JP5923023B2 - Mixed powder for powder metallurgy and method for producing sintered material - Google Patents
Mixed powder for powder metallurgy and method for producing sintered material Download PDFInfo
- Publication number
- JP5923023B2 JP5923023B2 JP2012226754A JP2012226754A JP5923023B2 JP 5923023 B2 JP5923023 B2 JP 5923023B2 JP 2012226754 A JP2012226754 A JP 2012226754A JP 2012226754 A JP2012226754 A JP 2012226754A JP 5923023 B2 JP5923023 B2 JP 5923023B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- mass
- sintered material
- impact value
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、粉末冶金によって焼結材料を得るため粉末冶金用混合粉末、およびこうした粉末冶金用混合粉末から得られる焼結材料に関するものであり、特に通常の焼結条件によっても高強度且つ高靭性を発揮する焼結材料を得るための粉末冶金用混合粉末、およびそのような焼結材料に関するものである。 The present invention relates to a powder mixture for powder metallurgy in order to obtain a sintered material by powder metallurgy, and a sintered material obtained from such a powder mixture for powder metallurgy, and particularly high strength and high toughness even under normal sintering conditions. The present invention relates to a mixed powder for powder metallurgy for obtaining a sintered material exhibiting the above, and such a sintered material.
鉄粉を主原料として用いて焼結材料を製造する粉末冶金においては、通常、前記主原料の粉末と、焼結材料の物性を向上させるための副原料粉末(黒鉛粉末、合金成分粉末など)と、潤滑剤などを含む混合粉末が用いられる。こうした粉末冶金による焼結材料は、材料歩留まりがよいこと、低コストで部品を製造できることから広く利用されている。また、焼結材料中には空孔が存在するため、部品の軽量化が可能であるという利点もある。しかしながら、焼結材料中に存在する空孔は、上記した特性を発揮させる反面、通常の鋼材と比較して焼結材料の衝撃値(靭性)や引張強度が低下する原因になる。 In powder metallurgy, which uses iron powder as a main raw material to produce a sintered material, usually the main raw material powder and auxiliary raw material powder (such as graphite powder and alloy component powder) for improving the physical properties of the sintered material. And a mixed powder containing a lubricant or the like. Sintered materials by powder metallurgy are widely used because of their good material yield and the ability to manufacture parts at low cost. In addition, since pores exist in the sintered material, there is an advantage that the weight of the part can be reduced. However, the pores present in the sintered material exhibit the above-described characteristics, but cause the impact value (toughness) and tensile strength of the sintered material to be lower than that of a normal steel material.
焼結材料の衝撃値や引張強度を向上させるためには、(1)焼結材料の密度を高くすること、(2)焼結時の温度を高くすること、(3)焼結材料を合金化させること、(4)光揮焼入れ処理や、浸炭焼入れ焼戻し等の熱処理を施すこと、等の手段が有効であることが知られている。しかしながら、これらの処理にはそれぞれ一長一短があり、更なる改善が望まれているのが実状である。 In order to improve the impact value and tensile strength of the sintered material, (1) increase the density of the sintered material, (2) increase the temperature during sintering, and (3) alloy the sintered material with an alloy. It is known that means such as (4) a light-quenching quenching process and a heat treatment such as carburizing quenching and tempering are effective. However, each of these treatments has advantages and disadvantages, and the actual situation is that further improvement is desired.
上記した各手段のうち、焼結材料の密度を高くすることは、空孔が少なくなる方向に作用するので、衝撃値と引張強度が向上することが期待できる。しかしながら、焼結材料の密度を高くするには、特殊な成形方法を採用する必要がある。 Among the above-described means, increasing the density of the sintered material acts in the direction of decreasing the number of pores, so that it can be expected that the impact value and the tensile strength are improved. However, in order to increase the density of the sintered material, it is necessary to adopt a special molding method.
高密度化する方法の一つとして、粉末成形と熱間鍛造を組み合わせた粉末鍛造法が知られている。しかしながらこの方法では、特殊な設備が必要となり、生産コストが高くなるという欠点がある。高密度化する方法として、例えば特許文献1には、圧粉体を一旦成形した後、仮焼結し、その後もう一度成形(再圧縮)してから焼結(本焼結)する方法が開示されている。この方法においても、焼結材料を製造する工程がほぼ2倍となって、コストアップは避けられない。 As one of the methods for increasing the density, a powder forging method combining powder forming and hot forging is known. However, this method has a drawback that special equipment is required and the production cost is increased. As a method for increasing the density, for example, Patent Document 1 discloses a method in which a green compact is once molded, temporarily sintered, then molded again (recompressed), and then sintered (main sintering). ing. Even in this method, the process of manufacturing the sintered material is almost doubled, and an increase in cost is inevitable.
高密度化する方法として上記の他、加熱した状態で粉末を成形する温間成形や、金型に潤滑剤を塗布した状態で成形する型潤滑成形法も提案されているが、粉末や金型を加熱する装置が必要になり、或いは潤滑剤を金型に塗布する装置が必要となり(潤滑剤を金型に均一に塗布する技術も必要)、いずれもコストアップとなる。また、成形圧力を上げることによって、高密度化することも考えられるが、成形機(プレス)の能力の面から限界がある。 In addition to the above-mentioned methods for increasing the density, warm molding in which powder is molded in a heated state and mold lubrication molding in which a lubricant is applied to a mold are also proposed. Or a device for applying the lubricant to the mold (a technique for uniformly applying the lubricant to the die is also required), which increases the cost. Further, it is conceivable to increase the density by increasing the molding pressure, but there is a limit in terms of the capacity of the molding machine (press).
粉末(鉄粉)粒子同士の結合を高めて高密度化を図るためには、焼結温度が高い方が良いことは容易に予想できる。焼結温度を高くすること(高温焼結)は、粉末間同士の元素が相互に拡散して、一体化が図れやすくなるからである。その結果として、焼結材料の衝撃値(靭性)や強度が向上することになる。こうした観点から、1180℃以上の高温で焼結する技術も提案されている(例えば特許文献2)。 In order to increase the bonding between powder (iron powder) particles and increase the density, it can be easily predicted that the higher sintering temperature is better. Increasing the sintering temperature (high temperature sintering) is because elements between the powders diffuse to each other and integration becomes easy. As a result, the impact value (toughness) and strength of the sintered material are improved. From such a viewpoint, a technique for sintering at a high temperature of 1180 ° C. or higher has also been proposed (for example, Patent Document 2).
高温焼結を実施するためには、通常1140℃以上の高温雰囲気を形成する設備が必要となるが、こうした設備としては、プッシャー式焼結炉や真空焼結炉などの特殊な設備が知られている。しかしながら、これらの設備は、設備コストが極めて高くなるという欠点がある。また、通常の焼結設備を採用する場合と比べて、生産性が低くなるという問題がある。 In order to carry out high-temperature sintering, equipment that forms a high-temperature atmosphere of 1140 ° C. or higher is usually required, and special equipment such as a pusher-type sintering furnace or a vacuum sintering furnace is known as such equipment. ing. However, these facilities have a drawback that the facility cost is extremely high. In addition, there is a problem that productivity is lowered as compared with the case of employing a normal sintering facility.
こうしたことから、上記のような特殊な設備を用いることなく、メッシュベルト焼結炉のような通常の焼結設備を用い、1130℃以下の通常の焼結温度であっても優れた特性(衝撃値、強度)が発揮できる焼結材料の実現が望まれている。 Therefore, without using special equipment as described above, using ordinary sintering equipment such as a mesh belt sintering furnace, excellent characteristics (impact Realization of a sintered material capable of exhibiting value and strength is desired.
一方、焼結材料を合金化させる方法は、原料粉末の形態によって2通りに大別される。その一つは、鉄粉の製造段階(溶製工程)で強化元素を合金化させる方法(プレアロイ型鋼粉)である。また他の方法としては、ニッケル(Ni)、モリブデン(Mo)、銅(Cu)などの金属粉末を鉄粉に混合し、この混合粉末を焼結することによって、焼結材料を合金化させる方法(プレミックス法)である。後者の方法において、混合する金属粉末は純鉄粉に混合されるのが一般的であるが、予め合金化したプレアロイ型鋼粉に対して金属粉末を添加して原料粉末とされるようになっている。或は、これらの金属粉末の偏析を防止するという観点から、金属粉末に熱を加えることや、有機バインダーによって鉄粉表面に金属粉末を付着させた鉄粉も提案されている。 On the other hand, the method of alloying the sintered material is roughly divided into two types depending on the form of the raw material powder. One of them is a method (prealloy type steel powder) in which a strengthening element is alloyed in the iron powder production stage (melting process). As another method, a metal powder such as nickel (Ni), molybdenum (Mo), or copper (Cu) is mixed with iron powder, and the mixed powder is sintered to alloy the sintered material. (Premix method). In the latter method, the metal powder to be mixed is generally mixed with pure iron powder, but the metal powder is added to the pre-alloyed steel powder that has been alloyed in advance to become a raw material powder. Yes. Alternatively, from the viewpoint of preventing segregation of these metal powders, iron powder in which heat is applied to the metal powder or the metal powder is adhered to the surface of the iron powder with an organic binder has been proposed.
プレアロイ型鋼粉を用いて焼結材料を製造した場合には、焼結材料の強度は基本的に向上する傾向を示す。しかしながら、強度を向上させることはそれに反比例して衝撃値は却って低下するのが一般的である。またニッケル、モリブデン、銅などの金属粉末を鉄粉に混合した混合粉末を用いた場合には、焼結時にこれらの合金元素が鉄粉に拡散し、合金強化されて焼結材料の強度は向上することになる。しかしながら、この場合にも衝撃値が低下する傾向を示す。 When a sintered material is manufactured using prealloyed steel powder, the strength of the sintered material basically shows a tendency to improve. However, increasing the strength generally decreases the impact value in inverse proportion to it. In addition, when using a mixed powder in which a metal powder such as nickel, molybdenum or copper is mixed with iron powder, these alloy elements diffuse into the iron powder during sintering, strengthening the alloy and improving the strength of the sintered material. Will do. However, even in this case, the impact value tends to decrease.
合金化による特性改善の傾向は、合金化される元素の種類によっても若干異なり、4質量%の割合でNi粉末を混合した原料粉末(混合粉末)を用いたものでは、強度および衝撃値の両特性が優れたものとなる。こうした混合粉末の組成として、4%Ni拡散型混合粉末(化学成分組成:4%Ni−1.5%Cu−0.5%Mo)が知られている。こうした混合粉末では、Niが均一にならず、Ni濃度の高い部分が残留オーステナイトとなるため、衝撃値も優れたものとなる。この混合粉末を用いて得られる焼結材料では、衝撃値(シャルピー衝撃値):17J/cm2以上、引張強度:1100MPa以上の特性を発揮することになる。しかしながら、良好な特性を発揮させるためには、高純度で高価格のNi粉末を多量に使用する必要があり、Ni粉末の配合量を低減することは難しく、Ni粉末の配合量をできるだけ低減することが望まれている。 The tendency to improve characteristics by alloying varies slightly depending on the type of element to be alloyed, and in the case of using raw material powder (mixed powder) in which Ni powder is mixed at a ratio of 4% by mass, both strength and impact value are obtained. Excellent characteristics. As a composition of such a mixed powder, 4% Ni diffusion type mixed powder (chemical component composition: 4% Ni-1.5% Cu-0.5% Mo) is known. In such a mixed powder, Ni does not become uniform, and a portion with a high Ni concentration becomes retained austenite, so that the impact value is also excellent. In the sintered material obtained using this mixed powder, the impact value (Charpy impact value): 17 J / cm 2 or more and the tensile strength: 1100 MPa or more are exhibited. However, in order to exhibit good characteristics, it is necessary to use a large amount of high-purity and high-priced Ni powder. It is difficult to reduce the amount of Ni powder, and the amount of Ni powder is reduced as much as possible. It is hoped that.
強度を高める方法としては、光揮焼入れ処理や、浸炭焼入れ焼戻し処理等の熱処理を施すことも有効である。こうした熱処理を施すことによって、金属組織はマルテンサイトとなり、引張強度は向上することになる。しかしながら、熱処理を施すことは強度向上に有効であるものの、焼結材料の衝撃値(靭性)を低下させることになる。特に浸炭焼入れ焼戻し処理を施した場合には、衝撃値の低下が顕著に現われる。浸炭焼入れ焼き戻し処理による衝撃値の低下を防止する方法としては、上記のような4質量%Ni拡散型混合粉末を原料粉末として用いる他はなく、それ以外で有効な方法は確立されていないのが実情である。 As a method for increasing the strength, it is also effective to perform a heat treatment such as a fluoric quenching process or a carburizing quenching tempering process. By performing such heat treatment, the metal structure becomes martensite and the tensile strength is improved. However, although heat treatment is effective for improving the strength, the impact value (toughness) of the sintered material is reduced. In particular, when carburizing, quenching, and tempering are performed, the impact value is significantly reduced. As a method for preventing a decrease in impact value due to carburizing, quenching and tempering, there is no use other than the 4 mass% Ni diffusion mixed powder as a raw material powder, and no other effective method has been established. Is the actual situation.
本発明はこうした状況の下でなされたものであって、その目的は、密度を高めるための特別な成形方法や装置を用いることなく、焼結温度が高くなる特殊な焼結を必要とせず、従来から使用されている一般的な設備を使用し、且つ高価なNi粉末の混合量を抑えることが可能であり、安価で高強度・高靭性の焼結材料を得ることができる粉末冶金用混合粉末、およびこうした混合粉末を用い、浸炭焼入れ焼戻し後であっても良好な強度および靭性を発揮できる焼結材料を提供することにある。 The present invention has been made under these circumstances, and its purpose is not to use a special molding method or apparatus for increasing the density, without requiring special sintering that increases the sintering temperature, Powder metallurgy mixing that uses conventional facilities and can suppress the amount of expensive Ni powder mixed, and can obtain sintered materials with high strength and toughness at low cost. An object of the present invention is to provide a sintered material that can exhibit good strength and toughness even after carburizing, quenching, and tempering using the powder and the mixed powder.
上記課題を解決した本発明の粉末冶金用混合粉末は、Moを0.6〜1.0質量%で含有し且つ粒径が200μm以下であるプレアロイ型鋼粉と、Ni粉と、黒鉛粉とを含み、これらプレアロイ型鋼粉、Ni粉および黒鉛粉の合計100質量%に対して、Ni粉の割合が2.3〜3.0質量%、黒鉛粉の割合が0.2〜0.4質量%であることを特徴とする。 The mixed powder for powder metallurgy of the present invention that has solved the above-mentioned problems comprises a pre-alloyed steel powder containing Mo in an amount of 0.6 to 1.0% by mass and having a particle size of 200 μm or less, Ni powder, and graphite powder. In addition, the ratio of Ni powder is 2.3 to 3.0 mass% and the ratio of graphite powder is 0.2 to 0.4 mass% with respect to the total 100 mass% of these pre-alloyed steel powder, Ni powder and graphite powder. It is characterized by being.
一方、上記目的を達成した本発明の焼結材料は、Moを0.6〜1.0質量%で含有し且つ粒径が200μm以下であるプレアロイ型鋼粉と、Ni粉と、黒鉛粉とを含み、これらプレアロイ型鋼粉、Ni粉および黒鉛粉の合計100質量%に対して、Ni粉の割合が2.3〜3.0質量%、黒鉛粉の割合が0.2質量%以上である粉末冶金用混合粉末を、焼結および浸炭焼入れ焼戻しした焼結材料であり、前記プレアロイ型鋼粉の最大粒径D(μm)と黒鉛粉量(質量%)が下記(1)式の関係を満足することを特徴とする。
黒鉛粉量(質量%)≦−2.0×10-3×D(μm)+0.85 …(1)
On the other hand, the sintered material of the present invention that has achieved the above object comprises prealloy-type steel powder containing Mo in an amount of 0.6 to 1.0% by mass and having a particle size of 200 μm or less, Ni powder, and graphite powder. A powder having a Ni powder ratio of 2.3 to 3.0 mass% and a graphite powder ratio of 0.2 mass% or more with respect to a total of 100 mass% of the pre-alloyed steel powder, Ni powder and graphite powder. A sintered material obtained by sintering and carburizing, quenching, and tempering a mixed powder for metallurgy, and the maximum particle size D (μm) of the pre-alloyed steel powder and the amount of graphite powder (mass%) satisfy the relationship of the following formula (1). It is characterized by that.
Graphite powder amount (% by mass) ≦ −2.0 × 10 −3 × D (μm) +0.85 (1)
本発明によれば、所定量のMoをプレアロイ型として鉄粉に含有させると共に、これにNi粉末の混合量を低減した粉末冶金用混合粉末とすることによって、安価で高強度・高靭性の焼結材料を得ることができる粉末冶金用混合粉末が実現でき、こうした混合粉末を用いて焼結材料を製造することによって、浸炭焼入れ焼戻し後であっても良好な強度および靭性を発揮できる焼結材料が得られる。 According to the present invention, a predetermined amount of Mo is contained in iron powder as a pre-alloy type, and a mixed powder for powder metallurgy in which the amount of Ni powder is reduced is reduced to a low-cost, high-strength, high-toughness firing. Sintered material that can produce a mixed powder for powder metallurgy capable of obtaining a binder, and can exhibit good strength and toughness even after carburizing and tempering by producing a sintered material using such a mixed powder Is obtained.
本発明者らは、上記目的を達成できるような原料粉末(粉末冶金用混合粉末)について、様々な角度から検討した。その結果、所定量のMoを鉄粉に予め合金化させてプレアロイ型鋼粉とし、これにNi粉添加量を低減した混合粉末とすれば、所望の特性を発揮する焼結材料を得ることのできる粉末冶金用混合粉末となり得ることを見出し、本発明を完成した。また、本発明の混合粉末では、基本的にエンドサーミックガス中でも酸化しない化学成分組成が選択されることになり、通常使用される焼結ガスや浸炭用ガスが利用できるという利点もある。以下、本発明で規定する各要件について説明する。 The present inventors examined raw material powder (mixed powder for powder metallurgy) that can achieve the above object from various angles. As a result, if a predetermined amount of Mo is prealloyed with iron powder to form a pre-alloyed steel powder, and a mixed powder with a reduced amount of Ni powder added thereto, a sintered material exhibiting desired characteristics can be obtained. The present invention was completed by finding that it could be a mixed powder for powder metallurgy. In the mixed powder of the present invention, a chemical component composition that does not oxidize even in an endothermic gas is basically selected, and there is an advantage that a commonly used sintering gas or carburizing gas can be used. Hereinafter, each requirement prescribed | regulated by this invention is demonstrated.
本発明の混合粉末は、合金成分としてMoを0.6〜1.0質量%含有する(鋼粉中の割合)プレアロイ型鋼粉を含むものである。Moは強化元素の中で、鉄粉の圧縮性を比較的悪化させない元素であり、プレアロイ型鋼粉の強化元素として適している。こうしたMoは、焼結材料の強度向上に効果がある。特に、浸炭焼入れ焼戻し等の熱処理を施す場合には、その効果が顕著になる。 The mixed powder of the present invention contains pre-alloyed steel powder containing 0.6 to 1.0 mass% of Mo as an alloy component (ratio in steel powder). Mo is an element that does not deteriorate the compressibility of iron powder relatively among the strengthening elements, and is suitable as a strengthening element for pre-alloyed steel powder. Such Mo is effective in improving the strength of the sintered material. In particular, when heat treatment such as carburizing, quenching and tempering is performed, the effect becomes remarkable.
本発明者らがMoについてその効果を確認したところ、プレアロイ型鋼粉にMoを0.6質量%以上の含有量で合金化したものでは、添加するNi粉の添加量が少なくなっても、優れた衝撃値を示す焼結材料が得られることを見出した。但し、Moの含有量が1.0質量%を超えると、衝撃値を却って低下させることや、コストアップにもなる。尚、Mo含有量の好ましい下限は0.7質量%以上であり、好ましい上限は0.9質量%以下である。 When the present inventors confirmed the effect about Mo, in what pre-alloy type steel powder alloyed Mo with content of 0.6 mass% or more, even if the addition amount of Ni powder to add decreases, it is excellent. It was found that a sintered material exhibiting a high impact value can be obtained. However, if the Mo content exceeds 1.0 mass%, the impact value is decreased and the cost is increased. In addition, the minimum with preferable Mo content is 0.7 mass% or more, and a preferable upper limit is 0.9 mass% or less.
本発明で用いるプレアロイ型鋼粉は、その粒径が200μm以下であることも重要な要件である。この粒径が細かい方が、得られた焼結材料の衝撃値が大きい値を示すものとなる。これまでの焼結材料の衝撃値(シャルピー衝撃値)は、17J/cm2以上となっているので、こうした特性を凌駕するためには、その粒径は200μm以下であることが必要である。この粒径は好ましくは180μm以下であり、より好ましくは150μm以下である。尚、「プレアロイ型鋼粉の粒径」とは、篩い目の大きさを意味し、例えば「粒径が200μm以下」とは、篩い目が200μmのメッシュを通過する粒径であることを意味する。また、「最大粒径」とは、粉末を通過させたメッシュの篩い目の大きさを意味する。 It is an important requirement that the prealloyed steel powder used in the present invention has a particle size of 200 μm or less. The finer the particle diameter, the larger the impact value of the obtained sintered material. Since the impact value (Charpy impact value) of the sintered material so far has been 17 J / cm 2 or more, in order to surpass these characteristics, the particle size needs to be 200 μm or less. This particle size is preferably 180 μm or less, more preferably 150 μm or less. The “particle size of the pre-alloyed steel powder” means the size of the sieve mesh, for example, “the particle size is 200 μm or less” means that the sieve mesh is a particle size that passes through a 200 μm mesh. . The “maximum particle size” means the size of the mesh sieve through which the powder has passed.
本発明で用いるプレアロイ型鋼粉は、合金成分としてMoを含み、残部は基本的に鉄および不可避不純物(例えば、0.3質量%以下のMn,Ni,Cu等)である。本発明でプレアロイ型鋼粉とは、Moを合金成分として含有する溶鋼から得られるプレアロイ型の鋼粉である。このプレアロイ型鋼粉は、通常、溶融した鋼をアトマイズ処理することによって製造される。 The prealloy type steel powder used in the present invention contains Mo as an alloy component, and the balance is basically iron and unavoidable impurities (for example, 0.3% by mass or less of Mn, Ni, Cu, etc.). In the present invention, the prealloy type steel powder is a prealloy type steel powder obtained from molten steel containing Mo as an alloy component. This pre-alloyed steel powder is usually produced by atomizing molten steel.
本発明の粉末冶金用混合粉末は、上記のようなプレアロイ型鋼粉と、Ni粉と、黒鉛粉とを含むものである。Ni粉は、焼結材料の引張強度および衝撃値を向上させる作用を発揮する。こうした効果は、Ni粉の割合が、プレアロイ型鋼粉、Ni粉および黒鉛粉の合計100質量%に対して2.3質量%以上で有効に発揮させる。しかしながら、Ni粉の割合が3.0質量%を超えると、コストアップとなる。換言すれば、Ni粉の割合(最終的に焼結材料中のNi含有量)が3.0質量%以下であってもNiによる特性向上効果が有効に達成されることになる。Ni粉の割合の好ましい下限は2.5質量%以上であり、好ましい上限は2.8質量%以下である。Ni粉の平均粒径については、通常2〜5μm程度(好ましくは2.5〜4.5μm程度)である。 The mixed powder for powder metallurgy according to the present invention includes the above prealloyed steel powder, Ni powder, and graphite powder. Ni powder exhibits the effect | action which improves the tensile strength and impact value of a sintered material. Such an effect is effectively exhibited when the proportion of Ni powder is 2.3% by mass or more with respect to 100% by mass in total of the pre-alloyed steel powder, Ni powder and graphite powder. However, when the proportion of Ni powder exceeds 3.0% by mass, the cost increases. In other words, even if the proportion of Ni powder (the Ni content in the sintered material finally) is 3.0% by mass or less, the effect of improving characteristics by Ni is effectively achieved. The preferable lower limit of the proportion of Ni powder is 2.5% by mass or more, and the preferable upper limit is 2.8% by mass or less. About the average particle diameter of Ni powder, it is about 2-5 micrometers normally (preferably about 2.5-4.5 micrometers).
一方、黒鉛粉は、鋼粉(母粉)中に拡散し、炭素となる。この炭素は焼結材料の強度を高める作用を発揮するが、衝撃値を低下させる傾向を示す。浸炭焼入れ処理を施した焼結材料では、材料表面の炭素量が高く、材料中心部とは異なり、濃度勾配を有することになる。本発明者らが、焼結材料の衝撃値と黒鉛粉の割合との関係について検討したところ、焼結材料において17J/cm2以上の衝撃値を確保するためには、黒鉛粉の割合は、プレアロイ型鋼粉、Ni粉および黒鉛粉の合計100質量%に対して0.4質量%以下とすればよいことが判明した。但し、黒鉛粉の割合が低くなりすぎると、強度向上効果が発揮されなくなるので(引張強さで1200MPa以上が好ましい)、0.2質量%以上とする必要がある。尚、黒鉛粉は、焼結材料中の炭素成分となるが、焼結時に鉄粉中の酸素と反応しCOガスとなるなど鉄粉中に全てが拡散されず、上記範囲(0.2〜0.4質量%)は、焼結材料中の炭素量では0.15〜0.37質量%程度となる。黒鉛粉の平均粒径については、通常2〜10μm程度(好ましくは2.5〜7.5μm程度)である。 On the other hand, graphite powder diffuses into steel powder (mother powder) and becomes carbon. This carbon exhibits the effect of increasing the strength of the sintered material, but tends to reduce the impact value. The sintered material subjected to the carburizing and quenching treatment has a high carbon content on the material surface and has a concentration gradient unlike the material center. When the present inventors examined the relationship between the impact value of the sintered material and the ratio of the graphite powder, in order to ensure an impact value of 17 J / cm 2 or more in the sintered material, the ratio of the graphite powder is: It has been found that the content may be 0.4% by mass or less with respect to a total of 100% by mass of the pre-alloyed steel powder, Ni powder and graphite powder. However, if the ratio of the graphite powder becomes too low, the effect of improving the strength is not exhibited (preferably the tensile strength is 1200 MPa or more), so it is necessary to set it to 0.2% by mass or more. Incidentally, the graphite powder becomes a carbon component in the sintered material, but does not completely diffuse into the iron powder, for example, it reacts with oxygen in the iron powder during the sintering and becomes CO gas, and the above range (0.2 to 0.4 mass%) is about 0.15 to 0.37 mass% in terms of the amount of carbon in the sintered material. About the average particle diameter of graphite powder, it is about 2-10 micrometers normally (preferably about 2.5-7.5 micrometers).
本発明の粉末冶金用混合粉末には、必要によって潤滑剤も配合される。この潤滑剤は圧粉体と金型との摩擦係数を低減することによって、型かじりや金型の損傷の発生を抑制する作用を発揮するものである。こうした潤滑剤としては、例えばエチレンビスステアリルアミド、ステアリン酸アミド、ステアリン酸亜鉛、ステアリン酸リチウム等が挙げられる。潤滑剤を含有するときの配合量は、混合粉末全体に対して0.2〜2.0質量%程度が好ましい。その配合量が0.2質量%未満では、潤滑剤による効果が発揮されなくなり、2.0質量%を超えると、焼結材料の強度が低下する虞がある。 If necessary, the mixed powder for powder metallurgy of the present invention is also blended with a lubricant. This lubricant exhibits the effect of suppressing the occurrence of mold galling and damage to the mold by reducing the coefficient of friction between the green compact and the mold. Examples of such lubricants include ethylene bisstearylamide, stearamide, zinc stearate, and lithium stearate. The blending amount when the lubricant is contained is preferably about 0.2 to 2.0% by mass with respect to the entire mixed powder. If the blending amount is less than 0.2% by mass, the effect of the lubricant is not exhibited, and if it exceeds 2.0% by mass, the strength of the sintered material may be reduced.
本発明者らは、プレアロイ型鋼粉の粒径と黒鉛粉の割合(黒鉛粉量)が、焼結材料の衝撃値にあたえる影響について検討した。その結果、焼結材料において、17J/cm2以上の衝撃値(シャルピー衝撃値)を確保するためには、プレアロイ型鋼粉の最大粒径D(μm:但し200μm以下)と黒鉛粉量(質量%)が下記(1)式の関係を満足するが良いことが判明した(後記図7参照)。この場合には、黒鉛粉量は0.4質量%よりも高くなっても良い(好ましくは0.6質量%以下)。
黒鉛粉量(質量%)≦−2.0×10-3×D(μm)+0.85 …(1)
The present inventors examined the influence of the particle diameter of pre-alloyed steel powder and the ratio of graphite powder (graphite powder amount) on the impact value of the sintered material. As a result, in order to ensure an impact value (Charpy impact value) of 17 J / cm 2 or more in the sintered material, the maximum particle diameter D (μm: 200 μm or less) of prealloy type steel powder and the amount of graphite powder (mass%) ) Satisfies the following equation (1) (see FIG. 7). In this case, the amount of graphite powder may be higher than 0.4% by mass (preferably 0.6% by mass or less).
Graphite powder amount (% by mass) ≦ −2.0 × 10 −3 × D (μm) +0.85 (1)
本発明の焼結材料は、上記のような粉末冶金用混合粉末を用いて、成形(圧粉体成形)、焼結および浸炭焼入れ焼戻しされて焼結材料とされるが、各工程における条件については、現状行われている通常の条件に従えばよく、特別な装置を必要としない。 The sintered material of the present invention is formed (green compact molding), sintered and carburized, quenched and tempered using the mixed powder for powder metallurgy as described above. However, it is only necessary to follow normal conditions currently used, and no special equipment is required.
例えば、圧粉体成形における圧力については、588〜686MPa程度である。焼結温度については、1050℃以上、1130℃以下であればよい。また、焼結・浸炭時における炉内雰囲気については、真空雰囲気や特殊なガス雰囲気に制御する必要はなく、通常使用される焼結ガスや浸炭用ガス(例えばRXガス)が適用できる。 For example, the pressure in compacting is about 588 to 686 MPa. The sintering temperature may be 1050 ° C. or higher and 1130 ° C. or lower. Further, the atmosphere in the furnace at the time of sintering and carburizing need not be controlled to a vacuum atmosphere or a special gas atmosphere, and usually used sintering gas and carburizing gas (for example, RX gas) can be applied.
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.
[実験1]
下記表1〜3の成分組成となるように、原料粉末をミキサーで混合して(30分)調製した混合粉末に対し、下記の条件で成形(圧粉体成形)、焼結、加工、浸炭焼き入れ焼戻し処理を行い、焼結材料(浸炭材)とした。得られた焼結材料の機械的特性(密度、シャルピー衝撃値、引張強さ、硬さ)を評価した。下記表1〜3においてプレアロイ型鋼粉中の合金成分(Mn,Ni,Mo)の含有量は、鋼粉中の含有量であり、添加材の割合は混合粉末全体に対する割合である(下記表4、6、8においても同じ)。また、混合粉末を調製するに際しては、潤滑剤としてステアリン酸亜鉛(Zn−St)を0.75質量%(混合粉末全体に対する割合)となるように配合した。
[Experiment 1]
For the mixed powder prepared by mixing the raw material powder with a mixer (30 minutes) so as to have the component composition shown in Tables 1 to 3 below, molding (compact molding), sintering, processing, immersion under the following conditions Charcoal quenching and tempering treatment was performed to obtain a sintered material (carburized material). Mechanical properties (density, Charpy impact value, tensile strength, hardness) of the obtained sintered material were evaluated. In the following Tables 1-3, the content of the alloy components (Mn, Ni, Mo) in the pre-alloyed steel powder is the content in the steel powder, and the ratio of the additive is the ratio to the entire mixed powder (Table 4 below). , 6 and 8). In preparing the mixed powder, zinc stearate (Zn-St) as a lubricant was blended so as to be 0.75% by mass (ratio to the total mixed powder).
尚、このとき用いたプレアロイ型鋼粉は、粒径(通過させた篩い目の大きさ)が250μmのものである。また、添加材として用いる場合の各粉末は、Ni粉:カーボニルNi粉(平均粒径が2.5μmのもの)、Cu粉:アトマイズCu粉(100メッシュアンダーのもの)であり、添加したMo粉および黒鉛粉の粒径(平均粒径)は、夫々3μm、5μmである。 The pre-alloyed steel powder used at this time has a particle size (size of sieve mesh passed through) of 250 μm. In addition, each powder when used as an additive is Ni powder: Carbonyl Ni powder (with an average particle size of 2.5 μm), Cu powder: Atomized Cu powder (with 100 mesh under), and added Mo powder The particle size (average particle size) of graphite powder is 3 μm and 5 μm, respectively.
〈成形工程〉
成形圧力:588MPa(6t/cm2)
形状:10×10×60(mm)
<Molding process>
Molding pressure: 588 MPa (6 t / cm 2 )
Shape: 10 × 10 × 60 (mm)
〈焼結工程〉
焼結温度:1120℃(30分)
焼結雰囲気:(10質量%の水素を含む窒素雰囲気)
<Sintering process>
Sintering temperature: 1120 ° C (30 minutes)
Sintering atmosphere: (nitrogen atmosphere containing 10% by mass of hydrogen)
〈加工〉
引張試験片:機械加工してJIS4号(φ5mm)の引張試験片を作製
衝撃試験片:未加工の状態(10×10×60(mm)のまま)
<processing>
Tensile test piece: Machining to produce a JIS No. 4 (φ5 mm) tensile test piece Impact test piece: Unprocessed state (10 × 10 × 60 (mm) remains)
〈浸炭焼入れ焼戻し〉
浸炭焼入れ:920℃×90分(RXガス雰囲気:カーボンポテンシャル0.8%)
→850℃×60分(油焼入れ)
焼戻し処理:200℃×60分(大気中)
<Carburizing and tempering>
Carburizing and quenching: 920 ° C x 90 minutes (RX gas atmosphere: carbon potential 0.8%)
→ 850 ° C x 60 minutes (oil quenching)
Tempering treatment: 200 ° C x 60 minutes (in air)
上記のようにして得られた焼結材料(浸炭材)について、常温で引張速度:0.5mm/分の条件で引張強さを測定する(試験片形状に加工したもの)と共に、常温でシャルピー衝撃試験を行って衝撃値(シャルピー衝撃値)を測定した[形状が10×10×60(mm)のもの]。また、衝撃試験に用いた試験片表面の硬さをロックウエルAスケール(HRA)で測定した。その結果を、下記表1〜3に併記する。 For the sintered material (carburized material) obtained as described above, tensile strength is measured at room temperature under the condition of tensile speed: 0.5 mm / min (processed into a test piece shape), and Charpy at room temperature. An impact test was performed to measure an impact value (Charpy impact value) [with a shape of 10 × 10 × 60 (mm)]. Moreover, the hardness of the test piece surface used for the impact test was measured by the Rockwell A scale (HRA). The results are also shown in Tables 1 to 3 below.
表1から明らかなように、Moをプレアロイ型鋼粉の合金成分として含有させることは、衝撃値(靭性)を低下させることなく、強度向上に有効であることが分かる(試験No.1、2)。これに対し、Niをプレアロイ型鋼粉の合金成分として含有させたものでは衝撃値や強度を却って低下させる傾向を示すことが分かる(試験No.3、4)。 As is apparent from Table 1, it can be seen that the inclusion of Mo as an alloy component of the pre-alloyed steel powder is effective in improving the strength without reducing the impact value (toughness) (Test Nos. 1 and 2). . On the other hand, it can be seen that those containing Ni as an alloy component of the pre-alloyed steel powder tend to lower the impact value and strength (Test Nos. 3 and 4).
表2から明らかなように、Moをプレアロイ型鋼粉の合金成分として含有させると共に、所定量のNi粉を添加したものでは、焼結材料の密度を高めて、衝撃値と強度の向上に有効であることが分かる。特に、プレアロイ型鋼粉中にMoを0.85質量%含有させたものでは(試験No.9)、衝撃値と強度の向上に最も有効であると期待できる。但し、これらのデータは、いずれもプレアロイ型鋼粉の粒径(篩い目)が250μmであり、シャルピー衝撃値は17J/cm2以上を達成していないものである。またプレアロイ型鋼粉中のMo含有量を0.5質量%や1.5質量%としたものでは(試験No.8、10)では、衝撃値の向上が達成されず、或は却って低下しており、プレアロイ型鋼粉の粒径(篩い目)の微細化を図っても期待する衝撃値が達成されないことが予想される。 As is apparent from Table 2, when Mo is added as an alloy component of the pre-alloy type steel powder and a predetermined amount of Ni powder is added, the density of the sintered material is increased and effective in improving the impact value and strength. I understand that there is. In particular, the prealloy type steel powder containing 0.85% by mass of Mo (Test No. 9) can be expected to be most effective in improving the impact value and strength. However, in these data, the particle diameter (sieving mesh) of the pre-alloy type steel powder is 250 μm, and the Charpy impact value does not achieve 17 J / cm 2 or more. In addition, when the Mo content in the pre-alloy type steel powder is 0.5% by mass or 1.5% by mass (Test Nos. 8 and 10), the impact value is not improved or decreased. Therefore, it is expected that the expected impact value will not be achieved even if the particle size (screening) of the pre-alloy type steel powder is made finer.
表3から明らかなように、Moをプレアロイ型鋼粉の合金成分として含有させずに(表3に示した「プレアロイ型鋼粉」は、実質的に「純鉄粉」に相当する)、粉末(添加材)として添加した場合には、衝撃値の向上が達成されないことが分かる。 As is apparent from Table 3, Mo is not contained as an alloy component of the pre-alloy type steel powder ("pre-alloy type steel powder" shown in Table 3 substantially corresponds to "pure iron powder"), powder (additional) When added as a material, it can be seen that the improvement in impact value is not achieved.
[実験2]
下記表4の成分組成(および粒径)となるように、原料粉末をミキサーで混合して(30分)調製した混合粉末に対し、実験1と同様にして成形(圧粉体成形)、焼結、加工、浸炭焼き入れ焼戻し処理を行い、焼結材料(浸炭材)とした。得られた焼結材料の機械的特性(密度、シャルピー衝撃値、引張強さ、硬さ)を、実験1と同様にして評価した。
[Experiment 2]
The mixed powder prepared by mixing the raw material powder with a mixer (30 minutes) so as to have the component composition (and particle size) shown in Table 4 below was molded (green compact molding) and fired in the same manner as in Experiment 1. Sintering, processing, carburizing, quenching, and tempering were performed to obtain a sintered material (carburized material). The mechanical properties (density, Charpy impact value, tensile strength, hardness) of the obtained sintered material were evaluated in the same manner as in Experiment 1.
その結果を、下記表5に示す。表5の結果に基づき、プレアロイ型鋼粉中のMo含有量と焼結材料のシャルピー衝撃値との関係を図1に、プレアロイ型鋼粉中のMo含有量と焼結材料の引張強さとの関係を図2に、夫々示す。尚、図1、2においては、プレアロイ型鋼粉中のNi含有量が0質量%、0.5質量%、2質量%のものを、夫々○、□、△で示した。 The results are shown in Table 5 below. Based on the results in Table 5, the relationship between the Mo content in the pre-alloy type steel powder and the Charpy impact value of the sintered material is shown in FIG. 1, and the relationship between the Mo content in the pre-alloy type steel powder and the tensile strength of the sintered material is shown in FIG. FIG. 2 shows them respectively. In FIGS. 1 and 2, the Ni content in the prealloy-type steel powder is indicated by ○, □, and Δ, respectively, when the Ni content is 0 mass%, 0.5 mass%, and 2 mass%.
これらの結果から、次のように考察できる。プレアロイ型鋼粉中のMo含有量を0.6〜1.0質量%とした場合には、シャルピー衝撃値を大きくできることが分かる(図1)。しかしながら、Mo含有量が1.0質量%を超えると、シャルピー衝撃値は却って低下している。これに対して、Niをプレアロイ型鋼粉の合金成分として含有させても、シャルピー衝撃値を改善できず、却って低下させる傾向を示している。 From these results, it can be considered as follows. It can be seen that the Charpy impact value can be increased when the Mo content in the pre-alloyed steel powder is 0.6 to 1.0 mass% (FIG. 1). However, when the Mo content exceeds 1.0% by mass, the Charpy impact value is lowered. On the other hand, even if Ni is contained as an alloy component of the pre-alloyed steel powder, the Charpy impact value cannot be improved, but tends to decrease.
また、引張強さに関しては、Mo含有量の如何に関わらず、高い強度が確保できることが分かる(図2)。しかしながら、プレアロイ型鋼粉中にNiを含有させると、その含有量が増加するにつれて、引張強さは低下する傾向を示す。 Moreover, regarding tensile strength, it turns out that high intensity | strength can be ensured irrespective of Mo content (FIG. 2). However, when Ni is contained in the prealloy type steel powder, the tensile strength tends to decrease as the content increases.
[実験3]
下記表6の成分組成(および粒径)となるように、原料粉末をミキサーで混合して(30分)調製した混合粉末に対し、実験1と同様にして成形(圧粉体成形)、焼結、加工、浸炭焼き入れ焼戻し処理を行い、焼結材料(浸炭材)とした。得られた焼結材料の機械的特性(密度、シャルピー衝撃値、引張強さ、硬さ)を、実験1と同様にして評価した。
[Experiment 3]
The mixed powder prepared by mixing the raw material powder with a mixer (30 minutes) so as to have the component composition (and particle size) shown in Table 6 below was molded (green compact molding) and fired in the same manner as in Experiment 1. Sintering, processing, carburizing, quenching, and tempering were performed to obtain a sintered material (carburized material). The mechanical properties (density, Charpy impact value, tensile strength, hardness) of the obtained sintered material were evaluated in the same manner as in Experiment 1.
その結果を、下記表7に示す。表7の結果に基づき、混合粉末のNi粉添加量と焼結材料のシャルピー衝撃値との関係を図3に、混合粉末のNi粉添加量と焼結材料の引張強さとの関係を図4に、夫々示す。尚、図3、4においては、Cu粉添加量が0質量%、1質量%、2質量%、3質量%のものを、夫々○、□、△、◇で示した。 The results are shown in Table 7 below. Based on the results of Table 7, FIG. 3 shows the relationship between the Ni powder addition amount of the mixed powder and the Charpy impact value of the sintered material, and FIG. 4 shows the relationship between the Ni powder addition amount of the mixed powder and the tensile strength of the sintered material. Respectively. In addition, in FIG. 3, 4, the thing with Cu powder addition amount of 0 mass%, 1 mass%, 2 mass%, 3 mass% was shown by (circle), (square), (triangle | delta), and (◇), respectively.
これらの結果から、次のように考察できる。即ち、Cu粉添加量に係わらず、Ni粉添加量が増加するにつれて、シャルピー衝撃値が高くなっていることが分かる(図3)。これに対し、混合粉末にNi粉を添加した場合には、その添加量が増加するにつれて引張強さは向上する方向に作用するものの、Cu粉を添加した場合には引張強さは却って低下する傾向を示すことになる(図4)。また、Ni粉の添加によって、シャルピー衝撃値と引張強さの両特性を確保するためには、その添加は2.3〜3.0質量%程度でよいことが確認できた。 From these results, it can be considered as follows. That is, it can be seen that the Charpy impact value increases as the Ni powder addition amount increases regardless of the Cu powder addition amount (FIG. 3). On the other hand, when Ni powder is added to the mixed powder, the tensile strength acts in the direction of improving as the addition amount increases, but when Cu powder is added, the tensile strength decreases instead. A tendency will be shown (FIG. 4). Moreover, in order to ensure both the characteristics of Charpy impact value and tensile strength by adding Ni powder, it was confirmed that the addition may be about 2.3 to 3.0% by mass.
尚、表7に示したデータは、いずれもプレアロイ型鋼粉の粒径(篩い目)が250μmであるが、なかにはシャルピー衝撃値が17J/cm2以上を達成している(試験No.28、34)。特に、試験No.28では、シャルピー衝撃値と引張強さ(1200MPa以上)の両特性を満足するものとなっている。プレアロイ型鋼粉の粒径(篩い目)が250μmのものを用いた場合には、原料粉末の粒径差が大きくなることによる混合粉末の不均一に起因して、焼結材料の特性のばらつきが生じやすくなる(試験No.34で引張強さが低下)。黒鉛粉の添加量が0.2質量%以上で安定した特性を発揮させる上からしても、プレアロイ型鋼粉の粒径(篩い目)が200μm以下とする必要がある。 The data shown in Table 7 show that the prealloy type steel powder has a particle size (sieving mesh) of 250 μm, but in particular, a Charpy impact value of 17 J / cm 2 or more is achieved (Test Nos. 28 and 34). ). In particular, test no. No. 28 satisfies both the Charpy impact value and the tensile strength (1200 MPa or more). When the pre-alloy type steel powder having a particle size (sieve) of 250 μm is used, there is a variation in the characteristics of the sintered material due to non-uniformity of the mixed powder due to the large particle size difference of the raw material powder. It tends to occur (the tensile strength decreases in Test No. 34). Even from the viewpoint of exhibiting stable characteristics when the amount of graphite powder added is 0.2% by mass or more, it is necessary that the particle diameter (screened) of the pre-alloy type steel powder be 200 μm or less.
また粒径が大きい方が、大きい(粗い)粒子が含まれることになり、粉末の不均一、また空孔の大きさも不均一となる。そのため浸炭時(浸炭ガスの侵入)のバラツキも生じやすくなると考えられる。尚、試験No.34は、Ni粉とCu粉の合計が4.5質量%となり、プレアロイ型鋼粉に含まれるMo量とあわせると、所期の目的である合金量の低減にはならないものとなる。 Moreover, the larger the particle size, the larger (coarse) particles are included, and the powder is not uniform and the pores are not uniform. Therefore, it is considered that variations during carburizing (carburizing gas intrusion) are likely to occur. Test No. In the case of No. 34, the total amount of Ni powder and Cu powder becomes 4.5% by mass, and when combined with the amount of Mo contained in the prealloy type steel powder, the intended amount of alloy is not reduced.
[実験4]
下記表8の成分組成(および粒径)となるように、原料粉末をミキサーで混合して(30分)調製した混合粉末に対し、実験1と同様にして成形(圧粉体成形)、焼結、加工、浸炭焼き入れ焼戻し処理を行い、焼結材料(浸炭材)とした。得られた焼結材料の機械的特性(密度、シャルピー衝撃値、引張強さ、硬さ)を、実験1と同様にして評価した。
[Experiment 4]
The mixed powder prepared by mixing the raw material powder with a mixer (30 minutes) so as to have the component composition (and particle size) shown in Table 8 below was molded (green compact molding) and fired in the same manner as in Experiment 1. Sintering, processing, carburizing, quenching, and tempering were performed to obtain a sintered material (carburized material). The mechanical properties (density, Charpy impact value, tensile strength, hardness) of the obtained sintered material were evaluated in the same manner as in Experiment 1.
その結果を、下記表9に示す。表9の結果に基づき、混合粉末の黒鉛粉添加量と焼結材料のシャルピー衝撃値との関係を図5に、混合粉末の黒鉛粉添加量と焼結材料の引張強さとの関係を図6に、夫々示す。尚、図5、6においては、プレアロイ型鋼粉の粒径(篩い目)が250μm、180μm、150μmのものを、夫々○、□、△で示した。 The results are shown in Table 9 below. Based on the results of Table 9, FIG. 5 shows the relationship between the amount of graphite powder added to the mixed powder and the Charpy impact value of the sintered material, and FIG. 6 shows the relationship between the amount of graphite powder added to the mixed powder and the tensile strength of the sintered material. Respectively. In FIGS. 5 and 6, the prealloy-type steel powders having a particle size (sieve) of 250 μm, 180 μm, and 150 μm are indicated by ○, □, and Δ, respectively.
この結果から次のように考察できる。即ち、プレアロイ型鋼粉の粒径(篩い目)を200μm以下としつつ、黒鉛粉添加量を0.2〜0.4質量%とすることによって、シャルピー衝撃値と引張強さの両特性を満足できることが分かる。尚、表7に示したデータでは、プレアロイ型鋼粉の粒径(篩い目)が250μmで、シャルピー衝撃値が17J/cm2以上を達成しているものも見られる(試験No.49〜51)。特に、試験No.50、51では、シャルピー衝撃値と引張強さの両特性を満足するものとなっている。上述したように、これらのものは、焼結材料の特性のばらつきが生じやすくなったものである(試験No.49で引張強さが低下)。また粒径が大きい方が、大きい(粗い)粒子が含まれることになり、粉末の不均一、また空孔の大きさも不均一となる。そのため浸炭時(浸炭ガスの侵入)のバラツキも生じやすくなると考えられる。 From this result, it can be considered as follows. That is, both the Charpy impact value and the tensile strength can be satisfied by setting the particle size of the pre-alloyed steel powder (screening) to 200 μm or less and the graphite powder addition amount to 0.2 to 0.4 mass%. I understand. In addition, in the data shown in Table 7, the particle size (sieve) of the pre-alloy type steel powder is 250 μm, and the Charpy impact value of 17 J / cm 2 or more is also observed (Test Nos. 49 to 51). . In particular, test no. 50 and 51 satisfy both characteristics of Charpy impact value and tensile strength. As described above, these materials are apt to cause variations in characteristics of the sintered material (the tensile strength decreases in Test No. 49). Moreover, the larger the particle size, the larger (coarse) particles are included, and the powder is not uniform and the pores are not uniform. Therefore, it is considered that variations during carburizing (carburizing gas intrusion) are likely to occur.
上記表9の結果に基づき、プレアロイ型鋼粉の粒径(篩い目)と黒鉛粉添加量が焼結材料のシャルピー衝撃値に与える影響を、図7に示す。尚、図7においては、焼結材料の衝撃値が17J/cm2以上を満足するものを○、満足しないものを□で示した。この結果から明らかなように、黒鉛粉添加量が0.2質量%以上においては、プレアロイ型鋼粉の粒径(篩い目)が小さくなるほど、良好な特性を発揮させるための黒鉛粉添加量が増加できることが分かる。 Based on the results of Table 9 above, FIG. 7 shows the influence of the particle size (screening) of the pre-alloyed steel powder and the added amount of graphite powder on the Charpy impact value of the sintered material. In FIG. 7, the case where the impact value of the sintered material satisfies 17 J / cm 2 or more is indicated by ◯, and the case where the impact value is not satisfied is indicated by □. As is clear from this result, when the graphite powder addition amount is 0.2% by mass or more, the smaller the particle size (sieve) of the pre-alloyed steel powder, the more the graphite powder addition amount for exhibiting good characteristics. I understand that I can do it.
この結果に基づいて、前記(1)式が求められた。即ち、プレアロイ型鋼粉の粒径(篩い目)が150μmと250μmの夫々において、焼結材料の衝撃値が17J/cm2以上を満足するものと、満足しないものの黒鉛粉添加量の中間値として、0.55質量%および0.35質量%を選び、これらの2点(粒径が150μmで黒鉛粉添加量が0.55質量%の点と、粒径が250μmで黒鉛粉添加量が0.35質量%の点)を結ぶ直線に基づいて、前記(1)式が求められた。 Based on this result, the equation (1) was obtained. That is, when the particle diameter (sieving mesh) of the pre-alloy type steel powder is 150 μm and 250 μm, the sintered material has an impact value of 17 J / cm 2 or more and the intermediate value of the graphite powder addition amount of the unsatisfactory one, 0.55% by mass and 0.35% by mass are selected, and these two points (the particle size is 150 μm and the amount of graphite powder added is 0.55% by mass, the particle size is 250 μm and the amount of graphite powder added is 0.00. Based on a straight line connecting the points of 35% by mass, the equation (1) was obtained.
Claims (2)
黒鉛粉量(質量%)≦−2.0×10-3×D(μm)+0.85 …(1) When the size of the sieve mesh through which the pre-alloy type steel powder passes is defined as the particle size, the pre-alloy type steel powder containing Mo at 0.6 to 1.0% by mass and the particle size is 200 μm or less, Ni powder, The ratio of Ni powder is 2.3 to 3.0% by mass and the ratio of graphite powder is 0.2% by mass with respect to the total of 100% by mass of these prealloy type steel powder, Ni powder and graphite powder. What der above, the maximum particle diameter D ([mu] m) and mixed powder for powder metallurgy of graphite powder amount (mass%) satisfies the following relationship (1) of the prealloy type steel powder, sintering and carburizing quenching and tempering A method for producing a sintered material , comprising:
Graphite powder amount (% by mass) ≦ −2.0 × 10 −3 × D (μm) +0.85 (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012226754A JP5923023B2 (en) | 2012-10-12 | 2012-10-12 | Mixed powder for powder metallurgy and method for producing sintered material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012226754A JP5923023B2 (en) | 2012-10-12 | 2012-10-12 | Mixed powder for powder metallurgy and method for producing sintered material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014077183A JP2014077183A (en) | 2014-05-01 |
JP5923023B2 true JP5923023B2 (en) | 2016-05-24 |
Family
ID=50782727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012226754A Active JP5923023B2 (en) | 2012-10-12 | 2012-10-12 | Mixed powder for powder metallurgy and method for producing sintered material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5923023B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105364064A (en) * | 2015-10-28 | 2016-03-02 | 武汉万邦激光金刚石工具股份有限公司 | Metallic bond diamond block steel mold heating and molding method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61163239A (en) * | 1985-01-15 | 1986-07-23 | Toyota Motor Corp | Manufacture of high strength sintered alloy |
CN102666895B (en) * | 2009-10-26 | 2015-01-07 | 霍加纳斯股份有限公司 | Iron based powder composition |
CA2823267C (en) * | 2010-12-30 | 2019-07-02 | Anna Larsson | Iron based powders for powder injection molding |
-
2012
- 2012-10-12 JP JP2012226754A patent/JP5923023B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014077183A (en) | 2014-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6227903B2 (en) | Alloy steel powder for powder metallurgy and method for producing iron-based sintered body | |
CN102933731B (en) | The manufacturing process of a kind of master alloy for the manufacture of sintering-hardened steel part and this sinter-hardened part | |
JP5958144B2 (en) | Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body | |
JP5949952B2 (en) | Method for producing iron-based sintered body | |
JP2010090470A (en) | Iron-based sintered alloy and method for producing the same | |
JP5929967B2 (en) | Alloy steel powder for powder metallurgy | |
US10661344B2 (en) | Fe-based sintered alloy and manufacturing method thereof | |
CN104060195B (en) | Iron-based sintered slide member and its manufacture method | |
JP2011094187A (en) | Method for producing high strength iron based sintered compact | |
JP6515955B2 (en) | Method of manufacturing mixed powder for powder metallurgy and iron-based sintered body | |
JP4371003B2 (en) | Alloy steel powder for powder metallurgy | |
JP5923023B2 (en) | Mixed powder for powder metallurgy and method for producing sintered material | |
JP6528899B2 (en) | Method of manufacturing mixed powder and sintered body for powder metallurgy | |
JP5929084B2 (en) | Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same | |
KR100978901B1 (en) | Method for manufacturing iron-based sintered body having high tensile strength and high hardness | |
JP6645631B1 (en) | Alloy steel powder for powder metallurgy and iron-base mixed powder for powder metallurgy | |
JP2016145418A (en) | Iron-based sintered alloy and manufacturing method therefor | |
CN113677459A (en) | Iron-based mixed powders and iron-based sintered bodies for powder metallurgy | |
JP4715358B2 (en) | Alloy steel powder for powder metallurgy | |
JPWO2019189012A1 (en) | Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy | |
JP2012126972A (en) | Alloy steel powder for powder metallurgy, iron-based sintered material, and method for manufacturing the same | |
WO2023157386A1 (en) | Iron-based mixed powder for powder metallurgy, and iron-based sintered body | |
JP2007100115A (en) | Alloy steel powder for powder metallurgy | |
JP2010255082A (en) | Iron-based sintered alloy and method for producing the same | |
JP2007126695A (en) | Alloy steel for powder metallurgy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160415 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5923023 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |