[go: up one dir, main page]

JP5918874B1 - アレイアンテナ - Google Patents

アレイアンテナ Download PDF

Info

Publication number
JP5918874B1
JP5918874B1 JP2015045265A JP2015045265A JP5918874B1 JP 5918874 B1 JP5918874 B1 JP 5918874B1 JP 2015045265 A JP2015045265 A JP 2015045265A JP 2015045265 A JP2015045265 A JP 2015045265A JP 5918874 B1 JP5918874 B1 JP 5918874B1
Authority
JP
Japan
Prior art keywords
radiating elements
group
array antenna
radiating
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015045265A
Other languages
English (en)
Other versions
JP2016165086A (ja
Inventor
悠太 中島
悠太 中島
中野 雅之
雅之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Nihon Dengyo Kosaku Co Ltd
Original Assignee
KDDI Corp
Nihon Dengyo Kosaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp, Nihon Dengyo Kosaku Co Ltd filed Critical KDDI Corp
Priority to JP2015045265A priority Critical patent/JP5918874B1/ja
Application granted granted Critical
Publication of JP5918874B1 publication Critical patent/JP5918874B1/ja
Publication of JP2016165086A publication Critical patent/JP2016165086A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

【課題】複数のパスを有しつつ、給電回路を簡易な構成にできるアレイアンテナを提供する。【解決手段】アレイアンテナ1は、水平方向と垂直方向とのそれぞれにおいて偶数となるようにマトリクス状に配列された複数の放射素子10をそれぞれ有するグループA、B、C、Dを、備え、グループA、B、C、Dのそれぞれは、互いに異なる系統の信号が給電され、グループA、B、C、D間で重複することなく、グループA、B、C、Dのそれぞれの複数の放射素子10は、隣接する放射素子10対において、信号が給電される給電位相が同じか、水平方向と垂直方向とのいずれか一方又は両方において給電位相が逆か、に設定されている。【選択図】図2

Description

本発明は、アレイアンテナに関する。
MIMO(Multiple Input Multiple Output)通信技術では、複数のアンテナを用いることにより形成される送受信間の複数のパスを用いて通信が行われる。
特許文献1には、複数のアンテナと、前記複数のアンテナにそれぞれ対応して設けられ、信号の振幅を調整する振幅調整手段と、前記複数のアンテナにそれぞれ接続され、信号の位相を調整する移相調整手段と、前記振幅調整手段および前記移相調整手段を制御し、前記複数のアンテナから送信される送信信号の振幅および位相を調整して、前記送信信号の相関係数を制御する制御手段と、を備える無線通信装置が記載されている。
特開2013−93658号公報
ところで、複数のアンテナを用いる場合、アンテナの設置場所の確保が必要となる。このため、電波(ビーム)を複数の方向に放射できるマルチビームアンテナが求められている。マルチビームアンテナは、複数の放射素子を備えたアレイアンテナである。そして、マルチビームアンテナでは、複数の放射素子を複数のグループに分け、グループごとに異なる系統の信号を給電するとともに、系統ごとに信号に移相差を設けている。このため、移相差を設定する複雑な給電回路が必要とされていた。
本発明の目的は、複数のパスを有しつつ、給電回路を簡易な構成にできるアレイアンテナを提供することにある。
かかる目的のもと、本発明が適用されるアレイアンテナは、第1の方向と第1の方向に交差する第2の方向とのそれぞれにおいて偶数となるようにマトリクス状に配列された複数の放射素子をそれぞれ有する複数のグループを、備え、複数のグループを構成する各グループは、互いに異なる系統の信号が給電され、各グループ間で重複することなく、各グループの複数の放射素子は、隣接する放射素子対において、信号が給電される給電方向が同じか、第1の方と第2の方向とのいずれか一方又は両方において給電方向が互いに逆か、に設定されていることを特徴とする。
このようなアレイアンテナにおいて、各グループの複数の放射素子において、給電方向が互いに逆に設定される放射素子対は、一方の放射素子が他方の放射素子に対して放射する電波の位相を180°変えるように配置されることを特徴とすることができる。
また、各グループの複数の放射素子は、2つ以上のグループ間で交互に配置されることを特徴とすることができる。
これにより、交互に配置しない場合に比べ、アレイアンテナを小さくできる。
そして、各グループの少なくとも一つのグループにおける複数の放射素子は、偏波共用であって、偏波によって互いに異なる系統の信号が給電されることを特徴とする。
これにより、偏波共用のアレイアンテナにできる。
さらに、このようなアレイアンテナにおいて、各グループの複数の放射素子に給電する給電回路と、各グループの複数の放射素子の電波を放射する側と反対側に設けられ、各グループの複数の放射素子及び給電回路を収容する筐体と、各グループの複数の放射素子の電波を放射する側に設けられ、筐体と組み合わされて、各グループの複数の放射素子及び給電回路を保護するカバーとをさらに備えることを特徴とすることができる。
本発明によれば、複数のパスを有しつつ、給電回路を簡易な構成にできるアレイアンテナが提供できる。
第1の実施の形態におけるアレイアンテナの一例を説明する図である。 アレイアンテナの複数の放射素子を4つのグループに分けて配置した図である。 隣接させた2個の放射素子の給電位相と電波(ビーム)の放射方向との関係を説明する図である。(a)は、給電位相が同相(0°)の場合、(b)は給電位相が逆相(0°と180°)の場合である。 図2に示したアレイアンテナにおけるメインローブの放射方向を示す図である。 ペアの放射素子に位相差を設けて給電する場合の給電回路を説明する図である。(a)はハイブリッド回路を用いて位相差を設ける場合の概念図、(b)は遅延線(ディレイライン)を用いて位相差を設ける場合の図、(c)はペアの放射素子の給電方向を逆にした場合の図である。 放射素子の一例としてのダイポールアンテナの平面図である。(a)は一方の面の平面図、(b)は他方の面の平面図である。 8ペアの放射素子において、ペア間で異なる位相の信号を給電する場合に、ハイブリッド回路を用いて位相差を設ける場合の図である。 8ペアの放射素子において、ペア間で異なる位相の信号を給電する場合に、遅延線(ディレイライン)を用いて位相差を設ける場合の図である。 8ペアの放射素子において、ペア間で放射素子の給電方向を逆にした場合の給電回路を説明する図である。 第2の実施の形態におけるアレイアンテナの一例である。 垂直方向0°における水平方向(水平面内)の電波の利得[dB]を示す図である。(a)は、電波の方向を説明する図、(b)は垂直偏波、(c)は水平偏波である。 垂直方向19°に傾いた面内における電波の利得[dB]を示す図である。(a)は、電波の方向を説明する図、(b)は垂直偏波、(c)は水平偏波である。 水平方向0°における垂直方向(垂直面内)の電波の利得[dB]を示す図である。(a)は、電波の方向を説明する図、(b)は垂直偏波、(c)は水平偏波である。 水平方向19°に傾いた面内における電波の利得[dB]を示す図である。(a)は、電波の方向を説明する図、(b)は垂直偏波、(c)は水平偏波である。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
[第1の実施の形態]
図1は、第1の実施の形態におけるアレイアンテナ1の一例を説明する図である。
アレイアンテナ1は、複数の放射素子10と、給電回路20と、筐体30と、カバー40とを備えている。
ここでは、複数の放射素子10のそれぞれは、一例としてダイポールアンテナである。そして、放射素子10は、一例として、水平方向に8個、垂直方向に8個の計64個が並べられている。なお、アレイアンテナ1に沿った方向を、第1の方向の一例としての水平方向及び第2の方向の一例としての垂直方向とし、アレイアンテナ1に垂直な方向を、放射方向とする。
なお、これらの放射素子10は、後述するように4つのグループに分けられている。そして、各グループの放射素子10が、水平方向及び垂直方向に交互に並んでいる。よって、グループごとの放射素子10は、水平方向及び垂直方向において、間隔Pで配列されている。
この場合、水平方向の第1の方向と垂直方向の第2の方向とは直交することになるが、第1の方向と第2の方向とが直交せず、交差していてもよい。以下では、第1の方向を水平方向とし、第2の方向を垂直方向として説明する。
それぞれの放射素子10は、2個の放射用の導体(後述する図6における導体12A、12B参照)が、水平方向に並んでいる。よって、これらの放射素子10は、水平偏波を送受信する。つまり、アレイアンテナ1は、水平偏波を送受信する単偏波のアレイアンテナである。
なお、それぞれの放射素子10の2個の放射用の導体が、垂直方向に並んでいてもよい。この場合は、これらの放射素子10は、垂直偏波を送受信する。つまり、アレイアンテナ1は、垂直偏波を送受信する単偏波のアレイアンテナとなる。
給電回路20は、例えば、誘電体基板の両面に導体膜(金属箔)が設けられたPCB(Printed Circuit Board)を用いて形成される。このとき、一方の面の導体膜は、基準電位(接地電位)が供給される基準導体として残され、他方の面の導体膜は、信号導体が形成される。そして、誘電体基板を挟んで設けられた基準導体と信号導体とで、マイクロストリップラインを構成する。
このとき、基準導体は、反射板としても働く。
なお、アレイアンテナ1は、給電回路20の裏面(放射方向と反対側)に金属材料で形成された反射板を備えてもよい。
筐体30は、放射方向と反対側に設けられ、複数の放射素子10と給電回路20とを収容する。筐体30は、例えば、鉄、SUS、アルミニウム、銅などの金属材料、樹脂材料又はFRP(Fiber Reinforced Plastics)等で形成されている。
カバー40は、放射方向の側に設けられ、筐体30と組み合わされて、複数の放射素子10及び給電回路20を保護する。カバー40は、例えば、樹脂材料やFRP等の電波を透過し易い低誘電率で低誘電損失の材料で形成されている。
図2は、アレイアンテナ1の複数の放射素子10を4つのグループに分けて配置した図である。ここでは、4つのグループをAグループ、Bグループ、Cグループ、Dグループと表記する。なお、4つのグループをA、B、C、Dと表記することがある。そして、グループごとに異なる信号が送信される。すなわち、アレイアンテナ1には、4系統の異なる信号が送信され、4つの異なる信号の電波が放射される。
そして、図2では、それぞれの放射素子10の給電位相を“+”と“−”とで示している。“+”は給電位相が0°、“−”は給電位相が180°である。つまり、同じグループに属する放射素子10でも、給電位相が異なる信号が給電される。同じ給電位相の場合を同相、180°異なる給電位相の場合を逆相と表記する。
図2では、アレイアンテナ1の複数の放射素子10の配列を、行(R)と列(C)とで区別する。すなわち、水平方向の放射素子10の配列を行(R)とし、垂直方向において、上から行R1、行R2、…、行R8と表記する。また、垂直方向の放射素子10の配列を列(C)とし、水平方向において、左から列C1、列C2、…、列C8と表記する。
そして、行R1の列C1(R1C1の位置)に配置された放射素子10をR1C1の放射素子10と表記する。
図2に破線で囲んで示すように、行(R)方向に4個(行R1〜行R4)、列(C)方向に4個(列C1〜列C4)が基本単位となっている。すなわち、16個の放射素子10が基本単位となり、水平方向、垂直方向及び斜め45°方向に繰り返されている。
以下では、この基本単位において、グループA、B、C、Dを説明する。
グループAの放射素子10は、R1C1、R1C3、R3C1、R3C3に4個配列されている。すなわち、水平方向及び垂直方向に一つ置きに配置されている。つまり、グループAの放射素子10は、水平方向及び垂直方向にそれぞれ対(ペア)となっている。そして、グループAの放射素子10の給電位相は、すべて0°(同相)である。
グループBの放射素子10は、R2C1、R2C3、R4C1、R4C3に4個配列されている。すなわち、水平方向及び垂直方向に一つ置きに配置されている。つまり、グループBの放射素子10は、水平方向及び垂直方向にそれぞれ対となっている。そして、グループBの放射素子10の給電位相は、R2C1、R2C3が0°であって、R4C1、R4C3が180°である。すなわち、垂直方向に隣接する対となる放射素子10間(放射素子対)で給電位相が逆相になっている。
グループCの放射素子10は、R1C2、R1C4、R3C2、R3C4に4個配列されている。すなわち、水平方向及び垂直方向に一つ置きに配置されている。つまり、グループBの放射素子10は、水平方向及び垂直方向にそれぞれ対となっている。そして、グループCの放射素子10の給電位相は、R1C2、R3C2が0°であって、R1C4、R3C4が180°である。すなわち、水平方向に隣接する対となる放射素子10間(隣接する放射素子対)で給電位相が逆相になっている。
グループDの放射素子10は、R2C2、R2C4、R4C2、R4C4に4個配列されている。すなわち、水平方向及び垂直方向に一つ置きに配置されている。つまり、グループBの放射素子10は、水平方向及び垂直方向にそれぞれ対となっている。そして、グループDの放射素子10の給電位相は、R2C2、R4C4が0°であって、R2C4、R4C2が180°である。すなわち、水平方向及び垂直方向に隣接する対となる放射素子10間(隣接する放射素子対)で給電位相が逆相になっている。
以上説明したように、アレイアンテナ1では、グループA、B、C、Dは、互いに重複することなく、隣接する放射素子対において、給電方向が同じか、水平方向又は垂直方向のいずれか一方又は両方において給電方向が互いに逆かに設定されている。そして、グループA、B、C、Dを構成する放射素子10が交互に入れ込んで配置されている。これにより、アレイアンテナ1の大きさが小さくなっている。
図3は、隣接する2個の放射素子10の給電位相と電波(ビーム)の放射方向との関係を説明する図である。図3(a)は、給電位相が同相(0°)の場合、図3(b)は給電位相が逆相(0°と180°)の場合である。
図3(a)に示すように、給電位相が同相(0°)の場合、電波(ビーム)のメインローブ2は、放射方向に沿って放射される。
一方、給電位相が逆相(0°と180°)の場合、図3(b)に示すメインローブ2A、2Bのように、2個の放射素子10が並んだ方向に二つに分かれて、それぞれが放射方向に対して斜めに放射される。なお、メインローブ2A、2Bをそれぞれ区別しないときは、メインローブ2と表記する。
よって、アレイアンテナ1において、給電位相が同相(0°)である放射素子10のグループ(図2では、グループA)と、給電位相が逆相(0°と180°)である放射素子10のグループ(図2では、グループB、C、D)とを混在させ、グループごとに異なる系統で信号を給電すると、異なる方向に異なる信号の電波(ビーム)を放射させることができる。すなわち、マルチビームアンテナとなる。
図4は、図2に示したアレイアンテナ1におけるメインローブ2の方向を示す図である。図4は、アレイアンテナ1を放射方向から見た図である。グループA、B、C、Dの放射素子10から放射されるメインローブ2の放射される方向を、それぞれA、B、C、Dの符号を付して示している。なお、アレイアンテナ1を放射方向から見ているので、グループB、C、Dのメインローブ2は、水平方向、垂直方向、及び、水平方向と垂直方向とに対して±45°方向に放射されたように見えるが、放射方向に対して斜めに放射されている。
グループAの放射素子10は、給電位相が同相であるので、メインローブ2は、放射方向に沿って放射される。
グループBの放射素子10は、給電位相が垂直方向で逆相であるので、メインローブ2は、垂直方向に二つに分かれて放射方向に対して斜めに放射される。
グループCの放射素子10は、給電位相が水平方向で逆相であるので、メインローブ2は、水平方向に二つに分かれて放射方向に対して斜めに放射される。
グループDの放射素子10は、給電位相が水平方向及び垂直方向で逆相であるので、メインローブ2は、水平方向及び垂直方向に対して±45°方向に四つに分かれて、放射方向に対して斜めに放射される。
アレイアンテナ1において、複数の放射素子10に同相で給電する場合、放射素子10を同じ向きでアレイ状に並べ、給電回路20により、信号をそれぞれの放射素子10に分配して給電すればよい。すなわち、給電回路20は、分配器として機能させればよい。
次に、ペアの放射素子10に給電位相を逆相で給電する場合の給電回路20を説明する。
図5は、ペアの放射素子10A、10Bに位相差を設けて給電する場合の給電回路20を説明する図である。図5(a)はハイブリッド回路を用いて位相差を設ける場合の概念図、図5(b)は遅延線(ディレイライン)22を用いて位相差を設ける場合の図、図5(c)はペアの放射素子10A、10Bの給電方向を逆にした場合の図である。ここでは、放射素子10A、10Bの給電方向を矢印で示している。
二つの放射素子10A、10Bにおいて給電方向が同じとは、同じ信号を給電すると、同じ位相の電波が給電される場合をいい、給電方向が異なるとは、同じ信号を給電すると、異なる位相の電波が給電される場合をいう。
図5(a)に示すように、ペアの放射素子10A、10Bに位相差を設けて給電する場合、例えば、ハイブリッド回路(図5(a)ではHYBと表記する。)21を用いる。ハイブリッド回路21は、高周波回路において位相差を設ける回路である。ここでは、ペアの放射素子10A、10Bは、給電方向が同じ向きに配置されている。
180°の位相差を発生させるためのハイブリッド回路としては、ラットレース回路などが知られている。
図5(b)は、180°の位相差を発生させる方法の一つとして遅延線22を用いた場合を示している。ここでも、ペアの放射素子10A、10Bは、給電方向が同じ向きに配置されている。
位相差を180°とする場合、左側に配置した放射素子10Aに対して、右側に配置した放射素子10Bに給電される信号の移相を180°遅らせることが必要となる。よって、右側の放射素子10Bに給電する経路に遅延線22を設け、位相を遅らせている。遅延線22の長さは、放射素子10Aに入力される信号と放射素子10Bに入力される信号との位相差が180°となるように設定されている。すなわち、遅延線22の長さは、給電回路20上での信号を波長λとすると、信号伝搬時間がλ/2となるように設定されている。
しかし、ペアの放射素子10A、10Bにおいて180°の位相差を設ける場合、図5(c)に示すように、給電方向を逆にすればよい。このようにすることで、ハイブリッド回路21や遅延線22を用いなくとも、放射素子10Aと放射素子10Bとで、180°の位相差とできる。すなわち、給電回路20は、複数の放射素子10に同相で信号を給電する場合と同様に、簡易な構成にできる。
次に、放射素子10の一例として、ダイポールアンテナで、給電方向を逆にすることを説明する。
図6は、放射素子10の一例としてのダイポールアンテナの平面図である。図6(a)は一方の面の平面図、図6(b)は他方の面の平面図である。
放射素子10の一例であるダイポールアンテナは、例えば、誘電体基板11の両面に導体膜(金属箔)が設けられたPCBを用いて形成される。
そして、一方の面の導体膜は、2個の放射用の導体12A、12Bと、2個の放射用の導体12A、12Bが対向する部分からそれぞれ延びた2個の導体12C、12Dと、2個の導体12C、12Dを接続する導体12Eに加工されている。なお、2個の導体12C、12Dは、放射用の導体12A、12Bと反対側において、導体12Eで接続されている。導体12A、12B、12C、12D、12Eを区別しないときは、導体12と表記する。
また、他方の面の導体膜は、U字状に曲げられた導体13に加工されている。導体13は、U字状の部分が、一方の面の2個の導体12C、12Dと重なるように配置されている。
そして、放射素子10は、導体12と導体13とで構成されたマイクロストリップラインで給電されることで、電波(ビーム)を放射する。
さて、図6(b)に示すように、導体13は、U字状であって、左右非対称である。よって、放射素子10の一例であるダイポールアンテナは、図6(a)の向きで給電した場合と、図6(b)の向きで給電した場合とで、放射する電波の位相が180°異なることになる。このように、非対称性を有する放射素子10では、向きを反転して(裏返して)配置することで、放射する電波の位相を180°変えることができる。ここでは、向きを反転して(裏返して)配置することを、放射素子10の給電方向を反転すると表記する。そして、ペアの放射素子10A、10Bにおいて一方の放射素子10Aの給電方向が他方の放射素子10Bに対して反転している場合、ペアの放射素子10A、10Bの給電方向が逆であると表記する。
なお、放射素子10の向きを反転した場合、誘電体基板11に対する導体12と導体13の位置を逆方向としてもよい。このようにすることで、給電回路20をさらに簡易な構成とすることができる。
次に、アレイアンテナ1の複数の放射素子10に信号を給電する給電回路20を説明する。
図7は、8ペアの放射素子10において、ペア間で異なる位相の信号を給電する場合に、ハイブリッド回路21を用いて位相差を設ける場合を説明する図である。これは、図2のグループCに含まれる放射素子10を例として示している。給電位相は、列C2と列C6とに含まれる放射素子10が0°、列C4と列C8に含まれる放射素子10が180°である。
ここでは、放射素子10の給電方向(矢印の向き)を同じに配列すると、図5(a)で説明したように、位相差を設定するためのハイブリッド回路21が必要となる。
すると、図7に示すように、信号入力と放射素子10との間に、ハイブリッド回路21を設けなければならない。このため、給電回路20が大きくなってしまう。しかも、放射素子10間の間隔P(図1参照)は、電波の特性によって設定されるため、放射素子10間の間隔Pを任意に広げることは難しい。このため、給電回路20は、複数のPCBで構成するなど、複雑になってしまう。
また、他のグループ(グループA、B、D)の放射素子10にもハイブリッド回路21が必要となるため、給電回路20がさらに複雑になってしまう。
図8は、8ペアの放射素子10において、ペア間で異なる位相の信号を給電する場合に、遅延線(ディレイライン)22を用いて位相差を設ける場合の図である。
放射素子10の給電方向(矢印の向き)を同じとすると、図5(b)で説明したように、位相を遅らせるための遅延線22を設けている。
すると、図8に示すように、信号入力と放射素子10との間に、遅延線22を設けなければならない。PCB上の導体の幅は、必要とされるインピーダンスで設定される。また、導体の間隔を狭めると、導体間のカップリングが強くなる。よって、遅延線22を設けるためにPCB上の導体の幅や間隔を小さく設定することが難しいため、導体を配置する空間が必要となる。しかも、放射素子10間の間隔P(図1参照)は、電波の特性によって設定されるため、放射素子10間の間隔Pを任意に広げることは難しい。このため、給電回路20は、複数のPCBで構成するなど、複雑になってしまう。
また、他のグループ(グループA、B、D)の放射素子10に給電するための導体及び遅延線22が必要となるため、給電回路20がさらに複雑になってしまう。
図9は、8ペアの放射素子10において、ペア間で放射素子10の給電方向を逆にした場合の給電回路20を説明する図である。
放射素子10の給電方向をペア間で逆にしているため、ハイブリッド回路21や遅延線22を用いる必要がない。よって、給電回路20が複雑になることが抑制される。
また、図9は、図2のグループCを示している。そして、図9に示すように左側に給電線を集線して信号入力に接続している。逆に、グループAについては、給電線を右側に集線して信号入力に接続できる。このとき、それぞれの放射素子10に接続される給電線が交差することがない。すなわち、グループAの放射素子10に接続される給電線とグループCの放射素子10に接続される給電線とが、一枚のPCBで構成できる。
同様に、グループBの放射素子10に接続される給電線とグループDの放射素子10に接続される給電線とが、他の一枚のPCBに構成できる。
よって、給電回路20は多くても2枚のPCBで構成できる。
[第2の実施の形態]
第1の実施の形態におけるアレイアンテナ1は、単一偏波であった。第2の実施の形態におけるアレイアンテナ1は、それぞれの放射素子10を偏波共用とした。
図10は、第2の実施の形態におけるアレイアンテナ1の一例である。
それぞれの放射素子10が、偏波共用であることを除いて、第1の実施の形態と同様であるので、同じ符号を付して、説明を省略する。
放射素子10が一例としてダイポールアンテナである場合、第1の実施の形態における図6において説明したダイポールアンテナを2個組み合わせて、クロスダイポールとすればよい。
このようにすると、第1の実施の形態では4系統の信号を扱ったが、第2の実施の形態では8系統の信号が扱えるようになる。
この場合も、給電回路20は多くとも2枚のPCBで構成できる。
なお、アレイアンテナ1の全ての放射素子10を偏波共用にすることなく、グループA、B、C、Dの一つ又は複数における放射素子10を偏波共用にしてもよい。
以下では、アレイアンテナ1の放射方向に対する利得についての実施例を説明する。ここでは、周波数を5.25GHzとし、自由空間での波長λに対して、放射素子10間の間隔Pを1.53λとした。
放射素子10間の間隔Pが1λ以上になると、メインローブ2に加えてグレーティングローブが出現する。この場合、メインローブ2に加え、グレーティングローブがパスとして利用できる。なお、グレーティングローブを利用しない場合は、放射素子10間の間隔Pを1λ未満にすればよい。
以下では、アレイアンテナ1に垂直な方向(放射方向)を0°とし、水平方向及び垂直方向の傾き角を角度[°]として表記している。なお、水平方向30°などと表記する。
図11は、垂直方向0°における水平方向(水平面内)の利得[dB]を示す図である。図11(a)は、電波の方向を説明する図、図11(b)は垂直偏波における角度毎の利得を示し、図11(c)は水平偏波における角度毎の利得を示す。
図11(a)に示すように、アレイアンテナ1の垂直方向0°において、水平方向(水平面内)の利得をシミュレーションによって求めた。
図4で説明したように、アレイアンテナ1に垂直な方向(放射方向)(垂直方向0°、水平方向0°)には、グループAの放射素子10からの電波が強く出る。図11(b)、(c)に示すように、垂直偏波及び水平偏波とも、アレイアンテナ1に垂直な方向(放射方向)には、グループAの放射素子10からの電波が強く出ている。また、水平方向40°には、グレーティングローブが表れている。
そして、図4で説明したように、アレイアンテナ1に垂直な方向(放射方向)から水平方向に傾いた方向には、グループCの放射素子10からの電波が強く出る。図11(b)、(c)に示すように、垂直偏波及び水平偏波とも、アレイアンテナ1に垂直な方向(放射方向)に対して水平方向20°には、グループCの放射素子10からの電波が強く出ている。
このグループCの放射素子10からの電波は、グループAの放射素子10からの電波が弱い角度の範囲(ヌル)に表れている。また、グループB、Dからの電波は、図11(a)に示すように、垂直方向においてヌルの位置にあたるため、図中には記載されていない。
すなわち、グループAの放射素子10からの電波とグループB、C、Dの放射素子10からの電波とは、相関が低い。
図12は、垂直方向19°に傾いた面内における利得[dB]を示す図である。図12(a)は、電波の方向を説明する図、図12(b)は垂直偏波における角度毎の利得を示し、図12(c)は水平偏波における角度毎の利得を示す。
図12(a)に示すように、アレイアンテナ1に垂直な方向から、垂直方向19°に傾いた面内における水平方向の利得をシミュレーションによって求めた。
図4で説明したように、アレイアンテナ1に垂直な方向(放射方向)から垂直方向に傾いた方向には、グループBの放射素子10からの電波が強く出る。図12(b)、(c)に示すように、垂直偏波及び水平偏波とも、アレイアンテナ1に垂直な方向(放射方向)から、垂直方向19°傾いた方向に、グループBの放射素子10からの電波が強く出ている。また、水平方向40°には、グレーティングローブが表れている。
そして、図4で説明したように、アレイアンテナ1に垂直な方向(放射方向)から水平方向及び垂直方向のいずれに対しても45°方向には、グループDの放射素子10からの電波が強く出る。図12(b)、(c)に示すように、垂直偏波及び水平偏波とも、アレイアンテナ1に垂直な方向(放射方向)から、垂直方向19°傾き、さらに水平方向±19°傾いた方向には、グループDの放射素子10からの電波が強く出ている。
このグループDの放射素子10からの電波は、グループBの放射素子10からの電波が弱い角度の範囲(ヌル)に表れている。また、グループA、Cからの電波は、図12(a)に示すように、垂直方向においてヌルの位置にあたるため、図中には記載されていない。
すなわち、グループBの放射素子10からの電波とグループA、C、Dの放射素子10からの電波とは、相関が低い。
図13は、水平方向0°における垂直方向(垂直面内)の利得[dB]を示す図である。図13(a)は、電波の方向を説明する図、図13(b)は垂直偏波における角度毎の利得を示し、図13(c)は水平偏波における角度毎の利得を示す。
図13(a)に示すように、アレイアンテナ1の水平方向0°において、垂直方向(垂直面内)の電波の利得をシミュレーションによって求めた。
図4で説明したように、アレイアンテナ1に垂直な方向(放射方向)には、グループAの放射素子10からの電波が強く出る。図13(b)、(c)に示すように、垂直偏波及び水平偏波とも、アレイアンテナ1に垂直な方向(放射方向)には、グループAの放射素子10からの電波が強く出ている。また、水平方向40°には、グレーティングローブが表れている。
そして、図4で説明したように、アレイアンテナ1に垂直な方向(放射方向)から垂直方向に傾いた方向には、グループBの放射素子10からの電波が強く出る。図13(b)、(c)に示すように、垂直偏波及び水平偏波とも、アレイアンテナ1に垂直な方向(放射方向)に対して垂直方向20°には、グループBの放射素子10からの電波が強く出ている。
このグループBの放射素子10からの電波は、グループAの放射素子10からの電波が弱い角度の範囲(ヌル)に表れている。また、グループC、Dからの電波は、図13(a)に示すように、水平方向においてヌルの位置にあたるため、図中には記載されていない。
すなわち、グループAの放射素子10からの電波とグループB、C、Dの放射素子10からの電波とは、相関が低い。
図14は、水平方向19°に傾いた面内における利得[dB]を示す図である。図14(a)は、電波の方向を説明する図、図14(b)は垂直偏波における角度毎の利得を示し、図14(c)は水平偏波における角度毎の利得を示す。
図14(a)に示すように、アレイアンテナ1に垂直な方向(放射方向)から、水平方向19°に傾いた面内における垂直方向の電波の利得をシミュレーションによって求めた。
図4で説明したように、アレイアンテナ1に垂直な方向(放射方向)から水平方向に傾いた方向には、グループCの放射素子10からの電波が強く出る。図14(b)、(c)に示すように、垂直偏波及び水平偏波とも、アレイアンテナ1に垂直な方向(放射方向)から、水平方向19°傾いた方向(垂直方向0°)に、グループCの放射素子10からの電波が強く出ている。また、垂直方向40°には、グレーティングローブが表れている。
そして、図4で説明したように、アレイアンテナ1に垂直な方向(放射方向)から水平方向及び垂直方向のいずれに対しても45°方向には、グループDの放射素子10からの電波が強く出る。図14(b)、(c)に示すように、垂直偏波及び水平偏波とも、アレイアンテナ1に垂直な方向(放射方向)から、水平方向19°傾き、さらに垂直方向±19°傾いた方向には、グループDの放射素子10からの電波が強く出ている。
このグループDの放射素子10からの電波は、グループCの放射素子10からの電波が弱い角度の範囲(ヌル)に表れている。また、グループA、Bからの電波は、図14(a)に示すように水平方向においてヌルの位置にあたるため、図中には記載されていない。
すなわち、グループCの放射素子10からの電波とグループA、B、Dの放射素子10からの電波とは、相関が低い。
以上説明したように、グループA、B、C、Dからの電波は、互いに相関が低く、独立したパスとして使用することができる。すなわち、アレイアンテナ1は、偏波を加えると、8系統の信号入力による電波を放射できる。
第1の実施の形態及び第2の実施の形態で説明したように、放射素子10の給電方向を逆相にすることで、位相を180°変えることができる。よって、給電回路20を簡易に構成することができる。
また、第1の実施の形態及び第2の実施の形態では、アレイアンテナ1は、グループA、B、C、Dの放射素子10を用いた。しかし、アレイアンテナ1は、グループA、B、C、Dの放射素子10の少なくとも二つを用いて構成してもよい。
すなわち、アレイアンテナ1は、それぞれが、互いに交差する方向(ここでは、水平方向及び垂直方向)において偶数となるようにマトリクス状に配置された放射素子10が含まれる複数のグループであって、複数のグループに互いに異なる系統の信号が給電され、複数のグループにおいて重複することなく、それぞれにおける放射素子10が、給電方向が同じか、水平方向、垂直方向のいずれか一方又は両方において隣接する放射素子10間で給電方向が異なるかに設定されていればよい。
よって、アレイアンテナ1の放射素子10は、8×8でなくとも、2×4、4×2、4×4、4×6、6×4、6×6などとすることができる。
また、給電回路20が、誘電体基板11の両面に導体膜(金属箔)が形成されるPCBで構成されるとしたが、2枚のPCB上の場合、導体膜が3層に設けられたPCBで構成してもよい。中央の導体膜を基準導体とし、両面の導体膜で、放射素子10に給電する導体を構成すればよい。
さらに、第2の実施の形態で示した数値は、一例であって、使用する電波の波長に合わせて変更すればよい。
また、第1の実施の形態及び第2の実施の形態では、放射素子10の偏波を垂直偏波及び水平偏波としたが、偏波の方向はこれらに限らず、例えば±45°偏波や円偏波としても良い。
その他、本発明の趣旨に反しない限りにおいて様々な変形例の組み合わせを行っても構わない。
1…アレイアンテナ、2、2A、2B…メインローブ、10、10A、10B…放射素子、11…誘電体基板、12、12A、12B、12C、12D、12E、13…導体、20…給電回路、21…ハイブリッド回路、22…遅延線、30…筐体、40…カバー

Claims (5)

  1. 第1の方向と当該第1の方向に交差する第2の方向とのそれぞれにおいて偶数となるようにマトリクス状に配列された複数の放射素子をそれぞれ有する複数のグループを、備え、
    前記複数のグループを構成する各グループは、互いに異なる系統の信号が給電され、
    前記各グループ間で重複することなく、当該各グループの前記複数の放射素子は、隣接する放射素子対において、信号が給電される給電方向が同じか、前記第1の方向と前記第2の方向とのいずれか一方又は両方において給電方向が互いに逆か、に設定されていることを特徴とするアレイアンテナ。
  2. 前記各グループの前記複数の放射素子において、給電方向が互いに逆に設定される放射素子対は、一方の放射素子が他方の放射素子に対して放射する電波の位相を180°変えるように配置されることを特徴とする請求項1に記載のアレイアンテナ。
  3. 前記各グループの前記複数の放射素子は、2つ以上のグループ間で交互に配置されることを特徴とする請求項1又は2に記載のアレイアンテナ。
  4. 前記各グループの少なくとも一つのグループにおける前記複数の放射素子は、偏波共用であって、偏波によって互いに異なる系統の信号が給電されることを特徴とする請求項1乃至3のいずれか1項に記載のアレイアンテナ。
  5. 前記各グループの前記複数の放射素子に給電する給電回路と、
    前記各グループの前記複数の放射素子の電波を放射する側と反対側に設けられ、当該各グループの当該複数の放射素子及び前記給電回路を収容する筐体と、
    前記各グループの前記複数の放射素子の電波を放射する側に設けられ、前記筐体と組み合わされて、当該各グループの当該複数の放射素子及び前記給電回路を保護するカバーとをさらに備えることを特徴とする請求項1乃至4のいずれか1項に記載のアレイアンテナ。
JP2015045265A 2015-03-06 2015-03-06 アレイアンテナ Active JP5918874B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045265A JP5918874B1 (ja) 2015-03-06 2015-03-06 アレイアンテナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045265A JP5918874B1 (ja) 2015-03-06 2015-03-06 アレイアンテナ

Publications (2)

Publication Number Publication Date
JP5918874B1 true JP5918874B1 (ja) 2016-05-18
JP2016165086A JP2016165086A (ja) 2016-09-08

Family

ID=55974050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045265A Active JP5918874B1 (ja) 2015-03-06 2015-03-06 アレイアンテナ

Country Status (1)

Country Link
JP (1) JP5918874B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094328A (zh) * 2021-04-26 2022-02-25 友达光电股份有限公司 天线单元组与天线阵列

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7005259B2 (ja) * 2017-10-04 2022-01-21 キヤノン株式会社 送電装置、送電装置の制御方法、及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670479A (en) * 1979-11-15 1981-06-12 Mitsubishi Electric Corp Chasing antenna
WO2008126857A1 (ja) * 2007-04-10 2008-10-23 Nec Corporation マルチビームアンテナ
US20110140949A1 (en) * 2009-12-16 2011-06-16 Electronics And Telecommunications Research Institute Mimo radar apparatus and wireless communication method using the same
JP2015080077A (ja) * 2013-10-16 2015-04-23 Kddi株式会社 アンテナ装置、アンテナ制御方法およびコンピュータプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670479A (en) * 1979-11-15 1981-06-12 Mitsubishi Electric Corp Chasing antenna
WO2008126857A1 (ja) * 2007-04-10 2008-10-23 Nec Corporation マルチビームアンテナ
US20110140949A1 (en) * 2009-12-16 2011-06-16 Electronics And Telecommunications Research Institute Mimo radar apparatus and wireless communication method using the same
JP2015080077A (ja) * 2013-10-16 2015-04-23 Kddi株式会社 アンテナ装置、アンテナ制御方法およびコンピュータプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094328A (zh) * 2021-04-26 2022-02-25 友达光电股份有限公司 天线单元组与天线阵列
CN114094328B (zh) * 2021-04-26 2023-07-14 友达光电股份有限公司 天线单元组与天线阵列

Also Published As

Publication number Publication date
JP2016165086A (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
KR101920748B1 (ko) 무선통신 모듈
US10910700B2 (en) Omnidirectional antenna for mobile communication service
KR102674616B1 (ko) 빔 조향 및 집속을 위한 안테나 장치
CN106602265B (zh) 波束成形网络及其输入结构、输入输出方法及三波束天线
KR20090117945A (ko) 금속벽을 구비한 패치안테나
JP2019092130A (ja) デュアルバンドパッチアンテナ
JP2005303986A (ja) 円偏波円偏波アレーアンテナ
EP3258540B1 (en) Planar antenna array
JP2017225023A (ja) アレーアンテナ装置
JP2021005795A (ja) 偏波共用アレイアンテナ及びその製造方法
JP6988278B2 (ja) アレイアンテナ
JP7358880B2 (ja) 偏波共用アレイアンテナ及びその製造方法
JP5918874B1 (ja) アレイアンテナ
US20220069465A1 (en) Antenna array with abfn circuitry
KR101412135B1 (ko) Mimo용 수평 편파 무지향성 안테나
KR20050075966A (ko) 전방향 방사 안테나
US8384594B2 (en) Closed shape beam forming network
CN102570052B (zh) 多波束天线的紧凑系统
JPH04122103A (ja) 平面アンテナ
KR102698216B1 (ko) 소형 광각 수동형 빔포밍 안테나
KR101268130B1 (ko) 다중 원형 편파 안테나
JP2014007631A (ja) アレイアンテナ
EP4511915A1 (en) Antenna structure
WO2023213396A1 (en) Antenna structure
CN112864595A (zh) 一种透射式电磁表面单元及层叠式阵列结构

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160408

R150 Certificate of patent or registration of utility model

Ref document number: 5918874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350