[go: up one dir, main page]

JP5915356B2 - Thermoelectric generator - Google Patents

Thermoelectric generator Download PDF

Info

Publication number
JP5915356B2
JP5915356B2 JP2012099086A JP2012099086A JP5915356B2 JP 5915356 B2 JP5915356 B2 JP 5915356B2 JP 2012099086 A JP2012099086 A JP 2012099086A JP 2012099086 A JP2012099086 A JP 2012099086A JP 5915356 B2 JP5915356 B2 JP 5915356B2
Authority
JP
Japan
Prior art keywords
emitter
collector
electrode
holding
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012099086A
Other languages
Japanese (ja)
Other versions
JP2013229971A (en
Inventor
裕治 木村
裕治 木村
片岡 光浩
光浩 片岡
進 祖父江
進 祖父江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012099086A priority Critical patent/JP5915356B2/en
Publication of JP2013229971A publication Critical patent/JP2013229971A/en
Application granted granted Critical
Publication of JP5915356B2 publication Critical patent/JP5915356B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bipolar Transistors (AREA)

Description

本発明は、熱エネルギーを電気エネルギーに変換する熱電子発電素子に関する。   The present invention relates to a thermoelectric power generation element that converts thermal energy into electrical energy.

従来、高温の電極表面から熱電子が放出される現象を利用して、熱エネルギーを電気エネルギーに変換する熱電子発電素子が、例えば下記特許文献1で提案されている。
また、熱電子発電素子のエミッター(エミッタ電極)とコレクター(コレクタ電極)にダイヤモンド半導体を用いると、負性電子親和力(Negative Electron Affinity;NEA)の効果により各電極表面から極めて高効率な熱電子放出が可能となるため、金属に比べて低温で高効率な発電が可能となることが知られている。
Conventionally, a thermoelectric power generation element that converts thermal energy into electrical energy using a phenomenon in which thermoelectrons are emitted from a high-temperature electrode surface has been proposed in, for example, Patent Document 1 below.
In addition, when diamond semiconductor is used for the emitter (emitter electrode) and collector (collector electrode) of the thermoelectron generator, extremely high-efficiency thermoelectron emission from the surface of each electrode due to the negative electron affinity (NEA) effect. Therefore, it is known that high-efficiency power generation is possible at a lower temperature than metal.

更に、熱電子発電素子の電極の材料として、タングステンなどの金属を用い、仕事関数を小さくするために、Se(セシウム)の気体を封入して発電を行う技術も知られている。   Further, a technique is known in which a metal such as tungsten is used as a material for an electrode of a thermoelectric power generation element, and Se (cesium) gas is enclosed to generate power in order to reduce the work function.

上述した、熱電子発電素子では、高い発電性能を得るために、エミッタ電極とコレクタ電極とは、真空中等において電極間の接触が無いように対向して配置されるとともに、電極の間隔を一定に保つように設定されている。なお、電極間の間隔としては、狭ければ狭いほど発電効率が向上することが、原理的に知られている。   In the thermoelectric generator described above, in order to obtain high power generation performance, the emitter electrode and the collector electrode are arranged to face each other so that there is no contact between the electrodes in a vacuum or the like, and the distance between the electrodes is constant. It is set to keep. In principle, it is known that the power generation efficiency is improved as the distance between the electrodes is reduced.

また、熱電子発電素子においては、コレクタ電極の温度上昇によるバックエミッション(コレクタ電極からの熱電子放出)を防止するために、エミッタ電極の温度は例えば1000〜2000℃等の高い温度に設定し、一方、コレクタ電極の温度は例えば500℃以下のように、エミッタ電極に比べて十分に低い温度に設定する必要があることが知られている。   Further, in the thermoelectric power generation element, in order to prevent back emission (thermal electron emission from the collector electrode) due to the temperature rise of the collector electrode, the temperature of the emitter electrode is set to a high temperature such as 1000 to 2000 ° C., for example. On the other hand, it is known that the temperature of the collector electrode needs to be set to a temperature sufficiently lower than that of the emitter electrode, for example, 500 ° C. or lower.

特開2004−349398号公報JP 2004-349398 A

しかしながら、従来では、通常、エミッタ電極側の部材とコレクタ電極側の部材に同じ材料(例えば同様な電極材料や各電極を保持する同様な保持部材)が用いられているが、上述の様に、それぞれの電極の設定温度が異なるので、例えば両保持部材などの間に熱膨張の差が生じ、保持部材などが歪んで電極間が短絡する可能性があった。   However, conventionally, the same material (for example, a similar electrode material or a similar holding member that holds each electrode) is used for the emitter electrode side member and the collector electrode side member, but as described above, Since the set temperatures of the respective electrodes are different, for example, there is a possibility that a difference in thermal expansion occurs between both the holding members, and the holding members are distorted to cause a short circuit between the electrodes.

この短絡を防止するためには、電極間の間隔を数100μmとして十分な間隔を確保することが考えられるが、間隔を広げた分、発電性能が低下してしまう。
本発明は、前記課題に鑑みてなされたものであり、エミッタ電極とコレクタ電極との短絡を防止できる熱電子発電素子を提供することを目的とする。
In order to prevent this short circuit, it is conceivable to secure a sufficient distance by setting the distance between the electrodes to several hundreds μm. However, the power generation performance deteriorates as the distance is increased.
This invention is made | formed in view of the said subject, and it aims at providing the thermoelectric generation element which can prevent the short circuit with an emitter electrode and a collector electrode.

本発明は、熱源からの熱が加わるエミッタ電極と、エミッタ電極に空間を隔てて対向して配置され、エミッタ電極からの熱電子を捕獲するコレクタ電極とを備え、エミッタ電極とコレクタ電極との間を移動する熱電子を利用して熱エネルギーを電気エネルギーに変換する熱電子発電素子に関するものである。   The present invention includes an emitter electrode to which heat from a heat source is applied, and a collector electrode that is disposed opposite to the emitter electrode with a space therebetween and captures thermal electrons from the emitter electrode, and is provided between the emitter electrode and the collector electrode. The present invention relates to a thermionic power generation element that converts thermal energy into electrical energy using thermionic electrons that move through the.

特に、本発明では、エミッタ電極を保持するエミッタ保持部と、コレクタ電極を保持するコレクタ保持部とを備えるとともに、エミッタ電極とコレクタ電極とが接触しないように、熱電子発電素子の使用温度において、エミッタ保持部の一部又は全体の熱膨張係数が、コレクタ保持部の一部又は全体の熱膨張係数よりも小さく設定されている。   In particular, the present invention includes an emitter holding part that holds the emitter electrode and a collector holding part that holds the collector electrode, and at the operating temperature of the thermoelectric generator so that the emitter electrode and the collector electrode do not come into contact with each other. The thermal expansion coefficient of a part or the whole of the emitter holding part is set to be smaller than the thermal expansion coefficient of a part or the whole of the collector holding part.

つまり、本発明では、エミッタ電極とコレクタ電極とを近接して配置した場合でも、高温側であるエミッタ保持部の熱膨張係数が、低温側であるコレクタ保持部の熱膨張係数よりも小さく設定されているので、両保持部が熱によって変形した場合でも、(熱膨張係数が同様な従来に比べて)各保持部の変形の違いが少なく、変形の度合いが同じようになる。よって、両保持部に保持された電極間の間隔も変動しにくいので、電極間の短絡を防止することができる。   That is, in the present invention, even when the emitter electrode and the collector electrode are arranged close to each other, the thermal expansion coefficient of the emitter holding part on the high temperature side is set smaller than the thermal expansion coefficient of the collector holding part on the low temperature side. Therefore, even when both holding parts are deformed by heat, the difference in deformation of each holding part is small (compared to the conventional one having the same thermal expansion coefficient), and the degree of deformation is the same. Therefore, since the distance between the electrodes held by both holding portions is not easily changed, a short circuit between the electrodes can be prevented.

また、本発明では、電極間の短絡を防止できるので、電極間の間隔を小さくでき、よって、発電効率が高いという利点がある。
ここで、コレクタ保持部及びエミッタ保持部とは、エミッタ電極及びコレクタ電極を保持してその位置(対向する位置)を規定することができる構成である。また、熱膨張係数(熱膨張率)とは、線熱膨張係数を示している(以下同様)。
In addition, since the present invention can prevent a short circuit between the electrodes, the distance between the electrodes can be reduced, and thus there is an advantage that the power generation efficiency is high.
Here, the collector holding part and the emitter holding part are structures that can hold the emitter electrode and the collector electrode and define their positions (opposing positions). The thermal expansion coefficient (thermal expansion coefficient) indicates a linear thermal expansion coefficient (the same applies hereinafter).

実施例1の熱電子発電素子を各部材の積層方向に沿って破断した断面を模式的に示す説明図である。It is explanatory drawing which shows typically the cross section which fractured | ruptured the thermoelectric power generation element of Example 1 along the lamination direction of each member. 実施例2の熱電子発電素子を各部材の積層方向に沿って破断した断面を模式的に示す説明図である。It is explanatory drawing which shows typically the cross section which fractured | ruptured the thermoelectric power generation element of Example 2 along the lamination direction of each member. 実施例3の熱電子発電素子を各部材の積層方向に沿って破断した断面を模式的に示す説明図である。It is explanatory drawing which shows typically the cross section which fractured | ruptured the thermoelectric power generation element of Example 3 along the lamination direction of each member. 実施例4の熱電子発電素子を各部材の積層方向に沿って破断した断面を模式的に示す説明図である。It is explanatory drawing which shows typically the cross section which fractured | ruptured the thermoelectric power generation element of Example 4 along the lamination direction of each member. 実施例5の熱電子発電素子を各部材の積層方向に沿って破断した断面を模式的に示す説明図である。It is explanatory drawing which shows typically the cross section which fractured | ruptured the thermoelectric power generation element of Example 5 along the lamination direction of each member.

次に、本発明の実施形態について説明する。
[実施形態]
<電極の構成>
・前記エミッタ電極及びコレクタ電極としては、例えばW(タングステン)等の金属からなる電極、基板上に形成された半導体からなる電極などが挙げられる。なお、エミッタ電極及びコレクタ電極は、異なる材料で構成してもよい。
Next, an embodiment of the present invention will be described.
[Embodiment]
<Configuration of electrode>
Examples of the emitter electrode and the collector electrode include an electrode made of a metal such as W (tungsten) and an electrode made of a semiconductor formed on a substrate. Note that the emitter electrode and the collector electrode may be made of different materials.

このうち、電極(特にエミッタ電極)の材料として半導体を用いる場合には、例えばW等の金属の材料を用いる場合に比べて、仕事関数が小さく、よって、前記金属を用いた場合よりも低温で熱電子を放出することができる。これにより、電極(従って保持部)の温度を低くできるので、結果として、保持部の熱膨張を抑制でき、よって、電極間の短絡を効果的に防止できる。   Among these, when a semiconductor is used as a material for an electrode (particularly, an emitter electrode), the work function is smaller than when a metal material such as W is used, and therefore at a lower temperature than when the metal is used. Thermal electrons can be emitted. Thereby, since the temperature of an electrode (hence, holding | maintenance part) can be made low, as a result, the thermal expansion of a holding | maintenance part can be suppressed and the short circuit between electrodes can be prevented effectively.

この半導体としては、ダイヤモンド、Si、BN、SiC、GaN、CNT(カーボンナノチューブ)の半導体(又は化合物半導体)、ZnO、BaO、Sc23、WOx、NbOx、TaOx、AgOx等の酸化物半導体が挙げられる。 Examples of the semiconductor include diamond, Si, BN, SiC, GaN, CNT (carbon nanotube) semiconductor (or compound semiconductor), ZnO, BaO, Sc 2 O 3 , WO x , NbO x , TaO x , AgO x, and the like. An oxide semiconductor can be given.

特に、ダイヤモンドは負性電子親和力を持った材料であり、金属に比べて低温での発電効率を高めることができる。つまり、ダイヤモンド半導体は、従来より低温で熱電子を放出できる。よって、近接して配置された両電極を保持する両保持部が熱によって変形した場合でも、両保持部に保持された電極間の間隔も変動しにくいので、電極間の短絡を効果的に防止することができる。   In particular, diamond is a material having a negative electron affinity and can improve power generation efficiency at a low temperature as compared with metal. That is, the diamond semiconductor can emit thermoelectrons at a lower temperature than conventional. Therefore, even when both holding parts that hold both electrodes arranged close to each other are deformed by heat, the distance between the electrodes held by both holding parts is also difficult to change, effectively preventing a short circuit between the electrodes. can do.

更に、エミッタ電極のドーパント濃度を、コレクタ電極のドーパント濃度よりも濃くすることにより、両電極に加わる温度条件(即ちエミッタ電極の温度や両電極間の温度差)やドーパント濃度が同じ場合に比べて、コレクタ電極より放出される熱電子の数を少なくすることができる。これにより、コレクタ電極の温度を高くすることができるので、エミッタ電極とコレクタ電極との温度差を小さくでき、よって、保持部間の熱膨張差を低減できるので、電極間の短絡を効果的に防止できる。   Furthermore, by making the dopant concentration of the emitter electrode higher than that of the collector electrode, the temperature condition applied to both electrodes (ie, the temperature of the emitter electrode and the temperature difference between the two electrodes) and the dopant concentration are the same. The number of thermionic electrons emitted from the collector electrode can be reduced. As a result, the temperature of the collector electrode can be increased, so that the temperature difference between the emitter electrode and the collector electrode can be reduced, and thus the difference in thermal expansion between the holding portions can be reduced. Can be prevented.

なお、ドーパント濃度としては、例えばエミッタ電極のドーパント濃度を、コレクタ電極のドーパント濃度より10倍以上濃くすることにより、効果的に短絡を防止できる。
また、前記ドーパントして、エミッタ電極及びコレクタ電極にN(窒素)を添加することができる。また、エミッタ電極にP(燐)を添加し、コレクタ電極にNを添加することができる。更に、エミッタ電極にSb(アンチモン)を添加し、コレクタ電極にNを添加することができる。
<保持部の構成>
・エミッタ保持部としては、エミッタ電極を保持するエミッタ中間層と、そのエミッタ中間層を保持するエミッタ保持部材とを備えた構成、即ち、エミッタ電極とエミッタ保持部材との間にエミッタ中間層を備えた構成を採用できる。
As the dopant concentration, for example, the short-circuit can be effectively prevented by increasing the dopant concentration of the emitter electrode by 10 times or more than the dopant concentration of the collector electrode.
Further, N (nitrogen) can be added to the emitter electrode and the collector electrode as the dopant. Further, P (phosphorus) can be added to the emitter electrode, and N can be added to the collector electrode. Furthermore, Sb (antimony) can be added to the emitter electrode, and N can be added to the collector electrode.
<Configuration of holding unit>
-As the emitter holding part, a configuration comprising an emitter intermediate layer for holding the emitter electrode and an emitter holding member for holding the emitter intermediate layer, that is, an emitter intermediate layer is provided between the emitter electrode and the emitter holding member. Can be adopted.

この場合、エミッタ中間層の熱膨張係数を、エミッタ電極とエミッタ保持部材との間の熱膨張係数とすることが望ましい。これにより、エミッタ電極に加わる熱応力を緩和でき、(エミッタ中間層がない場合に比べて)エミッタ電極の熱による歪みを低減できるので、一層電極間の短絡を防止できる。   In this case, it is desirable that the thermal expansion coefficient of the emitter intermediate layer is the thermal expansion coefficient between the emitter electrode and the emitter holding member. As a result, the thermal stress applied to the emitter electrode can be relaxed and the distortion due to the heat of the emitter electrode can be reduced (compared to the case where there is no emitter intermediate layer), thereby further preventing a short circuit between the electrodes.

また、エミッタ中間層を省略して、エミッタ保持部材でエミッタ電極を保持するようにしてもよい。これにより、構成を簡易化できる。
一方、コレクタ保持部としては、コレクタ電極を保持するコレクタ中間層と、そのコレクタ中間層を保持するコレクタ保持部材とを備えた構成、即ち、コレクタ電極とコレクタ保持部材との間にコレクタ中間層を備えた構成を採用できる。
Further, the emitter intermediate layer may be omitted, and the emitter electrode may be held by the emitter holding member. Thereby, a structure can be simplified.
On the other hand, the collector holding portion includes a collector intermediate layer that holds the collector electrode and a collector holding member that holds the collector intermediate layer, that is, a collector intermediate layer between the collector electrode and the collector holding member. The provided structure can be adopted.

この場合、コレクタ中間層の熱膨張係数を、コレクタ電極とコレクタ保持部材との間の熱膨張係数とすることが望ましい。これにより、コレクタ電極に加わる熱応力を緩和でき、コレクタ電極の熱による歪みを低減できるので、一層電極間の短絡を防止できる。   In this case, it is desirable that the thermal expansion coefficient of the collector intermediate layer is a thermal expansion coefficient between the collector electrode and the collector holding member. Thereby, the thermal stress applied to the collector electrode can be relieved and the distortion due to the heat of the collector electrode can be reduced, so that a short circuit between the electrodes can be prevented.

また、コレクタ中間層を省略して、コレクタ保持部材でエミッタ電極を保持するようにしてもよい。これにより、構成を簡易化できる。
・エミッタ保持部材及びコレクタ保持部材の材料、並びにそれらの20℃における熱膨張係数(×10-6/℃)としては、例えば、Mo(4.9)、Ti(8.5)、Ta(6.3)、Cr(6.2)、W(4.3)、Co(12.4)、Ni(12.8)、Fe(10)、Ir(6.5)などが挙げられる。つまり、これらの保持部材の材料から、上述した熱膨張係数の条件に合うものを、適宜選択することができる。
Further, the collector intermediate layer may be omitted, and the emitter electrode may be held by the collector holding member. Thereby, a structure can be simplified.
As materials of the emitter holding member and the collector holding member, and their thermal expansion coefficients (× 10 −6 / ° C.) at 20 ° C., for example, Mo (4.9), Ti (8.5), Ta (6 .3), Cr (6.2), W (4.3), Co (12.4), Ni (12.8), Fe (10), Ir (6.5) and the like. That is, a material that meets the above-described conditions of the thermal expansion coefficient can be appropriately selected from the materials of these holding members.

例えばコレクタ保持部材及びコレクタ電極と、エミッタ保持部材及びエミッタ電極との組み合わせとしては、下記の表1の組み合わせが考えられる。なお、例えば300〜600℃の温度範囲では、下記の熱膨張係数の大小関係は変わらないので、下記の表1では、20℃における熱膨張係数を例に挙げた(下記表2も同様)。   For example, as a combination of the collector holding member and the collector electrode and the emitter holding member and the emitter electrode, the combinations shown in Table 1 below can be considered. In addition, in the temperature range of 300-600 degreeC, for example, since the magnitude relationship of the following thermal expansion coefficient does not change, in the following Table 1, the thermal expansion coefficient in 20 degreeC was mentioned as an example (the following Table 2 is also the same).

Figure 0005915356
Figure 0005915356

・また、コレクタ保持部材及びコレクタ中間層及びコレクタ電極と、エミッタ保持部材及びエミッタ中間層及びエミッタ電極との組み合わせとしては、下記の表2の組み合わせが考えられる。   In addition, as a combination of the collector holding member, the collector intermediate layer, and the collector electrode, and the emitter holding member, the emitter intermediate layer, and the emitter electrode, combinations shown in Table 2 below can be considered.

Figure 0005915356
Figure 0005915356

・更に、コレクタ中間層及びエミッタ中間層としては、単一の熱膨張係数を有する単一の層が挙げられるが、熱膨張係数が異なる複数の層を組み合わせてもよいし、熱膨張係数が徐々に異なるいわゆる傾斜材料を用いてもよい。この場合、各中間層の(厚み方向の)両側の熱膨張係数に徐々に近づけるように設定することが望ましい。   -Furthermore, as the collector intermediate layer and the emitter intermediate layer, a single layer having a single thermal expansion coefficient can be mentioned, but a plurality of layers having different thermal expansion coefficients may be combined, and the thermal expansion coefficient gradually increases. Different so-called gradient materials may be used. In this case, it is desirable to set so as to gradually approach the thermal expansion coefficients on both sides (in the thickness direction) of each intermediate layer.

以下、本発明の具体的な実施例1の熱電子発電素子について説明する。
この熱電子発電素子は、互いに対向配置された一対の電極間を移動する熱電子を利用して熱エネルギーを電気エネルギーに変換するものである。
Hereinafter, a thermionic power generation element of Example 1 of the present invention will be described.
This thermoelectric power generation element converts thermal energy into electrical energy by using thermoelectrons that move between a pair of electrodes arranged opposite to each other.

a)まず、本実施例1の熱電子発電素子の構成について説明する。
図1に示す様に、本実施例1の熱電子発電素子1は、内部2が中空の筒状の素子1であり、互いに対向し平行に配置された平板状のエミッタ電極3及びコレクタ電極5と、エミッタ電極3を(同図下方の)外側より保持するエミッタ保持部7と、コレクタ電極5を(同図上方の)外側より保持するコレクタ保持部9と、エミッタ保持部7及びコレクタ保持部9の間に配置されて両保持部7、9に固定される筒状の絶縁部材11とを備えている。
a) First, the configuration of the thermoelectric generator of Example 1 will be described.
As shown in FIG. 1, the thermoelectric generator 1 of the first embodiment is a tubular element 1 having a hollow interior 2, and is a flat emitter electrode 3 and a collector electrode 5 that are opposed to each other and arranged in parallel. An emitter holding part 7 for holding the emitter electrode 3 from the outside (lower part of the figure), a collector holding part 9 for holding the collector electrode 5 from the outside (upper part of the figure), an emitter holding part 7 and a collector holding part 9 and a cylindrical insulating member 11 disposed between the holding portions 7 and 9.

つまり、熱電子発電素子1は、筒状の絶縁部材11の同図上下方向の開口部分を、エミッタ保持部7とコレクタ保持部9とで閉塞して気密した構造を有している。
そして、前記エミッタ保持部7は、絶縁部材11に固定される平板状の筐体であるエミッタ保持部材13と、エミッタ保持部材13の中央部分の内部2側にて、エミッタ保持部材13とエミッタ電極3との間に配置された平板状のエミッタ基板15とを備えている。
That is, the thermoelectric generator 1 has an airtight structure in which the opening in the vertical direction of the figure of the cylindrical insulating member 11 is closed with the emitter holding part 7 and the collector holding part 9.
The emitter holding portion 7 includes an emitter holding member 13 which is a flat housing fixed to the insulating member 11, and an emitter holding member 13 and an emitter electrode on the inside 2 side of the central portion of the emitter holding member 13. 3 and a flat emitter substrate 15 disposed between the two.

同様に、前記コレクタ保持部9は、絶縁部材11に固定される平板状の筐体であるコレクタ保持部材17と、コレクタ保持部材17の中央部分の内部2側にて、コレクタ保持部材17とコレクタ電極5との間に配置された平板状のコレクタ基板19とを備えている。   Similarly, the collector holding portion 9 includes a collector holding member 17 that is a flat casing fixed to the insulating member 11, and a collector holding member 17 and a collector on the inside 2 side of the central portion of the collector holding member 17. A flat collector substrate 19 disposed between the electrodes 5 is provided.

このうち、前記エミッタ電極3は、エミッタ基板15上に形成されたダイヤモンド半導体薄膜からなり、同様に、コレクタ電極5は、コレクタ基板19上に形成されたダイヤモンド半導体薄膜からなる。   Of these, the emitter electrode 3 is made of a diamond semiconductor thin film formed on the emitter substrate 15. Similarly, the collector electrode 5 is made of a diamond semiconductor thin film formed on the collector substrate 19.

また、前記エミッタ基板15及びコレクタ基板19としては、ダイヤモンド基板、Si(シリコン)基板やMo(モリブデン)基板等の導電性・耐熱性を持った基板を用いることができる。ダイヤモンド基板を用いる場合には、例えば3mm角のものを用いることができ、Mo基板を用いる場合には、例えば1インチ角のものを用いることができる。なお、本実施例1では、Mo基板を用いた例で説明するが、これらの基板を省略することも可能である。   As the emitter substrate 15 and the collector substrate 19, a substrate having conductivity and heat resistance such as a diamond substrate, a Si (silicon) substrate, or a Mo (molybdenum) substrate can be used. When a diamond substrate is used, for example, a 3 mm square substrate can be used, and when a Mo substrate is used, for example, a 1 inch square substrate can be used. In the first embodiment, an example using Mo substrates will be described. However, these substrates may be omitted.

また、前記エミッタ保持部材13は、コレクタ保持部材17より熱膨張係数の小さな例えばMoからなる正方形の金属板(例えば厚み0.5mm×一辺50mm)であり、このエミッタ保持部材13の外周が前記絶縁部材11に固定されている。   The emitter holding member 13 is a square metal plate (for example, thickness 0.5 mm × one side 50 mm) made of, for example, Mo having a smaller coefficient of thermal expansion than the collector holding member 17, and the outer periphery of the emitter holding member 13 is insulated from the insulation. It is fixed to the member 11.

同様に、前記コレクタ保持部材17は、例えばTiからなる正方形の金属板(例えば厚み05mm×一辺50mm)であり、このコレクタ保持部材17の外周が前記絶縁部材11に固定されている。   Similarly, the collector holding member 17 is a square metal plate made of, for example, Ti (for example, thickness 05 mm × one side 50 mm), and the outer periphery of the collector holding member 17 is fixed to the insulating member 11.

更に、前記絶縁部材11は、例えばAlからなる横断面が正方形の筒状のスペーサであり、エミッタ電極3の(同図上側の)表面とコレクタ電極5の(同図下側の)表面が、所定寸法(例えば20μm)の平行な間隔(空間)21を保つように、その(同図上下方向の)寸法が設定されている。 Further, the insulating member 11 is a spacer cross section of the square-shaped tubular example of Al 2 O 3, the emitter electrode 3 (in the same drawing side) surface and the collector electrode 5 (in the figure the lower side ) The dimension (in the vertical direction in the figure) is set so that the surface maintains a parallel interval (space) 21 having a predetermined dimension (for example, 20 μm).

なお、エミッタ保持部材13とコレクタ保持部材17とは、負荷23を介して回路25によって電気的に接続されている。
b)ここで、本実施例1の熱電子発電素子1の製造方法について簡単に説明する。
The emitter holding member 13 and the collector holding member 17 are electrically connected by a circuit 25 via a load 23.
b) Here, a method for manufacturing the thermoelectric generator 1 of the first embodiment will be briefly described.

まず、各基板15、19上に各電極3、5を形成する場合には、各基板15、19上に、例えばCVD法やスパッタ法によってダイヤモンド半導体薄膜を形成する。なお、マイクロ波プラズマCVD、RFプラズマCVD、DCプラズマCVD、RFプラズマスパッタ、DCプラズマスパッタなどにより行ってもよい。   First, when forming each electrode 3 and 5 on each board | substrate 15 and 19, a diamond semiconductor thin film is formed on each board | substrate 15 and 19 by CVD method or a sputtering method, for example. Note that microwave plasma CVD, RF plasma CVD, DC plasma CVD, RF plasma sputtering, DC plasma sputtering, or the like may be used.

このダイヤモンド半導体薄膜を構成するダイヤモンドは、単結晶と多結晶のいずれであっても構わない。例えば、高圧合成によって生成したダイヤモンド基板を用いる場合、その上にダイヤモンド半導体薄膜を例えばCVD法にて形成すると単結晶となる。ダイヤモンド半導体薄膜の厚さに関しては、熱電子放出特性に対する膜厚依存性が確認されなかったことから特に制限はないが、基板15、19上の表面全面に偏り無く同じ厚みで形成されていると好ましい。   The diamond constituting the diamond semiconductor thin film may be either single crystal or polycrystal. For example, when a diamond substrate produced by high pressure synthesis is used, a diamond semiconductor thin film formed on the diamond substrate by, for example, a CVD method becomes a single crystal. The thickness of the diamond semiconductor thin film is not particularly limited because the film thickness dependence on the thermionic emission characteristics has not been confirmed. However, when the diamond semiconductor thin film is formed with the same thickness on the entire surface of the substrates 15 and 19 without deviation. preferable.

この様にして形成されたエミッタ電極3及びコレクタ電極5は、各基板15、19部分が、それぞれ例えば溶接やろう付けによって、エミッタ保持部材13又はコレクタ保持部材17に接合されて一体の部材となる。   In the emitter electrode 3 and the collector electrode 5 formed in this way, the portions of the substrates 15 and 19 are joined to the emitter holding member 13 or the collector holding member 17 by welding or brazing, for example, to become an integral member. .

そして、前記筒状の絶縁部材11の開口部分を閉塞するように、エミッタ電極3とコレクタ電極5とを向か合わせにして、エミッタ保持部材13とコレクタ保持部材17とを配置し、絶縁部材11と両保持部材13、17とを例えば直接接合により接合し気密して一体化する。   Then, the emitter holding member 13 and the collector holding member 17 are arranged so that the emitter electrode 3 and the collector electrode 5 face each other so as to close the opening portion of the cylindrical insulating member 11, and the insulating member 11. And the holding members 13 and 17 are joined together by, for example, direct joining and hermetically integrated.

c)次に、本実施例1の熱電子発電素子1の要部について説明する。
本実施例では、エミッタ電極3側、すなわち、エミッタ保持部材13、エミッタ基板15、エミッタ電極3は、例えば600℃の高温に保たれ、コレクタ電極5側、すなわち、コレクタ保持部材17、コレクタ基板19、コレクタ電極5は、エミッタ電極3側より300℃低い、例えば300℃の低温に保たれる。
c) Next, the main part of the thermoelectric generator 1 of the first embodiment will be described.
In this embodiment, the emitter electrode 3 side, that is, the emitter holding member 13, the emitter substrate 15, and the emitter electrode 3 are maintained at a high temperature of, for example, 600 ° C., and the collector electrode 5 side, that is, the collector holding member 17, the collector substrate 19. The collector electrode 5 is kept at a low temperature of 300 ° C., for example, 300 ° C. lower than the emitter electrode 3 side.

この温度に設定されることよって、エミッタ電極3から放出された熱電子がコレクタ電極5に捕獲されることにより発電が行われる。
特に本実施例では、熱電子発電素子1の使用温度において、エミッタ保持部材13の熱膨張係数がコレクタ保持部材17の熱膨張係数よりも小さく設定されている。
By setting the temperature, the thermoelectrons emitted from the emitter electrode 3 are captured by the collector electrode 5 to generate power.
Particularly in this embodiment, the thermal expansion coefficient of the emitter holding member 13 is set to be smaller than the thermal expansion coefficient of the collector holding member 17 at the operating temperature of the thermoelectric generator 1.

具体的には、エミッタ保持部材13を構成するMoの600℃における熱膨張係数は4.5×10-6/℃であり、コレクタ保持部材17を構成するTiの300℃における熱膨張係数は10×10-6/℃であり、エミッタ保持部材13の熱膨張係数がコレクタ保持部材17の熱膨張係数よりも小さい。 Specifically, the thermal expansion coefficient at 600 ° C. of Mo constituting the emitter holding member 13 is 4.5 × 10 −6 / ° C., and the thermal expansion coefficient at 300 ° C. of Ti constituting the collector holding member 17 is 10 × 10 −6 / ° C. The thermal expansion coefficient of the emitter holding member 13 is smaller than the thermal expansion coefficient of the collector holding member 17.

従って、本実施例の様に、エミッタ電極3とコレクタ電極5とを近接して配置した場合でも、高温側であるエミッタ保持部材13の熱膨張係数が、低温側であるコレクタ保持部材17の熱膨張係数よりも小さいので、両保持部材13、17が熱によって変形した場合でも、各保持部材13、17の変形の違いが少なく、変形の度合いが同じようになる。よって、両保持部材13、17に保持されたエミッタ電極3とコレクタ電極5との間隔21も変動しにくいので、両電極3、5間の短絡を防止することができる。   Therefore, even when the emitter electrode 3 and the collector electrode 5 are arranged close to each other as in this embodiment, the thermal expansion coefficient of the emitter holding member 13 on the high temperature side is the heat of the collector holding member 17 on the low temperature side. Since it is smaller than the expansion coefficient, even when both holding members 13 and 17 are deformed by heat, the difference in deformation of the holding members 13 and 17 is small, and the degree of deformation is the same. Therefore, since the distance 21 between the emitter electrode 3 and the collector electrode 5 held by the holding members 13 and 17 is not easily changed, a short circuit between the electrodes 3 and 5 can be prevented.

また、本実施例では、両電極3、5間の短絡を防止できるので、両電極3、5間の間隔21を小さくでき、よって、発電効率が高いという利点がある。
更に、本実施例では、Moからなるコレクタ基板19の(300℃における)熱膨張係数は、4.5×10-6/℃であり、ダイヤモンド半導体薄膜からなるコレクタ電極5の同温度における熱膨張係数2.3×10-6/℃と、Tiからなるコレクタ保持部材17の同温度における熱膨張係数の熱膨張係数10×10-6/℃との中間の値である。つまり、コレクタ基板19の熱膨張係数は、その両側のコレクタ電極5の熱膨張係数とコレクタ保持部材17の熱膨張係数との間(中間)にある。
Further, in this embodiment, since a short circuit between the electrodes 3 and 5 can be prevented, the interval 21 between the electrodes 3 and 5 can be reduced, and thus there is an advantage that the power generation efficiency is high.
Further, in this embodiment, the collector substrate 19 made of Mo has a thermal expansion coefficient (at 300 ° C.) of 4.5 × 10 −6 / ° C., and the thermal expansion at the same temperature of the collector electrode 5 made of a diamond semiconductor thin film. This is an intermediate value between a coefficient of 2.3 × 10 −6 / ° C. and a coefficient of thermal expansion of 10 × 10 −6 / ° C. at the same temperature of the collector holding member 17 made of Ti. That is, the thermal expansion coefficient of the collector substrate 19 is between the thermal expansion coefficient of the collector electrode 5 on both sides thereof and the thermal expansion coefficient of the collector holding member 17 (intermediate).

従って、温度が300℃と高くなった場合でも、コレクタ基板19が熱応力を緩和する中間層の機能を発揮するので、コレクタ電極5が歪みにくく、この点からも、両電極3、5間の短絡を防止できるという効果がある。   Therefore, even when the temperature is as high as 300 ° C., the collector substrate 19 exhibits the function of an intermediate layer that relieves thermal stress, so that the collector electrode 5 is not easily distorted. There is an effect that a short circuit can be prevented.

d)次に、本実施例1の変形例について説明する。
例えば、エミッタ電極3やコレクタ電極5を構成するダイヤモンド半導体薄膜には、ドーパントとして例えばNを添加するが、このエミッタ電極3のドーパント濃度を、コレクタ電極5のドーパント濃度よりも濃くしてもよい。
d) Next, a modification of the first embodiment will be described.
For example, N is added as a dopant to the diamond semiconductor thin film constituting the emitter electrode 3 and the collector electrode 5, but the dopant concentration of the emitter electrode 3 may be higher than the dopant concentration of the collector electrode 5.

この場合には、両電極3、5の温度条件(即ちエミッタ電極3の温度や両電極3、5の温度差)やドーパント濃度が同じ場合に比べて、コレクタ電極5より放出される熱電子の数を少なくすることができる。これにより、コレクタ電極5の温度を高くすることができるので、エミッタ電極3とコレクタ電極5との温度差を小さくでき、よって、両保持部材13、17間の熱膨張差を低減できるので、両電極3、5間の短絡を効果的に防止できる。   In this case, compared with the case where the temperature conditions of both the electrodes 3 and 5 (that is, the temperature of the emitter electrode 3 and the temperature difference between the electrodes 3 and 5) and the dopant concentration are the same, the thermoelectrons emitted from the collector electrode 5 are reduced. The number can be reduced. As a result, the temperature of the collector electrode 5 can be increased, so that the temperature difference between the emitter electrode 3 and the collector electrode 5 can be reduced, and hence the difference in thermal expansion between the holding members 13 and 17 can be reduced. A short circuit between the electrodes 3 and 5 can be effectively prevented.

次に、実施例2について説明するが、実施例1と同様な内容の説明は簡略化する。尚、実施例1と同様な構成は、同一の符号を付す。
図2に示す様に、本実施例2の熱電子変換素子31は、前記実施例1と同様に、エミッタ電極3を保持するエミッタ保持部7と、コレクタ電極5を保持するコレクタ保持部9と、絶縁部材11とを備えている。
Next, the second embodiment will be described, but the description of the same contents as the first embodiment will be simplified. In addition, the same code | symbol is attached | subjected to the structure similar to Example 1. FIG.
As shown in FIG. 2, the thermoelectric conversion element 31 of the second embodiment includes an emitter holding portion 7 that holds the emitter electrode 3, a collector holding portion 9 that holds the collector electrode 5, as in the first embodiment. And an insulating member 11.

特に本実施例では、エミッタ保持部7は、エミッタ電極3が形成されたエミッタ基板15とエミッタ保持部材13との間に、両部材15、13に接合されたエミッタ中間層33を備えている。   In particular, in this embodiment, the emitter holding portion 7 includes an emitter intermediate layer 33 bonded to both the members 15 and 13 between the emitter substrate 15 on which the emitter electrode 3 is formed and the emitter holding member 13.

同様に、コレクタ保持部9は、コレクタ電極5が形成されたコレクタ基板19とコレクタ保持部材17との間に、両部材19、17に接合されたコレクタ中間層35を備えている。   Similarly, the collector holding portion 9 includes a collector intermediate layer 35 bonded to both the members 19 and 17 between the collector substrate 19 on which the collector electrode 5 is formed and the collector holding member 17.

また、エミッタ基板15は、(600℃の)熱膨張係数が4.1×10-6/℃のSiからなり、エミッタ保持部材13は、(600℃の)熱膨張係数が7.2×10-6/℃のTaからなり、更に、エミッタ中間層33は、エミッタ基板15とエミッタ保持部材13との中間の(600℃)の熱膨張係数が5×10-6/℃のWからなる。 The emitter substrate 15 is made of Si having a thermal expansion coefficient (at 600 ° C.) of 4.1 × 10 −6 / ° C., and the emitter holding member 13 has a thermal expansion coefficient of 7.2 × 10 (at 600 ° C.). -6 / consist ° C. of Ta, further emitter interlayer 33, the thermal expansion coefficient (600 ° C.) of intermediate the emitter substrate 15 and the emitter holding member 13 is made of W of 5 × 10 -6 / ° C..

同様に、コレクタ基板19は、(300℃の)熱膨張係数が3.5×10-6/℃のSiからなり、コレクタ保持部材17は、(300℃の)熱膨張係数が11×10-6/℃のTiからなり、更に、コレクタ中間層35は、コレクタ基板19とコレクタ保持部材17との中間の(300℃)の熱膨張係数が9×10-6/℃のCrからなる。 Similarly, the collector substrate 19 is made of Si having a thermal expansion coefficient (300 ° C.) of 3.5 × 10 −6 / ° C., and the collector holding member 17 has a thermal expansion coefficient of 11 × 10 (300 ° C.). The collector intermediate layer 35 is made of Cr having an intermediate (300 ° C.) thermal expansion coefficient of 9 × 10 −6 / ° C. between the collector substrate 19 and the collector holding member 17.

なお、エミッタ電極3とコレクタ電極5の材料は、前記実施例1と同様である。
従って、本実施例では、前記実施例1と同様な効果を奏するとともに、エミッタ中間層33とコレクタ中間層35は、その両側の部材の熱膨張係数の中間の熱膨張係数を有するので、熱応力を緩和する中間層としての機能を有する。これによって、エミッタ電極3及びコレクタ電極5が歪みにくいので、両電極3、5間の短絡を一層効果的に防止できるという効果がある。
The materials of the emitter electrode 3 and the collector electrode 5 are the same as those in the first embodiment.
Therefore, in this embodiment, the same effects as those of the first embodiment are obtained, and the emitter intermediate layer 33 and the collector intermediate layer 35 have a thermal expansion coefficient that is intermediate between the thermal expansion coefficients of the members on both sides thereof. It functions as an intermediate layer that relieves heat. Thereby, since the emitter electrode 3 and the collector electrode 5 are not easily distorted, there is an effect that a short circuit between the electrodes 3 and 5 can be more effectively prevented.

しかも、本実施例では、エミッタ基板15及びエミッタ中間層33の熱膨張係数が、エミッタ電極3の熱膨張係数とエミッタ保持部材13の熱膨張係数との中間に設定されているので、エミッタ基板15及びエミッタ中間層33とも熱応力を緩和する中間層としての機能を有している。   In addition, in this embodiment, the thermal expansion coefficients of the emitter substrate 15 and the emitter intermediate layer 33 are set between the thermal expansion coefficient of the emitter electrode 3 and the thermal expansion coefficient of the emitter holding member 13. The emitter intermediate layer 33 also functions as an intermediate layer that relieves thermal stress.

同様に、コレクタ基板19及びコレクタ中間層35との熱膨張係数が、コレクタ電極5の熱膨張係数とコレクタ保持部材17の熱膨張係数との中間に設定されているので、コレクタ基板19及びコレクタ中間層35とも熱応力を緩和する中間層としての機能を有している。   Similarly, the coefficient of thermal expansion between the collector substrate 19 and the collector intermediate layer 35 is set between the coefficient of thermal expansion of the collector electrode 5 and the coefficient of thermal expansion of the collector holding member 17. The layer 35 also has a function as an intermediate layer that relieves thermal stress.

その上、エミッタ基板15の熱膨張係数とエミッタ中間層33の熱膨張係数とは、エミッタ電極3又はエミッタ保持部材13に近いほど、その熱膨張係数が近くなるように設定されている。   In addition, the thermal expansion coefficient of the emitter substrate 15 and the thermal expansion coefficient of the emitter intermediate layer 33 are set such that the closer to the emitter electrode 3 or the emitter holding member 13, the closer the thermal expansion coefficient.

同様に、コレクタ基板19の熱膨張係数とコレクタ中間層35の熱膨張係数とは、コレクタ電極5又はコレクタ保持部材17に近いほど、その熱膨張係数が近くなるように設定されている。   Similarly, the thermal expansion coefficient of the collector substrate 19 and the thermal expansion coefficient of the collector intermediate layer 35 are set such that the closer to the collector electrode 5 or the collector holding member 17, the closer the thermal expansion coefficient.

つまり、この様に、間に挟まれた各基板15、19及び各中間層33、35の熱膨張係数が(積層方向に沿って)徐々に変化するように設定されているので、この点からも、熱応力が好適に緩和され、より一層短絡を防止することができる。   That is, in this way, the thermal expansion coefficients of the substrates 15 and 19 and the intermediate layers 33 and 35 sandwiched therebetween are set so as to gradually change (along the stacking direction). However, the thermal stress is preferably relaxed, and a short circuit can be further prevented.

次に、実施例3について説明するが、実施例2と同様な内容の説明は簡略化する。尚、実施例2と同様な構成は、同一の符号を付す。
図3に示す様に、本実施例3の熱電子変換素子41は、前記実施例2と同様に、エミッタ電極3を保持するエミッタ保持部7と、コレクタ電極5を保持するコレクタ保持部9と、絶縁部材11とを備えている。
Next, the third embodiment will be described, but the description of the same contents as the second embodiment will be simplified. In addition, the same code | symbol is attached | subjected to the structure similar to Example 2. FIG.
As shown in FIG. 3, the thermoelectron conversion element 41 of the third embodiment includes an emitter holding portion 7 that holds the emitter electrode 3, a collector holding portion 9 that holds the collector electrode 5, as in the second embodiment. And an insulating member 11.

また、本実施例では、エミッタ保持部7は、エミッタ電極3が形成されたエミッタ基板15と、エミッタ基板15に接合されたエミッタ中間層33と、エミッタ中間層33に接合されたエミッタ保持部材13とから構成されている。   In this embodiment, the emitter holding unit 7 includes the emitter substrate 15 on which the emitter electrode 3 is formed, the emitter intermediate layer 33 bonded to the emitter substrate 15, and the emitter holding member 13 bonded to the emitter intermediate layer 33. It consists of and.

同様に、コレクタ保持部9は、コレクタ電極5が形成されたコレクタ基板19と、コレクタ基板19に接合されたコレクタ中間層35と、コレクタ中間層35に接合されたコレクタ保持部材17とから構成されている。   Similarly, the collector holding unit 9 includes a collector substrate 19 on which the collector electrode 5 is formed, a collector intermediate layer 35 bonded to the collector substrate 19, and a collector holding member 17 bonded to the collector intermediate layer 35. ing.

特に本実施例では、エミッタ中間層33は、(600℃の)熱膨張係数が5×10-6/℃のWからなる内エミッタ中間層33aと、(600℃の)熱膨張係数が5.3×10-6/℃のMoからなる外エミッタ中間層33bとから構成されている。 In particular, in this embodiment, the emitter intermediate layer 33 has an inner emitter intermediate layer 33a made of W with a thermal expansion coefficient (600 ° C.) of 5 × 10 −6 / ° C. and a thermal expansion coefficient of 5.degree. And an outer emitter intermediate layer 33b made of Mo at 3 × 10 −6 / ° C.

つまり、内エミッタ中間層33aの熱膨張係数より外エミッタ中間層33bの熱膨張係数が大きく設定されている。
同様に、コレクタ中間層35は、(300℃の)熱膨張係数が4.6×10-6/℃のWからなる内コレクタ中間層35aと、(300℃の)熱膨張係数が9×10-6/℃のCrからなる外コレクタ中間層35bとから構成されている。
That is, the thermal expansion coefficient of the outer emitter intermediate layer 33b is set larger than the thermal expansion coefficient of the inner emitter intermediate layer 33a.
Similarly, the collector intermediate layer 35 has an inner collector intermediate layer 35a made of W having a thermal expansion coefficient of 4.6 × 10 −6 / ° C. (300 ° C.) and a thermal expansion coefficient of 9 × 10 6 (300 ° C.). -6 / ° C outer collector intermediate layer 35b.

つまり、内コレクタ中間層35aの熱膨張係数より外コレクタ中間層35bの熱膨張係数が大きく設定されている。
これにより、本実施例では、前記実施例1と同様な効果を奏するとともに、一層熱応力を低減でき、両電極3、5間の短絡を一層大きく低減できるという利点がある。
That is, the thermal expansion coefficient of the outer collector intermediate layer 35b is set larger than that of the inner collector intermediate layer 35a.
Thereby, in the present embodiment, there are advantages that the same effects as in the first embodiment can be obtained, the thermal stress can be further reduced, and the short circuit between the electrodes 3 and 5 can be further greatly reduced.

なお、内エミッタ中間層33aや外エミッタ中間層33b、並びに、内コレクタ中間層35aや外コレクタ中間層35bは、各材料からなる板材を積層して、例えば熱拡散によって接合して一体化してもよい。   The inner emitter intermediate layer 33a, the outer emitter intermediate layer 33b, and the inner collector intermediate layer 35a and the outer collector intermediate layer 35b may be formed by laminating plate materials made of each material and joining them by, for example, thermal diffusion. Good.

また、エミッタ中間層33やコレクタ中間層25は、いわゆる傾斜材料で構成してもよい。この傾斜材料とは、厚み方向に材料の組成を徐々に変化させることによって、熱膨張係数も徐々に変化させたものである。   The emitter intermediate layer 33 and the collector intermediate layer 25 may be made of a so-called gradient material. The gradient material is a material in which the thermal expansion coefficient is gradually changed by gradually changing the composition of the material in the thickness direction.

次に、実施例4について説明するが、実施例1と同様な内容の説明は簡略化する。尚、実施例1と同様な構成は、同一の符号を付す。
図4に示す様に、本実施例4の熱電子変換素子51は、前記実施例1とは異なり、金属材料からエミッタ電極3及びコレクタ電極5を構成し、それぞれに(エミッタ保持部7である)エミッタ保持部材13と(コレクタ保持部9である)コレクタ保持部材17とを接合したものである。
Next, the fourth embodiment will be described, but the description of the same contents as the first embodiment will be simplified. In addition, the same code | symbol is attached | subjected to the structure similar to Example 1. FIG.
As shown in FIG. 4, the thermoelectron conversion element 51 of the fourth embodiment is different from the first embodiment in that the emitter electrode 3 and the collector electrode 5 are made of a metal material, and each is an emitter holding portion 7. ) An emitter holding member 13 and a collector holding member 17 (which is the collector holding portion 9) are joined.

本実施例では、エミッタ電極3及びコレクタ電極5をWから構成し、エミッタ保持部材13をCrから構成するとともに、コレクタ保持部材17をFeから構成している。
従って、エミッタ保持部材13の(600℃)の熱膨張係数は12×10-6/℃であり、コレクタ保持部材17の(300℃)の熱膨張係数の15×10-6/℃より小さいので、前記実施例1と同様な効果を奏する。
In this embodiment, the emitter electrode 3 and the collector electrode 5 are made of W, the emitter holding member 13 is made of Cr, and the collector holding member 17 is made of Fe.
Therefore, the thermal expansion coefficient of the emitter holding member 13 (600 ° C.) is 12 × 10 −6 / ° C., which is smaller than the thermal expansion coefficient of the collector holding member 17 (300 ° C.) of 15 × 10 −6 / ° C. The same effects as those of the first embodiment are obtained.

次に、実施例5について説明するが、実施例1と同様な内容の説明は簡略化する。尚、実施例1と同様な構成は、同一の符号を付す。
図5に示す様に、本実施例5の熱電子変換素子61は、前記実施例1と同様に、エミッタ電極3と、エミッタ基板15及びエミッタ保持部材13からなるエミッタ保持部7と、コレクタ電極5と、コレクタ基板19及びコレクタ保持部材17からなるコレクタ保持部9とを備えている。
Next, the fifth embodiment will be described, but the description of the same contents as the first embodiment will be simplified. In addition, the same code | symbol is attached | subjected to the structure similar to Example 1. FIG.
As shown in FIG. 5, the thermoelectric conversion element 61 of the fifth embodiment is similar to the first embodiment in that the emitter electrode 3, the emitter holding portion 7 including the emitter substrate 15 and the emitter holding member 13, and the collector electrode. 5 and a collector holding portion 9 including a collector substrate 19 and a collector holding member 17.

特に本実施例では、エミッタ保持部材13の外周側の端部から、同図下方に向けて、筒状の(低温側への熱拡散を防止し且つ熱応力を緩和する)エミッタ側ヒートチョーク部63が延設されている。   In particular, in this embodiment, the emitter-side heat choke portion (which prevents the thermal diffusion to the low temperature side and relaxes the thermal stress) from the end on the outer peripheral side of the emitter holding member 13 downward in FIG. 63 is extended.

同様に、コレクタ保持部材17の外周側の端部から、同図下方に向けて、筒状の(低温側への熱拡散を防止し且つ熱応力を緩和する)コレクタ側ヒートチョーク部65が、エミッタ側ヒートチョーク部63と平行に、同心状に延設されている。   Similarly, from the end on the outer peripheral side of the collector holding member 17 toward the lower side in the figure, a collector-like heat choke portion 65 (which prevents thermal diffusion to the low temperature side and relaxes thermal stress) is provided. The emitter-side heat choke portion 63 extends concentrically in parallel.

なお、エミッタ側ヒートチョーク部63とコレクタ側ヒートチョーク部65との(同図下方の)先端側は、環状の絶縁部材67によって、熱電子変換素子61の内部空間69を閉塞するように一体に接合されている。   The tip side of the emitter-side heat choke part 63 and the collector-side heat choke part 65 (lower side in the figure) is integrated with an annular insulating member 67 so as to close the internal space 69 of the thermoelectric conversion element 61. It is joined.

本実施例では、前記実施例1と同様な効果を奏するとともに、熱応力の緩和は、エミッタ保持部材13とコレクタ保持部材17の熱膨張係数の設定によって、かなりの程度まで実現されているので、両ヒートチョーク部63、65を従来に比べて小型化することができる。その結果、熱電子変換素子61自体も小型化することが可能になる。   In the present embodiment, the same effect as in the first embodiment is achieved, and the relaxation of the thermal stress is realized to a considerable degree by setting the thermal expansion coefficients of the emitter holding member 13 and the collector holding member 17. Both heat choke parts 63 and 65 can be reduced in size compared with the past. As a result, the thermoelectric conversion element 61 itself can be downsized.

尚、本発明は前記実施態様や実施例になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。   In addition, this invention is not limited to the said embodiment and an Example at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.

1、31、41、51、61…熱電子発電素子
3…エミッタ電極
5…コレクタ電極
7…エミッタ保持部
9…コレクタ保持部
13…エミッタ保持部材
17…コレクタ保持部材
21…空間(間隔)
33…エミッタ中間層
35…コレクタ中間層
DESCRIPTION OF SYMBOLS 1, 31, 41, 51, 61 ... Thermionic power generation element 3 ... Emitter electrode 5 ... Collector electrode 7 ... Emitter holding part 9 ... Collector holding part 13 ... Emitter holding member 17 ... Collector holding member 21 ... Space (space | interval)
33 ... Emitter intermediate layer 35 ... Collector intermediate layer

Claims (6)

熱源からの熱が加わるエミッタ電極(3)と、
該エミッタ電極(3)に空間(21)を隔てて対向して配置され、前記エミッタ電極(3)からの熱電子を捕獲するコレクタ電極(5)と、
を備え、前記エミッタ電極(3)と前記コレクタ電極(5)との間を移動する熱電子を利用して熱エネルギーを電気エネルギーに変換する熱電子発電素子(1、31、41、51、61)であって、
前記エミッタ電極(3)を保持するエミッタ保持部(7)と、
前記コレクタ電極(5)を保持するコレクタ保持部(9)と、
を備え、
前記エミッタ電極(3)と前記コレクタ電極(5)とが接触しないように、前記熱電子発電素子(1、31、41、51、61)の使用温度において、前記エミッタ保持部(7)の一部又は全体の熱膨張係数が、前記コレクタ保持部(9)の一部又は全体の熱膨張係数よりも小さく設定されていることを特徴とする熱電子発電素子。
An emitter electrode (3) to which heat from a heat source is applied;
A collector electrode (5) disposed opposite to the emitter electrode (3) with a space (21) therebetween, and capturing the thermal electrons from the emitter electrode (3);
A thermoelectron generator (1, 31, 41, 51, 61) that converts thermal energy into electrical energy using thermoelectrons moving between the emitter electrode (3) and the collector electrode (5). ) And
An emitter holder (7) for holding the emitter electrode (3);
A collector holding part (9) for holding the collector electrode (5);
With
In order to prevent the emitter electrode (3) and the collector electrode (5) from coming into contact with each other, one of the emitter holding portions (7) is used at the operating temperature of the thermoelectric generator (1, 31, 41, 51, 61). The thermal expansion coefficient of the part or the whole is set smaller than the thermal expansion coefficient of a part or the whole of the collector holding part (9).
前記エミッタ電極(3)及び前記コレクタ電極(5)の材料として、半導体の材料を用いることを特徴とする請求項1に記載の熱電子発電素子。   The thermionic power generation element according to claim 1, wherein a semiconductor material is used as a material for the emitter electrode (3) and the collector electrode (5). 前記半導体が、ダイヤモンド半導体であることを特徴とする請求項2に記載の熱電子発電素子。   The thermoelectric power generation element according to claim 2, wherein the semiconductor is a diamond semiconductor. 前記エミッタ電極(3)に用いる半導体の材料に添加された半導体不純物のドーパント濃度が、前記コレクタ電極(5)の半導体の材料に添加された半導体不純物のドーパント濃度よりも濃いことを特徴とする請求項1又は2に記載の熱電子発電素子。   The dopant concentration of the semiconductor impurity added to the semiconductor material used for the emitter electrode (3) is higher than the dopant concentration of the semiconductor impurity added to the semiconductor material of the collector electrode (5). Item 3. The thermoelectric generator of item 1 or 2. 前記エミッタ保持部(7)は、前記エミッタ電極(3)を保持するエミッタ中間層(33)と、該エミッタ中間層(33)を保持するエミッタ保持部材(13)とを備え、
前記エミッタ中間層(33)は、前記エミッタ電極(3)と前記エミッタ保持部材(13)との間の熱膨張係数を有することを特徴とする請求項1〜4のいずれか1項に記載の熱電子発電素子。
The emitter holding portion (7) includes an emitter intermediate layer (33) that holds the emitter electrode (3), and an emitter holding member (13) that holds the emitter intermediate layer (33) .
The said emitter intermediate | middle layer (33) has a thermal expansion coefficient between the said emitter electrode (3) and the said emitter holding member (13), The any one of Claims 1-4 characterized by the above-mentioned. Thermoelectric power generation element.
前記コレクタ保持部(7)は、前記コレクタ電極(5)を保持するコレクタ中間層(35)と、該コレクタ中間層(35)を保持するコレクタ保持部材(17)とを備え、
前記コレクタ中間層(35)は、前記コレクタ電極(5)と前記コレクタ保持部材(17)との間の熱膨張係数を有することを特徴とする請求項1〜5のいずれか1項に記載の熱電子発電素子。
The collector holding part (7) includes a collector intermediate layer (35) for holding the collector electrode (5), and a collector holding member (17) for holding the collector intermediate layer (35),
The collector intermediate layer (35) has a coefficient of thermal expansion between the collector electrode (5) and the collector holding member (17). Thermoelectric power generation element.
JP2012099086A 2012-04-24 2012-04-24 Thermoelectric generator Expired - Fee Related JP5915356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012099086A JP5915356B2 (en) 2012-04-24 2012-04-24 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012099086A JP5915356B2 (en) 2012-04-24 2012-04-24 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2013229971A JP2013229971A (en) 2013-11-07
JP5915356B2 true JP5915356B2 (en) 2016-05-11

Family

ID=49677109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012099086A Expired - Fee Related JP5915356B2 (en) 2012-04-24 2012-04-24 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP5915356B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143198A (en) * 2016-02-11 2017-08-17 株式会社デンソー Thermionic power generation element
JP6749283B2 (en) * 2017-05-22 2020-09-02 株式会社東芝 Power generation element, power generation module, power generation device, and power generation system
JP6524567B1 (en) 2018-02-28 2019-06-05 株式会社Gceインスティチュート Thermoelectric element, thermoelectric device, and method of forming thermoelectric element
JP6957420B2 (en) 2018-07-18 2021-11-02 株式会社東芝 Power generation elements, power generation modules, power generation equipment and power generation systems
JP7197855B2 (en) * 2018-09-14 2022-12-28 株式会社Gceインスティチュート Thermoelectric element manufacturing method
JP7197856B2 (en) * 2018-09-14 2022-12-28 株式会社Gceインスティチュート Thermoelectric element manufacturing method
JP6598339B1 (en) * 2019-04-17 2019-10-30 株式会社Gceインスティチュート Power generation element, power generation apparatus, electronic device, and method for manufacturing power generation element
WO2020235254A1 (en) * 2019-05-21 2020-11-26 株式会社Gceインスティチュート Power generation element, power generation device, electronic apparatus, and manufacturing method for power generation element
WO2021095403A1 (en) * 2019-11-12 2021-05-20 株式会社Gceインスティチュート Method for controlling work function of electrode, power generation element, and method for producing power generation element
JP7500402B2 (en) 2020-11-20 2024-06-17 株式会社東芝 Power generation element
US12165858B2 (en) 2021-08-25 2024-12-10 Kabushiki Kaisha Toshiba Thermionic power generation element and thermionic power generation module

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3234945B2 (en) * 1990-11-01 2001-12-04 キヤノン株式会社 Contact charging device members
JP2903101B2 (en) * 1993-12-17 1999-06-07 三井造船株式会社 Thermionic power generation element
JPH07322659A (en) * 1994-05-27 1995-12-08 Mitsui Eng & Shipbuild Co Ltd Thermionic generating element and adjusting method of clearance of electrode thereof
JPH08237972A (en) * 1995-02-27 1996-09-13 Mitsui Eng & Shipbuild Co Ltd Thermoelectron power generation electrode unit and its production
US20040189141A1 (en) * 1997-09-08 2004-09-30 Avto Tavkhelidze Thermionic vacuum diode device with adjustable electrodes
JP2000164941A (en) * 1998-11-30 2000-06-16 Yamaha Corp Thermoelectric conversion module
JP2006135074A (en) * 2004-11-05 2006-05-25 Sharp Corp Thermoelectric element and thermoelectric device having the same
JP2008294129A (en) * 2007-05-23 2008-12-04 Daikin Ind Ltd THERMOELECTRIC POWER GENERATOR AND THERMOELECTRIC POWER GENERATOR HAVING THE THERMOELECTRIC POWER GENERATOR
DE102009009586A1 (en) * 2009-02-19 2010-08-26 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelectric device
CN102349359B (en) * 2009-03-09 2014-01-22 株式会社村田制作所 Resin wiring board
JP5528736B2 (en) * 2009-07-27 2014-06-25 株式会社デンソー Thermoelectric generator
JP5450022B2 (en) * 2009-12-11 2014-03-26 株式会社デンソー Thermoelectric generator
JP5397414B2 (en) * 2011-05-26 2014-01-22 株式会社デンソー Thermoelectric generator
JP5640893B2 (en) * 2011-05-26 2014-12-17 株式会社デンソー Thermoelectric generator

Also Published As

Publication number Publication date
JP2013229971A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
JP5915356B2 (en) Thermoelectric generator
JP5450022B2 (en) Thermoelectric generator
US8692104B2 (en) Thermoelectric element
JP6024598B2 (en) Thermoelectric generator
JP5397414B2 (en) Thermoelectric generator
JP5444260B2 (en) Thermoelectric module and power generator
KR20090047500A (en) Closely spaced electrodes with uniform gap
WO2009119179A1 (en) Electron emission element
JP2010192780A (en) Thermoelectric conversion element
JP5528736B2 (en) Thermoelectric generator
JP6165000B2 (en) Thermoelectric generator
JP4187658B2 (en) High output multistage depletion type collector
WO2017138290A1 (en) Thermoelectronic power generating element
WO2017164217A1 (en) Thermoelectric conversion module
KR20190019767A (en) Thermoelectric module and thermoelectric generator
KR20140101121A (en) Thermo electric device
US3176164A (en) High vacuum thermionic converter
US9508533B2 (en) Thermionic converter and manufacturing method of electrode of thermionic converter
JP2013232600A (en) Thermionic power generation element
JP2017143011A (en) Electron emitting element
KR102130825B1 (en) Thermoelectric module and method for manufacturing the same
JP2017183709A (en) Thermoelectric conversion module
Natarajan et al. High voltage microelectromechanical systems platform for fully integrated, on-chip, vacuum electronic devices
JP2006049305A (en) Electronic device having a plurality of conductive beams
KR102283035B1 (en) Electronically amplified compact x-ray tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R151 Written notification of patent or utility model registration

Ref document number: 5915356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees