[go: up one dir, main page]

JP5943319B2 - Heteroarenesulfonylated quinaalkaloid amine compounds - Google Patents

Heteroarenesulfonylated quinaalkaloid amine compounds Download PDF

Info

Publication number
JP5943319B2
JP5943319B2 JP2011263235A JP2011263235A JP5943319B2 JP 5943319 B2 JP5943319 B2 JP 5943319B2 JP 2011263235 A JP2011263235 A JP 2011263235A JP 2011263235 A JP2011263235 A JP 2011263235A JP 5943319 B2 JP5943319 B2 JP 5943319B2
Authority
JP
Japan
Prior art keywords
amine compounds
following formula
represented
quinaalkaloid
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011263235A
Other languages
Japanese (ja)
Other versions
JP2013112673A (en
Inventor
中村修一
柴田哲男
原範之
亮太 田村
亮太 田村
正英 佐野
正英 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2011263235A priority Critical patent/JP5943319B2/en
Publication of JP2013112673A publication Critical patent/JP2013112673A/en
Application granted granted Critical
Publication of JP5943319B2 publication Critical patent/JP5943319B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Indole Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

本発明は、ヘテロアレーンスルホニル化キナアルカロイドアミン触媒およびこれを用いるβ-アミノカルボニル化合物の製造方法
に関するものである。
The present invention relates to a heteroarenesulfonylated quinalkaloid amine catalyst and a method for producing a β-aminocarbonyl compound using the same.

不斉空間の制御は,最近まで金属錯体触媒を用いる手法が中心となって発展してきたが,近年,グリーンケミストリーの観点から不斉有機分子触媒が注目されている(非特許文献1)。特に、シンコナアルカロイドは天然に豊富に存在し、比較的安価に入手できることから、近年有機触媒として注目され、非常に多くの不斉炭素-炭素結合反応に用いられている(非特許文献2)。しかしながら、シンコナアルカロイド触媒そのものでは、反応性、選択性が低い場合があり、このため、シンコナアルカロイドの修飾化が検討されており、不斉点の窒素原子に対してアレーンスルホニル基の導入も検討されている(非特許文献3−8)。 The control of the asymmetric space has been developed mainly by a technique using a metal complex catalyst until recently, but in recent years, an asymmetric organic molecular catalyst has attracted attention from the viewpoint of green chemistry (Non-patent Document 1). In particular, since cinchona alkaloids are naturally abundant and can be obtained at a relatively low cost, they have recently attracted attention as organic catalysts and are used in a large number of asymmetric carbon-carbon bond reactions (Non-patent Document 2). . However, the cinchona alkaloid catalyst itself may have low reactivity and selectivity. For this reason, modification of the cinchona alkaloid has been studied, and the introduction of an arenesulfonyl group to the nitrogen atom at the asymmetric point is also considered. It has been studied (Non-patent Documents 3-8).

Enantioselective Organocatalysis, Wiley-VCH, Weinheim, 2007;Enantioselective Organocatalysis, Wiley-VCH, Weinheim, 2007; K. Kacprzak, J. Gawronski, Synthesis. 2001, 961-999;K. Kacprzak, J. Gawronski, Synthesis. 2001, 961-999; U. Sundermeier, C. Dobler, G. M. Mehltretter, W. Baumann, M. Beller, Chirality 2003, 15, 127-134U. Sundermeier, C. Dobler, G. M. Mehltretter, W. Baumann, M. Beller, Chirality 2003, 15, 127-134 S. H. Oh, H. S. Rho, J. W. Lee, J. E. Lee, S. H. Youk, J. Chin, C. E. Song, Angew. Chem. Int. Ed. 2008, 47, 7872-7875.S. H. Oh, H. S. Rho, J. W. Lee, J. E. Lee, S. H. Youk, J. Chin, C. E. Song, Angew. Chem. Int. Ed. 2008, 47, 7872-7875. S. H. Youk, S. H. Oh, H. S. Rho, J. E. Lee, J. W. Lee, C. E. Song, Chem. Commun., 2009, 2220-2222S. H. Youk, S. H. Oh, H. S. Rho, J. E. Lee, J. W. Lee, C. E. Song, Chem. Commun., 2009, 2220-2222 J. Luo, L.-W. Xu, R. A. S. Hay, Y. Lu, Org. Lett. 2009, 11, 437-440J. Luo, L.-W. Xu, R. A. S. Hay, Y. Lu, Org. Lett. 2009, 11, 437-440 S. E. Park, E. H. Nam, H. B. Jang, J. S. Oh, S. Some, Y. S. Lee, C. E. Song, Adv. Synth. Catal., 2010, 352, 2211-2217;S. E. Park, E. H. Nam, H. B. Jang, J. S. Oh, S. Some, Y. S. Lee, C. E. Song, Adv. Synth. Catal., 2010, 352, 2211-2217; A. Peschiulli, B. Procuranti, C. J. O’Connor, S. J. Connon, Nature Chemistry 2010, 2, 380-384A. Peschiulli, B. Procuranti, C. J. O’Connor, S. J. Connon, Nature Chemistry 2010, 2, 380-384

これまでに多くの不斉有機触媒が開発されている。また、不斉点の窒素原子に対してアレーンスルホニル基を導入したシンコナアルカロイド触媒も開発され、上記問題の一部は解決されたものの、いずれ有機触媒を用いても生成物の立体選択性・反応性が低い場合があり、すべての問題解決には至っていない。
本発明は、上記の実情に鑑みてなされたものであり、配位性官能基を不斉有機触媒の適切な位置に組み込むことにより,分子内相互作用によって新しい不斉空間を分子内に創成することで、上記問題点を解決することを目的とする。
Many asymmetric organic catalysts have been developed so far. In addition, a cinchona alkaloid catalyst in which an arenesulfonyl group is introduced to the nitrogen atom at the asymmetric point has also been developed, and although some of the above problems have been solved, the stereoselectivity of the product can be achieved using any organic catalyst. Reactivity may be low and not all problems have been solved.
The present invention has been made in view of the above circumstances, and creates a new asymmetric space in a molecule by intramolecular interaction by incorporating a coordinating functional group at an appropriate position of the asymmetric organic catalyst. Therefore, it aims at solving the above-mentioned problem.

この出願の発明は、上記目的を達成するものとして、シンコナアルカロイドの窒素原子上にヘテロアリールスルホニル基を有し、スルホンアミド水素とヘテロ原子とが分子内水素結合したことを特徴とする。
そして、この出願の発明は、次式(3)(4)(6)(7)で表わされることを特徴とする。
In order to achieve the above object, the invention of this application has a heteroarylsulfonyl group on a nitrogen atom of a cinchona alkaloid, and is characterized in that a sulfonamido hydrogen and a hetero atom are intramolecularly hydrogen bonded .
The invention of this application, it characterized by represented by the following formula (3) (4) (6) (7).







ヘテロアレーンスルホニル基を有するキナアルカロイドアミンおよびそれを利用した不斉合成反応について下記実施形態で説明する。 A quinaalkaloid amine having a heteroarenesulfonyl group and an asymmetric synthesis reaction using the quinaalkaloid amine are described in the following embodiments.

(第1実施形態)
ヘテロアレーンスルホニル化キナアルカロイドアミン触媒の合成について説明する。
ナスフラスコにシンコニジン(1.0 g, 3.40 mmol)とトリフェニルホスフィン(1.1 g, 4.08 mmol)を加え、テトラヒドロフラン(THF) (15 ml)に溶解させ, 0 °Cまで冷却させた。そこにジイソプロピルアゾカルボキシラート(DIAD) (0.81 ml, 3.40 mmol)を加え、さらにジフェニルホルホリルアジド(DPPA) (0.88 ml, 4.08 mmol)をテトラヒドロフラン(THF) (6.0 ml)に溶解させた溶液をゆっくりと滴下した後、室温にて12時間攪拌させた。その後、この溶液を50 °Cまで加熱し、 2時間攪拌させた。そこにトリフェニルホスフィン(1.8 g, 6.79 mmol)を加え、生成物溶液の発泡を確認した後、さらに2時間攪拌させた。その後、室温にて純水(0.4 ml)を加え、さらに3時間攪拌させた。反応終了後は、溶媒を減圧下にて留去し、塩化メチレンと3規定の塩酸水溶液を加え、塩化メチレンで抽出し、得られた水層に溶液がアルカリ性になるまでアンモニア水を加えた。この溶液を再び塩化メチレンで抽出し、得られた有機層を無水硫酸ナトリウムで乾燥させ、減圧下にて溶媒を留去した。精製は、シリカゲルカラムクロマトグラフィー(塩化メチレン/メタノール = 100:5-90:10)により行い、次式(1)で表わされる目的生成物シンコニジンアミン(0.56 g,56%)を得た。
(First embodiment)
The synthesis of the heteroarenesulfonylated quinaalkaloid amine catalyst will be described.
Cinconidine (1.0 g, 3.40 mmol) and triphenylphosphine (1.1 g, 4.08 mmol) were added to the eggplant flask, dissolved in tetrahydrofuran (THF) (15 ml), and cooled to 0 ° C. Thereto was added diisopropyl azocarboxylate (DIAD) (0.81 ml, 3.40 mmol) and a solution of diphenylformyl azide (DPPA) (0.88 ml, 4.08 mmol) dissolved in tetrahydrofuran (THF) (6.0 ml). After the dropwise addition, the mixture was stirred at room temperature for 12 hours. Thereafter, this solution was heated to 50 ° C. and stirred for 2 hours. Triphenylphosphine (1.8 g, 6.79 mmol) was added thereto, and after the foaming of the product solution was confirmed, the mixture was further stirred for 2 hours. Thereafter, pure water (0.4 ml) was added at room temperature, and the mixture was further stirred for 3 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, methylene chloride and 3N hydrochloric acid aqueous solution were added, extraction was performed with methylene chloride, and aqueous ammonia was added to the resulting aqueous layer until the solution became alkaline. This solution was extracted again with methylene chloride, and the resulting organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Purification was performed by silica gel column chromatography (methylene chloride / methanol = 100: 5-90: 10) to obtain the desired product cinchonidineamine (0.56 g, 56%) represented by the following formula (1).

このとき、Rf = 0.06 (dichloromethane/methanol = 95:5)である。
以下、この得られた化合物の1H NMR、IR、MS(ESI)による同定結果を示す。
1H NMR (300 MHz, CDCl3) δ 0.72-0.79 (m, 1H), 1.43 (t, J = 10.2 Hz, 1H), 1.57-1.63 (m, 3H), 2.28 (brs, 2H), 2.77-2.87 (m, 3H), 3.09-3.33 (m, 4H), 4.72 (d, J = 4.7 Hz), 4.96-5.04 (m, 2H), 5.75-5.87 (m, 1H), 7.53-7.75 (m, 3H), 8.14 (d, J = 4.4 Hz), 8.35 (s, 1H), 8.9 (d, J = 2.3 Hz)
IR(KBr) 3365, 2938, 1635, 1589, 1508, 1467, 1320, 1042, 990, 913, 819, 761, 629, 458 cm-1
MS(ESI) m/z 294.4 [M+H]
ナスフラスコに、前記目的生成物のシンコニジンアミン(0.60 g, 2.0 mmol)を加え、溶媒として塩化メチレン(15 ml)を加えた後に0 °Cまで冷却させた。そこにトリエチルアミン (0.34 ml, 2.5 mmol)を加え、さらに8-キノリルスルホニルクロリド (0.70 g, 3.1 mmol)を溶解させた後、室温にて12時間攪拌させた。その後、純水を加え、塩化メチレンで抽出し、得られた有機層を無水硫酸ナトリウムで乾燥させ、減圧下にて溶媒を留去した。精製は、シリカゲルカラムクロマトグラフィー(塩化メチレン/メタノール = 95:5)により行い、次式(2)で表わされる目的生成物のヘテロアレーンスルホニル化キナアルカロイドアミン触媒(0.88 g, 90%)を得た。
At this time, Rf = 0.06 (dichloromethane / methanol = 95: 5).
Hereinafter, identification results of the obtained compound by 1 H NMR, IR, and MS (ESI) are shown.
1 H NMR (300 MHz, CDCl 3 ) δ 0.72-0.79 (m, 1H), 1.43 (t, J = 10.2 Hz, 1H), 1.57-1.63 (m, 3H), 2.28 (brs, 2H), 2.77- 2.87 (m, 3H), 3.09-3.33 (m, 4H), 4.72 (d, J = 4.7 Hz), 4.96-5.04 (m, 2H), 5.75-5.87 (m, 1H), 7.53-7.75 (m, 3H), 8.14 (d, J = 4.4 Hz), 8.35 (s, 1H), 8.9 (d, J = 2.3 Hz)
IR (KBr) 3365, 2938, 1635, 1589, 1508, 1467, 1320, 1042, 990, 913, 819, 761, 629, 458 cm -1
MS (ESI) m / z 294.4 [M + H]
To the eggplant flask, cinchonidineamine (0.60 g, 2.0 mmol) as the target product was added, and methylene chloride (15 ml) was added as a solvent, and then cooled to 0 ° C. Triethylamine (0.34 ml, 2.5 mmol) was added thereto, and further 8-quinolylsulfonyl chloride (0.70 g, 3.1 mmol) was dissolved, followed by stirring at room temperature for 12 hours. Thereafter, pure water was added, extraction was performed with methylene chloride, the obtained organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Purification was performed by silica gel column chromatography (methylene chloride / methanol = 95: 5) to obtain a heteroarenesulfonylated quinaalkaloid amine catalyst (0.88 g, 90%) of the desired product represented by the following formula (2). .

このとき、Rf = 0.54 (dichloromethane/methanol = 90:10)である。
以下、この得られた化合物の1H NMR、IR、MS(ESI)による同定結果を示す。
1H NMR (300 MHz, CDCl3) δ 0.60 (m, 1H), 1.05-1.24 (m, 4H), 1.45-2.09 (m, 4H), 2.63 (d, J = 15.0 Hz) 2.84-2.98 (m, 2H), 4.88 (d, J = 15.9 Hz, 3H), 5.55-5.60 (m, 1H), 7.42-7.68 (m, 6H), 7.90-8.24 (m, 4H), 8.74 (d, J = 4.5 Hz, 1H), 9.07-9.09 (m, 1H)
IR(KBr) 3073, 2938, 2866, 1592, 1565, 1495, 1346, 1321, 1171, 1056, 989, 841, 754, 596, 492 cm-1
MS(ESI) m/z 485.6 [M+H].

同様に次式(3)で表わされるキニンアミン、次式(4)で表わされるキニジンアミン、次式(5)で表わされるシンコニンアミンも合成可能である。以下、各式の下にそれぞれの同定結果を示す。
At this time, Rf = 0.54 (dichloromethane / methanol = 90: 10).
Hereinafter, identification results of the obtained compound by 1 H NMR, IR, and MS (ESI) are shown.
1 H NMR (300 MHz, CDCl 3 ) δ 0.60 (m, 1H), 1.05-1.24 (m, 4H), 1.45-2.09 (m, 4H), 2.63 (d, J = 15.0 Hz) 2.84-2.98 (m , 2H), 4.88 (d, J = 15.9 Hz, 3H), 5.55-5.60 (m, 1H), 7.42-7.68 (m, 6H), 7.90-8.24 (m, 4H), 8.74 (d, J = 4.5 Hz, 1H), 9.07-9.09 (m, 1H)
IR (KBr) 3073, 2938, 2866, 1592, 1565, 1495, 1346, 1321, 1171, 1056, 989, 841, 754, 596, 492 cm -1
MS (ESI) m / z 485.6 [M + H].

Similarly, a quinine amine represented by the following formula (3), a quinidine amine represented by the following formula (4), and a cinchonine amine represented by the following formula (5) can also be synthesized. Hereinafter, each identification result is shown under each formula.

1H NMR (300 MHz, CDCl3) δ 0.64 (s, 1H), 1.19-1.26 (m, 3H), 1.50 (s, 1H), 1.75-1.90 (m, 3H), 2.12 (s, 2H), 2.60 (s, 1H), 2.93 (m, 2H), 3.90 (s, 3H), 4.90 (d, J = 16.8 Hz, 2H), 5.60 (s, 1H), 7.22-7.55 (m, 5H), 7.93 (d, J= 8.1 Hz, 2H), 8.10-8.12 (m, 2H), 8.52 (s, 1H), 9.08 (d, J = 2.7 Hz, 1H)
IR(KBr) 3396, 3183, 2941, 1620, 1508, 1474, 1359, 1321, 1230, 1145, 1029, 989, 913, 835, 790, 596 cm-1
MS(ESI) m/z 516.1 [M+H].
1 H NMR (300 MHz, CDCl 3 ) δ 0.64 (s, 1H), 1.19-1.26 (m, 3H), 1.50 (s, 1H), 1.75-1.90 (m, 3H), 2.12 (s, 2H), 2.60 (s, 1H), 2.93 (m, 2H), 3.90 (s, 3H), 4.90 (d, J = 16.8 Hz, 2H), 5.60 (s, 1H), 7.22-7.55 (m, 5H), 7.93 (d, J = 8.1 Hz, 2H), 8.10-8.12 (m, 2H), 8.52 (s, 1H), 9.08 (d, J = 2.7 Hz, 1H)
IR (KBr) 3396, 3183, 2941, 1620, 1508, 1474, 1359, 1321, 1230, 1145, 1029, 989, 913, 835, 790, 596 cm -1
MS (ESI) m / z 516.1 [M + H].

1H NMR (300 MHz, CDCl3) δ 0.72-0.95 (m, 2H), 1.26-1.45 (m, 3H), 1.61-1.90 (m, 2H), 2.60-2.80 (m, 3H), 3.83-3.95 (m, 4H), 4.47 (d, J = 17.4 Hz, 1H), 4.65 (d, J = 10.2 Hz, 1H), 4.84 (d, J = 10.5 Hz, 1H), 5.30 (s, 1H), 5.49-5.57 (m, 1H), 6.98-7.04 (m, 1H), 7.27-7.35 (m, 1H), 7.51-7.60 (m, 3H), 7.95-8.04 (m, 2H), 8.19-8.28 (m, 2H), 8.63 (s, 1H), 9.11 (s, 1H)
IR(KBr) 3396, 3159, 2936, 1620, 1592, 1508, 1361, 1323, 1226, 1168, 1145, 1029, 913, 790, 713, 680, 593, 495 cm-1
MS(ESI) m/z 515.8 [M+H].
1 H NMR (300 MHz, CDCl 3 ) δ 0.72-0.95 (m, 2H), 1.26-1.45 (m, 3H), 1.61-1.90 (m, 2H), 2.60-2.80 (m, 3H), 3.83-3.95 (m, 4H), 4.47 (d, J = 17.4 Hz, 1H), 4.65 (d, J = 10.2 Hz, 1H), 4.84 (d, J = 10.5 Hz, 1H), 5.30 (s, 1H), 5.49 -5.57 (m, 1H), 6.98-7.04 (m, 1H), 7.27-7.35 (m, 1H), 7.51-7.60 (m, 3H), 7.95-8.04 (m, 2H), 8.19-8.28 (m, 2H), 8.63 (s, 1H), 9.11 (s, 1H)
IR (KBr) 3396, 3159, 2936, 1620, 1592, 1508, 1361, 1323, 1226, 1168, 1145, 1029, 913, 790, 713, 680, 593, 495 cm -1
MS (ESI) m / z 515.8 [M + H].

1H NMR (300 MHz, CDCl3) δ 0.67 (m, 1H), 0.88-0.91 (m, 1H), 1.36-1.42 (m, 3H), 1.60 (s, 3H), 1.72-1.90 (m, 2H), 2.61-2.79 (m, 3H), 4.53 (d, J = 17.4 Hz), 4.75-4.93 (m, 2H), 5.45-5.52 (m, 1H), 7.51-7.60 (m, 3H), 7.65-7.81 (m, 3H), 8.02-8.05 (m, 2H), 8.18-8.26 (m, 2H), 8.80 (s, 1H), 9.11-9.12 (m, 1H)
IR(KBr) 3419, 3159, 2938, 2861, 1593, 1565, 1509, 1493, 1360, 1321, 1170, 1146, 1057, 994, 909, 841, 796, 754, 634, 594, 494 cm-1
MS(ESI) m/z 485.2 [M+H].
次式(6)及び(7)で表わされるその他のヘテロアレーンスルホニル化キナアルカロイド触媒も合成可能である。以下、各式の下にそれぞれの同定結果を示す。
1 H NMR (300 MHz, CDCl 3 ) δ 0.67 (m, 1H), 0.88-0.91 (m, 1H), 1.36-1.42 (m, 3H), 1.60 (s, 3H), 1.72-1.90 (m, 2H ), 2.61-2.79 (m, 3H), 4.53 (d, J = 17.4 Hz), 4.75-4.93 (m, 2H), 5.45-5.52 (m, 1H), 7.51-7.60 (m, 3H), 7.65- 7.81 (m, 3H), 8.02-8.05 (m, 2H), 8.18-8.26 (m, 2H), 8.80 (s, 1H), 9.11-9.12 (m, 1H)
IR (KBr) 3419, 3159, 2938, 2861, 1593, 1565, 1509, 1493, 1360, 1321, 1170, 1146, 1057, 994, 909, 841, 796, 754, 634, 594, 494 cm -1
MS (ESI) m / z 485.2 [M + H].
Other heteroarenesulfonylated quinaalkaloid catalysts represented by the following formulas (6) and (7) can also be synthesized. Hereinafter, each identification result is shown under each formula.

1H NMR (300 MHz, CDCl3) δ 0.83-0.91 (m, 1H), 1.24 (s, 1H), 1.54-1.68 (m, 3H), 2.26 (s, 1H), 2.56-2.85 (m, 4H), 3.15-3.38 (m, 1H), 4.33 (d, J = 10.5 Hz, 1H), 4.83-5.10 (m, 3H) 5.55-5.70 (m, 1H), 6.61-6.78 (m, 1H), 7.07-7.27 (m, 2H), 7.45-7.74 (m, 2H), 8.02-8.19 (m, 2H), 8.45 (s, 1H), 8.78 (s, 1H)
IR(KBr) 3160, 2935, 2860, 1593, 1508, 1493, 1360, 1322, 1169, 1146, 1029, 915, 789, 712, 594, 494 cm-1
MS(ESI) m/z 440.2 [M+H].
1 H NMR (300 MHz, CDCl 3 ) δ 0.83-0.91 (m, 1H), 1.24 (s, 1H), 1.54-1.68 (m, 3H), 2.26 (s, 1H), 2.56-2.85 (m, 4H ), 3.15-3.38 (m, 1H), 4.33 (d, J = 10.5 Hz, 1H), 4.83-5.10 (m, 3H) 5.55-5.70 (m, 1H), 6.61-6.78 (m, 1H), 7.07 -7.27 (m, 2H), 7.45-7.74 (m, 2H), 8.02-8.19 (m, 2H), 8.45 (s, 1H), 8.78 (s, 1H)
IR (KBr) 3160, 2935, 2860, 1593, 1508, 1493, 1360, 1322, 1169, 1146, 1029, 915, 789, 712, 594, 494 cm -1
MS (ESI) m / z 440.2 [M + H].

1H NMR (300 MHz, CDCl3) δ 0.78-0.90 (m, 1H), 1.25 (s, 1H), 1.57-1.68 (m, 2H), 2.27 (s, 1H), 2.69-2.93 (m, 4H), 3.16-3.39 (m, 2H), 4.51 (d, J = 10.8 Hz, 1H), 4.83-4.97 (m, 2H), 5.24 (d, J = 10.5 Hz, 1H), 5.60-5.71 (m, 1H), 7.03 (s, 1H), 7.27-7.34 (m, 3H), 7.47-7.75 (m, 2H), 7.94-8.36 (m, 2H), 8.62 (s, 1H), 8.76 (s, 1H)
IR(KBr) 3159, 2938, 2866, 1593, 1565, 1508, 1495, 1345, 1321, 1170, 1057, 990, 839, 755, 630, 596, 493 cm-1
MS(ESI) m/z 435.6 [M+H].

(第2実施形態)β-アミノカルボニル化合物の製造方法
次に、上記した化合物を触媒として用いるマンニッヒ反応によるβ-アミノカルボニル化合物の製造方法について説明する。
β-アミノカルボニル化合物は、医薬品、農薬などの基本骨格として重要な化合物であり、この化合物としては、例えば、AG-041R等が挙げられる。特に4置換不斉炭素を有するβ-アミノカルボニル化合物の合成は困難とされているが、本発明のヘテロアレーンスルホニル化キナアルカロイドアミン触媒を用いることで、ケチミン類へのマロン酸モノチオエステルの脱炭酸型マンニッヒ反応が、高収率・高エナンチオ選択的に進行する。
例えば、従来の触媒による反応生成物の立体選択性が30%ee程度であったものを80%ee以上とすることができる。 これは、上記したキナアルカロイドアミン誘導体では、スルホンアミドのアミド水素と、ヘテロアリール基のヘテロ原子との分子内水素結合が形成されることで、分子内に不斉空間が存在することが要因であると考えられる。
1 H NMR (300 MHz, CDCl 3 ) δ 0.78-0.90 (m, 1H), 1.25 (s, 1H), 1.57-1.68 (m, 2H), 2.27 (s, 1H), 2.69-2.93 (m, 4H ), 3.16-3.39 (m, 2H), 4.51 (d, J = 10.8 Hz, 1H), 4.83-4.97 (m, 2H), 5.24 (d, J = 10.5 Hz, 1H), 5.60-5.71 (m, 1H), 7.03 (s, 1H), 7.27-7.34 (m, 3H), 7.47-7.75 (m, 2H), 7.94-8.36 (m, 2H), 8.62 (s, 1H), 8.76 (s, 1H)
IR (KBr) 3159, 2938, 2866, 1593, 1565, 1508, 1495, 1345, 1321, 1170, 1057, 990, 839, 755, 630, 596, 493 cm -1
MS (ESI) m / z 435.6 [M + H].

Second Embodiment Method for Producing β-Aminocarbonyl Compound Next, a method for producing a β-aminocarbonyl compound by the Mannich reaction using the above compound as a catalyst will be described.
The β-aminocarbonyl compound is an important compound as a basic skeleton for pharmaceuticals, agricultural chemicals, and the like, and examples of this compound include AG-041R. In particular, it is considered difficult to synthesize β-aminocarbonyl compounds having a 4-substituted asymmetric carbon, but by using the heteroarenesulfonylated quinaalkaloid amine catalyst of the present invention, decarboxylation of malonic acid monothioester to ketimines. Type Mannich reaction proceeds with high yield and high enantioselectivity.
For example, a conventional product having a stereoselectivity of about 30% ee can be made 80% ee or more. This is because the quinaalkaloid amine derivative described above has an asymmetric space in the molecule due to the formation of an intramolecular hydrogen bond between the amide hydrogen of the sulfonamide and the heteroatom of the heteroaryl group. It is believed that there is.

ヘテロアリール基が8−キノリル基であるキナアルカロイドアミンを触媒として用いたケチミノイサチンに対するマンニッヒ反応によるβ-アミノカルボニル化合物の製造方法について説明する。   A method for producing a β-aminocarbonyl compound by a Mannich reaction on ketiminoisatin using a quinaalkaloid amine whose heteroaryl group is an 8-quinolyl group as a catalyst will be described.

スリ付き試験管に、触媒として、8-キノリルスルホニルシンコニジンアミン触媒(3.7 mg, 0.079 mmol)を加えて窒素置換をした後、N-Boc-1-メチル-2-オキソインドリン(10 mg, 0.038 mmol)、S-フェニルマロン酸ハーフチオエステル(16.5 mg, 0.84 mmol)を加えた。その後、シクロペンチルメチルエーテル(0.5 ml)を溶媒として加え室温下で48時間撹拌した。その後、減圧下で溶媒を留去した。 そして、シリカゲルクロマトグラフィー(hexane/ethyl acetate=80/20)により精製を行い、次式(8)で表わされる生成物(14.1 mg, 90%, 83% ee)を得た。   After adding 8-quinolylsulfonyl cinchonidine amine catalyst (3.7 mg, 0.079 mmol) as a catalyst in a test tube with a pickle and replacing with nitrogen, N-Boc-1-methyl-2-oxoindoline (10 mg, 0.038 mmol), S-phenylmalonic acid half thioester (16.5 mg, 0.84 mmol) was added. Thereafter, cyclopentyl methyl ether (0.5 ml) was added as a solvent, and the mixture was stirred at room temperature for 48 hours. Thereafter, the solvent was distilled off under reduced pressure. The product was purified by silica gel chromatography (hexane / ethyl acetate = 80/20) to obtain a product (14.1 mg, 90%, 83% ee) represented by the following formula (8).


以下、この得られた化合物のNMR、IR、MS(ESI)による同定結果を示す。
1H NMR (300 MHz, CDCl3) δ1.24 (s, 9H), 2.80 (d, J = 14.7 Hz, 1H), 3.23 (d, J = 14.7 Hz, 1H), 3.27 (s, 1H), 6.28 (s, 1H), 6.88 (d, J = 7.8 Hz, 1H), 7.08 (t, J= 6.9 Hz, 1H), 7.29-7.36 (m, 4H), 7.43-7.45 (m, 3H)
IR (KBr) 3330, 2972, 1726, 1702, 1616, 1472, 1366, 1252, 1166, 1020, 748, 680 cm-1
MS(ESI) m/z 435.55 [M + Na]+
HRMS (ESI) calcd. for [C22H24N2O4S+Na]+: 435.1354, Found: 435.1360

なお、開発した8-キノリルスルホニルシンコニジンアミン触媒の代わりに、一般的なベンゼンスルホニルシンコニジンアミン触媒を用いて、同様の反応を行うと、収率75%、エナンチオ過剰率25% eeで生成物が得られることからも、従来触媒からの優位な効果が得られていると判断できる。また、もちいるN-Boc-2-オキソインドリンは、実施形態3に示すように様々な置換基R1を有するイミンが使用でき、マロン酸ハーフチオエステルも様々な化合物が使用可能である。
The identification results of the obtained compound by NMR, IR and MS (ESI) are shown below.
1 H NMR (300 MHz, CDCl 3 ) δ1.24 (s, 9H), 2.80 (d, J = 14.7 Hz, 1H), 3.23 (d, J = 14.7 Hz, 1H), 3.27 (s, 1H), 6.28 (s, 1H), 6.88 (d, J = 7.8 Hz, 1H), 7.08 (t, J = 6.9 Hz, 1H), 7.29-7.36 (m, 4H), 7.43-7.45 (m, 3H)
IR (KBr) 3330, 2972, 1726, 1702, 1616, 1472, 1366, 1252, 1166, 1020, 748, 680 cm- 1
MS (ESI) m / z 435.55 [M + Na] +
HRMS (ESI) calcd. For [C 22 H 24 N 2 O 4 S + Na] + : 435.1354, Found: 435.1360

In addition, instead of the developed 8-quinolylsulfonyl cinchonidine amine catalyst, when a similar reaction was performed using a general benzenesulfonyl cinchonidine amine catalyst, a yield of 75% and an enantio excess ratio of 25% ee were produced. From the fact that the product can be obtained, it can be judged that a superior effect from the conventional catalyst is obtained. As N-Boc-2-oxoindoline used, imines having various substituents R 1 can be used as shown in Embodiment 3, and various compounds can also be used as malonic acid half thioesters.

(第3実施形態)
次式(9)で表わされるマンニッヒ反応によりβ-アミノカルボニル化合物の製造を行った。
(Third embodiment)
A β-aminocarbonyl compound was produced by a Mannich reaction represented by the following formula (9).


下記表1の実施例中EntryNo.1では、N-Boc-2-オキソインドリンのR1としてメチル基を、マロン酸ハーフチオエステルのRとしてフェニル基を用いて実施することにより収率(Yield)90%,エナンチオ過剰率83% eeで生成物が得られた。
下記表1のEntryNo.2から16に示した置換基R1とRとを有するN-Boc-2-オキソインドリン及びマロン酸ハーフチオエステルを用いてEntryNo.1と同様にして実施することにより各EntryNo.に示す収率及びエナンチオ過剰率で生成物が得られた。
In Entry No. 1 in the examples of Table 1 below, the yield (Yield) is obtained by carrying out using a methyl group as R 1 of N-Boc-2-oxoindoline and a phenyl group as R 2 of malonic acid half thioester. The product was obtained with 90%, enantio excess 83% ee.
By carrying out in the same manner as Entry No. 1 using N-Boc-2-oxoindoline and malonic acid half thioester having substituents R 1 and R 2 shown in Entry No. 2 to 16 shown in Table 1 below, The product was obtained in the yield and enantiomeric excess shown in Entry No.

なお、表1中、Meはメチル基を示し、Etはエチル基を示し、iPrはイソプロピル基を示し、Phはフェニル基を示し、Allyl はアリル基を示し、Bnはベンジル基を示し、t−Buはターシャルブチル基を示し、Yieldは収率を示し、Eeは、エナンチオ過剰率を示す。 In Table 1, Me represents a methyl group, Et represents an ethyl group, iPr represents an isopropyl group, Ph represents a phenyl group, Allyl represents an allyl group, Bn represents a benzyl group, t- Bu represents a tertiary butyl group, Yield represents the yield, and Ee represents the enantio excess.

[参考例1]生理活性物質AG-041Rの合成
実施例3で合成した化合物を用い、次のようにして次式の合成的変換を行うことで逆流性食道炎、胃潰瘍の改善治療候補薬であるAG-041Rを合成することが可能である。
脱炭酸付加生成物を得た後に、マグネシウムメトキシドと反応させることで、エステル交換を行い、ヘキサフルオロイソプロピルアルコール(HFIP)にて脱Boc保護を行い、得られたアミンに対してパラトルエンイソシアナートを反応させることで、尿素誘導体が合成できた。この尿素誘導体は、結晶性が高く、ヘキサン、酢酸エチル中で再結晶を行うことにより、光学的に純粋な尿素誘導体へ変換できた。その後水酸化カリウムを用いて加水分解を行った後パラトルイジンと縮合することで、簡便に光学的に純粋なAG-041Rに変換することが可能であった。
[Reference Example 1] Synthesis of physiologically active substance AG-041R By using the compound synthesized in Example 3 and performing synthetic conversion of the following formula as follows, it is a candidate drug for the treatment of reflux esophagitis and gastric ulcer. It is possible to synthesize a certain AG-041R.
After obtaining the decarboxylated addition product, transesterification is performed by reacting with magnesium methoxide, de-Boc protection is performed with hexafluoroisopropyl alcohol (HFIP), and para-toluene isocyanate is obtained for the obtained amine. By reacting, a urea derivative could be synthesized. This urea derivative had high crystallinity and could be converted to an optically pure urea derivative by recrystallization in hexane and ethyl acetate. Subsequent hydrolysis with potassium hydroxide followed by condensation with paratoluidine enabled easy conversion to optically pure AG-041R.

Claims (4)

シンコナアルカロイドの窒素原子上にヘテロアリールスルホニル基を有し、スルホンアミドのアミド水素とヘテロ原子とが分子内水素結合した、次式(3)で表わされることを特徴とするヘテロアレーンスルホニル化キナアルカロイドアミン化合物。


On the nitrogen atom of the cinchona alkaloids has a heteroarylsulfonyl group, an amide hydrogen and hetero atoms of the sulfonamide has intramolecular hydrogen bond, wherein the to Ruhe Teroa lanes sulphonyl that represented by the following formula (3) Quina alkaloid amine compounds.


シンコナアルカロイドの窒素原子上にヘテロアリールスルホニル基を有し、スルホンアミドのアミド水素とヘテロ原子とが分子内水素結合した、次式(4)で表わされることを特徴とするヘテロアレーンスルホニル化キナアルカロイドアミン化合物。
On the nitrogen atom of the cinchona alkaloids has a heteroarylsulfonyl group, an amide hydrogen and hetero atoms of the sulfonamide has intramolecular hydrogen bond, wherein the to Ruhe Teroa lanes sulphonyl that represented by the following formula (4) Quina alkaloid amine compounds.
シンコナアルカロイドの窒素原子上にヘテロアリールスルホニル基を有し、スルホンアミドのアミド水素とヘテロ原子とが分子内水素結合した、次式(6)で表わされることを特徴とするヘテロアレーンスルホニル化キナアルカロイドアミン化合物。
On the nitrogen atom of the cinchona alkaloids has a heteroarylsulfonyl group, an amide hydrogen and hetero atoms of the sulfonamide has intramolecular hydrogen bond, wherein the to Ruhe Teroa lanes sulphonyl that represented by the following formula (6) Quina alkaloid amine compounds.
シンコナアルカロイドの窒素原子上にヘテロアリールスルホニル基を有し、スルホンアミドのアミド水素とヘテロ原子とが分子内水素結合した、次式(7)で表わされることを特徴とするヘテロアレーンスルホニル化キナアルカロイドアミン化合物。
On the nitrogen atom of the cinchona alkaloids has a heteroarylsulfonyl group, an amide hydrogen and hetero atoms of the sulfonamide has intramolecular hydrogen bond, wherein the to Ruhe Teroa lanes sulphonyl that represented by the following formula (7) Quina alkaloid amine compounds.
JP2011263235A 2011-12-01 2011-12-01 Heteroarenesulfonylated quinaalkaloid amine compounds Expired - Fee Related JP5943319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011263235A JP5943319B2 (en) 2011-12-01 2011-12-01 Heteroarenesulfonylated quinaalkaloid amine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011263235A JP5943319B2 (en) 2011-12-01 2011-12-01 Heteroarenesulfonylated quinaalkaloid amine compounds

Publications (2)

Publication Number Publication Date
JP2013112673A JP2013112673A (en) 2013-06-10
JP5943319B2 true JP5943319B2 (en) 2016-07-05

Family

ID=48708536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011263235A Expired - Fee Related JP5943319B2 (en) 2011-12-01 2011-12-01 Heteroarenesulfonylated quinaalkaloid amine compounds

Country Status (1)

Country Link
JP (1) JP5943319B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105130873A (en) * 2015-08-06 2015-12-09 华东师范大学 3-difluoroalkyl substituted amino oxindole derivative and synthesis method thereof
CN107118149A (en) * 2017-05-19 2017-09-01 遵义医学院 A kind of 3 amino 3,3 ' two replace the preparation method of oxoindole derivative

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009015485A1 (en) * 2007-08-01 2009-02-05 University Health Network Cyclic inhibitors of carnitine palmitoyltransferase and treating cancer
KR101098335B1 (en) * 2008-07-18 2011-12-26 성균관대학교산학협력단 Cinchona-based bifucntional organocatalysts and method for preparing chiral hemiesters by asymmetric ring opening reaction of meso-cyclic acid anhydrides using the same
EP2332895A1 (en) * 2009-12-09 2011-06-15 The Provost, Fellows and Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth near Dublin Kinetic Resolution
WO2011078172A1 (en) * 2009-12-25 2011-06-30 株式会社カネカ Process for production of optically active 3-substituted glutaric acid monoamide

Also Published As

Publication number Publication date
JP2013112673A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
Wang et al. Enantioselective β-hydroxy thioesters formation via decarboxylative aldol reactions of malonic acid half thioesters with aldehydes promoted by chloramphenicol derived sulfonamides
JP4194865B2 (en) Process for producing enantiomerically enriched arylaminopropanol
CN111943929B (en) 2,4-diaminopyridine nitroxides as catalysts and their use in the ring opening of azlactone alcohols
CN102397793A (en) A kind of cinchona base-squaramide hydrogen bond catalyst, its synthesis method and its application in asymmetric reaction
JP6048762B2 (en) Process for producing optically active β-hydroxy-α-aminocarboxylic acid ester
JP5417560B2 (en) Method for producing optically active carboxylic acid ester
JP5943319B2 (en) Heteroarenesulfonylated quinaalkaloid amine compounds
JP4649645B2 (en) Process for producing optically active alcohol compounds
ES2545903T3 (en) Asymmetric urea compounds and process for producing asymmetric compounds by reaction of asymmetric addition of conjugate using said compounds as catalyst
CN113549062A (en) A large sterically hindered chiral quaternary ammonium salt phase transfer catalyst derived from cinchonadine and its synthesis method
JP2006521201A (en) Process for the production of enantiomerically enriched alcohols and amines
CN105152989B (en) A kind of preparation method of (1R,2R)-1-substituted phenyl-2-amino-1,3-propanediol
JP5622019B2 (en) Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst
KR20120127276A (en) Method for preparing chiral -amino nitrile using catalyst for strecker reaction
CN102241615A (en) Multifunctional chiral amine compound, preparation method and application thereof
JP5004138B2 (en) Process for producing β-hydroxycarbonyl compound
KR101416920B1 (en) Method for preparation of δ-nitro ketone derivatives
KR101020486B1 (en) Novel 1,3-butadien-2-yl methyl amine derivative and preparation method thereof using organic indium reagent
CN113754597B (en) Benzhydryl piperazine compound containing linear olefin and preparation method thereof
JP5360608B2 (en) PROLINAMIDE DERIVATIVE, ORGANIC CATALYST COMPRISING SALT OF THE SAME AND ACID, AND METHOD FOR PRODUCING β-HYDROXYcarbonyl COMPOUND USING THE ORGANIC CATALYST
JP6906227B2 (en) Halogen bond donor / organic base complex compound and acid base complex catalyst
CN109081785B (en) Synthetic method of fluorine-containing glycine ester derivative
JP2007031344A (en) Process for producing optically active β-amino alcohol compound and catalyst
KR101404613B1 (en) Method for preparation of chiral a-amino ketone derivatives
JP2004339205A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE N-ARYL-beta-AMINO ACID COMPOUND

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160516

R150 Certificate of patent or registration of utility model

Ref document number: 5943319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees