flows through the first piping section 136 through the second piping section 138, transfers heat to the fuel gas in the counterflow, and preheats. By so-called excess enthalpy combustion, in which fuel gas is preheated in this way, combustion of fuel gas can be stabilized and the concentration of CO (carbon monoxide) generated by incomplete combustion can be suppressed to an extremely low concentration. .

続いて、上述した燃焼加熱システム100を複数配置した連続加熱炉200について説明する。 Next, a continuous heating furnace 200 in which a plurality of the combustion heating systems 100 described above are arranged will be described.

図5は、連続加熱炉200を説明するための図であり、連続加熱炉200における被焼成物Wの搬送方向に平行かつ鉛直方向の断面の概略図を示す。図5に示すように、連続加熱炉200は、搬送部210と、炉本体212と、複数の燃焼加熱システム100(加熱部)と、複数の冷却予熱部214とを含んで構成される。 FIG. 5 is a diagram for explaining the continuous heating furnace 200, and shows a schematic diagram of a cross section parallel to the conveying direction of the workpiece W in the continuous heating furnace 200 and in the vertical direction. As shown in FIG. 5, the continuous heating furnace 200 includes a transfer unit 210, a furnace body 212, a plurality of combustion heating systems 100 (heating units), and a plurality of cooling preheating units 214.

搬送部210は、例えば、ベルト等の搬送帯210a、搬送帯210aを張架支持するローラ210b、ギヤやモータを有するモータ機構210cなどを含んで構成され、モータ機構210cの動力によって搬送帯210aが回転し、図5中、白抜き矢印の方向に被焼成物Wを搬送する。この被焼成物Wは、図5では搬送部210の上に載置されているが、例えば、搬送部210に設けられた吊持機構(図示せず)によって吊持されてもよい。また、搬送帯210aは、例えば、鉛直下方に配された燃焼加熱システム100または冷却予熱部214と被焼成物Wの間の輻射伝熱を阻害しないようにメッシュ構造等にしてもよい。 The transport unit 210 includes, for example, a transport belt 210a such as a belt, a roller 210b that stretches and supports the transport belt 210a, a motor mechanism 210c having a gear and a motor, and the transport belt 210a is driven by the power of the motor mechanism 210c. It rotates and conveys the to-be-baked object W in the direction of the white arrow in FIG. Although this to-be-baked object W is mounted on the conveyance part 210 in FIG. 5, you may be suspended by the suspension mechanism (not shown) provided in the conveyance part 210, for example. In addition, the transport band 210a may have a mesh structure or the like so as not to disturb the radiant heat transfer between the combustion heating system 100 or the cooling preheating unit 214 disposed vertically below and the workpiece W, for example.

また、ローラ210bは、炉本体212内において搬送帯210aの一部を鉛直下側から支持する。なお、被焼成物Wの反りを抑えるため、被焼成物Wの上下を挟む一対の網によって搬送帯が構成される場合には、一対の網の外側にローラ210bを設けるとよい。 The roller 210b supports a part of the transport band 210a from the vertically lower side in the furnace body 212. In addition, in order to suppress the curvature of the to-be-baked material W, when a conveyance belt | band | zone is comprised by a pair of net | network which pinches | interposes the top and bottom of the to-be-baked material W, it is good to provide the roller 210b on the outer side of a pair of net | network.

炉本体212は、搬送帯210aの一部または全部を囲み、内部に焼成空間を形成する。また、燃焼加熱システム100は、炉本体212内のうち、搬送部210の鉛直上方と鉛直下方に、第1輻射面120aを炉本体212内の搬送帯210aに対向させつつ、第1輻射面120aを、被焼成物Wの搬送方向(以下、「搬送方向」と略称する)に平行にして、複数配される。
すなわち、第1輻射面120aは、被焼成物Wは、搬送部210で搬送されている被焼成物Wと遮蔽物を介さずに対向したとき被焼成物Wを加熱する。
The furnace body 212 surrounds part or all of the transport band 210a and forms a firing space therein. Further, the combustion heating system 100 includes the first radiation surface 120a in the furnace body 212 with the first radiation surface 120a facing the conveyance band 210a in the furnace body 212 vertically above and vertically below the conveyance unit 210. Are arranged in parallel with the conveying direction of the workpiece W (hereinafter, abbreviated as “conveying direction”).
That is, the 1st radiation surface 120a heats the to-be-fired material W, when the to-be-fired material W opposes the to-be-fired material W conveyed by the conveyance part 210 without a shield.

冷却予熱部214は、炉本体212内にて、1つの燃焼加熱システム100(燃焼加熱器110)に対し、搬送方向の下流(図5中、右側)に2つずつ並設される。 In the furnace body 212, two cooling preheating sections 214 are provided in parallel with one combustion heating system 100 (combustion heater 110) on the downstream side (right side in FIG. 5) in the transport direction.

また、冷却予熱部214は、被焼成物Wを冷却する第2輻射面214aを有する。第2輻射面214aは、搬送部210で搬送されている被焼成物Wと遮蔽物を介さずに対向したとき被焼成物Wから輻射熱を受ける。
このように、燃焼加熱システム100および冷却予熱部214は、搬送部210で搬送されている被焼成物Wと遮蔽物を介さずに対向したとき(被焼成物Wが燃焼加熱システム100または冷却予熱部214の直上または直下にあるとき)、被焼成物Wとの間で熱交換を行う。よって、燃焼加熱システム100および冷却予熱部214と被焼成物Wとの距離が、上記熱交換時に最短となり、燃焼加熱システム100および冷却予熱部214と被焼成物Wとの熱交換が、直接的かつ効果的に行われる。
In addition, the cooling preheating unit 214 has a second radiation surface 214a that cools the object to be fired W. The second radiation surface 214a receives radiant heat from the to-be-fired object W when facing the to-be-fired object W conveyed by the conveying unit 210 without a shielding object.
As described above, the combustion heating system 100 and the cooling preheating unit 214 face the object to be fired W transported by the transporting part 210 without passing through the shield (the object to be fired W is the combustion heating system 100 or the cooling preheating). When the unit 214 is directly above or below the unit 214), heat exchange is performed with the object to be fired W. Therefore, the distance between the combustion heating system 100 and the cooling preheating unit 214 and the object to be fired W becomes the shortest during the heat exchange, and the heat exchange between the combustion heating system 100 and the cooling preheating part 214 and the object to be fired W is directly performed. And is done effectively.

燃焼加熱システム100と同様、冷却予熱部214は、第2輻射面214aを炉本体212内の搬送帯210aに対向させつつ、第2輻射面214aを搬送方向に平行にして配される。すなわち、燃焼加熱システム100の第1輻射面120aと、冷却予熱部214の第2輻射面214aは、被焼成物Wの搬送方向に隣り合って配され、第1輻射面120aと第2輻射面214aが平行となっている。 Similar to the combustion heating system 100, the cooling preheating unit 214 is arranged with the second radiation surface 214a parallel to the transport direction while the second radiation surface 214a faces the transport band 210a in the furnace body 212. That is, the first radiating surface 120a of the combustion heating system 100 and the second radiating surface 214a of the cooling preheating unit 214 are arranged adjacent to each other in the conveying direction of the workpiece W, and the first radiating surface 120a and the second radiating surface are arranged. 214a is parallel.

また、連続加熱炉200では、上述したように、少なくとも燃焼加熱システム100と冷却予熱部214との組み合わせが、炉本体212内(焼成空間内)の雰囲気中にある。 In the continuous heating furnace 200, as described above, at least the combination of the combustion heating system 100 and the cooling preheating unit 214 is in the atmosphere in the furnace body 212 (in the firing space).

図6Aおよび図6Bは、燃焼加熱システム100と冷却予熱部214の配置を説明するための図であり、図6Aには燃焼加熱システム100および冷却予熱部214の斜視図を示し、図6Bには、図6AのVI(b)‐VI(b)線における冷却予熱部214の断面を示す。なお、図6Aでは、冷却予熱部214と第1配管部136との接続関係の理解を容易とするため、第2配管部138の一部を省略して示し、燃料ガスの流れを実線の矢印で示す。 6A and 6B are diagrams for explaining the arrangement of the combustion heating system 100 and the cooling preheating unit 214. FIG. 6A shows a perspective view of the combustion heating system 100 and the cooling preheating unit 214, and FIG. FIG. 6A shows a cross section of the cooling preheating section 214 taken along line VI (b) -VI (b) in FIG. 6A. In FIG. 6A, in order to facilitate understanding of the connection relationship between the cooling preheating unit 214 and the first piping unit 136, a part of the second piping unit 138 is omitted and the flow of the fuel gas is indicated by a solid line arrow. It shows with.

図6Aに示すように、燃焼加熱システム100は、炉本体212の幅方向(搬送方向と直交し、かつ水平な方向であって、図6A中、白抜きの両矢印で示す方向。以下、「幅方向」と略称する)が、燃焼加熱器110が連設された方向となるように配される。また、炉本体212内においては、幅方向に2つの燃焼加熱システム100が連設される。したがって、幅方向には、燃焼加熱器110が4つ並置される。 As shown in FIG. 6A, the combustion heating system 100 has a width direction of the furnace body 212 (a direction perpendicular to the transport direction and horizontal, and indicated by a white double arrow in FIG. 6A. Is abbreviated as “width direction”) in a direction in which the combustion heater 110 is connected. In the furnace body 212, two combustion heating systems 100 are connected in the width direction. Therefore, four combustion heaters 110 are juxtaposed in the width direction.

また、冷却予熱部214の幅方向の長さは、2つの燃焼加熱システム100の幅方向の長さの合計と大凡等しい。そして、図6Bに示すように、冷却予熱部214の内部には、ガス流路214bが形成されている。ガス流路214bを燃料ガスが流通することで、第2輻射面214aが冷却されるとともに、第2輻射面214aからの熱により燃料ガスが予熱される。
ここで、図6Bに示すように、冷却予熱部214は、搬送方向及び幅方向に延びた扁平な形状をなしている。その結果、第2輻射面214aを介したガス流路214bの予熱面積を相対的に広くとることが可能となり、ガス流路214b内における燃料ガスの予熱を効果的に行うことができる。
Further, the length in the width direction of the cooling preheating unit 214 is approximately equal to the sum of the lengths in the width direction of the two combustion heating systems 100. As shown in FIG. 6B, a gas flow path 214b is formed inside the cooling preheating unit 214. As the fuel gas flows through the gas flow path 214b, the second radiation surface 214a is cooled and the fuel gas is preheated by the heat from the second radiation surface 214a.
Here, as shown in FIG. 6B, the cooling preheating unit 214 has a flat shape extending in the transport direction and the width direction. As a result, the preheating area of the gas passage 214b via the second radiation surface 214a can be made relatively wide, and the fuel gas in the gas passage 214b can be preheated effectively.

供給管216aは、冷却予熱部214に接続され、外部から供給される燃料ガスをガス流路214bに供給する。供給管216aの、冷却予熱部214側の端部が、第2輻射面214aのうち、幅方向の一端214c側、または、他端214d側のいずれかに配される。その結果、隣り合う冷却予熱部214のうち、搬送方向の下流に並設された冷却予熱部214と上流に並設された冷却予熱部214とでは、連通管216bの冷却予熱部214側の端部の位置が、幅方向において逆となっている。 The supply pipe 216a is connected to the cooling preheating unit 214 and supplies fuel gas supplied from the outside to the gas flow path 214b. The end of the supply pipe 216a on the cooling preheating unit 214 side is arranged on either the one end 214c side in the width direction or the other end 214d side of the second radiation surface 214a. As a result, of the adjacent cooling preheating units 214, the cooling preheating unit 214 arranged in the downstream in the transport direction and the cooling preheating unit 214 arranged in the upstream in the end on the cooling preheating unit 214 side of the communication pipe 216b. The position of the part is reversed in the width direction.

そして、供給管216aの向きは、第2輻射面214aに対して、平行ではなく、垂直となっている。すなわち、供給管216aは、第2輻射面214aに対して垂直に、冷却予熱部214と接続されている。そのため、供給管216aから冷却予熱部214の内部に流入した燃料ガスは、第2輻射面214aの裏側に衝突し、燃料ガスと第2輻射面214aの熱交換が促進される。 The direction of the supply pipe 216a is not parallel to the second radiation surface 214a but perpendicular to it. That is, the supply pipe 216a is connected to the cooling preheating unit 214 perpendicular to the second radiation surface 214a. Therefore, the fuel gas that has flowed into the cooling preheating unit 214 from the supply pipe 216a collides with the back side of the second radiation surface 214a, and heat exchange between the fuel gas and the second radiation surface 214a is promoted.

連通管216bは、第1配管部136と冷却予熱部214(ガス流路214b)とを連通させる。連通管216bの、冷却予熱部214側の端部の位置は、幅方向において、供給管216aの接続位置と逆となっている。 The communication pipe 216b allows the first piping part 136 and the cooling preheating part 214 (gas flow path 214b) to communicate with each other. The position of the end of the communication pipe 216b on the cooling preheating section 214 side is opposite to the connection position of the supply pipe 216a in the width direction.

このように、冷却予熱部214(ガス流路214b)は、連通管216bを介して、搬送方向に並設された燃焼加熱システム100の第1配管部136と連通している。詳細には、冷却予熱部214は、燃焼加熱システム100を構成する燃焼加熱器110の配置板122に設けられた貫通孔122d(図3A参照)と連通している。 As described above, the cooling preheating section 214 (gas flow path 214b) communicates with the first piping section 136 of the combustion heating system 100 arranged in parallel in the transport direction via the communication pipe 216b. Specifically, the cooling preheating unit 214 communicates with a through hole 122 d (see FIG. 3A) provided in the arrangement plate 122 of the combustion heater 110 constituting the combustion heating system 100.

また、幅方向に連設された2つの燃焼加熱システム100のうちの一方の第1配管部136が、燃焼加熱システム100の搬送方向の下流に並設された冷却予熱部214と連通するとともに、他方の第1配管部136が、上流に並設された冷却予熱部214と連通している。 Further, one of the first piping parts 136 of the two combustion heating systems 100 arranged in the width direction communicates with the cooling preheating part 214 arranged in parallel downstream in the transport direction of the combustion heating system 100, and The other first piping part 136 communicates with the cooling preheating part 214 arranged in parallel upstream.

すなわち、炉本体212内には、燃焼加熱システム100と同数の冷却予熱部214が設けられ、冷却予熱部214は、互いに異なる燃焼加熱システム100に接続された第1配管部136と連通している。 That is, the same number of cooling preheating units 214 as the combustion heating system 100 are provided in the furnace body 212, and the cooling preheating units 214 communicate with first piping units 136 connected to different combustion heating systems 100. .

上述したように、燃焼加熱システム100と冷却予熱部214を搬送方向に交互に配することで、搬送される被焼成物Wの焼成と冷却を交互に繰り返す。そのため、被焼成物Wの表面を加熱し過ぎることなく、被焼成物Wの内部まで十分に伝熱させることが可能となる。また、炉本体212内に燃焼加熱システム100と冷却予熱部214が配され、冷却予熱部214が冷却に伴う被焼成物Wの熱を燃料ガスに伝熱することから、炉本体212の外部で被焼成物Wを空冷する構成に比べて熱損失が抑制される。
また、燃焼加熱システム100と冷却予熱部214とを搬送方向に隣接して配することで、燃焼加熱システム100および冷却予熱部214の配置がコンパクトになり、連続加熱炉200の搬送方向の全長を短縮することが可能となる。
As described above, the combustion heating system 100 and the cooling preheating unit 214 are alternately arranged in the transport direction, whereby the firing and cooling of the workpiece W to be transported are alternately repeated. Therefore, heat can be sufficiently transferred to the inside of the to-be-fired object W without overheating the surface of the to-be-fired object W. Further, the combustion heating system 100 and the cooling preheating unit 214 are disposed in the furnace body 212, and the cooling preheating unit 214 transfers the heat of the object to be fired W accompanying the cooling to the fuel gas. Heat loss is suppressed compared to a configuration in which the object to be fired W is air-cooled.
Further, by arranging the combustion heating system 100 and the cooling preheating unit 214 adjacent to each other in the conveyance direction, the arrangement of the combustion heating system 100 and the cooling preheating unit 214 becomes compact, and the total length of the continuous heating furnace 200 in the conveyance direction is increased. It can be shortened.

また、本実施形態では、被焼成物Wを、第1輻射面120a(燃焼加熱システム100)からの輻射熱で加熱し、第2輻射面214a(冷却予熱部214)への輻射による放熱で冷却する。 Moreover, in this embodiment, the to-be-baked object W is heated with the radiant heat from the 1st radiation surface 120a (combustion heating system 100), and is cooled by the radiation by the radiation to the 2nd radiation surface 214a (cooling preheating part 214). .

ここで、比較例として、例えば、被焼成物Wを、空気や排気ガスなどの対流によって加熱および冷却する連続加熱炉を想定する。対流伝熱では、被焼成物Wの表面と対流する流体(空気や排気ガスなど)が接触するため、すぐに被焼成物Wの表面温度と流体の温度差が小さくなる。すると、温度差に比例する熱流束(伝熱量)が極端に下がってしまい、被焼成物Wの内部に対する十分な伝熱がなされない。一方、輻射伝熱は、被焼成物Wと輻射面(第1輻射面120aおよび第2輻射面214a)が非接触であり、温度差が縮まり難いため、被焼成物Wと輻射面それぞれのケルビン温度の4乗の差分に比例する熱流束が、比較的安定して維持される。そのため、被焼成物Wの内部に対する十分な伝熱が可能となる。 Here, as a comparative example, for example, a continuous heating furnace that heats and cools the object to be fired W by convection such as air or exhaust gas is assumed. In convection heat transfer, the surface of the object to be fired W comes into contact with a fluid (air, exhaust gas, or the like), so that the temperature difference between the surface temperature of the object to be fired W and the fluid immediately decreases. Then, the heat flux (heat transfer amount) proportional to the temperature difference is extremely lowered, and sufficient heat transfer to the inside of the object to be fired W is not performed. On the other hand, in the radiant heat transfer, since the object to be fired W and the radiation surface (the first radiation surface 120a and the second radiation surface 214a) are not in contact with each other and the temperature difference is difficult to be reduced, A heat flux proportional to the fourth power of the temperature is maintained relatively stably. Therefore, sufficient heat transfer to the inside of the workpiece W is possible.

また、輻射伝熱の熱流束は、被焼成物Wの雰囲気の温度の影響をほとんど受けない。そのため、燃焼加熱システム100によって暖められた空気が冷却予熱部214側に影響したとしても、上述した比較例よりも、被焼成物Wの冷却性能が低下し難い。さらに、連続加熱炉200は、被焼成物Wの雰囲気によらない伝熱形態であるため、被焼成物Wの周囲が真空であっても、被焼成物Wの加熱や冷却が可能となっている。 Further, the heat flux of radiant heat transfer is hardly affected by the temperature of the atmosphere of the object to be fired W. Therefore, even if the air heated by the combustion heating system 100 affects the cooling preheating unit 214 side, the cooling performance of the object to be fired W is less likely to be lower than the comparative example described above. Furthermore, since the continuous heating furnace 200 has a heat transfer configuration that does not depend on the atmosphere of the object to be fired W, the object to be fired W can be heated and cooled even if the surroundings of the object to be fired W are vacuum. Yes.

図7は、連続加熱炉200の概略的な構成を示した機能ブロック図である。図7に示すように、連続加熱炉200は、上記の搬送部210、燃焼加熱システム100、冷却予熱部214に加え、調整部218を含んで構成される。 FIG. 7 is a functional block diagram showing a schematic configuration of the continuous heating furnace 200. As shown in FIG. 7, the continuous heating furnace 200 includes an adjustment unit 218 in addition to the transfer unit 210, the combustion heating system 100, and the cooling preheating unit 214.

調整部218は、例えば、輻射率が第2輻射面214aよりも低いカバー部材などで構成され、第2輻射面214aの一部を被覆することで、被焼成物Wの表面から第2輻射面214aへの輻射熱による伝熱量を調整する。 For example, the adjusting unit 218 is configured by a cover member having a lower emissivity than the second radiating surface 214a, and covers a part of the second radiating surface 214a, so that the second radiating surface is formed from the surface of the workpiece W. The amount of heat transfer by radiant heat to 214a is adjusted.

図8Aおよび図8Bは、調整部218の機能を説明するための図であり、いずれも炉本体212内を搬送される被焼成物Wへの熱流束の変化を示している。図8Aは、調整部218による調整処理がなされた場合を示し、図8Bは、調整部218による調整処理がなされなかった場合を示す。なお、図8Aおよび図8Bにおいては、横軸に時間を示し、縦軸に熱流束と温度を示す。図8Aおよび図8B中、凡例aは被焼成物Wへの熱流束を示し、凡例bは被焼成物Wの表面温度を示し、凡例cは被焼成物Wの中心温度を示す。 8A and 8B are diagrams for explaining the function of the adjusting unit 218, and both show changes in the heat flux to the workpiece W conveyed in the furnace body 212. FIG. FIG. 8A shows a case where the adjustment process by the adjustment unit 218 is performed, and FIG. 8B shows a case where the adjustment process by the adjustment unit 218 is not performed. 8A and 8B, the horizontal axis indicates time, and the vertical axis indicates heat flux and temperature. 8A and 8B, legend a indicates the heat flux to the object to be fired W, legend b indicates the surface temperature of the object to be fired W, and legend c indicates the center temperature of the object to be fired W.

上述したように、被焼成物Wに対しては、燃焼加熱システム100による加熱と冷却予熱部214による冷却が交互に繰り返される。こうして、被焼成物Wの表面温度の上昇を抑制しつつ、被焼成物Wの内部の温度(中心温度)を上昇させている。図8Aおよび図8Bに示すように、最終的には、被焼成物Wの表面温度と中心温度が大凡一定となる。 As described above, for the workpiece W, heating by the combustion heating system 100 and cooling by the cooling preheating unit 214 are repeated alternately. In this way, the temperature (center temperature) inside the to-be-fired object W is raised while suppressing the rise in the surface temperature of the to-be-fired object W. As shown in FIGS. 8A and 8B, finally, the surface temperature and the center temperature of the object to be fired W are approximately constant.

また、図8A、図8Bのいずれの場合も、被焼成物Wの加熱時、被焼成物Wの表面温度は、被焼成物Wの中心温度よりも高く、被焼成物Wの表面から内部に向かう熱流束は正の値をとる。 8A and 8B, when the object W is heated, the surface temperature of the object W is higher than the center temperature of the object W, and from the surface of the object W to the inside. The heading heat flux has a positive value.

一方、被焼成物Wの冷却時、冷却予熱部214による冷却性能が強すぎると、図8Bに示すように、被焼成物Wの表面温度は、被焼成物Wの中心温度よりも低く、被焼成物Wの表面から内部に向かう熱流束は負の値をとる。これは、被焼成物Wから放熱されるほど冷却してしまったことを示す。この場合、被焼成物Wの焼成に必要な熱量を加熱するには、放熱された分、燃焼加熱システム100による加熱量(加熱時間や出力)を多くしなければならず、熱損失が生じる。 On the other hand, if the cooling performance by the cooling preheating unit 214 is too strong when the object to be fired W is cooled, the surface temperature of the object to be fired W is lower than the center temperature of the object to be fired W as shown in FIG. The heat flux from the surface of the fired product W toward the inside takes a negative value. This shows that it cooled so that it might radiate heat from the to-be-baked material W. As shown in FIG. In this case, in order to heat the amount of heat necessary for firing the object to be fired W, the amount of heat (heating time and output) by the combustion heating system 100 must be increased by the amount of heat released, resulting in heat loss.

本実施形態では、冷却予熱部214による冷却性能が調整部218によって適切に抑制されており、図8Aに示すように、被焼成物Wの冷却時、被焼成物Wの表面温度は、被焼成物Wの中心温度よりも高いまま維持され、被焼成物Wの表面から内部に向かう熱流束は正の値をとる。すなわち、被焼成物Wからの放熱は生じていない。 In the present embodiment, the cooling performance by the cooling preheating unit 214 is appropriately suppressed by the adjusting unit 218, and as shown in FIG. The heat flux is maintained higher than the center temperature of the article W, and the heat flux from the surface of the article W to the inside takes a positive value. That is, no heat is radiated from the workpiece W.

このように、調整部218は、被焼成物Wの表面温度が、被焼成物Wの中心温度以上で維持されるように、被焼成物Wの表面から第2輻射面214aへの輻射熱による伝熱量を調整する。そのため、被焼成物Wからの放熱分を補填するための加熱が不要となり、熱損失を抑制することが可能となる。 As described above, the adjusting unit 218 transmits heat from the surface of the object to be fired W to the second radiation surface 214a by radiant heat so that the surface temperature of the object to be fired W is maintained at or above the center temperature of the object to be fired W. Adjust the amount of heat. This eliminates the need for heating to compensate for the heat radiation from the object to be fired W, and can suppress heat loss.

図9Aおよび図9Bは、本発明に係る連続加熱炉の変形例を説明するための図であって、図9Aには第1変形例を示し、図9Bには第2変形例を示す。なお、図9Aおよび図9Bでは、連続加熱炉300、400の、図5に対応する断面の概略を、搬送方向の上流側の端部を拡大して示している。 9A and 9B are diagrams for explaining a modification of the continuous heating furnace according to the present invention. FIG. 9A shows a first modification, and FIG. 9B shows a second modification. 9A and 9B, the outline of the cross section corresponding to FIG. 5 of the continuous heating furnaces 300 and 400 is shown by enlarging the upstream end in the transport direction.

図9Aに示す連続加熱炉300は、上述した実施形態の連続加熱炉200と同様の構成要素に加え、遮蔽部302を備える。遮蔽部302は、搬送方向における焼加熱システム100の第1輻射面120aと冷却予熱部214の第2輻射面214aとの間に位置する。さらに、遮蔽部302は、搬送方向の最上流に配された燃焼加熱システム100の第1輻射面120aの上流側にも配される。 A continuous heating furnace 300 shown in FIG. 9A includes a shielding unit 302 in addition to the same components as those of the continuous heating furnace 200 of the above-described embodiment. The shielding part 302 is located between the 1st radiation surface 120a of the baking heating system 100 and the 2nd radiation surface 214a of the cooling preheating part 214 in a conveyance direction. Furthermore, the shielding part 302 is also arranged on the upstream side of the first radiation surface 120a of the combustion heating system 100 arranged in the uppermost stream in the transport direction.

また、遮蔽部302は、第1輻射面120aと第2輻射面214aの双方に対して垂直な面302aを有し、搬送方向に垂直な方向において、第1輻射面120aおよび第2輻射面214aよりも被焼成物W(炉本体212内の搬送帯210a)の近くまで延びている。 The shielding unit 302 has a surface 302a perpendicular to both the first radiation surface 120a and the second radiation surface 214a, and the first radiation surface 120a and the second radiation surface 214a are perpendicular to the transport direction. Rather than the object to be fired W (conveying band 210a in the furnace body 212).

そして、遮蔽部302は、被焼成物Wの加熱時、すなわち、第1輻射面120aに対向する位置に被焼成物Wが搬送されたとき、被焼成物Wと第2輻射面214aとの間を遮蔽する。そのため、被焼成物Wから第2輻射面214aへの輻射による熱損失が抑制され、被焼成物Wを効率的に加熱することが可能となる。また、遮蔽部302は、被焼成物Wの冷却時、すなわち、第2輻射面214aに対向する位置に被焼成物Wが搬送されたとき、被焼成物Wと第1輻射面120aとの間を遮蔽する。そのため、第2輻射面214aから被焼成物Wへの輻射による伝熱が抑制され、被焼成物Wの表面温度の上昇を効果的に抑えることが可能となる。かかる構成により、被焼成物Wに対する加熱と冷却の抑揚を大きくし、被焼成物Wの内部までの十分な加熱が可能となる。 The shielding portion 302 is disposed between the workpiece W and the second radiation surface 214a when the workpiece W is heated, that is, when the workpiece W is transported to a position facing the first radiation surface 120a. Shield. Therefore, heat loss due to radiation from the object to be fired W to the second radiation surface 214a is suppressed, and the object to be fired W can be efficiently heated. In addition, the shield 302 is disposed between the workpiece W and the first radiation surface 120a when the workpiece W is cooled, that is, when the workpiece W is transported to a position facing the second radiation surface 214a. Shield. Therefore, heat transfer due to radiation from the second radiation surface 214a to the workpiece W is suppressed, and an increase in the surface temperature of the workpiece W can be effectively suppressed. With this configuration, the heating and cooling of the object to be fired W are greatly increased, and sufficient heating up to the inside of the object to be fired W is possible.

図9Bに示す連続加熱炉400は、上述した連続加熱炉200と同様の構成要素を備える。ただし、連続加熱炉200とは異なり、燃焼加熱システム100は幅方向に1つのみ配され、燃焼加熱システム100と冷却予熱部214が搬送方向に2つずつ交互に配されている。 The continuous heating furnace 400 shown in FIG. 9B includes the same components as the continuous heating furnace 200 described above. However, unlike the continuous heating furnace 200, only one combustion heating system 100 is arranged in the width direction, and the combustion heating system 100 and the cooling preheating unit 214 are arranged alternately two by two in the transport direction.

そして、隣り合う第1輻射面120aと第2輻射面214aは、搬送方向の両端のうち、互いに近い一端120d、214e側の方が、他端120e、214f側よりも、搬送部210の炉本体212内における搬送帯210aに近くなるように、搬送方向に対して傾斜している。 The first radiating surface 120a and the second radiating surface 214a that are adjacent to each other have the furnace body of the transport unit 210 at the ends 120d and 214e closer to each other than at the other ends 120e and 214f. It is inclined with respect to the transport direction so as to be close to the transport band 210a in 212.

すなわち、隣り合う2つの燃焼加熱システム100が、第1輻射面120a同士が互いに平行な状態よりも、第1輻射面120aを対向させる向きに傾斜している。同様に、隣り合う2つの冷却予熱部214が、第2輻射面214a同士が互いに平行な状態よりも、第2輻射面214aを対向させる向きに傾斜している。 That is, two adjacent combustion heating systems 100 are inclined in a direction in which the first radiation surfaces 120a are opposed to each other, rather than in a state where the first radiation surfaces 120a are parallel to each other. Similarly, two adjacent cooling preheating sections 214 are inclined in a direction in which the second radiation surfaces 214a are opposed to each other, rather than a state in which the second radiation surfaces 214a are parallel to each other.

その結果、被焼成物Wの加熱時(被焼成物Wが第1輻射面120aの下方にある時)、第2輻射面214aが被焼成物Wと異なる方向に向いているため、被焼成物Wから第2輻射面214aへの輻射による熱損失が抑制され、被焼成物Wを効率的に加熱することが可能となる。また、被焼成物Wの冷却時(被焼成物Wが第2輻射面214aの下方にある時)、第1輻射面120aが被焼成物Wと異なる方向に向いているため、第1輻射面120aから被焼成物Wへの輻射による伝熱が抑制され、被焼成物Wの表面温度の上昇を効果的に抑えることが可能となる。かかる構成により、被焼成物Wに対する加熱と冷却の抑揚を大きくし、被焼成物Wの内部までの十分な加熱が可能となる。 As a result, when the object to be fired W is heated (when the object to be fired W is below the first radiation surface 120a), the second radiation surface 214a faces in a different direction from the object to be fired W. Heat loss due to radiation from W to the second radiation surface 214a is suppressed, and the object to be fired W can be efficiently heated. Further, when the object to be fired W is cooled (when the object to be fired W is below the second radiation surface 214a), the first radiation surface 120a faces in a different direction from the material to be fired W. Heat transfer due to radiation from 120a to the object to be fired W is suppressed, and an increase in the surface temperature of the object to be fired W can be effectively suppressed. With this configuration, the heating and cooling of the object to be fired W are greatly increased, and sufficient heating up to the inside of the object to be fired W is possible.

また、連続加熱炉の構造上、燃焼加熱システム100と冷却予熱部214からなるユニットを、搬送方向に間隔を空けて設ける場合がある。このような場合、ユニットから連続加熱炉内におけるユニットの未設置部位への放熱を、極力防止することが望ましい。
図10に示す連続加熱炉500では、燃焼加熱システム100の搬送方向上流側および下流側にそれぞれ冷却予熱部214を隣接させ、被焼成物Wに対する加熱と冷却とを行うユニットUを形成している。また、個々のユニットの上流側および下流側には、それぞれ遮蔽部502が設けられ、これらの遮蔽部502により、ユニットUの上流側および下流側への放熱、特に輻射による放熱を防止している。ここで、個々の遮蔽部502の具体的な構成は、図9Aに示す遮蔽部302と同様である。
この連続加熱炉500では、ユニットUを遮蔽部502で囲い、ユニットUからの放熱、特に輻射による放熱を防止することにより、ユニットUにおける加熱効率の向上と、冷却予熱部214による過冷却の防止とを図っている。
すなわち、燃焼加熱システム100と冷却予熱部214からなるユニットUを搬送方向に間隔を空けて設けた場合でも、ユニットUから、連続加熱炉500内におけるユニットUの未設置部位(図10における符号Sで示す部位)への放熱、特に輻射による放熱が、遮蔽部502により防止される。その結果、被焼成物Wに対する効果的な加熱および徐冷、ならびに冷却予熱部214における燃焼ガスの効果的な予熱が可能となる。
Moreover, the unit which consists of the combustion heating system 100 and the cooling preheating part 214 may be provided at intervals in a conveyance direction on the structure of a continuous heating furnace. In such a case, it is desirable to prevent heat radiation from the unit to the non-installed part of the unit in the continuous heating furnace as much as possible.
In the continuous heating furnace 500 shown in FIG. 10, the cooling preheating unit 214 is adjacent to the upstream side and the downstream side in the transport direction of the combustion heating system 100 to form a unit U that heats and cools the workpiece W. . Further, shielding units 502 are provided on the upstream side and the downstream side of each unit, respectively, and these shielding units 502 prevent heat radiation to the upstream side and downstream side of the unit U, in particular, radiation due to radiation. . Here, the specific configuration of each shielding unit 502 is the same as that of the shielding unit 302 shown in FIG. 9A.
In this continuous heating furnace 500, the unit U is surrounded by a shielding portion 502 to prevent heat radiation from the unit U, particularly heat radiation due to radiation, thereby improving heating efficiency in the unit U and preventing overcooling by the cooling preheating portion 214. I am trying.
That is, even when the unit U including the combustion heating system 100 and the cooling preheating unit 214 is provided at an interval in the transport direction, the unit U is not installed in the continuous heating furnace 500 (reference S in FIG. 10). The shielding portion 502 prevents heat radiation to the portion indicated by (2), particularly heat radiation due to radiation. As a result, effective heating and gradual cooling of the object to be fired W and effective preheating of the combustion gas in the cooling preheating unit 214 are possible.

なお、本実施形態の連続加熱炉による被焼成物は特に限定されないが、例えば食品が挙げられる。すなわち、本実施形態の連続加熱炉は、菓子等の食品の製造工程における焼成に用いてもよい。例えば、本実施形態の連続加熱炉は、焼き菓子の製造に使用され、より具体的には、例えば、煎餅や、かき餅を始めとする、穀物の粉(米等)を原料とする菓子(薄い形状をしている場合が多い。)の製造に好適に使用可能である。 In addition, the to-be-baked object by the continuous heating furnace of this embodiment is not specifically limited, For example, a foodstuff is mentioned. That is, you may use the continuous heating furnace of this embodiment for baking in the manufacturing process of foodstuffs, such as confectionery. For example, the continuous heating furnace of the present embodiment is used for the manufacture of baked confectionery. More specifically, for example, confectionery (thin confectionery, rice crackers and other cereals (rice etc.) as raw materials) In many cases, it can have a shape).

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

例えば、燃焼加熱器110は、上述した構成に限らず、ラジアントチューブバーナ、ラインバーナ、赤外線セラミックバーナなど、空気、都市ガス、および、空気と都市ガスの混合ガス(予混合ガス)が供給される他の燃焼加熱器(加熱部)を用いてもよい。 For example, the combustion heater 110 is not limited to the configuration described above, and is supplied with air, city gas, and a mixed gas (premixed gas) of air and city gas, such as a radiant tube burner, a line burner, and an infrared ceramic burner. Other combustion heaters (heating units) may be used.

また、上述した実施形態および変形例では、冷却予熱部214のガス流路214bには、燃料ガスとして予混合ガスが流れる場合について説明したが、空気のみ、または、都市ガスのみを流すこととし、ガス流路214bから燃焼加熱システム100までの流路で、空気と都市ガスが混合されてもよい。 Further, in the embodiment and the modification described above, the case where the premixed gas flows as the fuel gas in the gas flow path 214b of the cooling preheating unit 214 has been described, but only air or only city gas flows. In the flow path from the gas flow path 214b to the combustion heating system 100, air and city gas may be mixed.

また、上述した実施形態および変形例では、加熱部として、燃焼加熱器110が2つ連設された燃焼加熱システム100を例に挙げたが、加熱部としては、燃焼加熱器110を単体で用いてもよいし、燃焼加熱器110が3つ連設された燃焼加熱システムを適用してもよい。 Further, in the above-described embodiment and modification, the combustion heating system 100 in which the two combustion heaters 110 are connected as the heating unit has been described as an example, but the combustion heater 110 is used alone as the heating unit. Alternatively, a combustion heating system in which three combustion heaters 110 are connected may be applied.

また、上述した実施形態および変形例では、調整部218が第2輻射面214aを被覆するカバー部材である場合について説明したが、調整部218は、被焼成物Wの表面温度が、被焼成物Wの中心温度以上で維持されるように、被焼成物Wの表面から第2輻射面214aへの輻射熱による伝熱量を調整できればカバー部材に限定されない。 In the embodiment and the modification described above, the adjustment unit 218 is a cover member that covers the second radiation surface 214a. However, the adjustment unit 218 has a surface temperature of the object to be fired W that is to be fired. The cover member is not limited to the cover member as long as the heat transfer amount by the radiant heat from the surface of the object to be fired W to the second radiant surface 214a can be adjusted so as to be maintained at the central temperature of W or higher.

また、上述した第1変形例では、第1輻射面120aと第2輻射面214aが平行であって、遮蔽部302が第1輻射面120aと第2輻射面214aの双方に対して垂直な面302aを有する場合について説明した。しかし、第1輻射面120aと第2輻射面214aは平行でなくともよく、遮蔽部302は、第1輻射面120aと第2輻射面214aの少なくとも一方に対して平行ではない(垂直、または、傾斜した)面を有していればよい。このような変形は、第3変形例における遮蔽部502にも適用可能である。 In the first modification described above, the first radiation surface 120a and the second radiation surface 214a are parallel to each other, and the shielding portion 302 is a surface perpendicular to both the first radiation surface 120a and the second radiation surface 214a. The case of having 302a has been described. However, the first radiation surface 120a and the second radiation surface 214a may not be parallel, and the shielding portion 302 is not parallel to at least one of the first radiation surface 120a and the second radiation surface 214a (perpendicular or It is only necessary to have an inclined surface. Such a modification can also be applied to the shielding unit 502 in the third modification.

また、第1および第3変形例における遮蔽部302、502の効果をさらに高めるためには、遮蔽部302、502の(特に燃焼加熱システム100に面する側における)断熱性を高めるか、もしくは輻射率を下げることが望ましい。
遮蔽部302、502の断熱性を上げるためには、断熱材を挟み込んだ鋼板パネルや真空パネル、またはセラミック等の断熱ボードの使用が考えられる。また、遮蔽部302、502の輻射率を下げるためには、光沢性のSUS板を使用したり、より高温で使用する場合(SUSでは酸化する場合)には、低輻射のガラスや白金等の金属コーティングを施す方法が考えられる。
In order to further enhance the effect of the shielding portions 302 and 502 in the first and third modified examples, the heat insulating properties of the shielding portions 302 and 502 (particularly on the side facing the combustion heating system 100) are increased, or radiation is performed. It is desirable to reduce the rate.
In order to improve the heat insulating properties of the shielding portions 302 and 502, use of a heat insulating board such as a steel plate panel, a vacuum panel, or ceramic sandwiched with a heat insulating material is conceivable. Further, in order to lower the radiation rate of the shielding portions 302 and 502, when using a glossy SUS plate or when used at a higher temperature (when oxidized with SUS), such as low radiation glass or platinum. A method of applying a metal coating is conceivable.

また、上述した第2変形例では、隣り合う2つの燃焼加熱システム100が第1輻射面120aを対向させる向きに傾斜し、隣り合う2つの冷却予熱部214が、第2輻射面214aを対向させる向きに傾斜して配する場合について説明した。しかし、第1輻射面120aと第2輻射面214aを、搬送方向の中心側が窪むように屈曲した形状としてもよい。 In the second modification described above, the two adjacent combustion heating systems 100 are inclined in the direction in which the first radiating surface 120a faces each other, and the two adjacent cooling preheating parts 214 face the second radiating surface 214a. The case where it inclines in direction was demonstrated. However, the first radiation surface 120a and the second radiation surface 214a may be bent so that the center side in the transport direction is recessed.

本発明は、燃料を燃焼させて被焼成物を加熱する連続加熱炉に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for a continuous heating furnace that heats an object to be fired by burning fuel.

W 被焼成物
100 燃焼加熱システム(加熱部)
120a 第1輻射面
120d、214e 一端
120e、214f 他端
200、300、400、500 連続加熱炉
210 搬送部
212 炉本体
214 冷却予熱部
214a 第2輻射面
214b ガス流路
218 調整部
302、502 遮蔽部
W To-be-baked object 100 Combustion heating system (heating part)
120a First radiation surface 120d, 214e One end 120e, 214f Other end 200, 300, 400, 500 Continuous heating furnace 210 Conveying section 212 Furnace body 214 Cooling preheating section 214a Second radiation surface 214b Gas flow path 218 Adjustment section 302, 502 Shielding Part

Claims (6)

炉本体と、
前記炉本体において、被焼成物を搬送する搬送部と、
燃焼によって加熱され、前記搬送部で搬送されている前記被焼成物に輻射熱を伝熱する第1輻射面を有し、前記炉本体内に前記被焼成物の搬送方向に並設された複数の加熱部と、
前記搬送部で搬送されている前記被焼成物と対向したとき前記被焼成物から輻射熱を受ける第2輻射面および第2輻射面からの熱により前記加熱部における燃焼に用いられるガスを予熱するガス流路を有する冷却予熱部とを備え、
前記冷却予熱部は、前記被焼成物の搬送方向に隣り合って2つずつ並設され、この2つは前記ガス流路におけるガスの流れ方向が幅方向において逆に設定されている連続加熱炉。
A furnace body;
In the furnace body, a transport unit that transports the object to be fired,
A plurality of first radiation surfaces that are heated by combustion and transfer radiant heat to the object to be fired that is transported by the transport unit, and are arranged in parallel in the furnace body in the transport direction of the object to be fired A heating unit;
A gas that preheats the gas used for combustion in the heating unit by heat from the second radiant surface that receives radiant heat from the baked material when facing the baked material that is being transported by the transport unit. A cooling preheating part having a flow path,
Two said cooling preheating parts are arranged side by side in the conveyance direction of the said to-be-baked thing, and these two are the continuous heating furnaces with which the flow direction of the gas in the said gas flow path was reversely set in the width direction .
前記第1輻射面と前記第2輻射面は、前記被焼成物の搬送方向に隣り合って配され、前記搬送方向における前記第1輻射面と前記第2輻射面との間に位置し、前記搬送方向に垂直な方向において前記第1輻射面および前記第2輻射面よりも前記被焼成物の近くまで延び、前記第1輻射面と前記第2輻射面の少なくとも一方に対して垂直、または、傾斜する面を有する遮蔽部をさらに備える請求項1に記載の連続加熱炉。   The first radiation surface and the second radiation surface are arranged adjacent to each other in the conveyance direction of the object to be fired, and are positioned between the first radiation surface and the second radiation surface in the conveyance direction, Extends closer to the object to be fired than the first radiation surface and the second radiation surface in a direction perpendicular to the conveying direction, and is perpendicular to at least one of the first radiation surface and the second radiation surface, or The continuous heating furnace according to claim 1, further comprising a shielding portion having an inclined surface. 前記第1輻射面と前記第2輻射面は、前記被焼成物の搬送方向に隣り合って配され、隣り合う前記第1輻射面と前記第2輻射面は、前記搬送方向の両端のうち、互いに近い一端側の方が、他端側よりも前記搬送部に近くなるように、前記搬送方向に対して傾斜している請求項1に記載の連続加熱炉。   The first radiation surface and the second radiation surface are arranged adjacent to each other in the transport direction of the object to be fired, and the adjacent first radiation surface and the second radiation surface are both ends of the transport direction, The continuous heating furnace according to claim 1, wherein one end side closer to each other is inclined with respect to the transport direction so as to be closer to the transport unit than the other end side. 前記第1輻射面と前記第2輻射面は、前記被焼成物の搬送方向に隣り合って配され、隣り合う前記第1輻射面と前記第2輻射面は、前記搬送方向の両端のうち、互いに近い一端側の方が、他端側よりも前記搬送部に近くなるように、前記搬送方向に対して傾斜している請求項2に記載の連続加熱炉。   The first radiation surface and the second radiation surface are arranged adjacent to each other in the transport direction of the object to be fired, and the adjacent first radiation surface and the second radiation surface are both ends of the transport direction, The continuous heating furnace according to claim 2, wherein one end side closer to each other is inclined with respect to the transport direction so as to be closer to the transport unit than the other end side. 前記被焼成物の表面温度が、前記被焼成物の中心温度以上で維持されるように、前記被焼成物の表面から前記第2輻射面への輻射熱による伝熱量を調整する調整部をさらに備えることを特徴とする請求項1から4のいずれか1項に記載の連続加熱炉。   The apparatus further includes an adjustment unit that adjusts a heat transfer amount by radiant heat from the surface of the baking object to the second radiation surface so that a surface temperature of the baking object is maintained at a temperature equal to or higher than a center temperature of the baking object. The continuous heating furnace of any one of Claim 1 to 4 characterized by the above-mentioned. 前記冷却予熱部には、前記第2輻射面に対して垂直な向きの供給管によってガスが供給されることを特徴とする請求項1から5のいずれか1項に記載の連続加熱炉。
The continuous heating furnace according to any one of claims 1 to 5, wherein the cooling preheating unit is supplied with gas by a supply pipe oriented in a direction perpendicular to the second radiation surface.
JP2015510087A 2013-04-01 2014-04-01 Continuous heating furnace Active JP5954493B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013075985 2013-04-01
JP2013075985 2013-04-01
PCT/JP2014/059611 WO2014163065A1 (en) 2013-04-01 2014-04-01 Continuous heating furnace

Publications (2)

Publication Number Publication Date
JP5954493B2 true JP5954493B2 (en) 2016-07-20
JPWO2014163065A1 JPWO2014163065A1 (en) 2017-02-16

Family

ID=51658360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015510087A Active JP5954493B2 (en) 2013-04-01 2014-04-01 Continuous heating furnace

Country Status (6)

Country Link
US (1) US9982943B2 (en)
EP (1) EP2982923B1 (en)
JP (1) JP5954493B2 (en)
KR (1) KR101837075B1 (en)
CN (1) CN105164483B (en)
WO (1) WO2014163065A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5961941B2 (en) * 2011-07-27 2016-08-03 株式会社Ihi Sealed gas heater and continuous heating furnace using sealed gas heater
JP6288602B2 (en) * 2013-12-17 2018-03-07 株式会社Ihi Radiation heating device and radiation heating method
JP6446958B2 (en) * 2014-09-30 2019-01-09 株式会社Ihi Continuous heating furnace and radiant heater
US10291028B2 (en) 2016-07-29 2019-05-14 Cummins Power Generation Ip, Inc. Masterless distributed power transfer control
EP3279977B1 (en) * 2016-08-02 2020-03-11 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117758U (en) * 1982-02-03 1983-08-11 日立金属株式会社 Continuous heat treatment equipment
JPS5918376A (en) * 1982-07-23 1984-01-30 旭硝子株式会社 Heating furnace
JP3053262U (en) * 1998-04-16 1998-10-23 昭和鉄工株式会社 Cooling muffle device for continuous heating furnace
JP2003262473A (en) * 2002-03-06 2003-09-19 Koyo Thermo System Kk Slow cooling furnace
JP2010164269A (en) * 2009-01-19 2010-07-29 Ngk Insulators Ltd Heat treatment furnace for large-size substrate
JP2012247103A (en) * 2011-05-26 2012-12-13 Arai Kikai Seisakusho:Kk Heating furnace
JP2013053811A (en) * 2011-09-05 2013-03-21 Ihi Corp Heating furnace and continuous heating furnace

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3048383A (en) * 1958-09-18 1962-08-07 Swindell Dressler Corp Furnace or like system for gas-supporting and treating flat work
JPS58117758A (en) 1981-12-31 1983-07-13 Hisashi Watanabe Supporting device for handset of telephone set
US4493308A (en) * 1982-04-06 1985-01-15 Thermo Electron Corporation Radiant/conductive broiler
US4449923A (en) * 1982-05-04 1984-05-22 Chugai Ro Kogyo Co., Ltd. Continuous heat-treating furnace
US4559946A (en) 1982-06-18 1985-12-24 Mieczyslaw Mirowski Method and apparatus for correcting abnormal cardiac activity by low energy shocks
JPS6215234U (en) 1985-07-09 1987-01-29
IT1205512B (en) * 1986-12-30 1989-03-23 Mauro Poppi OVEN FOR COOKING CERAMIC MATERIALS SUCH AS TILES AND SIMILAR
US5070625A (en) * 1988-04-25 1991-12-10 Urquhart Gordon T Oven for the curing and cooling of painted objects and method
US5172849A (en) * 1991-09-25 1992-12-22 General Motors Corporation Method and apparatus for convection brazing of aluminum heat exchangers
JPH1136015A (en) * 1997-07-16 1999-02-09 Nkk Corp Annealing furnace in continuous processing line
US5906485A (en) 1998-02-27 1999-05-25 Reading Pretzel Machinery Corporation Tunnel-type conveyor oven having two types of heat sources
US6394796B1 (en) * 1999-11-04 2002-05-28 Alan D. Smith Curing oven combining methods of heating
JP2004269242A (en) * 2003-03-12 2004-09-30 Paloma Ind Ltd Conveyor oven
US7413592B2 (en) * 2004-03-31 2008-08-19 Nu-Iron Technology, Llc Linear hearth furnace system and methods regarding same
US7514650B2 (en) 2005-12-08 2009-04-07 Despatch Industries Limited Partnership Continuous infrared furnace
US8272320B2 (en) * 2006-09-01 2012-09-25 Nieco Corporation Broiler, conveyor oven, and toaster system with pressurized air guide for heat and flames
US8367978B2 (en) * 2006-10-05 2013-02-05 Magna International Inc. Hybrid infrared convection paint baking oven and method of using the same
CN101118114B (en) * 2007-09-14 2010-09-29 湖北三新磷酸有限公司 Novel industrialization three-way type roll table kiln for directly preparing phosphoric acid with phosphate ore
WO2010121190A1 (en) * 2009-04-16 2010-10-21 Tp Solar, Inc. A Corporation Of Ca Diffusion furnaces employing ultra low mass transport systems and methods of wafer rapid diffusion processing
JP5568377B2 (en) * 2010-05-26 2014-08-06 本田技研工業株式会社 Drying method
US8513572B2 (en) * 2011-04-15 2013-08-20 Gk Licensing, Llc Modular paint oven using radiant and convection heat
CN202092456U (en) * 2011-05-25 2011-12-28 临澧恒璋瓷业有限责任公司 Roller kiln using mixed air and light hydrocarbon gas
US8989565B2 (en) * 2012-10-09 2015-03-24 Toa Industries Co., Ltd. Multistage furnace
CN102997654B (en) * 2012-12-10 2015-04-08 武汉理工大学 Oxygen-enriched combustion domestic ceramic roller kiln waste-heat utilization hot-air preheating system
KR101773922B1 (en) * 2013-03-08 2017-09-01 가부시키가이샤 아이에이치아이 Continuous heating furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117758U (en) * 1982-02-03 1983-08-11 日立金属株式会社 Continuous heat treatment equipment
JPS5918376A (en) * 1982-07-23 1984-01-30 旭硝子株式会社 Heating furnace
JP3053262U (en) * 1998-04-16 1998-10-23 昭和鉄工株式会社 Cooling muffle device for continuous heating furnace
JP2003262473A (en) * 2002-03-06 2003-09-19 Koyo Thermo System Kk Slow cooling furnace
JP2010164269A (en) * 2009-01-19 2010-07-29 Ngk Insulators Ltd Heat treatment furnace for large-size substrate
JP2012247103A (en) * 2011-05-26 2012-12-13 Arai Kikai Seisakusho:Kk Heating furnace
JP2013053811A (en) * 2011-09-05 2013-03-21 Ihi Corp Heating furnace and continuous heating furnace

Also Published As

Publication number Publication date
WO2014163065A1 (en) 2014-10-09
EP2982923A4 (en) 2016-11-30
KR20150110649A (en) 2015-10-02
US9982943B2 (en) 2018-05-29
US20160018161A1 (en) 2016-01-21
JPWO2014163065A1 (en) 2017-02-16
EP2982923A1 (en) 2016-02-10
CN105164483B (en) 2017-03-08
CN105164483A (en) 2015-12-16
EP2982923B1 (en) 2019-03-13
KR101837075B1 (en) 2018-03-09

Similar Documents

Publication Publication Date Title
JP5954493B2 (en) Continuous heating furnace
TWI516727B (en) Continuous heating furnace
JP6240371B2 (en) Heating furnace and continuous heating furnace
JP6052393B2 (en) Continuous heating furnace
JP5961941B2 (en) Sealed gas heater and continuous heating furnace using sealed gas heater
JP6446958B2 (en) Continuous heating furnace and radiant heater
JP6245336B2 (en) Heating furnace and continuous heating furnace
JP6402481B2 (en) Combustion heater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R151 Written notification of patent or utility model registration

Ref document number: 5954493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250