[go: up one dir, main page]

JP5919669B2 - Composite substrate and manufacturing method thereof, and semiconductor device and manufacturing method thereof - Google Patents

Composite substrate and manufacturing method thereof, and semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5919669B2
JP5919669B2 JP2011169397A JP2011169397A JP5919669B2 JP 5919669 B2 JP5919669 B2 JP 5919669B2 JP 2011169397 A JP2011169397 A JP 2011169397A JP 2011169397 A JP2011169397 A JP 2011169397A JP 5919669 B2 JP5919669 B2 JP 5919669B2
Authority
JP
Japan
Prior art keywords
gan
substrate
layer
single crystal
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011169397A
Other languages
Japanese (ja)
Other versions
JP2013033862A (en
Inventor
祐介 善積
祐介 善積
一成 佐藤
一成 佐藤
上野 昌紀
昌紀 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011169397A priority Critical patent/JP5919669B2/en
Publication of JP2013033862A publication Critical patent/JP2013033862A/en
Application granted granted Critical
Publication of JP5919669B2 publication Critical patent/JP5919669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector

Landscapes

  • Led Devices (AREA)

Description

本発明は、半導体デバイスの製造に好適な複合基板およびその製造方法、ならびにその複合基板を用いた半導体デバイスおよびその製造方法に関する。   The present invention relates to a composite substrate suitable for manufacturing a semiconductor device and a manufacturing method thereof, and a semiconductor device using the composite substrate and a manufacturing method thereof.

低価格で特性の高い半導体デバイスを効率よく製造するために、低価格の支持基板にIII族窒化物層を貼り合わせた複合基板が開発されている。たとえば、特開2010―232625号公報(特許文献1)は、III族窒化物半導体基板および第1の支持基板のうち少なくとも一方上に第1緩衝膜を形成する工程と、第1緩衝膜を介して第1の支持基板にIII族窒化物半導体基板を貼り合わせる工程と、を含む、貼り合わせ基板の製造方法を開示する。   In order to efficiently manufacture low-cost and high-performance semiconductor devices, composite substrates in which a group III nitride layer is bonded to a low-cost support substrate have been developed. For example, Japanese Patent Laying-Open No. 2010-232625 (Patent Document 1) discloses a step of forming a first buffer film on at least one of a group III nitride semiconductor substrate and a first support substrate, and a first buffer film interposed therebetween. And a step of bonding a group III nitride semiconductor substrate to a first support substrate.

特開2010−232625号公報JP 2010-232625 A

しかし、特開2010―232625号公報(特許文献1)に開示される貼り合わせ基板においては、III族窒化物半導体基板と第1の支持基板を貼り合わせる中間層である第1緩衝層として、Pt、Ni、Zn、Sn、Alなどの金属層が用いられる場合は、第1の支持基板側への光の放出ができないため、p側ダウン構造となるフリップチップ型のLED(発光ダイオード)などの半導体デバイスの作製が困難であった。また、第1緩衝層としてSiO層などの絶縁層が用いられる場合は、縦型の半導体デバイスの作製が困難であった。   However, in the bonded substrate disclosed in Japanese Patent Application Laid-Open No. 2010-232625 (Patent Document 1), Pt is used as the first buffer layer that is an intermediate layer for bonding the group III nitride semiconductor substrate and the first support substrate. When a metal layer such as Ni, Zn, Sn, or Al is used, light cannot be emitted to the first support substrate side, so that a flip-chip type LED (light emitting diode) such as a p-side down structure is used. It was difficult to manufacture a semiconductor device. In addition, when an insulating layer such as a SiO layer is used as the first buffer layer, it is difficult to manufacture a vertical semiconductor device.

また、第1の緩衝層として、ITO(インジウムスズ酸化物)、ZnOなどの透明導電膜を用いても、これらの透明導電膜は、高温NH3雰囲気下における耐久性が低く、貼り合わせ基板上に半導体層をエピタキシャル成長させるのが困難であった。 Moreover, even if transparent conductive films such as ITO (indium tin oxide) and ZnO are used as the first buffer layer, these transparent conductive films have low durability under a high-temperature NH 3 atmosphere, and are thus bonded onto the bonded substrate. In addition, it was difficult to epitaxially grow the semiconductor layer.

そこで、本発明は、高温NH3雰囲気下においても耐久性が高い透明かつ導電性の中間膜を有し、半導体デバイスの製造に好適に用いられる複合基板およびその製造方法、ならびにかかる複合基板を用いた半導体デバイスおよびその製造方法を提供することを目的とする。 Therefore, the present invention provides a composite substrate having a transparent and conductive intermediate film having high durability even under a high-temperature NH 3 atmosphere, and suitable for use in the manufacture of semiconductor devices, its manufacturing method, and such a composite substrate. An object of the present invention is to provide a semiconductor device and a manufacturing method thereof.

本発明は、多結晶GaN支持基板と、多結晶GaN支持基板上に配置された非晶質の中間GaN系膜と、中間GaN系膜上に配置された単結晶GaN系層と、を含み、多結晶GaN支持基板と単結晶GaN系層とが、中間GaN系膜を介在させて貼り合わされている複合基板である。 The present invention comprises a polycrystalline GaN supporting substrate, and a polycrystalline GaN supporting substrate being arranged on the amorphous intermediate GaN-based film, a single crystal GaN-based layer disposed intermediate GaN-based film, only contains A composite substrate in which a polycrystalline GaN support substrate and a single crystal GaN-based layer are bonded together with an intermediate GaN-based film interposed therebetween .

本発明にかかる複合基板において、中間GaN系膜は、ドーパントとして、酸素およびケイ素の少なくともいずれかを酸素およびケイ素の全体の濃度が1×1017cm-3以上5×1019cm-3以下で含むことができる。また、中間GaN系膜および単結晶GaN系層をいずれもGaNで形成することができる。また、単結晶GaN系層の主面を(0001)面とすることができる。また、単結晶GaN系層の主面を{10−10}面および{11−20}面からなる群から選ばれる1つの面とすることができる。また、単結晶GaN系層の主面を{10−11}面、{20−21}面、{20−2−1}面および{10−1−1}面からなる群から選ばれる1つの面とすることができる。また、多結晶GaN支持基板の厚さを200μm以上1000μm以下とすることができる。 In the composite substrate according to the present invention, GaN-based film between the medium, as a dopant, the total concentration of oxygen and silicon of at least one of oxygen and silicon are 1 × 10 17 cm -3 or higher than 5 × 10 19 cm -3 Can be included. Moreover, both the GaN-based film and a single crystal GaN-based layer between the medium can be formed of GaN. Further, the main surface of the single crystal GaN-based layer can be a (0001) plane. Further, the main surface of the single crystal GaN-based layer can be a single surface selected from the group consisting of {10-10} plane and {11-20} plane. The main surface of the single crystal GaN-based layer is one selected from the group consisting of {10-11} plane, {20-21} plane, {20-2-1} plane, and {10-1-1} plane. It can be a surface. Further, the thickness of the polycrystalline GaN support substrate can be set to 200 μm or more and 1000 μm or less.

また、本発明は、上記の複合基板と、複合基板の単結晶GaN系層上に配置された少なくとも1層のGaN系半導体層と、を含む半導体デバイスである In addition, the present invention is a semiconductor device including the above-described composite substrate and at least one GaN-based semiconductor layer disposed on the single crystal GaN-based layer of the composite substrate .

また、本発明は、上記の複合基板の製造方法であって、多結晶III族窒化物支持基板の一方の主面上に非結晶質の第1の中間GaN系層を形成する工程と、単結晶GaN系基板の一方の主面側から所定の深さの位置にイオン注入領域を形成する工程と、単結晶GaN系基板のイオン注入領域側の主面上に非結晶質の第2の中間GaN系層を形成する工程と、第1の中間GaN系層と第2の中間GaN系層とを貼り合わせて中間GaN系膜を形成することにより、中間GaN系膜を介在させて多結晶III族窒化物支持基板と単結晶GaN系基板とを貼り合わせる工程と、単結晶GaN系基板をイオン注入領域において単結晶GaN系層と残りの単結晶GaN系基板とに分離する工程と、を含む複合基板を形成する複合基板の製造方法である。   The present invention also provides a method for manufacturing the above-described composite substrate, the method comprising: forming a non-crystalline first intermediate GaN-based layer on one main surface of a polycrystalline group III nitride supporting substrate; A step of forming an ion implantation region at a predetermined depth from one main surface side of the crystalline GaN-based substrate, and a second intermediate layer on the main surface of the single crystal GaN-based substrate on the ion implantation region side. The step of forming the GaN-based layer and the first intermediate GaN-based layer and the second intermediate GaN-based layer are bonded together to form an intermediate GaN-based film, thereby interposing the intermediate GaN-based film and polycrystal III Bonding the group nitride support substrate and the single crystal GaN substrate, and separating the single crystal GaN substrate into a single crystal GaN layer and the remaining single crystal GaN substrate in the ion implantation region. A method for manufacturing a composite substrate for forming a composite substrate.

本発明にかかる複合基板の製造方法において、残りの単結晶GaN系基板をさらなる単結晶GaN系基板として用いて、別の多結晶III族窒化物支持基板と、別の多結晶III族窒化物支持基板上に配置された別の中間GaN系膜と、別の中間GaN系膜上に配置されたさらなる単結晶GaN系層と、を含むさらなる複合基板を製造する複合基板の製造方法として、別の多結晶III族窒化物支持基板の一方の主面上に非結晶質の別の第1の中間GaN系層を形成する工程と、さらなる単結晶GaN系基板の一方の主面側から所定の深さの位置にさらなるイオン注入領域を形成する工程と、さらなる単結晶GaN系基板のさらなるイオン注入領域側の主面上に非結晶質の別の第2の中間GaN系層を形成する工程と、別の第1の中間GaN系層と別の第2の中間GaN系層とを貼り合わせて別の中間GaN系膜を形成することにより、別の中間GaN系膜を介在させて別の多結晶III族窒化物支持基板とさらなる単結晶GaN系基板とを貼り合わせる工程と、さらなる単結晶GaN系基板を前記さらなるイオン注入領域においてさらなる単結晶GaN系層とさらなる残りの単結晶GaN系基板とに分離する工程と、を含むことができる。   In the composite substrate manufacturing method according to the present invention, the remaining single crystal GaN-based substrate is used as a further single crystal GaN-based substrate, and another polycrystalline group III nitride supporting substrate and another polycrystalline group III nitride supporting substrate are used. As another method for manufacturing a composite substrate, another method of manufacturing a composite substrate including another intermediate GaN-based film disposed on the substrate and a further single crystal GaN-based layer disposed on the other intermediate GaN-based film is provided. Forming another non-crystalline first intermediate GaN-based layer on one main surface of the polycrystalline group III nitride supporting substrate, and a predetermined depth from one main surface side of the further single-crystal GaN-based substrate. Forming a further ion implantation region at the position, forming another non-crystalline second intermediate GaN-based layer on the main surface of the further single-crystal GaN-based substrate on the further ion implantation region side, Another first intermediate GaN By bonding another layer and another second intermediate GaN-based layer to form another intermediate GaN-based film, another polycrystalline III-nitride supporting substrate is further interposed with another intermediate GaN-based film interposed therebetween. Bonding the single crystal GaN-based substrate to the substrate, and separating the additional single-crystal GaN-based substrate into a further single-crystal GaN-based layer and a remaining single-crystal GaN-based substrate in the additional ion implantation region. Can do.

本発明は、上記の半導体デバイスの製造方法であって、多結晶GaN支持基板と、多結晶GaN支持基板上に配置された非結晶質の中間GaN系膜と、中間GaN系膜上に配置された単結晶GaN系層と、を含み、多結晶GaN支持基板と単結晶GaN系層とが、中間GaN系膜を介在させて貼り合わされている複合基板を準備する工程と、複合基板の単結晶GaN系層上に少なくとも1層のGaN系半導体層を成長させる工程と、を含む半導体デバイスの製造方法である。また、GaN系半導体層を成長させる工程において、中間GaN系膜は非結晶質から結晶質に変質し得る。また、GaN系半導体層を成長させる工程は、単結晶GaN系層上にn型GaN系半導体層を成長させるサブ工程と、n型GaN系半導体層上に多重量子井戸構造の活性層を成長させるサブ工程と、活性層上にp型GaN系半導体層を成長させるサブ工程と、を含むことができる。 The present invention is a method of manufacturing a semiconductor device as described above, wherein a polycrystalline GaN support substrate, an amorphous intermediate GaN-based film disposed on the polycrystalline GaN support substrate, and an intermediate GaN-based film are disposed. and the single-crystal GaN-based layer, only including, a polycrystalline GaN supporting substrate and the single crystal GaN-based layer, a step of preparing a composite substrate are bonded by interposing an intermediate GaN-based film, a single composite substrate And a step of growing at least one GaN-based semiconductor layer on the crystalline GaN-based layer. Further, in the step of growing the GaN-based semiconductor layer, the intermediate GaN-based film can be changed from amorphous to crystalline. The step of growing the GaN-based semiconductor layer includes a sub-step of growing an n-type GaN-based semiconductor layer on the single crystal GaN-based layer, and an active layer having a multiple quantum well structure on the n-type GaN-based semiconductor layer. A sub-step and a sub-step of growing a p-type GaN-based semiconductor layer on the active layer.

本発明によれば、高温NH3雰囲気下においても耐久性が高い透明かつ導電性の中間膜を有し、半導体デバイスの製造に好適に用いられる複合基板およびその製造方法、ならびにかかる複合基板を用いた半導体デバイスおよびその製造方法を提供することができる。 According to the present invention, a composite substrate having a transparent and conductive intermediate film having high durability even in a high-temperature NH 3 atmosphere, and suitably used for manufacturing a semiconductor device, a method for manufacturing the same, and such a composite substrate are used. A semiconductor device and a method of manufacturing the same can be provided.

本発明にかかる複合基板の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the composite substrate concerning this invention. 本発明にかかる半導体デバイスの一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the semiconductor device concerning this invention. 本発明にかかる半導体デバイスの別の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows another embodiment of the semiconductor device concerning this invention. 本発明にかかる複合基板および半導体デバイスの製造方法の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the manufacturing method of the composite substrate concerning this invention, and a semiconductor device. 本発明にかかる半導体デバイスの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the semiconductor device concerning this invention. 本発明にかかる半導体デバイスの実装の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of mounting of the semiconductor device concerning this invention. 典型的な半導体デバイスの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a typical semiconductor device. 典型的な半導体デバイスの実装の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of mounting of a typical semiconductor device. 典型的な半導体デバイスの別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a typical semiconductor device. 典型的な半導体デバイスの実装の別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of mounting of a typical semiconductor device. 本発明にかかる半導体デバイスの別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the semiconductor device concerning this invention. 本発明にかかる半導体デバイスの実装の別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of mounting of the semiconductor device concerning this invention. 典型的な半導体デバイスのさらに別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a typical semiconductor device. 典型的な半導体デバイスの実装のさらに別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of mounting of a typical semiconductor device.

[実施形態1]
図1を参照して、本発明の一実施形態である複合基板1は、多結晶III族窒化物支持基板10と、多結晶III族窒化物支持基板10上に配置された中間GaN系膜30と、中間GaN系膜30上に配置された単結晶GaN系層21と、を含む。本実施形態の複合基板1は、多結晶III族窒化物支持基板10が低価格であり、単結晶GaN系層21が高品質であり、多結晶III族窒化物支持基板10、中間GaN系膜30および単結晶GaN系層21が高温NH3雰囲気下における耐久性が高く透明かつ導電性を有するため、複合基板1の単結晶GaN系層21上に高品質のGaN系半導体層を成長させて高品質の半導体デバイスを低コストで製造することができる。
[Embodiment 1]
Referring to FIG. 1, a composite substrate 1 according to an embodiment of the present invention includes a polycrystalline group III nitride support substrate 10 and an intermediate GaN-based film 30 disposed on the polycrystalline group III nitride support substrate 10. And a single crystal GaN-based layer 21 disposed on the intermediate GaN-based film 30. In the composite substrate 1 of the present embodiment, the polycrystalline group III nitride supporting substrate 10 is inexpensive, the single crystal GaN-based layer 21 is of high quality, the polycrystalline group III nitride supporting substrate 10, the intermediate GaN-based film. 30 and the single-crystal GaN-based layer 21 have high durability in a high-temperature NH 3 atmosphere, are transparent, and have conductivity. Therefore, a high-quality GaN-based semiconductor layer is grown on the single-crystal GaN-based layer 21 of the composite substrate 1. High quality semiconductor devices can be manufactured at low cost.

(多結晶III族窒化物支持基板)
多結晶III族窒化物支持基板10は、耐高温性および耐NH3性を有する低価格な基板であり、400nm〜450nmの波長領域の光に対して透明性を有し、また、導電性を有するため、本実施形態の複合基板1における支持基板として好適である。
(Polycrystalline group III nitride support substrate)
The polycrystalline group III nitride supporting substrate 10 is a low-cost substrate having high temperature resistance and NH 3 resistance, has transparency to light in a wavelength region of 400 nm to 450 nm, and has conductivity. Therefore, it is suitable as a support substrate in the composite substrate 1 of the present embodiment.

多結晶III族窒化物支持基板10としては、特に制限なく、多結晶AlxGInyGa1-xーyN支持基板(0≦x、0≦y、x+y≦1;x=0かつy=0のとき多結晶GaN支持基板、x=1かつy=0のとき多結晶AlN支持基板)などが好適に用いられる。多結晶III族窒化物支持基板10は、その熱膨張係数を中間GaN系膜30および単結晶GaN系層21の熱膨張係数と同じまたは近似させることにより高品質のGaN系半導体層を高い歩留まりで成長させる観点から、中間GaN系膜30および単結晶GaN系層21と同一または近似の化学組成を有することが好ましい。中間GaN系膜30および単結晶GaN系層21がGaNで形成されている場合は、多結晶III族窒化物支持基板10もGaNで形成されていることが好ましい。 The polycrystalline group III nitride supporting substrate 10 is not particularly limited, and is a polycrystalline Al x GIn y Ga 1-xy N supporting substrate (0 ≦ x, 0 ≦ y, x + y ≦ 1; x = 0 and y = A polycrystalline GaN support substrate when 0, a polycrystalline AlN support substrate when x = 1 and y = 0, etc. are preferably used. The polycrystalline group III nitride supporting substrate 10 has a high-quality GaN-based semiconductor layer at a high yield by making the thermal expansion coefficient the same as or close to that of the intermediate GaN-based film 30 and the single-crystal GaN-based layer 21. From the viewpoint of growth, it is preferable that the intermediate GaN-based film 30 and the single crystal GaN-based layer 21 have the same or similar chemical composition. When the intermediate GaN-based film 30 and the single crystal GaN-based layer 21 are formed of GaN, it is preferable that the polycrystalline group III nitride supporting substrate 10 is also formed of GaN.

多結晶III族窒化物支持基板10は、中間GaN系膜30および単結晶GaN系層21を支持する観点から、多結晶III族窒化物支持基板10の厚さが200μm以上1000μm以下が好ましく、300μm以上900μm以下がより好ましい。多結晶III族窒化物支持基板10は、その厚さが200μmより薄いと自立基板となりにくく、その厚さが1000μmより大きくなると価格が高くなる。   From the viewpoint of supporting the intermediate GaN-based film 30 and the single crystal GaN-based layer 21, the polycrystalline group III nitride supporting substrate 10 preferably has a thickness of the polycrystalline group III nitride supporting substrate 10 of 200 μm or more and 1000 μm or less, and 300 μm. More preferably, it is 900 μm or less. The polycrystalline group III nitride support substrate 10 is difficult to be a self-supporting substrate when the thickness is less than 200 μm, and the price increases when the thickness is greater than 1000 μm.

(中間GaN系膜)
中間GaN系膜30は、高温NH3雰囲気下における耐久性が高く透明性かつ導電性を有するため、本実施形態の複合基板1における中間層として好適である。ここで、中間GaN系膜30は、多結晶III族窒化物支持基板10と単結晶GaN系層21との間の貼り合わせによる接合強度を高めるために、それらの間に設けられるものである。
(Intermediate GaN film)
The intermediate GaN-based film 30 is suitable as an intermediate layer in the composite substrate 1 of the present embodiment because it has high durability under high-temperature NH 3 atmosphere, transparency, and conductivity. Here, the intermediate GaN-based film 30 is provided between the polycrystalline III-nitride support substrate 10 and the single-crystal GaN-based layer 21 in order to increase the bonding strength between them.

中間GaN系膜30は、特に制限はないが、非結晶質であることが好ましい。非結晶質の中間GaN系膜30は、200℃〜500℃程度の比較的低温で形成することができるため製造コストが低く、また 室温(25℃)〜300℃程度の低温雰囲気中で容易に多結晶III族窒化物支持基板10と単結晶GaN系層21とを貼り合わせることができる。中間GaN系膜30が非結晶質か結晶質かどうかは、X線回折、TEM(透過型電子顕微鏡)などにより、評価することができる。   The intermediate GaN-based film 30 is not particularly limited, but is preferably amorphous. Since the amorphous intermediate GaN-based film 30 can be formed at a relatively low temperature of about 200 ° C. to 500 ° C., the manufacturing cost is low, and it can be easily formed in a low temperature atmosphere of about room temperature (25 ° C.) to about 300 ° C. The polycrystalline group III nitride supporting substrate 10 and the single crystal GaN-based layer 21 can be bonded together. Whether the intermediate GaN-based film 30 is amorphous or crystalline can be evaluated by X-ray diffraction, TEM (transmission electron microscope), or the like.

中間GaN系膜30は、III族元素としてGaを含むIII族窒化物膜であり、膜の屈折率を調節することにより透明性を調節するため、Ga以外のIII族元素としてAl、Inなどを含むことができ、化学式AlxInyGa1-x-yN(0≦x<1、0≦y<1)などで表わされる。中間GaN系膜30の屈折率は、Alの含有量(III族元素全体に対するモル%)が高いほど低くなり、Inの含有量(III族元素全体に対するモル%)が高いほど高くなる。かかる場合に、中間GaN系膜30に含まれるAlおよびInは、それぞれIII族元素全体に対して0.1モル%以上15モル%以下が好ましい。すなわち、中間GaN系膜30の化学式AlxInyGa1-x-yNにおいて、0.001≦x≦0.15および0.001≦y≦0.15が好ましい。III族元素全体に対して、AlおよびInの少なくとも1つを0.1モル%以上とすることにより膜の屈折率を容易に調節することができ、AlおよびInをそれぞれ15モル%以下とすることにより膜品質を高く維持することができる。ここで、中間GaN系膜30中のそれぞれのIII族元素の含有量(III族元素全体に対するモル%)は、SIMS(2次イオン質量分析)、グロー放電発光分光分析などにより測定できる。 The intermediate GaN-based film 30 is a group III nitride film containing Ga as a group III element. In order to adjust transparency by adjusting the refractive index of the film, Al, In or the like is used as a group III element other than Ga. And can be represented by the chemical formula Al x In y Ga 1-xy N (0 ≦ x <1, 0 ≦ y <1). The refractive index of the intermediate GaN-based film 30 decreases as the Al content (mol% with respect to the entire group III element) increases and increases with the increase of the In content (mol% with respect to the entire group III element). In such a case, Al and In contained in the intermediate GaN-based film 30 are each preferably 0.1 mol% or more and 15 mol% or less with respect to the entire group III element. That is, in the chemical formula Al x In y Ga 1-xy N of the intermediate GaN-based film 30, 0.001 ≦ x ≦ 0.15 and 0.001 ≦ y ≦ 0.15 are preferable. The refractive index of the film can be easily adjusted by setting at least one of Al and In to 0.1 mol% or more with respect to the entire group III element, and Al and In are each set to 15 mol% or less. As a result, the film quality can be kept high. Here, the content of each group III element in the intermediate GaN-based film 30 (mol% with respect to the entire group III element) can be measured by SIMS (secondary ion mass spectrometry), glow discharge emission spectrometry, or the like.

また、中間GaN系膜30は、膜の導電性を調節するため、ドーパントとして、酸素およびケイ素の少なくともいずれかを酸素およびケイ素の全体の濃度が1×1017cm-3以上5×1019cm-3以下で含むことが好ましい。中間GaN系膜30は、酸素およびケイ素の全体で1×1017cm-3以上の濃度とすることによりキャリア濃度を高めて比抵抗を低減する(導電性を高める)ことができ、酸素およびケイ素の全体で5×1019cm-3以下の濃度とすることによりキャリア移動度を高めて比抵抗を低減する(導電性を高める)ことができる。ここで、中間GaN系膜30中の酸素およびケイ素の濃度は、SIMSにより測定できる。 Further, the intermediate GaN-based film 30 adjusts the conductivity of the film, so that the total concentration of oxygen and silicon is 1 × 10 17 cm −3 or more and 5 × 10 19 cm as a dopant. -3 or less is preferable. The intermediate GaN-based film 30 has a concentration of 1 × 10 17 cm −3 or more in total of oxygen and silicon, thereby increasing the carrier concentration and reducing the specific resistance (increasing conductivity). By setting the concentration to 5 × 10 19 cm −3 or less, the carrier mobility can be increased and the specific resistance can be decreased (conductivity can be increased). Here, the oxygen and silicon concentrations in the intermediate GaN-based film 30 can be measured by SIMS.

また、中間GaN系膜30の厚さは、特に制限はないが、400nm以上4000nm以下が好ましい。中間GaN系膜30の厚さは、後述の第1の中間GaN系層31および第2の中間GaN系層の厚さの和であり、第1の中間GaN系層31および第2の中間GaN系層の厚さはそれぞれ200nm以上2000nm以下が好ましいからである。第1の中間GaN系層31および第2の中間GaN系層の厚さは、それぞれ、200nmより薄いと層形成後貼り合わせ前の膜研磨の際に不具合が発生し易く、2000nmより厚いと生産性が低下し生産コストが増大する。   Further, the thickness of the intermediate GaN-based film 30 is not particularly limited, but is preferably 400 nm or more and 4000 nm or less. The thickness of the intermediate GaN-based film 30 is the sum of the thicknesses of a first intermediate GaN-based layer 31 and a second intermediate GaN-based layer, which will be described later, and the first intermediate GaN-based layer 31 and the second intermediate GaN-based layer. This is because the thickness of each system layer is preferably 200 nm or more and 2000 nm or less. If the thicknesses of the first intermediate GaN-based layer 31 and the second intermediate GaN-based layer are less than 200 nm, defects are likely to occur during film polishing after layer formation and before bonding. The production costs are increased.

(単結晶GaN系層)
単結晶GaN系層21は、結晶が高品質で、高温NH3雰囲気下における耐久性が高く透明性かつ導電性を有するため、本実施形態の複合基板1における結晶成長用層として好適である。
(Single crystal GaN-based layer)
The single crystal GaN-based layer 21 is suitable as a crystal growth layer in the composite substrate 1 of the present embodiment because the crystal has high quality, has high durability in a high temperature NH 3 atmosphere, is transparent, and has conductivity.

単結晶GaN系層21は、III族元素としてGaを含むIII族窒化物層である。上記の中間GaN系膜の場合と同様の観点から、単結晶GaN系層21は、Ga以外のIII族元素としてAl、Inなどを含むことができ、化学式AlxInyGa1-x-yN(0≦x<1、0≦y<1)などで表わされる。ここで、単結晶GaN系層21に含まれるAlおよびInは、それぞれIII族元素全体に対して0.1モル%以上15モル%以下が好ましい。すなわち、単結晶GaN系層21の化学式AlxInyGa1-x-yNにおいて、0.001≦x≦0.15および0.001≦y≦0.15が好ましい。ここで、単結晶GaN系層21中のそれぞれのIII族元素の含有量(III族元素全体に対するモル%)は、SIMS、グロー放電発光分光分析などにより測定できる。 The single crystal GaN-based layer 21 is a group III nitride layer containing Ga as a group III element. From the same viewpoint as in the case of the intermediate GaN-based film, the single crystal GaN-based layer 21 can contain Al, In, etc. as group III elements other than Ga, and has a chemical formula of Al x In y Ga 1-xy N ( 0 ≦ x <1, 0 ≦ y <1) and the like. Here, Al and In contained in the single crystal GaN-based layer 21 are each preferably 0.1 mol% or more and 15 mol% or less with respect to the entire group III element. That is, in the chemical formula Al x In y Ga 1-xy N of the single crystal GaN-based layer 21, 0.001 ≦ x ≦ 0.15 and 0.001 ≦ y ≦ 0.15 are preferable. Here, the content of each group III element in the single crystal GaN-based layer 21 (mol% with respect to the entire group III element) can be measured by SIMS, glow discharge emission spectrometry, or the like.

また、上記中間GaN系膜の場合と同様の観点から、単結晶GaN系層21は、ドーパントとして、酸素およびケイ素の少なくともいずれかを酸素およびケイ素の全体の濃度が1×1017cm-3以上5×1019cm-3以下で含むことが好ましい。ここで、単結晶GaN系層21中の酸素およびケイ素の濃度は、SIMSなどにより測定できる。 From the same viewpoint as the case of the intermediate GaN-based film, the single-crystal GaN-based layer 21 has at least one of oxygen and silicon as a dopant, and the total concentration of oxygen and silicon is 1 × 10 17 cm −3 or more. It is preferable to contain 5 * 10 < 19 > cm <-3> or less. Here, the oxygen and silicon concentrations in the single crystal GaN-based layer 21 can be measured by SIMS or the like.

また、単結晶GaN系層21の厚さは、特に制限はないが、50nm以上500nm以下が好ましい。単結晶GaN系層21の厚さが、50nmより薄いと、その後のエピタキシャル成長工程において、単結晶GaN系層21が剥がれる不良が発生する確率が高まり、500nmより厚いと、イオン注入時の単結晶GaN系層21のダメージを回復しにくく、結晶欠陥が発生するおそれがある。   The thickness of the single crystal GaN-based layer 21 is not particularly limited, but is preferably 50 nm or more and 500 nm or less. If the thickness of the single-crystal GaN-based layer 21 is less than 50 nm, the probability that the single-crystal GaN-based layer 21 will be peeled off in the subsequent epitaxial growth process increases. It is difficult to recover the damage of the system layer 21 and there is a possibility that crystal defects occur.

単結晶GaN系層21の主面は、(0001)面であることが好ましい。単結晶GaN系層21の(0001)の面方位を有する主面上には、主面が(0001)の面方位を有するGaN系半導体層を安定に成長させることができるため、広く普及している(0001)上のエピタキシャル成長技術を適用し、高いLED発光出力を容易に得ることができる。   The main surface of the single crystal GaN-based layer 21 is preferably a (0001) plane. On the main surface having the (0001) plane orientation of the single crystal GaN-based layer 21, a GaN-based semiconductor layer having a (0001) plane orientation can be stably grown. By applying the epitaxial growth technology above (0001), high LED light emission output can be easily obtained.

また、単結晶GaN系層21の主面は、{10−10}面および{11−20}面からなる群から選ばれる1つの面であることが好ましい。単結晶GaN系層21の{10−10}および{11−20}からなる群から選ばれる1つの面方位を有する主面上には、それぞれ主面が{10−10}および{11−20}からなる群から選ばれる1つの面方位を有するGaN系半導体層を安定に成長させることができるため、MQW活性層(多重量子井戸構造の活性層)中の井戸層に発生するピエゾ電界を低減することが可能になり、特に青色や緑色といった波長領域で、高い発光効率を容易に得ることができる。   Moreover, it is preferable that the main surface of the single crystal GaN-based layer 21 is one surface selected from the group consisting of {10-10} plane and {11-20} plane. On the main surface having one plane orientation selected from the group consisting of {10-10} and {11-20} of the single crystal GaN-based layer 21, the main surfaces are {10-10} and {11-20, respectively. }, It is possible to stably grow a GaN-based semiconductor layer having one plane orientation selected from the group consisting of: a piezo electric field generated in a well layer in an MQW active layer (active layer having a multiple quantum well structure) In particular, high luminous efficiency can be easily obtained in a wavelength region such as blue or green.

また、単結晶GaN系層の主面は、{10−11}面、{20−21}面、{20−2−1}面および{10−1−1}面からなる群から選ばれる1つの面であることが好ましい。単結晶GaN系層21の{10−11}、{20−21}、{20−2−1}および{10−1−1}からなる群から選ばれる1つの面方位を有する主面上には、それぞれ主面が{10−11}、{20−21}、{20−2−1}および{10−1−1}からなる群から選ばれる1つの面方位を有するGaN系半導体層を安定に成長させることができるため、MQW活性層(多重量子井戸構造の活性層)中の井戸層に発生するピエゾ電界を低減するとともに、良好な結晶品質のMQW活性層を形成することが可能となり、特に青色や緑色といった波長領域で、高い発光効率を容易に得ることができる。   The main surface of the single crystal GaN-based layer is 1 selected from the group consisting of {10-11} plane, {20-21} plane, {20-2-1} plane, and {10-1-1} plane. One aspect is preferred. On the main surface of the single crystal GaN-based layer 21 having one plane orientation selected from the group consisting of {10-11}, {20-21}, {20-2-1} and {10-1-1} Are GaN-based semiconductor layers each having a plane orientation selected from the group consisting of {10-11}, {20-21}, {20-2-1} and {10-1-1}. Since it can be stably grown, it is possible to reduce the piezoelectric field generated in the well layer in the MQW active layer (active layer having a multiple quantum well structure) and to form an MQW active layer with good crystal quality. In particular, high luminous efficiency can be easily obtained in a wavelength region such as blue or green.

[実施形態2]
図2を参照して、本発明の別の実施形態である半導体デバイス3は、実施形態1の複合基板1と、複合基板1の単結晶GaN系層21上に配置された少なくとも1層のGaN系半導体層40と、で形成される半導体積層体2を含む。本実施形態の半導体デバイス3は、実施形態1の複合基板1全体が高温NH3雰囲気下における耐久性が高く透明性かつ導電性を有し、さらに複合基板1の単結晶GaN系層21の結晶が高品質であるため、単結晶GaN系層21上に高品質の少なくともGaN系半導体層40が配置されており、高い特性を有する。
[Embodiment 2]
Referring to FIG. 2, a semiconductor device 3 according to another embodiment of the present invention includes at least one GaN layer disposed on the composite substrate 1 of Embodiment 1 and the single crystal GaN-based layer 21 of the composite substrate 1. And a semiconductor stacked body 2 formed by the system semiconductor layer 40. In the semiconductor device 3 of this embodiment, the entire composite substrate 1 of Embodiment 1 has high durability and transparency and conductivity in a high-temperature NH 3 atmosphere, and further, the crystal of the single crystal GaN-based layer 21 of the composite substrate 1. Therefore, the high-quality at least GaN-based semiconductor layer 40 is disposed on the single-crystal GaN-based layer 21 and has high characteristics.

ここで、GaN系半導体層40は、III族元素としてGaを含むIII族窒化物半導体層であり、Ga以外のIII族元素としてAl、Inなどを含むことができ、化学式AlxInyGa1-x-yN(0≦x<1、0≦y<1)などで表わされる。 Here, the GaN-based semiconductor layer 40 is a group III nitride semiconductor layer containing Ga as a group III element, and can contain Al, In, or the like as a group III element other than Ga, and has a chemical formula of Al x In y Ga 1. -xy N (0 ≦ x <1, 0 ≦ y <1).

GaN系半導体層40の貫通転位密度は、特に制限はないが、GaN系半導体層40が高い品質を有し高特性の半導体デバイス3が得られる観点から、1×107cm-2以下が好ましく、1×106cm-2以下がより好ましい。 The threading dislocation density of the GaN-based semiconductor layer 40 is not particularly limited, but is preferably 1 × 10 7 cm −2 or less from the viewpoint that the GaN-based semiconductor layer 40 has a high quality and high-performance semiconductor device 3 can be obtained. 1 × 10 6 cm −2 or less is more preferable.

GaN系半導体層40は、半導体デバイス3の種類に応じた構成を有する。たとえば、半導体デバイス3がLEDの場合は、GaN系半導体層40として、複合基板1側から順に配置されたn型GaN系半導体層41、MQW活性層(多重量子井戸構造の活性層)43およびp型GaN系半導体層45を含む。   The GaN-based semiconductor layer 40 has a configuration corresponding to the type of the semiconductor device 3. For example, when the semiconductor device 3 is an LED, as the GaN-based semiconductor layer 40, an n-type GaN-based semiconductor layer 41, an MQW active layer (active layer having a multiple quantum well structure) 43, and a p disposed sequentially from the composite substrate 1 side. A type GaN-based semiconductor layer 45 is included.

図2を参照して、本実施形態の半導体デバイス3であるLEDは、複合基板1と、GaN系半導体層40として複合基板1側から順に配置されたn型GaN系半導体層41、MQW活性層43(多重量子井戸構造の活性層)およびp型GaN系半導体層45と、で形成される半導体積層体2を含み、p型GaN系半導体層45上にp側電極50pを配置し、複合基板1の多結晶III族窒化物支持基板10上にn側電極を配置することにより縦型のLEDとすることができる。   Referring to FIG. 2, the LED which is the semiconductor device 3 of this embodiment includes a composite substrate 1, an n-type GaN-based semiconductor layer 41, which is arranged in order from the composite substrate 1 side as a GaN-based semiconductor layer 40, an MQW active layer 43 (active layer of multiple quantum well structure) and a p-type GaN-based semiconductor layer 45, a p-side electrode 50p is disposed on the p-type GaN-based semiconductor layer 45, and a composite substrate By arranging an n-side electrode on one polycrystalline III-nitride support substrate 10, a vertical LED can be obtained.

さらに、図5および6を参照して、本実施形態の半導体デバイス3,4であるLEDは、p側電極50pはp側リードフレーム60pに電気的に接続するように配置され、n側電極50nはボンディングワイヤ50wによりn側リードフレーム60nに電気的に接続されているp側ダウン構造の実装をすることができる。かかる半導体デバイス3であるLEDは、複合基板1が透明かつ導電性であるため、複合基板1側からの光の取出しが可能であるため、かかる実装が可能となる。   Further, referring to FIGS. 5 and 6, in the LED which is the semiconductor device 3 or 4 of the present embodiment, the p-side electrode 50p is disposed so as to be electrically connected to the p-side lead frame 60p, and the n-side electrode 50n. Can mount a p-side down structure electrically connected to the n-side lead frame 60n by a bonding wire 50w. The LED that is the semiconductor device 3 can be mounted because the composite substrate 1 is transparent and conductive, and light can be extracted from the composite substrate 1 side.

[実施形態3]
図3を参照して、本発明のさらに別の実施形態である半導体デバイス3は、図2に示す実施形態2の半導体デバイス3と同様に、実施形態1の複合基板1と、複合基板1の単結晶GaN系層21上に配置された少なくとも1層のGaN系半導体層40と、で形成される半導体積層体2を含む。本実施形態の半導体デバイス3は、実施形態1の複合基板1全体が高温NH3雰囲気下における耐久性が高く透明性かつ導電性を有し、さらに複合基板1の単結晶GaN系層21の結晶が高品質であるため、単結晶GaN系層21上に高品質の少なくともGaN系半導体層40が配置されており、高い特性を有する。
[Embodiment 3]
Referring to FIG. 3, the semiconductor device 3 which is still another embodiment of the present invention is similar to the semiconductor device 3 of the second embodiment shown in FIG. 2, and includes the composite substrate 1 of the first embodiment and the composite substrate 1. And a semiconductor laminate 2 formed of at least one GaN-based semiconductor layer 40 disposed on the single-crystal GaN-based layer 21. In the semiconductor device 3 of this embodiment, the entire composite substrate 1 of Embodiment 1 has high durability and transparency and conductivity in a high-temperature NH 3 atmosphere, and further, the crystal of the single crystal GaN-based layer 21 of the composite substrate 1. Therefore, the high-quality at least GaN-based semiconductor layer 40 is disposed on the single-crystal GaN-based layer 21 and has high characteristics.

ここで、本実施形態の半導体デバイス3は、実施形態2の半導体デバイス3と同様に、GaN系半導体層40は、III族元素としてGaを含むIII族窒化物半導体層であり、Ga以外のIII族元素としてAl、Inなどを含むことができ、化学式AlxInyGa1-x-yN(0≦x<1、0≦y<1)などで表わされる。 Here, in the semiconductor device 3 of the present embodiment, as in the semiconductor device 3 of the second embodiment, the GaN-based semiconductor layer 40 is a group III nitride semiconductor layer containing Ga as a group III element. Al, In, or the like can be included as a group element, and is represented by a chemical formula Al x In y Ga 1-xy N (0 ≦ x <1, 0 ≦ y <1).

また、GaN系半導体層40の貫通転位密度は、特に制限はないが、GaN系半導体層40が高い品質を有し高特性の半導体デバイス3が得られる観点から、1×107cm-2以下が好ましく、1×106cm-2以下がより好ましい。 Further, the threading dislocation density of the GaN-based semiconductor layer 40 is not particularly limited, but is 1 × 10 7 cm −2 or less from the viewpoint that the GaN-based semiconductor layer 40 has a high quality and high-performance semiconductor device 3. Is preferably 1 × 10 6 cm −2 or less.

また、GaN系半導体層40は、半導体デバイス3の種類に応じた構成を有する。たとえば、半導体デバイス3がLEDの場合は、GaN系半導体層40として、複合基板1側から順に配置されたn型GaN系半導体層41、MQW活性層(多重量子井戸構造の活性層)43およびp型GaN系半導体層45を含む。   The GaN-based semiconductor layer 40 has a configuration corresponding to the type of the semiconductor device 3. For example, when the semiconductor device 3 is an LED, as the GaN-based semiconductor layer 40, an n-type GaN-based semiconductor layer 41, an MQW active layer (active layer having a multiple quantum well structure) 43, and a p disposed sequentially from the composite substrate 1 side. A type GaN-based semiconductor layer 45 is included.

図3を参照して、本実施形態の半導体デバイス3であるLEDは、複合基板1と、GaN系半導体層40として複合基板1側から順に配置されたn型GaN系半導体層41、MQW活性層43(多重量子井戸構造の活性層)およびp型GaN系半導体層45と、で形成される半導体積層体2を含み、p型GaN系半導体層45上にp側電極50pを配置し、エッチングにより露出させたn型GaN系半導体層41上にn側電極50nを配置することにより、横型のLEDとすることができる。   Referring to FIG. 3, the LED that is the semiconductor device 3 of the present embodiment includes a composite substrate 1, an n-type GaN-based semiconductor layer 41 arranged in order from the composite substrate 1 side as a GaN-based semiconductor layer 40, and an MQW active layer. 43 (active layer having a multiple quantum well structure) and a p-type GaN-based semiconductor layer 45, a p-side electrode 50p is disposed on the p-type GaN-based semiconductor layer 45, and etching is performed. By arranging the n-side electrode 50n on the exposed n-type GaN-based semiconductor layer 41, a lateral LED can be obtained.

さらに、図11および12を参照して、本実施形態の半導体デバイス3,4であるLEDは、p側電極50pおよびn側電極50nはp側リードフレーム60pおよびn側リードフレーム60nにそれぞれ電気的に接続されているpダウン構造となるフリップチップ型の実装をすることができる。かかる半導体デバイス3であるLEDは、複合基板1が透明であるため、複合基板1側からの光の取出しが可能であるため、かかる実装が可能となる。   Further, referring to FIGS. 11 and 12, in the LED which is the semiconductor device 3 or 4 of this embodiment, the p-side electrode 50p and the n-side electrode 50n are electrically connected to the p-side lead frame 60p and the n-side lead frame 60n, respectively. Flip chip type mounting having a p-down structure connected to the substrate can be performed. The LED that is the semiconductor device 3 can be mounted because the composite substrate 1 is transparent and light can be extracted from the composite substrate 1 side.

[実施形態4]
図4を参照して、本発明のさらに別の実施形態である複合基板の製造方法は、実施形態1の複合基板1の製造方法であって、多結晶III族窒化物支持基板10の一方の主面上に非結晶質の第1の中間GaN系層31を形成する工程(図4の(A−1)および(A−2))と、単結晶GaN系基板20の一方の主面側から所定の深さの位置にイオン注入領域20iを形成する工程(図4の(B−1)および(B−2))と、単結晶GaN系基板20のイオン注入領域20i側の主面上に非結晶質の第2の中間GaN系層32を形成する工程(図4の(B−3))と、第1の中間GaN系層31と第2の中間GaN系層32とを貼り合わせて中間GaN系膜30を形成することにより、中間GaN系膜30を介在させて多結晶III族窒化物支持基板10と単結晶GaN系基板20とを貼り合わせる工程(図4の(C−1))と、単結晶GaN系基板20をイオン注入領域20iにおいて単結晶GaN系層21と残りの単結晶GaN系基板22とに分離する工程(図4の(C−2))と、を含む。本実施形態の複合基板の製造方法により、実施形態1の複合基板1が効率よく製造できる。
[Embodiment 4]
Referring to FIG. 4, the method for manufacturing a composite substrate according to still another embodiment of the present invention is a method for manufacturing composite substrate 1 according to Embodiment 1, and includes one of polycrystalline group III nitride support substrate 10. A step of forming an amorphous first intermediate GaN-based layer 31 on the main surface ((A-1) and (A-2) in FIG. 4) and one main surface side of the single-crystal GaN-based substrate 20 A step of forming an ion implantation region 20i at a predetermined depth from (B-1 and B-2 in FIG. 4), and on the main surface of the single crystal GaN-based substrate 20 on the ion implantation region 20i side. The step of forming the amorphous second intermediate GaN-based layer 32 ((B-3) in FIG. 4) and the first intermediate GaN-based layer 31 and the second intermediate GaN-based layer 32 are bonded together. By forming the intermediate GaN-based film 30 with the intermediate GaN-based film 30, the polycrystalline group III nitride support is interposed. A step of bonding the substrate 10 and the single crystal GaN-based substrate 20 ((C-1) in FIG. 4), and the single crystal GaN-based substrate 20 in the ion implantation region 20i and the remaining single crystal GaN-based layer 21. And a step ((C-2) in FIG. 4) of separation into the system substrate 22. The composite substrate 1 of Embodiment 1 can be efficiently manufactured by the method of manufacturing the composite substrate of this embodiment.

(多結晶III族窒化物支持基板上への第1の中間GaN系層の形成工程)
図4の(A−1)および(A−2)を参照して、本実施形態の複合基板の製造方法は、多結晶III族窒化物支持基板10の一方の主面上に非結晶質の第1の中間GaN系層31を形成する工程を含む。
(Step of forming first intermediate GaN-based layer on polycrystalline group III nitride supporting substrate)
Referring to (A-1) and (A-2) of FIG. 4, the method for manufacturing the composite substrate of the present embodiment has an amorphous structure on one main surface of polycrystalline group III nitride support substrate 10. A step of forming the first intermediate GaN-based layer 31 is included.

本工程において用いられる多結晶III族窒化物支持基板10は、実施形態1において説明したとおりであり、ここでは繰り返さない。   The polycrystalline group III nitride support substrate 10 used in this step is as described in the first embodiment, and is not repeated here.

本工程において、多結晶III族窒化物支持基板10の一方の主面上に成長させる非結晶質の第1の中間GaN系層31は、III族元素としてGaを含むIII族窒化物層であり、層の屈折率を調節することにより透明性を調節するため、Ga以外のIII族元素としてAl、Inなどを含むことができ、化学式AlxInyGa1-x-yN(0≦x<1、0≦y<1)などで表わされる。第1の中間GaN系層31の屈折率は、Alの含有量(III族元素全体に対するモル%)が高いほど低くなり、Inの含有量(III族元素全体に対するモル%)が高いほど高くなる。かかる場合に、第1の中間GaN系層31に含まれるAlおよびInは、それぞれIII族元素全体に対して0.1モル%以上15モル%以下が好ましい。すなわち、第1の中間GaN系層31の化学式AlxInyGa1-x-yNにおいて、0.001≦x≦0.15および0.001≦y≦0.15が好ましい。III族元素全体に対して、AlおよびInの少なくとも1つを0.1モル%以上とすることにより膜の屈折率を容易に調節することができ、AlおよびInをそれぞれ15モル%以下とすることにより層品質を高く維持することができる。ここで、第1の中間GaN系層31中のそれぞれのIII族元素の含有量(III族元素全体に対するモル%)は、SIMS、グロー放電発光分光分析などにより測定できる。 In this step, the amorphous first intermediate GaN-based layer 31 grown on one main surface of the polycrystalline group III nitride supporting substrate 10 is a group III nitride layer containing Ga as a group III element. In order to adjust the transparency by adjusting the refractive index of the layer, Al, In and the like can be included as group III elements other than Ga, and the chemical formula Al x In y Ga 1-xy N (0 ≦ x <1 , 0 ≦ y <1). The refractive index of the first intermediate GaN-based layer 31 decreases as the Al content (mol% with respect to the entire group III element) increases, and increases as the In content (mol% with respect to the entire group III element) increases. . In such a case, Al and In contained in the first intermediate GaN-based layer 31 are each preferably 0.1 mol% or more and 15 mol% or less with respect to the entire group III element. That is, in the chemical formula Al x In y Ga 1-xy N of the first intermediate GaN-based layer 31, 0.001 ≦ x ≦ 0.15 and 0.001 ≦ y ≦ 0.15 are preferable. The refractive index of the film can be easily adjusted by setting at least one of Al and In to 0.1 mol% or more with respect to the entire group III element, and Al and In are each set to 15 mol% or less. Therefore, the layer quality can be kept high. Here, the content of each group III element in the first intermediate GaN-based layer 31 (mol% with respect to the entire group III element) can be measured by SIMS, glow discharge emission spectroscopy, or the like.

また、第1の中間GaN系層31は、層の導電性を調節するため、ドーパントとして、酸素およびケイ素の少なくともいずれかを酸素およびケイ素の全体の濃度が1×1017cm-3以上5×1019cm-3以下で含むことが好ましい。第1の中間GaN系層31は、酸素およびケイ素の全体で1×1017cm-3以上の濃度とすることによりキャリア濃度を高めて比抵抗を低減する(導電性を高める)ことができ、酸素およびケイ素の全体で5×1019cm-3以下の濃度とすることによりキャリア移動度を高めて比抵抗を低減する(導電性を高める)ことができる。ここで、第1の中間GaN系層31中の酸素およびケイ素の濃度は、SIMSにより測定できる。 The first intermediate GaN-based layer 31 adjusts the conductivity of the layer, so that at least one of oxygen and silicon is used as a dopant, and the total concentration of oxygen and silicon is 1 × 10 17 cm −3 or more and 5 ×. It is preferable to include it at 10 19 cm −3 or less. The first intermediate GaN-based layer 31 can increase the carrier concentration and reduce the specific resistance (increase conductivity) by setting the concentration of oxygen and silicon as a whole to 1 × 10 17 cm −3 or more. By setting the total concentration of oxygen and silicon to 5 × 10 19 cm −3 or less, carrier mobility can be increased and specific resistance can be decreased (conductivity can be increased). Here, the oxygen and silicon concentrations in the first intermediate GaN-based layer 31 can be measured by SIMS.

また、第1の中間GaN系層31の厚さは、特に制限はないが、200nm以上2000nm以下が好ましい。中間GaN系膜30の厚さが、200nmより薄いと層形成後の層研磨の際に不具合が発生し易く、2000nmより厚いと生産性が低下し生産コストが増大する。   The thickness of the first intermediate GaN-based layer 31 is not particularly limited, but is preferably 200 nm or more and 2000 nm or less. If the thickness of the intermediate GaN-based film 30 is less than 200 nm, problems are likely to occur during layer polishing after layer formation, and if it is greater than 2000 nm, the productivity decreases and the production cost increases.

第1の中間GaN系層31を形成する方法は、非結晶質層を形成できるものであれば特に制限はないが、生産性向上の観点から、スパッタ法、MOCVD(有機金属化学気相堆積)法などが好ましい。   The method for forming the first intermediate GaN-based layer 31 is not particularly limited as long as an amorphous layer can be formed. From the viewpoint of improving productivity, sputtering, MOCVD (metal organic chemical vapor deposition). The method is preferred.

(単結晶GaN系基板へのイオン注入領域の形成工程および第2の中間GaN系層の形成工程)
図4の(B−1)および(B−2)を参照して、本実施形態の複合基板の製造方法は、単結晶GaN系基板20の一方の主面側から所定の深さの位置にイオン注入領域20iを形成する工程を含む。
(Process for forming ion implantation region into single crystal GaN-based substrate and process for forming second intermediate GaN-based layer)
With reference to (B-1) and (B-2) of FIG. 4, the composite substrate manufacturing method of the present embodiment is positioned at a predetermined depth from one main surface side of the single crystal GaN-based substrate 20. Forming an ion implantation region 20i.

本工程において用いられる単結晶GaN系基板20は、実施形態1において説明したとおりであり、ここでは繰り返さない。
本工程は、単結晶GaN系基板20の一方の主面側からイオンIを注入することにより行なわれる。注入されるイオンIは、特に制限はないが、単結晶GaN系基板20の結晶の品質の低下を抑制する観点から、水素、ヘリウムなどの質量数の小さい元素のイオンが好ましい。イオンIが注入される深さ、すなわち、イオン注入領域20iが形成される深さは、特に制限はないが、その深さの精度が高い観点から、10nm以上1000nm以下程度が好ましい。
The single crystal GaN-based substrate 20 used in this step is as described in the first embodiment, and is not repeated here.
This step is performed by implanting ions I from one main surface side of the single crystal GaN-based substrate 20. The ions I to be implanted are not particularly limited, but ions of elements having a small mass number such as hydrogen and helium are preferable from the viewpoint of suppressing deterioration of the crystal quality of the single crystal GaN-based substrate 20. The depth at which the ions I are implanted, that is, the depth at which the ion implantation region 20i is formed is not particularly limited, but is preferably about 10 nm to 1000 nm from the viewpoint of high accuracy of the depth.

本工程によりイオン注入領域20iが形成された単結晶GaN系基板20においては、イオン注入領域20iは、イオンの注入により、他の領域に比べて脆化する。   In the single crystal GaN-based substrate 20 in which the ion-implanted region 20i is formed by this process, the ion-implanted region 20i becomes brittle compared to other regions due to ion implantation.

図4の(B−3)を参照して、本実施形態の複合基板の製造方法は、単結晶GaN系基板20のイオン注入領域20i側の主面上に非結晶質の第2の中間GaN系層32を形成する工程を含む。   Referring to (B-3) of FIG. 4, in the method for manufacturing the composite substrate of this embodiment, the second intermediate GaN that is amorphous on the main surface of the single crystal GaN-based substrate 20 on the ion implantation region 20i side. Forming a system layer 32;

本工程において、単結晶GaN系基板20のイオン注入領域20i側の主面上に成長させる非結晶質の第2の中間GaN系層32は、上述の第1の中間GaN系層31と同じであり、ここでは繰り返さない。また、第2の中間GaN系層32を形成する方法は、上述の第2のGaN系層31を形成する方法と同じであり、ここでは繰り返さない。   In this step, the amorphous second intermediate GaN-based layer 32 grown on the main surface of the single crystal GaN-based substrate 20 on the ion implantation region 20i side is the same as the first intermediate GaN-based layer 31 described above. Yes, not repeated here. The method of forming the second intermediate GaN-based layer 32 is the same as the method of forming the second GaN-based layer 31 described above, and will not be repeated here.

上述の多結晶III族窒化物支持基板10上に第1の中間GaN系層31を形成する工程と、単結晶GaN系基板20にイオン注入領域20iを形成する工程および単結晶GaN系基板20上に第2の中間GaN系層32を形成する工程とは、順序が反対であってもよい。また、単結晶GaN系基板20にイオン注入領域20iを形成する工程の後、多結晶III族窒化物支持基板10上に第1の中間GaN系層31を形成する工程および単結晶GaN系基板20上に第2の中間GaN系層32を形成する工程を同時に行なってもよい。   A step of forming the first intermediate GaN-based layer 31 on the above-mentioned polycrystalline group III nitride support substrate 10, a step of forming the ion implantation region 20 i in the single-crystal GaN-based substrate 20, and the single-crystal GaN-based substrate 20 In addition, the order of the step of forming the second intermediate GaN-based layer 32 may be reversed. Further, after the step of forming the ion implantation region 20 i in the single crystal GaN-based substrate 20, the step of forming the first intermediate GaN-based layer 31 on the polycrystalline group III nitride support substrate 10 and the single crystal GaN-based substrate 20. The step of forming the second intermediate GaN-based layer 32 thereon may be performed simultaneously.

さらに、多結晶III族窒化物支持基板10上に第1の中間GaN系層31を形成する工程および単結晶GaN系基板20上に第2の中間GaN系層32を形成する工程の後、後述の多結晶III族窒化物支持基板10と単結晶GaN系基板20とを貼り合わせる工程の前に、第1の中間GaN系層31および第2の中間GaN系層32の主面を表面処理することにより第1の中間GaN系層31および第2の中間GaN系層32の主面の平坦性を高める工程を行なうことが、後述の貼り合わせによる接合の強度を高める観点から、好ましい。上記の表面処理の方法は、特に制限はないが、主面の平坦性を高める観点から、機械的研磨、化学機械的研磨(CMP)、化学的研磨などの研磨が好ましい。   Further, after the step of forming the first intermediate GaN-based layer 31 on the polycrystalline group III nitride support substrate 10 and the step of forming the second intermediate GaN-based layer 32 on the single-crystal GaN-based substrate 20, the description will be given later. The main surfaces of the first intermediate GaN-based layer 31 and the second intermediate GaN-based layer 32 are subjected to surface treatment before the step of bonding the polycrystalline group III nitride supporting substrate 10 and the single crystal GaN-based substrate 20. Therefore, it is preferable to perform the step of increasing the flatness of the main surfaces of the first intermediate GaN-based layer 31 and the second intermediate GaN-based layer 32 from the viewpoint of increasing the bonding strength by bonding, which will be described later. The surface treatment method is not particularly limited, but polishing such as mechanical polishing, chemical mechanical polishing (CMP), and chemical polishing is preferable from the viewpoint of improving the flatness of the main surface.

(多結晶III族窒化物支持基板と単結晶GaN系基板との貼り合わせる工程)
図4の(C−1)を参照して、本実施形態の複合基板の製造方法は、第1の中間GaN系層31と第2の中間GaN系層32とを貼り合わせて中間GaN系膜30を形成することにより、中間GaN系膜30を介在させて多結晶III族窒化物支持基板10と単結晶GaN系基板20とを貼り合わせる工程を含む。
(Step of bonding the polycrystal group III nitride support substrate to the single crystal GaN-based substrate)
Referring to FIG. 4C-1, in the method for manufacturing the composite substrate of the present embodiment, the first intermediate GaN-based layer 31 and the second intermediate GaN-based layer 32 are bonded to each other to form an intermediate GaN-based film. 30 is included to bond the polycrystalline group III nitride supporting substrate 10 and the single crystal GaN-based substrate 20 with the intermediate GaN-based film 30 interposed therebetween.

本工程は、第1の中間GaN系層31と第2の中間GaN系層32とを貼り合わせて中間GaN系膜30を形成することにより行なわれる。   This step is performed by bonding the first intermediate GaN-based layer 31 and the second intermediate GaN-based layer 32 to form the intermediate GaN-based film 30.

多結晶III族窒化物支持基板10上に形成された第1の中間GaN系層31と単結晶GaN系基板20上に形成された第2の中間GaN系層32とを貼り合わせる方法は、特に制限はなく、圧着などの方法が好適に行なわれる。圧着によれば、両基板間に10kgf/cm2以上1000kgf/cm2以下の圧力を加えることにより室温(たとえば25℃程度)以上300℃以下の比較的低温で両基板を貼り合わせることができる。 The method of bonding the first intermediate GaN-based layer 31 formed on the polycrystalline group III nitride supporting substrate 10 and the second intermediate GaN-based layer 32 formed on the single crystal GaN-based substrate 20 in particular There is no limitation, and a method such as pressure bonding is suitably performed. According to crimping, it can be attached to both substrates at a relatively low temperature of room temperature (e.g., about 25 ° C.) or higher 300 ° C. or less by applying a pressure of 10 kgf / cm 2 or more 1000 kgf / cm 2 or less between the substrates.

(単結晶GaN系基板の分離工程)
図4の(C−2)を参照して、本実施形態の複合基板の製造方法は、単結晶GaN系基板20をイオン注入領域20iにおいて単結晶GaN系層21と残りの単結晶GaN系基板22とに分離する工程を含む。
(Single-crystal GaN substrate separation process)
Referring to FIG. 4C-2, in the method of manufacturing the composite substrate of this embodiment, the single crystal GaN-based substrate 20 is replaced with the single-crystal GaN-based layer 21 and the remaining single-crystal GaN-based substrate in the ion implantation region 20i. 22 and the process of separating to 22.

本工程により、多結晶III族窒化物支持基板10と、多結晶III族窒化物支持基板10上に配置された中間GaN系膜30と、中間GaN系膜30上に配置された単結晶GaN系層21と、を含む実施形態1の複合基板1が得られる。   By this step, the polycrystalline group III nitride support substrate 10, the intermediate GaN-based film 30 disposed on the polycrystalline group III-nitride support substrate 10, and the single crystal GaN-based disposed on the intermediate GaN-based film 30 The composite substrate 1 of Embodiment 1 including the layer 21 is obtained.

本工程において、単結晶GaN系基板20をイオン注入領域20iにおいて単結晶GaN系層21と残りの単結晶GaN系基板22とに分離する方法は、特に制限はなく、単結晶GaN系基板20に熱または応力を加える方法が好適に用いられる。単結晶GaN系基板20に熱または応力を加えることにより、脆化したイオン注入領域20iにおいて容易に分離する。   In this step, the method for separating the single crystal GaN-based substrate 20 into the single-crystal GaN-based layer 21 and the remaining single-crystal GaN-based substrate 22 in the ion implantation region 20 i is not particularly limited. A method of applying heat or stress is preferably used. By applying heat or stress to the single crystal GaN-based substrate 20, the embrittled ion implantation region 20i is easily separated.

(残りの単結晶GaN系基板の再利用)
図4の(C−2)および(B−1)を参照して、上述の単結晶GaN系基板を単結晶GaN系層21と残りの単結晶GaN系基板22とに分離する分離工程において得られた残りの単結晶GaN系基板をさらなる単結晶基板として用いて、下記の工程によりさらなる複合基板を製造することができる。
かかる残りの単結晶GaN系基板をさらなる単結晶基板として用いたさらなる複合基板の製造方法は、別の多結晶III族窒化物支持基板と、別の多結晶III族窒化物支持基板上に配置された別の中間GaN系膜と、別の中間GaN系膜上に配置されたさらなる単結晶GaN系層と、を含むさらなる複合基板の製造方法であって、別の多結晶III族窒化物支持基板の一方の主面上に非結晶質の別の第1の中間GaN系層を形成する工程と、さらなる単結晶GaN系基板の一方の主面側から所定の深さの位置にさらなるイオン注入領域を形成する工程と、さらなる単結晶GaN系基板のさらなるイオン注入領域側の主面上に非結晶質の別の第2の中間GaN系層を形成する工程と、別の第1の中間GaN系層と別の第2の中間GaN系層とを貼り合わせて別の中間GaN系膜を形成することにより、別の中間GaN系膜を介在させて別の多結晶III族窒化物支持基板とさらなる単結晶GaN系基板とを貼り合わせる工程と、さらなる単結晶GaN系基板をイオン注入領域においてさらなる単結晶GaN系層とさらなる残りの単結晶GaN系基板とに分離する工程と、を含む複合基板の製造方法である。
(Reuse of remaining single crystal GaN substrate)
Referring to (C-2) and (B-1) of FIG. 4, the above-described single crystal GaN-based substrate is obtained in a separation step for separating the single crystal GaN-based substrate 21 into the remaining single crystal GaN-based substrate 22. Using the remaining single crystal GaN-based substrate as a further single crystal substrate, a further composite substrate can be manufactured by the following steps.
A method of manufacturing a further composite substrate using the remaining single crystal GaN-based substrate as a further single crystal substrate is arranged on another polycrystalline group III nitride support substrate and another polycrystalline group III nitride support substrate. A method for producing a further composite substrate comprising another intermediate GaN-based film and a further single-crystal GaN-based layer disposed on the other intermediate GaN-based film, the method comprising: Forming another amorphous first intermediate GaN-based layer on one main surface of the substrate, and a further ion implantation region at a predetermined depth from one main surface side of the further single-crystal GaN-based substrate Forming a second non-crystalline second intermediate GaN-based layer on the main surface of the additional single crystal GaN-based substrate on the side of the further ion implantation region, and another first intermediate GaN-based substrate A second intermediate GaN-based layer separate from the layer; Bonding another polycrystalline GaN-based substrate and another single-crystal GaN-based substrate with another intermediate GaN-based film interposed therebetween by further bonding to form another intermediate GaN-based film; and Separating the single crystal GaN-based substrate into a further single-crystal GaN-based layer and a further remaining single-crystal GaN-based substrate in the ion implantation region.

[実施形態5]
図4の(C−2)、(C−3)、(C−3−1)および(C−3−2)を参照して、本発明のさらに別の実施形態である半導体デバイスの製造方法は、多結晶III族窒化物支持基板10と、多結晶III族窒化物支持基板10上に配置された中間GaN系膜30と、中間GaN系膜30上に配置された単結晶GaN系層21と、を含む実施形態1の複合基板1を準備する工程と、複合基板1の単結晶GaN系層21上に少なくとも1層のGaN系半導体層40を成長させる工程と、を含む。本実施形態の半導体デバイスの製造方法においては、準備される複合基板1全体が高温NH3雰囲気下における耐久性が高く透明性かつ導電性を有し、さらに複合基板1の単結晶GaN系層21の結晶が高品質であるため、複合基板1の単結晶GaN系層21上に高品質の少なくともGaN系半導体層40を成長させることができ、高い特性を有する半導体デバイスが得られる。
[Embodiment 5]
With reference to (C-2), (C-3), (C-3-1) and (C-3-2) in FIG. 4, a method for manufacturing a semiconductor device which is still another embodiment of the present invention Is a polycrystalline III-nitride support substrate 10, an intermediate GaN-based film 30 disposed on the polycrystalline III-nitride support substrate 10, and a single-crystal GaN-based layer 21 disposed on the intermediate GaN-based film 30. And a step of preparing the composite substrate 1 of the first embodiment including the step of growing at least one GaN-based semiconductor layer 40 on the single crystal GaN-based layer 21 of the composite substrate 1. In the semiconductor device manufacturing method of the present embodiment, the prepared composite substrate 1 as a whole has high durability in a high-temperature NH 3 atmosphere, has transparency and conductivity, and further, the single crystal GaN-based layer 21 of the composite substrate 1. Therefore, the high-quality at least GaN-based semiconductor layer 40 can be grown on the single-crystal GaN-based layer 21 of the composite substrate 1, and a semiconductor device having high characteristics can be obtained.

(複合基板の準備工程)
図4の(C−2)を参照して、本実施形態の半導体デバイス3の製造方法は、多結晶III族窒化物支持基板10と、多結晶III族窒化物支持基板10上に配置された中間GaN系膜30と、中間GaN系膜30上に配置された単結晶GaN系層21と、を含む実施形態1の複合基板1を準備する工程を含む。かかる複合基板1を準備する工程は、実施形態において説明したとおりであり、ここでは繰り返さない。
(Preparation process of composite substrate)
With reference to (C-2) of FIG. 4, the manufacturing method of the semiconductor device 3 of the present embodiment is arranged on the polycrystalline group III nitride supporting substrate 10 and the polycrystalline group III nitride supporting substrate 10. This includes a step of preparing the composite substrate 1 of Embodiment 1 including the intermediate GaN-based film 30 and the single crystal GaN-based layer 21 disposed on the intermediate GaN-based film 30. The step of preparing the composite substrate 1 is as described in the fourth embodiment and will not be repeated here.

(GaN系半導体層の成長工程)
図4の(C−3)を参照して、本実施形態の半導体デバイス3の製造方法は、複合基板1の単結晶GaN系層21上に少なくとも1層のGaN系半導体層40を成長させる工程を含む。かかる工程により、複合基板1の単結晶GaN系層21上に少なくとも1層のGaN系半導体層40が形成された半導体積層体2が得られる。
(Growth process of GaN-based semiconductor layers)
With reference to (C-3) of FIG. 4, in the method for manufacturing the semiconductor device 3 of the present embodiment, at least one GaN-based semiconductor layer 40 is grown on the single-crystal GaN-based layer 21 of the composite substrate 1. including. With this process, the semiconductor stacked body 2 in which at least one GaN-based semiconductor layer 40 is formed on the single crystal GaN-based layer 21 of the composite substrate 1 is obtained.

ここで、成長させるGaN系半導体層40は、実施形態2において説明したとおりであり、ここでは繰り返さない。また、GaN系半導体層40を成長させる方法は、特に制限はないが、高品質のGaN系半導体層40を成長させる観点から、MOCVD(有機金属化学気相堆積)法、MBE(分子線成長)法などが好ましい。   Here, the GaN-based semiconductor layer 40 to be grown is as described in the second embodiment, and is not repeated here. The method for growing the GaN-based semiconductor layer 40 is not particularly limited. From the viewpoint of growing the high-quality GaN-based semiconductor layer 40, MOCVD (metal organic chemical vapor deposition) method, MBE (molecular beam growth). The method is preferred.

また、成長させるGaN系半導体層40は、半導体デバイスの種類に応じた構成を有する。たとえば、半導体デバイスがLEDの場合は、GaN系半導体層40を成長させる工程は、複合基板1の単結晶GaN系層21上に、n型GaN系半導体層41を成長させるサブ工程と、n型GaN系半導体層41上にMQW活性層43(多重量子井戸構造の活性層)を成長させるサブ工程と、MQW活性層43上にp型GaN系半導体層45を成長させるサブ工程と、を含む。かかる工程により、複合基板1と、GaN系半導体層40として複合基板1側から順に配置されたn型GaN系半導体層41、MQW活性層43(多重量子井戸構造の活性層)およびp型GaN系半導体層45と、で形成される半導体積層体2が得られる。   The GaN-based semiconductor layer 40 to be grown has a configuration corresponding to the type of semiconductor device. For example, when the semiconductor device is an LED, the step of growing the GaN-based semiconductor layer 40 includes a sub-step of growing an n-type GaN-based semiconductor layer 41 on the single crystal GaN-based layer 21 of the composite substrate 1, and an n-type A sub-process for growing an MQW active layer 43 (an active layer having a multiple quantum well structure) on the GaN-based semiconductor layer 41; and a sub-process for growing a p-type GaN-based semiconductor layer 45 on the MQW active layer 43. Through this process, the composite substrate 1, the n-type GaN-based semiconductor layer 41, the MQW active layer 43 (multi-quantum well structure active layer), and the p-type GaN-based semiconductor layer 40 are sequentially arranged from the composite substrate 1 side. The semiconductor stacked body 2 formed by the semiconductor layer 45 is obtained.

GaN系半導体層40を成長させる工程において、GaN系半導体層40は700℃以上1100℃以下の成長温度で成長されるため、中間GaN系膜30は非結晶質から結晶質に変質することができる。このため、中間GaN系膜30とそれに隣接する層との密着性が強固になることで、膜剥がれといった不良が抑制されて信頼性が向上し、さらに、中間GaN系膜30における電子の移動度が向上して抵抗が低くなり、半導体デバイスの特性が高くなる。   In the step of growing the GaN-based semiconductor layer 40, since the GaN-based semiconductor layer 40 is grown at a growth temperature of 700 ° C. or higher and 1100 ° C. or lower, the intermediate GaN-based film 30 can be changed from amorphous to crystalline. . For this reason, the adhesion between the intermediate GaN-based film 30 and the layer adjacent to the intermediate GaN-based film 30 is strengthened, so that defects such as film peeling are suppressed and the reliability is improved. Furthermore, the mobility of electrons in the intermediate GaN-based film 30 is improved. As a result, the resistance is lowered and the characteristics of the semiconductor device are enhanced.

さらに、図4の(C−3−1)を参照して、上記のようにして得られた図4の(C−3)に示す半導体積層体2において、GaN系半導体層40のp型GaN系半導体層45上にp側電極50pを形成し、複合基板1の多結晶III族窒化物支持基板10上にn側電極50nを形成することにより、半導体デバイス3として縦型のLEDが得られる。ここで、p側電極50pおよびn側電極50nを形成する方法は、特に制限はないが、生産性向上の観点から、スパッタ法、蒸着法などが好ましい。   Further, referring to (C-3-1) in FIG. 4, in the semiconductor stacked body 2 shown in (C-3) of FIG. 4 obtained as described above, the p-type GaN of the GaN-based semiconductor layer 40 is obtained. A vertical LED is obtained as the semiconductor device 3 by forming the p-side electrode 50 p on the semiconductor layer 45 and the n-side electrode 50 n on the polycrystalline group III nitride supporting substrate 10 of the composite substrate 1. . Here, the method for forming the p-side electrode 50p and the n-side electrode 50n is not particularly limited, but from the viewpoint of improving productivity, a sputtering method, a vapor deposition method, or the like is preferable.

さらに、図5および6を参照して、本実施形態の半導体デバイスの製造方法により得られた半導体デバイス3,4である縦型のLEDは、p側電極50pがp側リードフレーム60pに電気的に接続するように配置され、n側電極50nがボンディングワイヤ50wによりn側リードフレーム60nに電気的に接続されているp側ダウン構造の実装をすることができる。かかる半導体デバイス3,4であるLEDは、複合基板1が透明かつ導電性であるため、複合基板1側からの光の取出しが可能であるため、かかる実装が可能となる。   Further, referring to FIGS. 5 and 6, in the vertical type LED as the semiconductor devices 3 and 4 obtained by the semiconductor device manufacturing method of the present embodiment, the p-side electrode 50 p is electrically connected to the p-side lead frame 60 p. The p-side down structure in which the n-side electrode 50n is electrically connected to the n-side lead frame 60n by the bonding wire 50w can be mounted. The LEDs that are the semiconductor devices 3 and 4 can be mounted because the composite substrate 1 is transparent and conductive, and thus light can be extracted from the composite substrate 1 side.

また、図4の(C−3−2)を参照して、上記のようにして得られた図4の(C−3)に示す半導体積層体2において、p型GaN系半導体層45上にp側電極50pを形成し、エッチングによりn型GaN系半導体層41の一部を露出させ、露出したn型GaN系半導体層41上にn側電極50nを形成することにより、半導体デバイス3として横型のLEDが得られる。   Further, referring to (C-3-2) in FIG. 4, in the semiconductor stacked body 2 shown in (C-3) of FIG. 4 obtained as described above, on the p-type GaN-based semiconductor layer 45. A p-side electrode 50p is formed, a part of the n-type GaN-based semiconductor layer 41 is exposed by etching, and an n-side electrode 50n is formed on the exposed n-type GaN-based semiconductor layer 41, thereby forming a lateral type as the semiconductor device 3. LED is obtained.

さらに、図11および12を参照して、本実施形態の半導体デバイスの製造方法により得られた半導体デバイス3,4である横型のLEDは、p側電極50pがp側リードフレーム60pに、n側電極50nがn側リードフレームに、それぞれ電気的に接続するように、p側ダウン構造となるフリップチップ型の実装をすることができる。かかる半導体デバイス3,4であるLEDは、横型のLEDであり、複合基板1が透明であるため、複合基板1側からの光の取出しが可能であるため、かかる実装が可能となる。   Further, referring to FIGS. 11 and 12, in the lateral LED which is the semiconductor device 3 or 4 obtained by the semiconductor device manufacturing method of the present embodiment, the p-side electrode 50 p is connected to the p-side lead frame 60 p, and the n-side A flip-chip type mounting having a p-side down structure can be implemented so that the electrodes 50n are electrically connected to the n-side lead frame, respectively. The LEDs that are the semiconductor devices 3 and 4 are horizontal LEDs, and the composite substrate 1 is transparent, so that light can be taken out from the composite substrate 1 side, so that such mounting is possible.

ここで、p側電極50pとp側リードフレーム60pとを、および、n側電極50nとp側リードフレーム60nとを、それぞれ電気的に接続する方法は、特に制限はないが、簡易かつ確実に接続する観点から、バンプを介在させて接続させることが好ましい。   Here, the method of electrically connecting the p-side electrode 50p and the p-side lead frame 60p and the n-side electrode 50n and the p-side lead frame 60n is not particularly limited, but is simple and reliable. From the viewpoint of connection, it is preferable to connect via bumps.

(実施例1)
1.単結晶GaN系基板内へのイオン注入
図4の(B−1)を参照して、直径50mmで厚さが400μmの表主面が(0001)面で転位密度が5×106cm-2の単結晶GaN基板(単結晶GaN系基板20)を準備した。
Example 1
1. Ion Implantation into Single-Crystal GaN-Based Substrate Referring to FIG. 4B-1, the front major surface having a diameter of 50 mm and a thickness of 400 μm is the (0001) plane, and the dislocation density is 5 × 10 6 cm −2. A single crystal GaN substrate (single crystal GaN-based substrate 20) was prepared.

次いで、図4の(B−2)を参照して、単結晶GaN基板(単結晶GaN系基板20)の裏主面(これは(000−1)面である)側から水素イオンを注入することにより、単結晶GaN基板の裏主面側から深さ200nmの位置にイオン注入領域20iを形成した。かかるイオン注入領域20iは周りの領域に比べて脆化した領域であった。   Next, referring to FIG. 4B-2, hydrogen ions are implanted from the back main surface (this is the (000-1) plane) side of the single crystal GaN substrate (single crystal GaN-based substrate 20). As a result, an ion implantation region 20i was formed at a depth of 200 nm from the back main surface side of the single crystal GaN substrate. The ion implantation region 20i was a region embrittled as compared with the surrounding region.

2.多結晶III族窒化物支持基板および単結晶GaN系基板上への中間GaN系層の形成
一方、図4の(A−1)を参照して、直径50mmで厚さが400μmの多結晶GaN支持基板(多結晶III族窒化物支持基板10)を準備した。
2. Formation of Intermediate Group GaN-Based Layer on Polycrystalline Group III Nitride Support Substrate and Single Crystal GaN-Based Substrate On the other hand, referring to FIG. 4A-1, a polycrystalline GaN support having a diameter of 50 mm and a thickness of 400 μm A substrate (polycrystalline group III nitride supporting substrate 10) was prepared.

次いで、反応性スパッタ法により、上記のイオン注入領域20iが形成された単結晶GaN基板(単結晶GaN系基板20)の裏主面(イオン注入領域20i側の主面)上に第2の中間GaN層(第2の中間GaN系層32)を形成し、上記の多結晶GaN支持基板(多結晶III族窒化物支持基板10)の一主面上に第1の中間GaN層(第1の中間GaN系層31)を形成した。形成条件は、それぞれの基板の温度を400℃とし、Gaの供給はGaNターゲットを用いてアルゴンプラズマにより行ない、Nの供給はN2ガスにより行なった。形成された第1の中間GaN層(第1の中間GaN系層31)および第2の中間GaN層(第2の中間GaN系層32)は、それらの厚さがいずれも500nmであり、それらの酸素濃度がいずれも2×1018cm-3であり、それらのケイ素濃度がいずれも1×1018cm-3であった。 Next, a second intermediate is formed on the back main surface (main surface on the ion implantation region 20i side) of the single crystal GaN substrate (single crystal GaN-based substrate 20) on which the ion implantation region 20i is formed by reactive sputtering. A GaN layer (second intermediate GaN-based layer 32) is formed, and a first intermediate GaN layer (first intermediate GaN layer) is formed on one main surface of the polycrystalline GaN supporting substrate (polycrystalline III-nitride supporting substrate 10). An intermediate GaN-based layer 31) was formed. The formation conditions were such that the temperature of each substrate was 400 ° C., Ga was supplied by argon plasma using a GaN target, and N was supplied by N 2 gas. The formed first intermediate GaN layer (first intermediate GaN-based layer 31) and second intermediate GaN layer (second intermediate GaN-based layer 32) both have a thickness of 500 nm. The oxygen concentrations of all were 2 × 10 18 cm −3 , and the silicon concentrations thereof were all 1 × 10 18 cm −3 .

次いで、多結晶GaN支持基板(多結晶III族窒化物支持基板10)上に形成された第1の中間GaN層(第1の中間GaN系層31)の主面および単結晶GaN基板(単結晶GaN系基板20)上に形成された第2の中間GaN層(第2の中間GaN系層32)の主面を、ダイヤモンドスラリーを用いてそれらの表面を200nmの深さまで機械研磨により平坦化して、それらの主面のRMS(二乗平均平方根)粗さを0.5nmとした。ここで、RMS粗さとは、平均面から測定曲面までの偏差(距離)の二乗を平均した値の平方根で表わした粗さをいい、JIS B0601−2001に規定するRqを意味しており、AFM(原子間力顕微鏡)を用いて10μm×10μ角の範囲で測定した。   Next, the main surface of the first intermediate GaN layer (first intermediate GaN-based layer 31) formed on the polycrystalline GaN support substrate (polycrystalline group III nitride support substrate 10) and the single crystal GaN substrate (single crystal) The main surface of the second intermediate GaN layer (second intermediate GaN-based layer 32) formed on the GaN-based substrate 20) is planarized by mechanical polishing to a depth of 200 nm using diamond slurry. The RMS (root mean square) roughness of these main surfaces was 0.5 nm. Here, the RMS roughness means the roughness expressed by the square root of the value obtained by averaging the squares of the deviation (distance) from the average surface to the measurement curved surface, and means Rq defined in JIS B0601-2001. Measurement was performed in the range of 10 μm × 10 μm using an (atomic force microscope).

3.多結晶III族窒化物支持基板と単結晶GaN系基板との貼り合わせ
次いで、図4の(C−1)を参照して、第1の中間GaN層(第1の中間GaN系層31)の研磨後の主面と第2の中間GaN層(第2の中間GaN系層32)の研磨後の主面とを貼り合わせて、200℃の雰囲気温度下100kgf/cm2の圧力で1時間圧着させることにより、厚さ600nmの中間GaN膜(中間GaN系膜30)を介在させて多結晶GaN基板(多結晶III族窒化物支持基板10)と単結晶GaN基板(単結晶GaN系基板20)とを貼り合わせた。
3. Bonding of Polycrystalline Group III Nitride Support Substrate and Single Crystal GaN-Based Substrate Next, referring to FIG. 4C-1, the first intermediate GaN layer (first intermediate GaN-based layer 31) The main surface after polishing and the main surface after polishing of the second intermediate GaN layer (second intermediate GaN-based layer 32) are bonded together and pressure-bonded for 1 hour at an atmospheric temperature of 200 ° C. and a pressure of 100 kgf / cm 2. As a result, a polycrystalline GaN substrate (polycrystalline group III nitride support substrate 10) and a single crystal GaN substrate (single crystal GaN-based substrate 20) with an intermediate GaN film (intermediate GaN-based film 30) having a thickness of 600 nm interposed therebetween. And pasted together.

4.単結晶GaN系基板の分離
次いで、図4の(C−2)を参照して、中間GaN膜(中間GaN系膜30)を介在させて多結晶GaN支持基板(多結晶III族窒化物支持基板10)と単結晶GaN基板(単結晶GaN系基板20)とが貼り合わされた基板を、NH3雰囲気中で700℃の雰囲気温度で2時間加熱することにより、単結晶GaN基板(単結晶GaN系基板20)を脆化したイオン注入領域20iで分離させて、厚さ400μmの多結晶GaN支持基板(多結晶III族窒化物支持基板10)上に形成された厚さ600nmの中間GaN膜(中間GaN系膜30)上に形成された表主面が(0001)面で厚さ200nmの単結晶GaN層(単結晶GaN系層21)が形成された複合基板1が得られた。
4). Separation of Single Crystal GaN-Based Substrate Next, referring to FIG. 4C-2, a polycrystalline GaN support substrate (polycrystalline group III nitride support substrate) with an intermediate GaN film (intermediate GaN-based film 30) interposed therebetween 10) and a single crystal GaN substrate (single crystal GaN-based substrate 20) are heated in an NH 3 atmosphere at 700 ° C. for 2 hours to obtain a single-crystal GaN substrate (single-crystal GaN-based substrate). An intermediate GaN film (intermediate 600 nm) formed on a 400 μm thick polycrystalline GaN support substrate (polycrystalline III-nitride support substrate 10) by separating the substrate 20) at the embrittled ion implantation region 20i. A composite substrate 1 was obtained in which a single-crystal GaN layer (single-crystal GaN-based layer 21) having a (0001) plane and a thickness of 200 nm was formed on the GaN-based film 30).

5.半導体デバイスの製造
次いで、図5を参照して、上記で得られた複合基板1の単結晶GaN層(単結晶GaN系層21)上に、MOCVD法により、GaN系半導体層40として、厚さ2μmのn型GaN層(n型GaN系半導体層41)、厚さ5nmのIn0.12Ga0.88N井戸層および厚さ10nmのGaN障壁層で構成される6重のMQW(量位井戸構造)活性層43、厚さ20nmのp型Al0.07Ga0.93N層45aおよび厚さ100nmのp型GaNコンタクト層45b(これらの全体がp型GaN系半導体層45)を順次成長させた。GaN系半導体層40の成長温度は、n型GaN層が1050℃、In0.12Ga0.88N井戸層が750℃、GaN障壁層が850℃、p型Al0.07Ga0.93N層が1000℃、p型GaNコンタクト層が1000℃であった。なお、GaN系半導体層40の貫通転位密度は、CL(カソードルミネッセンス)法により測定したところ、5×106cm-2であった。
5. Manufacturing of Semiconductor Device Next, referring to FIG. 5, a GaN-based semiconductor layer 40 having a thickness is formed on the single-crystal GaN layer (single-crystal GaN-based layer 21) of the composite substrate 1 obtained above by MOCVD. 6-fold MQW (quantitative well structure) activity composed of a 2 μm n-type GaN layer (n-type GaN-based semiconductor layer 41), a 5 nm thick In 0.12 Ga 0.88 N well layer, and a 10 nm thick GaN barrier layer A layer 43, a p-type Al 0.07 Ga 0.93 N layer 45a having a thickness of 20 nm, and a p-type GaN contact layer 45b having a thickness of 100 nm (all of which are p-type GaN-based semiconductor layers 45) were sequentially grown. The growth temperature of the GaN-based semiconductor layer 40 is 1050 ° C. for the n-type GaN layer, 750 ° C. for the In 0.12 Ga 0.88 N well layer, 850 ° C. for the GaN barrier layer, 1000 ° C. for the p-type Al 0.07 Ga 0.93 N layer, and p-type. The GaN contact layer was 1000 ° C. The threading dislocation density of the GaN-based semiconductor layer 40 was 5 × 10 6 cm −2 as measured by the CL (cathode luminescence) method.

次いで、複合基板1の多結晶GaN支持基板(多結晶III族窒化物支持基板10)上に、電子線蒸着法によりTi層を形成し、次いで、抵抗加熱蒸着法によりAl層を形成することにより、n側電極50nとしてオーミック電極となるTi/Al電極を形成した。GaN系半導体層40のp型GaNコンタクト層45b上に、抵抗加熱蒸着法によりNi層およびAu層を形成することにより、p側電極50pとしてオーミック電極かつ半透明電極となるNi/Au電極を形成した。   Next, a Ti layer is formed by electron beam evaporation on the polycrystalline GaN support substrate (polycrystalline III nitride support substrate 10) of the composite substrate 1, and then an Al layer is formed by resistance heating evaporation. Then, a Ti / Al electrode serving as an ohmic electrode was formed as the n-side electrode 50n. On the p-type GaN contact layer 45b of the GaN-based semiconductor layer 40, an Ni layer and an Au layer are formed by resistance heating vapor deposition, thereby forming an Ni / Au electrode serving as an ohmic electrode and a semitransparent electrode as the p-side electrode 50p. did.

次いで、GaN系半導体層40にメサを形成した後、チップ化を行ない、p側電極50pにおける大きさが400μm×400μmの縦型のLED(半導体デバイス3)を形成した。   Next, after forming a mesa in the GaN-based semiconductor layer 40, a chip was formed, and a vertical LED (semiconductor device 3) having a size of 400 μm × 400 μm in the p-side electrode 50p was formed.

6.半導体デバイスの実装
次いで、図5および6を参照して、得られた縦型のLED(半導体デバイス3,4)を、反射電極としてのAg電極の介在によりp側電極50pがp側リードフレーム60pに電気的に接続するように配置し、n側電極50nがボンディングワイヤ50wによりn側リードフレーム60nに電気的に接続して、p側ダウン構造の実装を行なった。
6). Next, referring to FIGS. 5 and 6, the obtained vertical LED (semiconductor devices 3 and 4) has a p-side electrode 50 p and a p-side lead frame 60 p with an Ag electrode as a reflective electrode. The n-side electrode 50n was electrically connected to the n-side lead frame 60n by the bonding wire 50w, and the p-side down structure was mounted.

7.半導体デバイスの評価
次いで、実装したLED(半導体デバイス4)の通電試験を行なった。測定には、発熱の影響を抑止するため、繰り返し周波数が10kHzでデューティ比が5%のパルス電源を用い、積分球を用いて、室温(25℃)で200A/cm2までの光出力を測定した。発光波長は450nmであった。得られた光出力L(mW)、光の波長λ(nm)、電流値I(mA)から、次の式(1)を用いて、外部量子効率を算出した。また、このときのLEDの動作電圧(V)を測定した。
7). Evaluation of Semiconductor Device Next, an energization test of the mounted LED (semiconductor device 4) was performed. In order to suppress the influence of heat generation, a pulse power supply with a repetition frequency of 10 kHz and a duty ratio of 5% is used to measure the light output up to 200 A / cm 2 at room temperature (25 ° C.) using an integrating sphere. did. The emission wavelength was 450 nm. The external quantum efficiency was calculated from the obtained light output L (mW), light wavelength λ (nm), and current value I (mA) using the following equation (1). Moreover, the operating voltage (V) of LED at this time was measured.

Figure 0005919669
Figure 0005919669

本実施例の縦型のLED(半導体デバイス3)20個について、外部量子効率および動作電圧を測定しそれらの200A/cm2における平均値を算出したところ、平均外部量子効率が60%で動作電圧が3.1Vであった。結果を表1にまとめた。 For the 20 vertical LEDs (semiconductor devices 3) of this example, the external quantum efficiency and the operating voltage were measured, and the average value at 200 A / cm 2 was calculated. Was 3.1V. The results are summarized in Table 1.

(参考例1)
図7および8を参照して、複合基板に替えて直径が50mmで厚さが400μmの表主面が(0001)面で転位密度が5×106cm-2の自立GaN支持基板100を用いて、この自立GaN支持基板100上に、実施例1と同様にして、GaN系半導体層40を成長させ、n側電極50nおよびp側電極50pを形成して縦型のLED(半導体デバイス3)を作製し、そのLEDについてp側ダウン構造の実装を行なった。なお、GaN系半導体層40の貫通転位密度は、5×106cm-2であった。
(Reference Example 1)
7 and 8, a self-standing GaN support substrate 100 having a diameter of 50 mm and a thickness of 400 μm as the (0001) plane and a dislocation density of 5 × 10 6 cm −2 is used instead of the composite substrate. Then, a GaN-based semiconductor layer 40 is grown on the self-standing GaN support substrate 100 in the same manner as in Example 1 to form an n-side electrode 50n and a p-side electrode 50p, thereby forming a vertical LED (semiconductor device 3). A p-side down structure was mounted on the LED. The threading dislocation density of the GaN-based semiconductor layer 40 was 5 × 10 6 cm −2 .

上記のように実装した20個の縦型のLED(半導体デバイス4)について、実施例1と同様にして、通電試験を行ない、発光波長、200A/cm2における平均外部量子効率および平均作動電圧を測定および算出した。参考例1におけるLEDは、発光波長が455nm、平均外部量子効率が60%、平均作動電圧が3.0Vであった。結果を表1にまとめた。 For the 20 vertical LEDs (semiconductor device 4) mounted as described above, an energization test was performed in the same manner as in Example 1, and the emission wavelength, the average external quantum efficiency at 200 A / cm 2 and the average operating voltage were determined. Measured and calculated. The LED in Reference Example 1 had an emission wavelength of 455 nm, an average external quantum efficiency of 60%, and an average operating voltage of 3.0V. The results are summarized in Table 1.

(比較例1)
図9および10を参照して、複合基板に替えて直径が50mmで厚さが400μmの表主面が(0001)面のサファイア支持基板200を用いて、最初にサファイア基板の表主面を水素雰囲気中1000℃でクリーニングしたこと、次いで450℃で厚さ20nmの低温GaN層を成長させたこと、さらにn型GaN層(n型GaN系半導体層41)の厚さを5μmとしたこと以外は、実施例1と同様にして、GaN系半導体層40を成長させた。なお、GaN系半導体層40の貫通転位密度は、5×108cm-2であった。
(Comparative Example 1)
Referring to FIGS. 9 and 10, a sapphire support substrate 200 having a diameter of 50 mm and a thickness of 400 μm is used as the 0001 sapphire support substrate 200 instead of the composite substrate. Other than cleaning at 1000 ° C. in the atmosphere, growing a low-temperature GaN layer having a thickness of 20 nm at 450 ° C., and further setting the thickness of the n-type GaN layer (n-type GaN-based semiconductor layer 41) to 5 μm. In the same manner as in Example 1, the GaN-based semiconductor layer 40 was grown. The threading dislocation density of the GaN-based semiconductor layer 40 was 5 × 10 8 cm −2 .

次いで、GaN系半導体層40のp型GaNコンタクト層45b上に、実施例1と同様にして、p側電極50pを形成した。次いで、p側電極50pならびにGaN系半導体層40のp型GaNコンタクト層45b、p型Al0.07Ga0.93N層45aおよびMQW活性層43の一部をメサエッチングにより除去してn型GaN層(n型GaN系半導体層41)の一部を露出させ、その露出部分に、実施例1と同様にして、n側電極50nを形成し、チップ化して、p側電極50pにおける大きさが400μm×400μmの横型のLED(半導体デバイス3)を作製した。次いで、そのLEDについてp側ダウン構造のフリップチップ型の実装を行なった。 Next, a p-side electrode 50p was formed on the p-type GaN contact layer 45b of the GaN-based semiconductor layer 40 in the same manner as in Example 1. Next, the p-side electrode 50p, the p-type GaN contact layer 45b of the GaN-based semiconductor layer 40, the p-type Al 0.07 Ga 0.93 N layer 45a, and part of the MQW active layer 43 are removed by mesa etching to remove the n-type GaN layer (n A part of the type GaN-based semiconductor layer 41) is exposed, and an n-side electrode 50n is formed in the exposed portion in the same manner as in Example 1 to form a chip, and the size of the p-side electrode 50p is 400 μm × 400 μm. A horizontal LED (semiconductor device 3) was prepared. Next, the LED was mounted on a flip chip type with a p-side down structure.

上記のように実装した20個の横型のLEDについて、実施例1と同様にして、通電試験を行ない、発光波長、200A/cm2における平均外部量子効率および平均作動電圧を測定および算出した。比較例1におけるLEDは、発光波長が455nm、平均外部量子効率が20%、平均作動電圧が4.2Vであった。結果を表1にまとめた。 For the 20 horizontal LEDs mounted as described above, an energization test was performed in the same manner as in Example 1, and the emission wavelength, the average external quantum efficiency at 200 A / cm 2, and the average operating voltage were measured and calculated. The LED in Comparative Example 1 had an emission wavelength of 455 nm, an average external quantum efficiency of 20%, and an average operating voltage of 4.2V. The results are summarized in Table 1.

(実施例2)
図5および6を参照して、単結晶GaN系基板20として、直径50mmで厚さが400μmの表主面が(10−10)面で転位密度が5×106cm-2の単結晶GaN基板を用いたこと以外は、実施例1と同様にして、複合基板1を得た。得られた複合基板1の単結晶GaN層(単結晶GaN系層21)の表主面は(10−10)面であった。次いで、この複合基板1を用いて、実施例1と同様にして、GaN系半導体層40を成長させ、n側電極50nおよびp側電極50pを形成して縦型のLED(半導体デバイス3)を作製し、そのLEDについてp側ダウン構造の実装を行なった。
(Example 2)
Referring to FIGS. 5 and 6, as single crystal GaN-based substrate 20, single crystal GaN having a diameter of 50 mm and a thickness of 400 μm and a main surface of (10-10) plane and a dislocation density of 5 × 10 6 cm −2. A composite substrate 1 was obtained in the same manner as in Example 1 except that the substrate was used. The front principal surface of the single crystal GaN layer (single crystal GaN-based layer 21) of the obtained composite substrate 1 was a (10-10) plane. Next, using this composite substrate 1, a GaN-based semiconductor layer 40 is grown in the same manner as in Example 1, and an n-side electrode 50 n and a p-side electrode 50 p are formed to form a vertical LED (semiconductor device 3). The p-side down structure was mounted on the LED.

上記のように実装した20個の縦型のLEDについて、実施例1と同様にして、通電試験を行ない、発光波長、200A/cm2における平均外部量子効率および平均作動電圧を測定および算出した。参考例1におけるLEDは、発光波長が451nm、平均外部量子効率が50%、平均作動電圧が3.2Vであった。結果を表1にまとめた。 The 20 vertical LEDs mounted as described above were subjected to an energization test in the same manner as in Example 1 to measure and calculate the emission wavelength, the average external quantum efficiency at 200 A / cm 2, and the average operating voltage. The LED in Reference Example 1 had an emission wavelength of 451 nm, an average external quantum efficiency of 50%, and an average operating voltage of 3.2V. The results are summarized in Table 1.

(参考例2)
図7および8を参照して、複合基板に替えて直径が50mmで厚さが400μmの表主面が(10−10)面で転位密度が5×106cm-2の自立GaN支持基板100を用いて、この自立GaN支持基板100上に、実施例1と同様にして、GaN系半導体層40を成長させ、n側電極50nおよびp側電極50pを形成して縦型のLED(半導体デバイス3)を作製し、そのLEDについてp側ダウン構造の実装を行なった。なお、GaN系半導体層40の貫通転位密度は、5×106cm-2であった。
(Reference Example 2)
7 and 8, in place of the composite substrate, a free-standing GaN supporting substrate 100 having a diameter of 50 mm and a thickness of 400 μm and having a main surface of (10-10) and a dislocation density of 5 × 10 6 cm −2. Using this, a GaN-based semiconductor layer 40 is grown on this free-standing GaN support substrate 100 in the same manner as in Example 1, and an n-side electrode 50n and a p-side electrode 50p are formed to form a vertical LED (semiconductor device). 3) was fabricated, and a p-side down structure was mounted on the LED. The threading dislocation density of the GaN-based semiconductor layer 40 was 5 × 10 6 cm −2 .

上記のように実装した20個の縦型のLEDについて、実施例1と同様にして、通電試験を行ない、発光波長、200A/cm2における平均外部量子効率および平均作動電圧を測定および算出した。参考例2におけるLEDは、発光波長が453nm、平均外部量子効率が52%、平均作動電圧が3.0Vであった。結果を表1にまとめた。 The 20 vertical LEDs mounted as described above were subjected to an energization test in the same manner as in Example 1 to measure and calculate the emission wavelength, the average external quantum efficiency at 200 A / cm 2, and the average operating voltage. The LED in Reference Example 2 had an emission wavelength of 453 nm, an average external quantum efficiency of 52%, and an average operating voltage of 3.0V. The results are summarized in Table 1.

(実施例3)
図5および6を参照して、単結晶GaN系基板20として、直径50mmで厚さが400μmの表主面が(20−21)面で転位密度が5×106cm-2の単結晶GaN基板を用いたこと以外は、実施例1と同様にして、複合基板1を得た。得られた複合基板1の単結晶GaN層(単結晶GaN系層21)の表主面は(20−21)面であった。次いで、この複合基板1を用いて、実施例1と同様にして、GaN系半導体層40を成長させ、n側電極50nおよびp側電極を形成して縦型のLED(半導体デバイス3)を作製し、そのLEDについてp側ダウン構造の実装を行なった。
(Example 3)
Referring to FIGS. 5 and 6, single crystal GaN substrate 20 having a diameter of 50 mm and a thickness of 400 μm is a (20-21) plane main surface and a dislocation density of 5 × 10 6 cm −2. A composite substrate 1 was obtained in the same manner as in Example 1 except that the substrate was used. The front principal surface of the single crystal GaN layer (single crystal GaN-based layer 21) of the obtained composite substrate 1 was the (20-21) plane. Next, using this composite substrate 1, a GaN-based semiconductor layer 40 is grown in the same manner as in Example 1, and an n-side electrode 50 n and a p-side electrode are formed to produce a vertical LED (semiconductor device 3). Then, a p-side down structure was mounted on the LED.

上記のように実装した20個の縦型のLEDについて、実施例3と同様にして、通電試験を行ない、発光波長、200A/cm2における平均外部量子効率および平均作動電圧を測定および算出した。参考例1におけるLEDは、発光波長が452nm、平均外部量子効率が55%、平均作動電圧が3.3Vであった。結果を表1にまとめた。 For the 20 vertical LEDs mounted as described above, an energization test was performed in the same manner as in Example 3, and the emission wavelength, the average external quantum efficiency at 200 A / cm 2, and the average operating voltage were measured and calculated. The LED in Reference Example 1 had an emission wavelength of 452 nm, an average external quantum efficiency of 55%, and an average operating voltage of 3.3V. The results are summarized in Table 1.

(参考例3)
図7および8を参照して、複合基板に替えて直径が50mmで厚さが400μmの表主面が(20−21)面で転位密度が5×106cm-2の自立GaN支持基板100を用いて、この自立GaN支持基板100上に、実施例1と同様にして、GaN系半導体層40を成長させ、n側電極50nおよびp側電極50pを形成して縦型のLED(半導体デバイス3)を作製し、そのLEDについてpダウン構造のフリップチップ型の実装を行なった。なお、GaN系半導体層40の貫通転位密度は、5×106cm-2であった。
(Reference Example 3)
7 and 8, in place of the composite substrate, a free-standing GaN support substrate 100 having a diameter of 50 mm and a thickness of 400 μm and having a (20-21) plane main surface and a dislocation density of 5 × 10 6 cm −2 Using this, a GaN-based semiconductor layer 40 is grown on this free-standing GaN support substrate 100 in the same manner as in Example 1, and an n-side electrode 50n and a p-side electrode 50p are formed to form a vertical LED (semiconductor device). 3) was fabricated, and a p-down flip chip type mounting was performed on the LED. The threading dislocation density of the GaN-based semiconductor layer 40 was 5 × 10 6 cm −2 .

上記のように実装した20個の縦型のLEDについて、実施例1と同様にして、通電試験を行ない、発光波長、200A/cm2における平均外部量子効率および平均作動電圧を測定および算出した。参考例3におけるLEDは、発光波長が450nm、平均外部量子効率が57%、平均作動電圧が3.1Vであった。結果を表1にまとめた。 The 20 vertical LEDs mounted as described above were subjected to an energization test in the same manner as in Example 1 to measure and calculate the emission wavelength, the average external quantum efficiency at 200 A / cm 2, and the average operating voltage. The LED in Reference Example 3 had an emission wavelength of 450 nm, an average external quantum efficiency of 57%, and an average operating voltage of 3.1V. The results are summarized in Table 1.

(実施例4)
図11および12を参照して、単結晶GaN系基板20として、直径50mmで厚さが400μmの表主面が(0001)面で転位密度が5×106cm-2の単結晶GaN基板を用いて、複合基板1を得た。得られた複合基板1の単結晶GaN層(単結晶GaN系層21)の表主面は(0001)面であった。次いで、この複合基板1を用いて、実施例1と同様にして、GaN系半導体層40を成長させた。なお、GaN系半導体層40の貫通転位密度は、5×106cm-2であった。次いで、GaN系半導体層40のp型GaNコンタクト層45b上に、実施例1と同様にして、p側電極50pを形成した。次いで、p側電極50pならびにGaN系半導体層40のp型GaNコンタクト層45b、p型Al0.07Ga0.93N層45aおよびMQW活性層43の一部をメサエッチングにより除去してn型GaN層(n型GaN系半導体層41)の一部を露出させ、その露出部分に、実施例1と同様にして、n側電極50nを形成し、チップ化して、p側電極50pにおける大きさが400μm×400μmの横型のLED(半導体デバイス3)を作製した。次いで、そのLEDについてpダウン構造のフリップチップ型の実装を行なった。
Example 4
Referring to FIGS. 11 and 12, a single crystal GaN substrate 20 having a diameter of 50 mm and a thickness of 400 μm is a single crystal GaN substrate having a (0001) plane main surface and a dislocation density of 5 × 10 6 cm −2. Thus, a composite substrate 1 was obtained. The front main surface of the single crystal GaN layer (single crystal GaN-based layer 21) of the obtained composite substrate 1 was the (0001) plane. Next, using this composite substrate 1, a GaN-based semiconductor layer 40 was grown in the same manner as in Example 1. The threading dislocation density of the GaN-based semiconductor layer 40 was 5 × 10 6 cm −2 . Next, a p-side electrode 50p was formed on the p-type GaN contact layer 45b of the GaN-based semiconductor layer 40 in the same manner as in Example 1. Next, the p-side electrode 50p, the p-type GaN contact layer 45b of the GaN-based semiconductor layer 40, the p-type Al 0.07 Ga 0.93 N layer 45a, and part of the MQW active layer 43 are removed by mesa etching to remove the n-type GaN layer (n A part of the type GaN-based semiconductor layer 41) is exposed, and an n-side electrode 50n is formed in the exposed portion in the same manner as in Example 1 to form a chip, and the size of the p-side electrode 50p is 400 μm × 400 μm. A horizontal LED (semiconductor device 3) was prepared. Next, the LED was mounted in a flip-chip type with a p-down structure.

上記のように実装した20個の横型のLEDについて、実施例1と同様にして、通電試験を行ない、発光波長、200A/cm2における平均外部量子効率および平均作動電圧を測定および算出した。実施例4におけるLEDは、発光波長が453nm、平均外部量子効率が63%、平均作動電圧が3.2Vであった。結果を表1にまとめた。 For the 20 horizontal LEDs mounted as described above, an energization test was performed in the same manner as in Example 1, and the emission wavelength, the average external quantum efficiency at 200 A / cm 2, and the average operating voltage were measured and calculated. The LED in Example 4 had an emission wavelength of 453 nm, an average external quantum efficiency of 63%, and an average operating voltage of 3.2V. The results are summarized in Table 1.

(参考例4)
図13および14を参照して、複合基板に替えて直径が50mmで厚さが400μmの表主面が(0001)面で転位密度が5×106cm-2の自立GaN支持基板100を用いて、この自立GaN支持基板100上に、実施例1と同様にして、GaN系半導体層40を成長させた。なお、GaN系半導体層40の貫通転位密度は、5×106cm-2であった。次いで、GaN系半導体層40のp型GaNコンタクト層45b上に、実施例1と同様にして、p側電極50pを形成した。次いで、p側電極50pならびにGaN系半導体層40のp型GaNコンタクト層45b、p型Al0.07Ga0.93N層45aおよびMQW活性層43の一部をメサエッチングにより除去してn型GaN層(n型GaN系半導体層41)の一部を露出させ、その露出部分に、実施例1と同様にして、n側電極50nを形成し、チップ化して、p側電極50pにおける大きさが400μm×400μmの横型のLED(半導体デバイス3)を作製した。次いで、そのLEDについてpダウン構造のフリップチップ型の実装を行なった。
(Reference Example 4)
Referring to FIGS. 13 and 14, a self-standing GaN supporting substrate 100 having a diameter of 50 mm and a thickness of 400 μm as the (0001) plane and a dislocation density of 5 × 10 6 cm −2 is used instead of the composite substrate. Then, the GaN-based semiconductor layer 40 was grown on the self-standing GaN support substrate 100 in the same manner as in Example 1. The threading dislocation density of the GaN-based semiconductor layer 40 was 5 × 10 6 cm −2 . Next, a p-side electrode 50p was formed on the p-type GaN contact layer 45b of the GaN-based semiconductor layer 40 in the same manner as in Example 1. Next, the p-side electrode 50p, the p-type GaN contact layer 45b of the GaN-based semiconductor layer 40, the p-type Al 0.07 Ga 0.93 N layer 45a, and part of the MQW active layer 43 are removed by mesa etching to remove the n-type GaN layer (n A part of the type GaN-based semiconductor layer 41) is exposed, and an n-side electrode 50n is formed in the exposed portion in the same manner as in Example 1 to form a chip, and the size of the p-side electrode 50p is 400 μm × 400 μm. A horizontal LED (semiconductor device 3) was prepared. Next, the LED was mounted in a flip-chip type with a p-down structure.

上記のように実装した20個の横型のLEDについて、実施例1と同様にして、通電試験を行ない、発光波長、200A/cm2における平均外部量子効率および平均作動電圧を測定および算出した。参考例4におけるLEDは、発光波長が452nm、平均外部量子効率が64%、平均作動電圧が3.1Vであった。結果を表1にまとめた。 For the 20 horizontal LEDs mounted as described above, an energization test was performed in the same manner as in Example 1, and the emission wavelength, the average external quantum efficiency at 200 A / cm 2, and the average operating voltage were measured and calculated. The LED in Reference Example 4 had an emission wavelength of 452 nm, an average external quantum efficiency of 64%, and an average operating voltage of 3.1V. The results are summarized in Table 1.

Figure 0005919669
Figure 0005919669

表1を参照して、実施例1〜4の多結晶III族窒化物支持基板と中間GaN系膜と単結晶GaN系層とを含む複合基板を用いたLEDは、参考例1〜4の自立GaN支持基板を用いたLEDとそれぞれ同様の半導体デバイスを形成することができ、参考例1〜4の自立GaN支持基板を用いたLEDとそれぞれ同様の高い平均外部量子効率および低い平均作動電圧が得られた。ここで、実施例1〜3および参考例1〜3は縦型の半導体デバイスであり、実施例4および参考例4は横型の半導体デバイスであることから、本願発明は縦型および横型いずれの半導体デバイスにも好適に用いることができる。
なお、多結晶III族窒化物支持基板と中間GaN系膜と単結晶GaN系層とを含む複合基板を用いたLEDおよび自立GaN支持基板を用いたLEDにおいては、GaN系半導体層の貫通転位密度が5×106cm-2程度と低いため、MQW活性層中の井戸層の厚さを3nm以下にすると100A/cm2以下の比較的低い電流密度での内部量子効率を高め、井戸層の厚さを5nm以上にすると100A/cm2より高い比較的高い電流密度での内部量子効率を高めることができる。
Referring to Table 1, the LED using the composite substrate including the polycrystalline group III nitride supporting substrate, the intermediate GaN-based film, and the single-crystal GaN-based layer of Examples 1 to 4 is self-supporting of Reference Examples 1 to 4. A semiconductor device similar to each of the LEDs using the GaN support substrate can be formed, and the same high average external quantum efficiency and low average operating voltage as those of the LEDs using the self-supporting GaN support substrates of Reference Examples 1 to 4 can be obtained. It was. Here, since Examples 1 to 3 and Reference Examples 1 to 3 are vertical semiconductor devices, and Example 4 and Reference Example 4 are horizontal semiconductor devices, the present invention relates to both vertical and horizontal semiconductors. It can be suitably used for a device.
In an LED using a composite substrate including a polycrystalline group III nitride support substrate, an intermediate GaN-based film, and a single crystal GaN-based layer, and an LED using a free-standing GaN support substrate, the threading dislocation density of the GaN-based semiconductor layer Is as low as about 5 × 10 6 cm −2, and if the thickness of the well layer in the MQW active layer is 3 nm or less, the internal quantum efficiency is increased at a relatively low current density of 100 A / cm 2 or less, and the well layer When the thickness is 5 nm or more, the internal quantum efficiency at a relatively high current density higher than 100 A / cm 2 can be increased.

多結晶III族窒化物支持基板と中間GaN系膜と単結晶GaN系層とを含む複合基板を用いたLEDは、単結晶GaN系層の形成に用いた単結晶GaN系基板を繰り返し用いることができるため、自立GaN支持基板を用いたLEDに比べて、低コストで製造できる。   In an LED using a composite substrate including a polycrystalline group III nitride supporting substrate, an intermediate GaN-based film, and a single-crystal GaN-based layer, the single-crystal GaN-based substrate used for forming the single-crystal GaN-based layer may be repeatedly used. Therefore, it can be manufactured at a lower cost than an LED using a self-supporting GaN support substrate.

また、実施例1の多結晶III族窒化物支持基板と中間GaN系膜と単結晶GaN系層とを含む複合基板を用いたLEDは、比較例1のサファイア支持基板を用いたLEDに比べて、平均外部量子効率が高く、平均作動電圧が低く、優れた特性を有していた。平均外部量子効率が高くなったのは、実施例1のLEDの複合基板を形成するGaNは比較例1のLEDのサファイア基板に比べて屈折率が高く、また、実施例1のLEDのGaN系半導体層は比較例1のLEDのGaN系半導体層に比べて貫通転位密度が低いためと考えられる。平均作動電圧が低くなったのは、電流を縦方向(LEDの主面に垂直な方向)に流す構造になったことおよび、多結晶III族窒化物支持基板の抵抗が低いため、横方向(LEDの主面に平行な方向)に電流が広がり易いためと考えられる。   Further, the LED using the composite substrate including the polycrystalline group III nitride supporting substrate, the intermediate GaN-based film, and the single-crystal GaN-based layer of Example 1 is compared with the LED using the sapphire supporting substrate of Comparative Example 1. The average external quantum efficiency was high, the average operating voltage was low, and it had excellent characteristics. The average external quantum efficiency is high because GaN forming the composite substrate of the LED of Example 1 has a higher refractive index than the sapphire substrate of the LED of Comparative Example 1, and the GaN system of the LED of Example 1 This is probably because the semiconductor layer has a lower threading dislocation density than the GaN-based semiconductor layer of the LED of Comparative Example 1. The average operating voltage was decreased because the structure was such that the current flowed in the vertical direction (perpendicular to the main surface of the LED) and the resistance of the polycrystalline III-nitride support substrate was low. This is thought to be because the current easily spreads in a direction parallel to the main surface of the LED.

今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 複合基板、2 半導体積層体、3,4 半導体デバイス、10 多結晶III族窒化物支持基板、20 単結晶GaN系基板、20i イオン注入領域、21 単結晶GaN系層、22 残りの単結晶GaN系基板、30 中間GaN系膜、31 第1の中間GaN系層、32 第2の中間GaN系層、40 GaN系半導体層、41 n型GaN系半導体層、43 MQW活性層、45 p型GaN系半導体層、45a p型Al0.07Ga0.93N層、45b p型GaNコンタクト層、50n n側電極、50p p側電極、50w ボンディングワイヤ、60n n側リードフレーム、60p p側リードフレーム、100 自立GaN支持基板、200 サファイア支持基板。 DESCRIPTION OF SYMBOLS 1 Composite substrate, 2 Semiconductor laminated body, 3, 4 Semiconductor device, 10 Polycrystalline group III nitride support substrate, 20 Single-crystal GaN-type substrate, 20i Ion implantation area | region, 21 Single-crystal GaN-type layer, 22 Remaining single-crystal GaN System substrate, 30 intermediate GaN-based film, 31 first intermediate GaN-based layer, 32 second intermediate GaN-based layer, 40 GaN-based semiconductor layer, 41 n-type GaN-based semiconductor layer, 43 MQW active layer, 45 p-type GaN Semiconductor layer, 45a p-type Al 0.07 Ga 0.93 N layer, 45b p-type GaN contact layer, 50nn side electrode, 50pp side electrode, 50w bonding wire, 60nn side lead frame, 60pp side lead frame, 100 freestanding GaN Support substrate, 200 sapphire support substrate.

Claims (13)

多結晶GaN支持基板と、前記多結晶GaN支持基板上に配置された非結晶質の中間GaN系膜と、前記中間GaN系膜上に配置された単結晶GaN系層と、を含み、
前記多結晶GaN支持基板と前記単結晶GaN系層とが、前記中間GaN系膜を介在させて貼り合わされている複合基板。
A polycrystalline GaN support substrate, an amorphous intermediate GaN-based film disposed on the polycrystalline GaN support substrate, and a single-crystal GaN-based layer disposed on the intermediate GaN-based film,
A composite substrate in which the polycrystalline GaN support substrate and the single crystal GaN-based layer are bonded together with the intermediate GaN-based film interposed therebetween.
前記中間GaN系膜は、ドーパントとして、酸素およびケイ素の少なくともいずれかを酸素およびケイ素の全体の濃度が1×1017cm-3以上5×1019cm-3以下で含む請求項1に記載の複合基板。 2. The intermediate GaN-based film according to claim 1, wherein the intermediate GaN-based film includes at least one of oxygen and silicon as a dopant at a total concentration of oxygen and silicon of 1 × 10 17 cm −3 or more and 5 × 10 19 cm −3 or less. Composite board. 前記中間GaN系膜および前記単結晶GaN系層は、いずれもGaNで形成されている請求項1または請求項2に記載の複合基板。   The composite substrate according to claim 1, wherein each of the intermediate GaN-based film and the single crystal GaN-based layer is formed of GaN. 前記単結晶GaN系層の主面は、(0001)面である請求項1から請求項3のいずれか1項に記載の複合基板。   4. The composite substrate according to claim 1, wherein a main surface of the single crystal GaN-based layer is a (0001) plane. 5. 前記単結晶GaN系層の主面は、{10−10}面および{11−20}面からなる群から選ばれる1つの面である請求項1から請求項3のいずれか1項に記載の複合基板。   4. The main surface of the single crystal GaN-based layer is one surface selected from the group consisting of a {10-10} plane and a {11-20} plane. 5. Composite board. 前記単結晶GaN系層の主面は、{10−11}面、{20−21}面、{20−2−1}面および{10−1−1}面からなる群から選ばれる1つの面である請求項1から請求項3のいずれか1項に記載の複合基板。   The principal surface of the single crystal GaN-based layer is one selected from the group consisting of {10-11} plane, {20-21} plane, {20-2-1} plane, and {10-1-1} plane. The composite substrate according to claim 1, wherein the composite substrate is a surface. 前記多結晶GaN支持基板の厚さが200μm以上1000μm以下の請求項1から請求項6のいずれか1項に記載の複合基板。   The composite substrate according to any one of claims 1 to 6, wherein the polycrystalline GaN support substrate has a thickness of 200 µm or more and 1000 µm or less. 請求項1に記載の複合基板と、前記複合基板の前記単結晶GaN系層上に配置された少なくとも1層のGaN系半導体層と、を含む半導体デバイス。   A semiconductor device comprising: the composite substrate according to claim 1; and at least one GaN-based semiconductor layer disposed on the single crystal GaN-based layer of the composite substrate. 多結晶III族窒化物支持基板と、前記多結晶III族窒化物支持基板上に配置された中間GaN系膜と、前記中間GaN系膜上に配置された単結晶GaN系層と、を含む複合基板の製造方法であって、
前記多結晶III族窒化物支持基板の一方の主面上に非結晶質の第1の中間GaN系層を形成する工程と、
単結晶GaN系基板の一方の主面側から所定の深さの位置にイオン注入領域を形成する工程と、前記単結晶GaN系基板の前記イオン注入領域側の主面上に非結晶質の第2の中間GaN系層を形成する工程と、
前記第1の中間GaN系層と前記第2の中間GaN系層とを貼り合わせて前記中間GaN系膜を形成することにより、前記中間GaN系膜を介在させて前記多結晶III族窒化物支持基板と前記単結晶GaN系基板とを貼り合わせる工程と、
前記単結晶GaN系基板を前記イオン注入領域において前記単結晶GaN系層と残りの単結晶GaN系基板とに分離する工程と、を含む複合基板の製造方法。
A composite comprising a polycrystalline group III nitride supporting substrate, an intermediate GaN-based film disposed on the polycrystalline group III-nitride supporting substrate, and a single crystalline GaN-based layer disposed on the intermediate GaN-based film A method for manufacturing a substrate, comprising:
Forming an amorphous first intermediate GaN-based layer on one main surface of the polycrystalline III-nitride supporting substrate;
Forming an ion implantation region at a predetermined depth from one main surface side of the single crystal GaN-based substrate; and forming a non-crystalline first layer on the main surface of the single crystal GaN-based substrate on the ion implantation region side. Forming two intermediate GaN-based layers;
Bonding the first intermediate GaN-based layer and the second intermediate GaN-based layer to form the intermediate GaN-based film, thereby supporting the polycrystalline group III nitride via the intermediate GaN-based film Bonding the substrate and the single crystal GaN-based substrate;
Separating the single crystal GaN-based substrate into the single crystal GaN-based layer and the remaining single crystal GaN-based substrate in the ion implantation region.
前記残りの単結晶GaN系基板をさらなる単結晶GaN系基板として用いて、 別の多結晶III族窒化物支持基板と、前記別の多結晶III族窒化物支持基板上に配置された別の中間GaN系膜と、前記別の中間GaN系膜上に配置されたさらなる単結晶GaN系層と、を含むさらなる複合基板を製造する複合基板の製造方法であって、
前記別の多結晶III族窒化物支持基板の一方の主面上に非結晶質の別の第1の中間GaN系層を形成する工程と、前記さらなる単結晶GaN系基板の一方の主面側から所定の深さの位置にさらなるイオン注入領域を形成する工程と、前記さらなる単結晶GaN系基板の前記さらなるイオン注入領域側の主面上に非結晶質の別の第2の中間GaN系層を形成する工程と、前記別の第1の中間GaN系層と前記別の第2の中間GaN系層とを貼り合わせて別の中間GaN系膜を形成することにより、前記別の中間GaN系膜を介在させて前記別の多結晶III族窒化物支持基板と前記さらなる単結晶GaN系基板とを貼り合わせる工程と、前記さらなる単結晶GaN系基板を前記さらなるイオン注入領域においてさらなる単結晶GaN系層とさらなる残りの単結晶GaN系基板とに分離する工程と、を含む請求項に記載の複合基板の製造方法。
Using the remaining single crystal GaN-based substrate as a further single crystal GaN-based substrate, another polycrystalline group III nitride support substrate and another intermediate disposed on the other polycrystalline group III nitride support substrate A method of manufacturing a composite substrate, which includes a GaN-based film and a further single-crystal GaN-based layer disposed on the other intermediate GaN-based film,
Forming another non-crystalline first intermediate GaN-based layer on one main surface of the other polycrystalline III-nitride supporting substrate; and one main surface side of the further single-crystal GaN-based substrate Forming a further ion implantation region at a predetermined depth from the second single-crystal GaN-based substrate and another second intermediate GaN-based layer that is amorphous on the main surface of the further single-crystal GaN-based substrate on the further ion implantation region side Forming another intermediate GaN-based film by bonding the other first intermediate GaN-based layer and the second second intermediate GaN-based layer together to form another intermediate GaN-based film. Bonding the additional polycrystalline III-nitride support substrate and the further single crystal GaN-based substrate with a film interposed therebetween, and further bonding the additional single crystal GaN-based substrate in the further ion-implanted region. Layer and Composite substrate manufacturing method according to claim 9 including the step of separating into a remaining monocrystalline GaN-based substrate, the made.
半導体デバイスの製造方法であって、
多結晶GaN支持基板と、前記GaN支持基板上に配置された非結晶質の中間GaN系膜と、前記中間GaN系膜上に配置された単結晶GaN系層と、を含み、前記多結晶GaN支持基板と前記単結晶GaN系層とが、前記中間GaN系膜を介在させて貼り合わされている複合基板を準備する工程と、
前記複合基板の前記単結晶GaN系層上に少なくとも1層のGaN系半導体層を成長させる工程と、を含む半導体デバイスの製造方法。
A method for manufacturing a semiconductor device, comprising:
A polycrystalline GaN support substrate, a non-crystalline intermediate GaN-based film disposed on the GaN support substrate, and a single-crystal GaN-based layer disposed on the intermediate GaN-based film. Preparing a composite substrate in which a support substrate and the single crystal GaN-based layer are bonded together with the intermediate GaN-based film interposed therebetween;
Growing at least one GaN-based semiconductor layer on the single-crystal GaN-based layer of the composite substrate.
前記GaN系半導体層を成長させる工程において、前記中間GaN系膜は非結晶質から結晶質に変質する請求項11に記載の半導体デバイスの製造方法。 The method of manufacturing a semiconductor device according to claim 11 , wherein in the step of growing the GaN-based semiconductor layer, the intermediate GaN-based film is changed from amorphous to crystalline. 前記GaN系半導体層を成長させる工程は、前記単結晶GaN系層上にn型GaN系半導体層を成長させるサブ工程と、前記n型GaN系半導体層上に多重量子井戸構造の活性層を成長させるサブ工程と、前記活性層上にp型GaN系半導体層を成長させるサブ工程と、を含む請求項11または請求項12に記載の半導体デバイスの製造方法。 The step of growing the GaN-based semiconductor layer includes a sub-step of growing an n-type GaN-based semiconductor layer on the single-crystal GaN-based layer, and an active layer having a multiple quantum well structure on the n-type GaN-based semiconductor layer. The method for manufacturing a semiconductor device according to claim 11 or 12 , comprising: a sub-process for forming a p-type GaN-based semiconductor layer on the active layer.
JP2011169397A 2011-08-02 2011-08-02 Composite substrate and manufacturing method thereof, and semiconductor device and manufacturing method thereof Expired - Fee Related JP5919669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011169397A JP5919669B2 (en) 2011-08-02 2011-08-02 Composite substrate and manufacturing method thereof, and semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011169397A JP5919669B2 (en) 2011-08-02 2011-08-02 Composite substrate and manufacturing method thereof, and semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013033862A JP2013033862A (en) 2013-02-14
JP5919669B2 true JP5919669B2 (en) 2016-05-18

Family

ID=47789491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011169397A Expired - Fee Related JP5919669B2 (en) 2011-08-02 2011-08-02 Composite substrate and manufacturing method thereof, and semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5919669B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337686B2 (en) * 2014-08-21 2018-06-06 三菱ケミカル株式会社 GaN substrate and method of manufacturing GaN substrate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3410863B2 (en) * 1995-07-12 2003-05-26 株式会社東芝 Compound semiconductor device and compound semiconductor light emitting device
JP5080820B2 (en) * 1998-07-31 2012-11-21 シャープ株式会社 Nitride semiconductor structure, manufacturing method thereof, and light emitting device
JP2002231640A (en) * 2001-01-31 2002-08-16 Hitachi Cable Ltd Gallium nitride substrate and method of manufacturing the same
JP4303776B2 (en) * 2003-11-28 2009-07-29 学校法人 名城大学 SiC semiconductor, semiconductor substrate, powder and light emitting diode
CN100413102C (en) * 2004-04-30 2008-08-20 住友电气工业株式会社 semiconductor light emitting device
JP4458116B2 (en) * 2007-05-30 2010-04-28 住友電気工業株式会社 Group III nitride semiconductor layer bonded substrate for epitaxial layer growth and semiconductor device
JP5407385B2 (en) * 2009-02-06 2014-02-05 住友電気工業株式会社 Composite substrate, epitaxial substrate, semiconductor device and composite substrate manufacturing method
JP2011023534A (en) * 2009-07-15 2011-02-03 Sumitomo Electric Ind Ltd Nitride-based semiconductor light emitting element
JP2012230969A (en) * 2011-04-25 2012-11-22 Sumitomo Electric Ind Ltd GaN-BASED SEMICONDUCTOR DEVICE MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP2013033862A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
US8884306B2 (en) Semiconductor device and method for manufacturing the same
US8470627B2 (en) Method for manufacturing semiconductor light emitting device
TWI377698B (en) Gan type semiconductor light emitting element and lamp
US8633087B2 (en) Method of manufacturing GaN-based semiconductor device
US8071408B2 (en) Method of manufacturing semiconductor light emitting element, and semiconductor light emitting element
US8932890B2 (en) Vertical-structure semiconductor light emitting element and a production method therefor
JP2010186829A (en) Method for manufacturing light emitting element
CN103633200B (en) Silicon substrate is utilized to prepare the method for gallium nitride based LED with vertical structure device
KR20100008123A (en) Vertical light emitting devices with the support composed of double heat-sinking layer
CN104538507A (en) Method for preparing a semiconductor light-emitting device
CN100372137C (en) InGaAlN light-emitting device with upper and lower electrode structure and manufacturing method thereof
JP2007287845A (en) Semiconductor light emitting device, method for manufacturing semiconductor light emitting device, and lamp
JP2015082662A (en) Semiconductor buffer structure, semiconductor device including the same, and method of manufacturing semiconductor device using semiconductor buffer structure
CN107863426A (en) Aluminium nitride based semiconductor deep-UV light-emitting element
JP2014036231A (en) Semiconductor element manufacturing method
KR100999548B1 (en) A support substrate for manufacturing a semiconductor light emitting device having a vertical structure, a method for manufacturing a semiconductor light emitting device having a vertical structure and a semiconductor light emitting device having a vertical structure
US8633508B2 (en) Semiconductor element and a production method therefor
JP2007258529A (en) Group III nitride semiconductor light emitting device, method for manufacturing group III nitride semiconductor light emitting device, and lamp
KR101064068B1 (en) Manufacturing method of light emitting device
WO2014045882A1 (en) Led element, and production method therefor
KR100832102B1 (en) Structure for Light-Emitting Element and Manufacturing Method of Light-Emitting Element
US20070228407A1 (en) Group III Nitride Semiconductor Light Emitting Device
EP2290708A2 (en) Light-emitting element and a production method therefor
JP5919669B2 (en) Composite substrate and manufacturing method thereof, and semiconductor device and manufacturing method thereof
JP2010226023A (en) Method for manufacturing substrate product having nitride-based compound semiconductor layer on support substrate, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5919669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees