[go: up one dir, main page]

JP5912593B2 - Manufacturing method of energy absorbing member - Google Patents

Manufacturing method of energy absorbing member Download PDF

Info

Publication number
JP5912593B2
JP5912593B2 JP2012020370A JP2012020370A JP5912593B2 JP 5912593 B2 JP5912593 B2 JP 5912593B2 JP 2012020370 A JP2012020370 A JP 2012020370A JP 2012020370 A JP2012020370 A JP 2012020370A JP 5912593 B2 JP5912593 B2 JP 5912593B2
Authority
JP
Japan
Prior art keywords
stay
peripheral wall
bumper
manufacturing
energy absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012020370A
Other languages
Japanese (ja)
Other versions
JP2013160253A (en
Inventor
秀樹 石飛
秀樹 石飛
寛哲 細井
寛哲 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012020370A priority Critical patent/JP5912593B2/en
Priority to PCT/JP2013/051489 priority patent/WO2013115066A1/en
Priority to US14/376,054 priority patent/US9327664B2/en
Priority to CN201380007563.7A priority patent/CN104094011B/en
Publication of JP2013160253A publication Critical patent/JP2013160253A/en
Application granted granted Critical
Publication of JP5912593B2 publication Critical patent/JP5912593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Description

本発明は、自動車の衝突時に衝突エネルギーを吸収するバンパーステイ等のエネルギー吸収部材の製造方法に関する。 The present invention relates to a method of manufacturing an energy absorbing member such as a bumper stay that absorbs collision energy at the time of automobile collision.

近年、乗用車の衝突や歩行者保護に関する基準が強化され、一方では、燃費や運動性能の向上が要求されており、バンパーレインフォースの高強度化やバンパーステイ(クラッシュボックス)のエネルギー吸収効率の向上、及びさらなる軽量化、あるいは歩行者保護部品(特許文献1参照)のエネルギー吸収効率の向上等が求められている。また、トラックについても、乗用車の潜り込み防止の目的で、フロント及びリアのアンダープロテクター(特許文献2参照)の衝突強度基準が強化されているが、積載重量の増大のため、アンダーランプロテクターやアンダーランプロテクターステイのエネルギー吸収効率の向上及び軽量化が求められている。   In recent years, standards for passenger car collision and pedestrian protection have been strengthened. On the other hand, there has been a demand for improved fuel economy and athletic performance. The strength of bumper reinforcement has been increased and the energy absorption efficiency of bumper stays (crash boxes) has been improved. And further weight reduction, improvement of energy absorption efficiency of a pedestrian protection component (refer patent document 1), etc. are calculated | required. Also, for trucks, the standards for collision strength of front and rear under protectors (see Patent Document 2) have been strengthened to prevent passenger cars from getting in, but underrun protectors and underruns have been increased to increase the load weight. There is a need to improve the energy absorption efficiency and weight of the protector stay.

エネルギー吸収効率の向上と軽量化、さらに部品点数の削減、接合方法の簡略化等の目的で、筒状のアルミニウム合金押出材(又はアルミニウム合金板を筒状に曲げ成形したもの)の一方又は両方の端部に、電磁成形を利用してフランジを成形した縦圧壊のバンパーステイが知られている(特許文献3〜8参照)。
このアルミニウム合金押出材等は、バンパーステイが衝突時に吸収すべき所定のエネルギー吸収量に対応して、その直径及び肉厚が決定されるが、電磁成形による拡管でフランジ部は材料が伸ばされるため、拡管率(拡管後の周長/元の周長)が大きいと、フランジ部の外周部に割れが入ったり、肉厚減少を生じるため、電磁成形で成形できるフランジ幅には限界がある。
One or both of cylindrical aluminum alloy extruded materials (or aluminum alloy plates bent into a cylindrical shape) for the purpose of improving energy absorption efficiency and reducing weight, reducing the number of parts, and simplifying the joining method A vertical crush bumper stay in which a flange is formed using electromagnetic forming at the end of this is known (see Patent Documents 3 to 8).
The diameter and thickness of this aluminum alloy extruded material etc. are determined according to the predetermined energy absorption amount that the bumper stay should absorb at the time of collision, but the material of the flange is expanded by expanding the pipe by electromagnetic forming. When the tube expansion ratio (peripheral length after tube expansion / original peripheral length) is large, the outer peripheral portion of the flange portion is cracked or the thickness is reduced, so that there is a limit to the flange width that can be formed by electromagnetic forming.

特開2011−105183号公報JP 2011-105183 A 特開2008−273271号公報JP 2008-273271 A 特開2010−116129号公報JP 2010-116129 A 特開2010−69927号公報JP 2010-69927 A 特開2006−305587号公報JP 2006-305587 A 特開2005−152920号公報JP 2005-152920 A 特開2005−7475号公報JP 2005-7475 A 特開2004−189062号公報JP 2004-189062 A

筒状のアルミニウム合金押出材等において、成形できるフランジ幅の限界値は、通常、素材直径の20〜30%であり、素材直径が小さい場合には、ボルト締結に必要なフランジ幅を確保できないという問題がある。また、バンパーステイとサイドメンバーの締結において、バンパーステイ側にボルト締結に必要なフランジ幅自体を確保できる場合であっても、サイドメンバーとのボルト締結位置の一部又は全部を、バンパーステイの成形可能なフランジ幅の範囲内に設定できない場合もある。   In a cylindrical aluminum alloy extruded material or the like, the limit value of the flange width that can be formed is usually 20 to 30% of the material diameter, and when the material diameter is small, the flange width necessary for bolt fastening cannot be secured. There's a problem. In addition, when fastening the bumper stay and the side member, even if the flange width itself necessary for bolt fastening can be secured on the bumper stay side, part or all of the bolt fastening position with the side member can be molded into the bumper stay. In some cases, it cannot be set within the range of possible flange widths.

上記の問題点を解決する手段として、筒端に別部品(フランジ)を電磁成形によりカシメ締結したり(特許文献6参照)、アーク溶接により接合することが行われているが、部品点数や加工工数が増え、バンパーステイの重量やコストが増大するという問題がある。また、ボルトの取付点数を減らしたり、ボルト径を小さくすることも対策として考えられるが、その場合は十分な締め付け強度を確保できないという問題が生じる。   As means for solving the above problems, another part (flange) is crimped to the end of the cylinder by electromagnetic forming (see Patent Document 6) or joined by arc welding. There is a problem that man-hours increase and the weight and cost of the bumper stay increase. Further, it is conceivable to reduce the number of bolts attached or to reduce the bolt diameter, but in this case, there arises a problem that sufficient tightening strength cannot be secured.

本発明は、従来技術の上記問題点に鑑みてなされたもので、筒状のアルミニウム合金押出材等の端部を、電磁成形等の加工手段により拡開してフランジ部を形成し、バンパーステイ等のエネルギー吸収部材を製造する場合に、従来以上に割れの発生や肉厚減少を生じさせることなく、フランジ幅を増大できるようにすることを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art. The end of a tubular aluminum alloy extruded material or the like is expanded by a processing means such as electromagnetic forming to form a flange portion, and a bumper stay The purpose of the present invention is to increase the flange width without producing cracks or reducing the wall thickness more than in the conventional case.

本発明の方法で製造されるエネルギー吸収部材は、周方向に沿って波形状に起伏する周壁を有し、該周壁の外周の周長円相当径が最小外接円径より大きい筒状の金属製形材を素材とするもので、周方向に沿って波形状に起伏する筒状の周壁を有する軸部と、前記金属製形材の端部周壁の全周が拡開して形成されたフランジ部からなる。
本発明において金属製形材とは、長手方向全長にわたり実質的に同一断面を有する金属製部材を意味する。筒状の金属製形材には筒状の押出材のほか、板材を筒状に成形したものも含まれ、そのうち特に望ましいのはアルミニウム合金押出材である。
The energy absorbing member manufactured by the method of the present invention has a peripheral wall that undulates in the circumferential direction, and the cylindrical equivalent metal diameter of the outer circumference of the peripheral wall is larger than the minimum circumscribed circle diameter. A flange having a cylindrical peripheral wall that undulates in a circumferential shape in a circumferential direction, and a flange formed by expanding the entire periphery of the end peripheral wall of the metal profile. Consists of parts .
In the present invention, the metal profile means a metal member having substantially the same cross section over the entire length in the longitudinal direction . In addition to the cylindrical extruded material, the cylindrical metal shaped material includes those obtained by forming a plate material into a cylindrical shape. Of these, an aluminum alloy extruded material is particularly desirable.

また、波形状に起伏するとは、周方向に沿って凹凸が繰り返される形態を意味する。その波形には例えば正弦波状、三角波状、歯車状、それらの組み合わせ等、種々の形態があり得る。
周壁の外周の周長円相当径が最小外接円径より大きいとは、周方向に沿った周壁の外周の周長(波形状の起伏に沿って1周したときの延べ長さ)が、同じ外径(最小外接円径)の単なる円筒形の周壁の周長より長いことを意味する。
In addition, undulation in a wave shape means a form in which unevenness is repeated along the circumferential direction. The waveform may have various forms such as a sine wave, a triangular wave, a gear, and a combination thereof.
The circumference equivalent circle diameter of the outer periphery of the peripheral wall is larger than the minimum circumscribed circle diameter, the peripheral length of the outer periphery of the peripheral wall along the circumferential direction (the total length when making one round along the waved undulation) is the same This means that the outer diameter (minimum circumscribed circle diameter) is simply longer than the circumference of the cylindrical peripheral wall.

本発明に係るエネルギー吸収部材の製造方法は、周方向に沿って波形状に起伏する周壁を長手方向の全長にわたり有し、該周壁の外周の周長円相当径が該周壁の最小外接円径より大きい筒状の金属製形材を素材とし、その端部周壁の全周を塑性加工により拡開してフランジ部を形成することを特徴とする。上記塑性加工の全部又は一部を電磁成形で行うことができる。
エネルギー吸収部材の軸部に相当する箇所は実質的に拡管せず、元の金属製形材の断面形状をほぼそのまま維持することもできるが、フランジ部の成形と同時に適当な拡管率で拡管することも本発明に含まれる。後者の場合、軸部の周壁は、素材である金属製形材の周壁と同様の形態で波形状に起伏している必要はない。例えば金属製形材の周壁の波形状の起伏が、正弦波状の形態を有していた場合、拡管により軸部の周壁の波形形状を三角波状の形態に変えることも可能である。
The manufacturing method of the energy absorbing member according to the present invention has a circumferential wall that undulates in the circumferential direction over the entire length in the longitudinal direction, and a circumference equivalent circle diameter of the outer circumference of the circumferential wall is a minimum circumscribed circle diameter of the circumferential wall the larger tubular metallic profiles and material, and forming a flange portion by expanding the entire periphery of the end wall by plastic working. All or part of the plastic working can be performed by electromagnetic forming.
The portion corresponding to the shaft portion of the energy absorbing member is not substantially expanded, and the cross-sectional shape of the original metal profile can be maintained as it is, but the tube is expanded at an appropriate expansion rate simultaneously with the formation of the flange portion. This is also included in the present invention. In the latter case, the peripheral wall of the shaft portion does not have to be waved in the same form as the peripheral wall of the metal profile material. For example, when the corrugation of the peripheral wall of the metal profile has a sinusoidal shape, it is possible to change the corrugated shape of the peripheral wall of the shaft portion to a triangular waveform by expanding the tube.

本発明の製造方法に用いられる金属製形材は、筒状の周壁の周長が、一般的な円形断面の周壁に比べて長く形成されている。本発明では、そのことを周壁が余剰線長を有するという。本発明の製造方法に用いられる金属製形材は、周壁が余剰線長を有することから、周壁の端部を拡開してフランジ部を成形したとき、従来の円形断面の金属製形材と同じ拡管率(拡管後の周長/元の周長)でフランジ部を成形したとしても、大きい径のフランジ部、すなわちフランジ幅の大きいフランジ部を成形できるようになる。これにより、これまでボルト締結ができなかった相手材とのボルト締結が可能となり、あるいはボルト締結位置の設定の自由度が増す。
また、本発明の製造方法で製造したエネルギー吸収部材は、軸部の周壁が、周方向に沿って波形状に起伏していることから、軸方向にみると、軸部の周壁に軸方向に平行な一種の稜線が複数個形成されていることになり、これが衝突時の座屈変形を抑制するので、平均荷重及びエネルギー吸収量を増大させることができる。
The metal profile used in the production method of the present invention is formed such that the circumferential length of the cylindrical circumferential wall is longer than that of a circumferential wall having a general circular cross section. In the present invention, this is called that the peripheral wall has a surplus line length. Since the metal profile used in the manufacturing method of the present invention has a surplus wire length, when the flange portion is formed by expanding the end of the peripheral wall, the metal profile with a conventional circular cross section is used. Even if the flange portion is molded with the same tube expansion ratio (peripheral length after tube expansion / original peripheral length), a flange portion having a large diameter, that is, a flange portion having a large flange width can be formed. As a result, it is possible to fasten a bolt with a mating material that could not be fastened until now, or increase the degree of freedom in setting the bolt fastening position.
In addition, the energy absorbing member manufactured by the manufacturing method of the present invention is such that the peripheral wall of the shaft portion undulates along the circumferential direction. A plurality of kinds of parallel ridge lines are formed, and this suppresses buckling deformation at the time of collision, so that the average load and the energy absorption amount can be increased.

本発明の製造方法に用いられるバンパーステイ素材の平面図(a)、及び側面図(b)である。It is the top view (a) of the bumper stay material used for the manufacturing method of this invention, and a side view (b). 本発明の製造方法で製造したバンパーステイの平面図(a)、及び側面図(b)である。It is the top view (a) and the side view (b) of the bumper stay manufactured with the manufacturing method of this invention. 図2のバンパーステイの製造方法を説明する一部断面側面図である。It is a partial cross section side view explaining the manufacturing method of the bumper stay of FIG. 本発明に係るエネルギー吸収部材(バンパーステイ)の製造方法を工程順に説明する図である。It is a figure explaining the manufacturing method of the energy absorption member (bumper stay) which concerns on this invention to process order. 本発明の製造方法で製造したバンパーステイの軸部の断面図である。It is sectional drawing of the axial part of the bumper stay manufactured with the manufacturing method of this invention. 本発明の製造方法で製造したクラッシュビード付きバンパーステイの平面断面図(a)((b)のA−A断面図)、及び側面図(b)である。They are a plane sectional view (a) (AA sectional view of (b)) of a bumper stay with a crush bead manufactured with a manufacturing method of the present invention, and a side view (b). 本発明の製造方法に用いられるバンパーステイ素材の平面図である。It is a top view of the bumper stay material used for the manufacturing method of the present invention. 本発明の製造方法に用いられるバンパーステイ素材の平面図である。It is a top view of the bumper stay material used for the manufacturing method of the present invention. 本発明の製造方法に用いられるバンパーステイ素材の平面図である。It is a top view of the bumper stay material used for the manufacturing method of the present invention. 本発明の製造方法で製造したバンパーステイとバンパーリインフォースからなるバンパー構造体の一部断面平面図である。It is a partial cross section top view of the bumper structure which consists of a bumper stay and bumper reinforcement manufactured with the manufacturing method of the present invention. 本発明の製造方法で製造したバンパーステイとバンパーリインフォースからなるバンパー構造体の平面図(a)、(a)のB−B断面図(b)、及びバンパーステイ中間材の断面図である。It is the top view (a) of the bumper structure which consists of the bumper stay and bumper reinforcement which were manufactured with the manufacturing method of this invention , BB sectional drawing (b) of (a), and sectional drawing of a bumper stay intermediate material. 本発明の製造方法で製造したバンパーステイとバンパーリインフォースからなるバンパー構造体の平面図(a)、(a)のC−C断面図(b)である。It is CC sectional drawing (b) of the bumper structure which consists of the bumper stay and bumper reinforcement which were manufactured with the manufacturing method of this invention , and (a) and (a). 本発明の製造方法で製造したバンパーステイとバンパーリインフォースからなるバンパー構造体の平面図(a)、(a)のD−D断面図(b)である。It is the DD sectional view (b) of the bumper structure which consists of the bumper stay and bumper reinforcement which were manufactured with the manufacturing method of this invention , (a) and (a). 従来の製造方法に用いられるバンパーステイ素材の平面図(a)、及び側面図(b)である。It is the top view (a) and side view (b) of the bumper stay material used for the conventional manufacturing method . 従来の製造方法で製造したバンパーステイの平面図(a)、及び側面図(b)である。It is the top view (a) and side view (b) of the bumper stay manufactured with the conventional manufacturing method .

以下、図1〜図15を参照し、本発明に係るエネルギー吸収部材の製造方法について、主としてバンパーステイを例に、より具体的に説明する。なお、このバンパーステイに関する説明は、他のエネルギー吸収部材に対しても適用される。
初めに図14を参照して、従来の金属製形材(ステイ素材)とエネルギー吸収部材(バンパーステイ)について説明する。
図14(a),(b)は、金属製形材(アルミニウム合金押出材)を所定長さに切断したステイ素材1を示す。ステイ素材1は円形断面を有する筒状体で、この例では、両方の端面(切断面)が軸方向に対し垂直な平面内にある。なお、ステイ素材1として、金属板をプレス成形又はロール成形し、筒状としたものを用いることもできる。
Hereinafter, with reference to FIGS. 1-15, the manufacturing method of the energy absorption member which concerns on this invention is demonstrated more concretely mainly using a bumper stay as an example. Note that the description regarding the bumper stay also applies to other energy absorbing members.
First, a conventional metal shape member (stay material) and energy absorbing member (bumper stay) will be described with reference to FIG.
14 (a) and 14 (b) show a stay material 1 obtained by cutting a metal profile (aluminum alloy extruded material) into a predetermined length. The stay material 1 is a cylindrical body having a circular cross section, and in this example, both end surfaces (cut surfaces) are in a plane perpendicular to the axial direction. In addition, as the stay material 1, a metal plate can be formed by press molding or roll molding into a cylindrical shape.

例えば特許文献7,8等に記載されているように、ステイ素材1の周壁2の周囲を両端部を除いて金型で包囲し、ステイ素材1内部に電磁成形コイルを挿入し、該電磁成形コイルに瞬間大電流を流し、ステイ素材1の端部周壁を電磁成形で拡開して、図15(a),(b)に示すバンパーステイ3を成形することができる。バンパーステイ3は、円筒状の軸部4とその両端に形成されたフランジ部5,6を有する。フランジ部5,6は軸部4の軸方向に対し垂直な平面内に形成されている。この例では軸部4の拡管率(拡管後の周長/元の周長)はゼロか極めて小さく設定されている。先に述べたように、フランジ部5,6のフランジ幅の大きさW,Wには制約がある。
フランジ部5,6の拡管成形は、1回だけの電磁成形でなく、特許文献5に記載されているように、2回以上の電磁成形を繰り返して行ったり、電磁成形の前後に適宜プレス成形を付加して行うこともできる。
For example, as described in Patent Documents 7 and 8, etc., the periphery of the peripheral wall 2 of the stay material 1 is surrounded by a mold except for both ends, an electromagnetic forming coil is inserted into the stay material 1, and the electromagnetic forming A bumper stay 3 shown in FIGS. 15A and 15B can be formed by applying an instantaneous large current to the coil and expanding the end peripheral wall of the stay material 1 by electromagnetic forming. The bumper stay 3 has a cylindrical shaft portion 4 and flange portions 5 and 6 formed at both ends thereof. The flange portions 5 and 6 are formed in a plane perpendicular to the axial direction of the shaft portion 4. In this example, the tube expansion ratio (peripheral length after tube expansion / original peripheral length) of the shaft portion 4 is set to zero or extremely small. As described above, the flange widths W 5 and W 6 of the flange portions 5 and 6 are limited.
Tube expansion molding of the flange portions 5 and 6 is not performed only once, but as described in Patent Document 5, two or more electromagnetic moldings are repeated, or press molding is appropriately performed before and after electromagnetic molding. Can also be added.

図1(a),(b)は、本発明の製造方法に用いられるステイ素材7を示す。ステイ素材7は、筒状の周壁が周方向に沿って凹凸を繰り返す金属製形材(アルミニウム合金押出材)を所定長さに切断したものである。
図1(a)に示すとおり、ステイ素材7の周壁8は、周方向に沿って波形状に起伏している。この波形は波長λの正弦波状の形態を有し、凸部8aと凹部8bからなる単位波形が周壁8の周方向に沿って8個繰り返され、周壁8は軸方向に垂直な断面において8回対称となっている。周壁8の厚みは全周で一定であり、周壁8の外周面(凸部8aの頂部)に接する最小外接円9及び周壁8の内周面(凹部8bの底部)に接する最大内接円11が同心である。周壁8の外周の周長(波形状の起伏に沿って一周したときの延べ長さ)をLとし、最小外接円9の周長をLとすると、L>Lの関係にある。
ステイ素材7は、従来のステイ素材1と同様に、両方の端部(切断面)が軸方向に対し垂直な平面内にある。ステイ素材7として、金属板をプレス成形又はロール成形で筒状に成形したもの(金属製形材)を用いることもできる。
1A and 1B show a stay material 7 used in the manufacturing method of the present invention. The stay material 7 is obtained by cutting a metal shaped member (aluminum alloy extruded material) having a cylindrical peripheral wall that is uneven in the circumferential direction into a predetermined length.
As shown in FIG. 1A, the peripheral wall 8 of the stay material 7 undulates in a wave shape along the circumferential direction. This waveform has a sinusoidal form with a wavelength λ, and eight unit waveforms each including a convex portion 8a and a concave portion 8b are repeated along the circumferential direction of the peripheral wall 8. The peripheral wall 8 is eight times in a cross section perpendicular to the axial direction. It is symmetrical. The thickness of the peripheral wall 8 is constant over the entire periphery, and the minimum circumscribed circle 9 that contacts the outer peripheral surface of the peripheral wall 8 (the top of the convex portion 8a) and the maximum inscribed circle 11 that contacts the inner peripheral surface of the peripheral wall 8 (the bottom of the concave portion 8b). Are concentric. Circumference of the outer periphery of the peripheral wall 8 (total length when the round along the wave-like undulations) is L, the circumferential length of the minimum circumscribed circle 9 When L 0, a relation of L> L 0.
As in the conventional stay material 1, the stay material 7 has both end portions (cut surfaces) in a plane perpendicular to the axial direction. As the stay material 7, a metal plate formed into a cylindrical shape by press molding or roll molding (metal shaped material) can also be used.

図2(a),(b)に示すバンパーステイ12は、バンパーステイ3と同様に、ステイ素材7の周壁8の周囲を両端部を除いて金型で包囲し、ステイ素材7の内部に筒状に巻き回した電磁成形コイルを挿入し、該電磁成形コイルに瞬間大電流を流し、ステイ素材7の端部を拡開して成形したものである。前記金型の内周面は筒状で、周方向に沿って波形状(正弦波状の形態)に起伏し、ステイ素材7の周壁8の外周面にほぼ密接する。図3に、ステイ素材7、金型13及び電磁成形コイル14の配置を示す。この電磁成形によりステイ素材7は拡管し、ステイ素材7の中間部は金型13の内周面に圧接し、金型13の端面13a,13bから突き出た両端部は拡開して前記端面13a,13bに打ち当たる。   The bumper stay 12 shown in FIGS. 2A and 2B is similar to the bumper stay 3 in that the periphery of the peripheral wall 8 of the stay material 7 is surrounded by a mold except for both ends, and a cylinder is formed inside the stay material 7. The electromagnetic forming coil wound in a shape is inserted, a large current is passed through the electromagnetic forming coil, and the end portion of the stay material 7 is expanded and molded. The inner peripheral surface of the mold is cylindrical, undulates in the circumferential direction (sinusoidal shape), and is in close contact with the outer peripheral surface of the peripheral wall 8 of the stay material 7. FIG. 3 shows the arrangement of the stay material 7, the mold 13 and the electromagnetic forming coil 14. By this electromagnetic forming, the stay material 7 is expanded, the intermediate portion of the stay material 7 is in pressure contact with the inner peripheral surface of the mold 13, and both end portions protruding from the end faces 13a, 13b of the mold 13 are expanded to expand the end face 13a. , 13b.

電磁成形されたバンパーステイ12は、周方向に沿って波形状(正弦波状)に起伏する筒状の軸部15と、その両端に形成されたフランジ部16,17からなる。フランジ部16,17は軸部15の軸方向に対し垂直な平面内に形成されている。この例では軸部15の拡管率はゼロか極めて小さく設定され、軸部15の周壁は元のステイ素材7の周壁8の断面形状をほぼそのままの形で残している。   The electromagnetically formed bumper stay 12 includes a cylindrical shaft portion 15 that undulates in the circumferential direction (sine wave shape), and flange portions 16 and 17 formed at both ends thereof. The flange portions 16 and 17 are formed in a plane perpendicular to the axial direction of the shaft portion 15. In this example, the expansion ratio of the shaft portion 15 is set to be zero or extremely small, and the peripheral wall of the shaft portion 15 leaves the cross-sectional shape of the peripheral wall 8 of the original stay material 7 almost as it is.

ステイ素材7の周壁8は周方向に沿って波形状に起伏し、周壁8の外周の周長Lと最小外接円9の周長Lが、L>Lの関係にある。L−Lを本発明では余剰線長という。従来の円形断面のステイ素材1の外径が、前記最小外接円9の径(ステイ素材7の外径)と同じとしたとき、ステイ素材7の周壁8はステイ素材1の周壁2と比較して、L−Lの余剰線長を有するということができる。
ステイ素材7がこの余剰線長を有するため、ステイ素材1と同じ拡管率(拡管後の周長/元の周長)でフランジ部16,17を成形した場合、拡管後の周長(フランジ部16,17の外径)を大きくし、そのフランジ幅W16,W17(図2に示すのはフランジ幅の最も小さい箇所)を大きくすることができる。なお、周壁8が周方向に沿って波形状に起伏するステイ素材7を用いた場合でも、フランジ部16,17の外周(輪郭)は図2(a)に図示のとおりほぼ円形に成形される。
The circumferential wall 8 of the stay material 7 undulates along the circumferential direction, and the circumferential length L of the outer circumference of the circumferential wall 8 and the circumferential length L 0 of the minimum circumscribed circle 9 have a relationship of L> L 0 . The L-L 0 in the present invention that surplus line length. When the outer diameter of the conventional stay material 1 having a circular cross section is the same as the diameter of the minimum circumscribed circle 9 (outer diameter of the stay material 7), the peripheral wall 8 of the stay material 7 is compared with the peripheral wall 2 of the stay material 1. Thus, it can be said that the surplus line length is L−L 0 .
Since the stay material 7 has this surplus wire length, when the flange portions 16 and 17 are formed at the same tube expansion rate (peripheral length after tube expansion / original circumference) as the stay material 1, the peripheral length (flange portion) after tube expansion is formed. 16 and 17) can be increased, and the flange widths W 16 and W 17 (shown in FIG. 2 are the portions having the smallest flange width). Even when the stay material 7 whose circumferential wall 8 undulates along the circumferential direction is used, the outer circumferences (contours) of the flange portions 16 and 17 are formed in a substantially circular shape as shown in FIG. .

バンパーステイのフランジ部の成形は、1回の電磁成形で行うこともできるし、特許文献5に記載されているように、複数回の電磁成形で行うこともできる。また、電磁成形によらず、プレス成形を複数回繰り返したり(特許文献5の従来技術参照)、部分鍛造を行うことにより、上記と同様のフランジ部を成形することもできる。
あるいは、電磁成形とプレス成形を組み合わせてフランジ部を成形することもできる。この点を図4(a),(b)を参照して説明する。まず、第1工程として、図4(a)に示すように、ステイ素材18(ステイ素材7と同じ断面形状を有するものとする)の周壁19の周囲を金型21で包囲し、ステイ素材18の内部に円形断面(同一径でらせん状に巻き回した)の電磁成形コイル22を挿入し、電磁成形コイル22に瞬間大電流を流し、金型21の端面から突き出していたステイ素材18の端部をフレア状に拡管成形し、ステイ中間材18aを成形する。続いて第2工程として、図4(b)に示すように、金型23によりステイ中間材18aを保持し、パンチ24でフレア状部25aを軸方向にプレス成形して拡開し、フランジ部25を成形する。
これとは逆に、第1工程として、プレス成形でステイ素材の端部をフレア状に成形した後、フレア状部を電磁成形でさらに拡開し、フランジ部を成形することもできる(特許文献5参照)。
The bumper stay flange portion can be formed by one electromagnetic forming, or as described in Patent Document 5, it can be formed by a plurality of times of electromagnetic forming. Moreover, the flange part similar to the above can also be shape | molded by repeating press molding several times (refer to the prior art of patent document 5), or performing partial forging irrespective of electromagnetic forming.
Alternatively, the flange portion can be formed by combining electromagnetic forming and press forming. This point will be described with reference to FIGS. 4 (a) and 4 (b). First, as a first step, as shown in FIG. 4A, the periphery of the peripheral wall 19 of the stay material 18 (having the same cross-sectional shape as the stay material 7) is surrounded by a mold 21, and the stay material 18 The electromagnetic forming coil 22 having a circular cross section (having the same diameter and spirally wound) is inserted into the inside of the magnet, an instantaneous large current is passed through the electromagnetic forming coil 22, and the end of the stay material 18 protruding from the end face of the mold 21 is inserted. The part is expanded and formed into a flare shape, and the stay intermediate material 18a is formed. Subsequently, as a second step, as shown in FIG. 4 (b), the stay intermediate material 18a is held by the mold 23, and the flare 25a is press-molded in the axial direction by the punch 24 so as to be expanded. 25 is molded.
On the contrary, as a first step, after the end of the stay material is formed into a flare shape by press forming, the flare-shaped portion is further expanded by electromagnetic forming, and the flange portion can be formed (Patent Document). 5).

図2に示すバンパーステイ12は、軸部15の拡管率がゼロか極めて小さく、元のステイ素材7の断面形状がほぼそのままの形で軸部15に残されている。一方、バンパーステイの軸部の拡管率を所定の大きさに設定し、又は/及び、軸部の断面形状を元のステイ素材7の断面形状から実質的に変化させることもできる。例えば、図5に示す軸部26は、同じステイ素材7を用いて電磁成形したもので、周壁27の波形が凹部27bにおいて三角波状(凸部27aは正弦波状を保つ)になるように成形したものである。軸部26の周壁27に軸方向に平行に形成される稜線28が、図2の例(軸部15)に比べてより明瞭となる。
なお、以上の例では、ステイ素材の周壁(及びバンパーステイの軸部の周壁)の波形は8個の単位波形からなるが、衝突時の軸部の変形モードを考慮すると、周壁の波形を構成する単位波形の数は偶数個が望ましい。ただし、奇数個を排除するものではない。
In the bumper stay 12 shown in FIG. 2, the expansion rate of the shaft portion 15 is zero or extremely small, and the cross-sectional shape of the original stay material 7 is left on the shaft portion 15 as it is. On the other hand, the expansion ratio of the shaft portion of the bumper stay can be set to a predetermined size, and / or the sectional shape of the shaft portion can be substantially changed from the sectional shape of the original stay material 7. For example, the shaft portion 26 shown in FIG. 5 is electromagnetically molded using the same stay material 7, and is molded so that the waveform of the peripheral wall 27 becomes a triangular wave shape in the concave portion 27b (the convex portion 27a maintains a sine wave shape). Is. A ridge line 28 formed parallel to the axial direction on the peripheral wall 27 of the shaft portion 26 becomes clearer than in the example of FIG. 2 (the shaft portion 15).
In the above example, the waveform of the peripheral wall of the stay material (and the peripheral wall of the bumper stay shaft) is composed of 8 unit waveforms. However, considering the deformation mode of the shaft during a collision, the waveform of the peripheral wall is configured. An even number of unit waveforms is desirable. However, it does not exclude odd numbers.

電磁成形によりフランジ部を拡開成形する際、同時にバンパーステイの軸部にクラッシュビードを成形することができる。例えば図3に示す電磁成形であれば、ステイ素材7を包囲する金型13の内周面の複数箇所に所定形状の窪みを形成し、電磁成形時にステイ素材7の周壁8を前記窪みに膨出させることで、前記クラッシュビードを成形することができる。図6に示すバンパーステイ28において、軸部29に形成されたクラッシュビード31はそのようにして形成されたものである。   When the flange portion is expanded and formed by electromagnetic forming, a crush bead can be simultaneously formed on the shaft portion of the bumper stay. For example, in the case of electromagnetic forming shown in FIG. 3, recesses having a predetermined shape are formed at a plurality of locations on the inner peripheral surface of the mold 13 surrounding the stay material 7, and the peripheral wall 8 of the stay material 7 is expanded into the recesses during electromagnetic forming. By making it come out, the crush bead can be formed. In the bumper stay 28 shown in FIG. 6, the crush bead 31 formed on the shaft portion 29 is formed as described above.

このクラッシュビード31は、周壁32の波形の凹部32bに形成され、凹部32bを埋めて両側の凸部32a,32aまで広がり、軸部29の軸方向に沿って8列形成されている。すなわち、周壁32の波形を構成する単位波形毎にクラッシュビード列が軸方向に1列形成され、隣接するクラッシュビード列では、クラッシュビード31,31,・・は異なる高さに、すなわち軸方向にみて千鳥足配置で形成され、1つ置きのクラッシュビード列では、各クラッシュビード31,31,・・は同じ高さに形成されている。
なお、クラッシュビードの形成位置は、周壁の波形の凹部に限定されるものではない。
The crush beads 31 are formed in corrugated recesses 32 b on the peripheral wall 32, fill the recesses 32 b, extend to the convex portions 32 a and 32 a on both sides, and are formed in 8 rows along the axial direction of the shaft portion 29. That is, one crush bead row is formed in the axial direction for each unit waveform constituting the waveform of the peripheral wall 32, and in adjacent crush bead rows, the crush beads 31, 31,... It is formed in a staggered arrangement, and in every other crush bead row, the crush beads 31, 31,... Are formed at the same height.
The formation position of the crush bead is not limited to the corrugated concave portion of the peripheral wall.

ステイ素材は、上記の例に限らず、種々の断面形状をとることができる。例えば次のように、周壁の肉厚を周方向に沿って変化させることができる。
(1)電磁成形用コイルの成形力が相対的に及びにくい周壁の中心から遠い箇所(波形の凸部)を相対的に薄肉とする。電磁成形用コイルの成形力が十分でない場合でも、フランジ部の成形が可能となる。
(2)フランジ成形後のボルト締結位置になる箇所(ボルト締結予定箇所)を相対的に厚肉として、ボルト締結部の強度を上げる。
(3)バンパーステイの軸部の周壁にクラッシュビードを膨出成形する場合、ステイ素材の周壁のクラッシュビードを成形する箇所(波形の凹部)を相対的に薄肉として、電磁成形で膨出しやすくし、その代わりに波形の凸部を相対的に厚肉として、バンパーステイの軸部のエネルギー吸収量の低下を防止する。
The stay material is not limited to the above example, and can have various cross-sectional shapes. For example, the thickness of the peripheral wall can be changed along the circumferential direction as follows.
(1) A portion (corrugated convex portion) far from the center of the peripheral wall where the forming force of the electromagnetic forming coil is relatively difficult is relatively thin. Even when the forming force of the electromagnetic forming coil is not sufficient, the flange portion can be formed.
(2) Increase the strength of the bolt fastening part by making the part (the bolt fastening scheduled part) that becomes the bolt fastening position after flange molding relatively thick.
(3) When crush beads are bulged and formed on the peripheral wall of the shaft part of the bumper stay, the part where the crush bead is formed on the peripheral wall of the stay material (corrugated recess) is made relatively thin so that it can be easily expanded by electromagnetic forming. Instead, the corrugated convex portion is made relatively thick to prevent a decrease in the energy absorption amount of the bumper stay shaft.

図7〜9は、ステイ素材の断面形状の他の例を示す。周壁の波形等がステイ素材7とは異なる。
図7に示すステイ素材33の周壁34は、周方向に沿って波形状の起伏を有する。この波形は歯車状の形態を有し、凸部34aと凹部34bからなる波長λの単位波形が周壁34の周方向に沿って8個繰り返され、周壁34は軸方向に垂直な断面において8回対称となっている。前記単位波形の波長λのうち、凹部34bの成分が大部分を占める。周壁34の厚みは全周で一定であり、周壁34の外周面に接する最小外接円35及び周壁34の内周面に接する最大内接円36が同心である。
ステイ素材33は、周壁34の外周の周長(波形状の起伏に沿って一周したときの延べ長さ)をLとし、最小外接円35の周長をLとすると、L>Lの関係にあり、周壁34は先に述べた余剰線長を有する。
7 to 9 show other examples of the cross-sectional shape of the stay material. The waveform of the peripheral wall is different from the stay material 7.
The peripheral wall 34 of the stay material 33 shown in FIG. 7 has a corrugated undulation along the circumferential direction. This waveform has a gear-like shape, and eight unit waveforms of wavelength λ composed of convex portions 34a and concave portions 34b are repeated along the circumferential direction of the peripheral wall 34, and the peripheral wall 34 is eight times in a cross section perpendicular to the axial direction. It is symmetrical. The component of the concave portion 34b occupies most of the wavelength λ of the unit waveform. The thickness of the peripheral wall 34 is constant over the entire periphery, and the minimum circumscribed circle 35 that contacts the outer peripheral surface of the peripheral wall 34 and the maximum inscribed circle 36 that contacts the inner peripheral surface of the peripheral wall 34 are concentric.
The stay material 33 is expressed as L> L 0 where L is the circumference of the outer circumference of the peripheral wall 34 (the total length when it goes around along the corrugation) and L 0 is the circumference of the minimum circumscribed circle 35. In relation, the peripheral wall 34 has the surplus line length described above.

周壁34の凹部34bは、周方向に沿ったほぼその全長にわたり最大内接円36と接触している。従って、ステイ素材33は、周壁34と最大内接円36の接触延べ線長が、ステイ素材7より長い。
拡管用の電磁成形コイルは、導線を円筒状又は切頭円錐筒状に螺旋形に巻き回した構成のものが一般的に用いられることから、ステイ素材33の場合、周壁34と電磁成形用コイルを周方向の大部分において極めて近接させることができ、フランジ部の成形にあたり、電磁成形コイルによる高い成形力(反発力)をステイ素材33の周壁34に与えることができる。
The recess 34b of the peripheral wall 34 is in contact with the maximum inscribed circle 36 over substantially the entire length along the circumferential direction. Therefore, the stay material 33 has a longer contact length between the peripheral wall 34 and the maximum inscribed circle 36 than the stay material 7.
Since the electromagnetic forming coil for pipe expansion is generally used in the form of a stay material 33 having a configuration in which a conducting wire is spirally wound in a cylindrical shape or a truncated conical cylinder shape, the peripheral wall 34 and the electromagnetic forming coil are used. Can be made extremely close to each other in the circumferential direction, and when forming the flange portion, a high forming force (repulsive force) by the electromagnetic forming coil can be applied to the peripheral wall 34 of the stay material 33.

図8に示すステイ素材37の周壁38は、周方向に沿って波形状の起伏を有する。この波形は歯車状の形態を有し、凸部38a及び凹部38bからなる波長λの単位波形が周壁38の周方向に8個繰り返され、周壁38は8回対称となっている。周壁38の厚みは全周で一定であり、周壁38の外周面に接する最小外接円39及び周壁38の内周面に接する最大内接円41が同心である。
ステイ素材37は、周壁38の外周の周長(波形状の起伏に沿って一周したときの延べ長さ)をLとし、最小外接円39の周長をLとすると、L>Lの関係にあり、周壁38は先に述べた余剰線長を有する。
このステイ素材37は、周壁38が歯車状の波形を有する点で、ステイ素材33と類似するが、波形の凸部38aの周方向に沿った長さが凹部38bの周方向に沿った長さより長い点で異なる。凸部38aをフランジ成形後のボルト締結位置になる箇所(ボルト締結予定箇所)とするのが望ましい。
The peripheral wall 38 of the stay material 37 shown in FIG. 8 has a corrugated undulation along the circumferential direction. This waveform has a gear-like form, and eight unit waveforms of the wavelength λ composed of the convex portions 38a and the concave portions 38b are repeated in the circumferential direction of the peripheral wall 38, and the peripheral wall 38 is symmetric eight times. The thickness of the peripheral wall 38 is constant over the entire periphery, and the minimum circumscribed circle 39 that contacts the outer peripheral surface of the peripheral wall 38 and the maximum inscribed circle 41 that contacts the inner peripheral surface of the peripheral wall 38 are concentric.
When the circumference of the outer periphery of the peripheral wall 38 (the total length when it goes round along the corrugated undulation) is L and the circumference of the minimum circumscribed circle 39 is L 0 , the stay material 37 satisfies L> L 0 . In relation, the peripheral wall 38 has the surplus line length described above.
The stay material 37 is similar to the stay material 33 in that the peripheral wall 38 has a gear-like waveform, but the length of the corrugated convex portion 38a along the circumferential direction is longer than the length of the concave portion 38b along the circumferential direction. It differs in a long point. It is desirable that the convex portion 38a be a location that is a bolt fastening position after flange molding (a bolt fastening planned location).

図9に示すステイ素材42の周壁43は、周方向に沿って波形状の起伏を有する。この波形は、異なる2つの波形(ステイ素材33の周壁34の波形とステイ素材37の周壁38の波形に類似)を組み合わせた形態を有する。周方向に沿って凸部43aと凹部43bからなる波長λの単位波形と、凸部43cと凹部43dからなる波長λの単位波形が、周壁43の周方向に沿って4個ずつ交互に繰り返され、周壁43は軸方向に垂直な断面において4回対称となっている。ただし、凸部43aは外周側が薄肉化して最小外接円44と接しない凸部と、内周側が薄肉化して最小外接円44と接する凸部の2つがあり、厳密にいえば波長λの単位波形には2種類がある。周壁43の外周面に接する最小外接円44及び周壁43の内周面に接する最大内接円45が同心である。 The peripheral wall 43 of the stay material 42 shown in FIG. 9 has a corrugated undulation along the circumferential direction. This waveform has a form in which two different waveforms (similar to the waveform of the peripheral wall 34 of the stay material 33 and the waveform of the peripheral wall 38 of the stay material 37) are combined. Four unit waveforms of wavelength λ 1 composed of convex portions 43 a and concave portions 43 b along the circumferential direction and four unit waveforms of wavelength λ 2 composed of convex portions 43 c and concave portions 43 d are alternately arranged along the circumferential direction of the peripheral wall 43. Repeatedly, the peripheral wall 43 is symmetric four times in the cross section perpendicular to the axial direction. However, the convex portion 43a is divided into a convex portion that is thin on the outer peripheral side and does not contact the minimum circumscribed circle 44, and a convex portion that is thin on the inner peripheral side and contacts the minimum circumscribed circle 44. Strictly speaking, the unit of wavelength λ 1 There are two types of waveforms. A minimum circumscribed circle 44 in contact with the outer peripheral surface of the peripheral wall 43 and a maximum inscribed circle 45 in contact with the inner peripheral surface of the peripheral wall 43 are concentric.

ステイ素材42は、周壁43の外周の周長(波形状の起伏に沿って一周したときの延べ長さ)をLとし、最小外接円44の周長をLとすると、L>Lの関係にあり、周壁43は先に述べた余剰線長を有する。
周壁43は、周方向に沿って波形の波長、高さ及び肉厚が変化し、周壁43の厚みは凸部43aが相対的に薄肉とされ、電磁成形により変形しやすくなっている。凸部43cは、凸部43aに比べて周方向に長く、かつ厚肉である。凸部43cの位置をフランジ成形後のボルト締結位置とするのが望ましい。
The stay material 42 has L> L 0 where L is the circumference of the outer periphery of the peripheral wall 43 (the total length when the circumference of the circumferential wall 43 is undulated) is L 0 and the circumference of the minimum circumscribed circle 44 is L 0 . In relation, the peripheral wall 43 has the surplus line length described above.
The circumferential wall 43 has a waveform wavelength, height, and thickness that change along the circumferential direction. The thickness of the circumferential wall 43 is such that the convex portion 43a is relatively thin and is easily deformed by electromagnetic forming. The convex portion 43c is longer in the circumferential direction than the convex portion 43a and is thick. It is desirable to set the position of the convex portion 43c as the bolt fastening position after forming the flange.

以上のステイ素材33,37,42を用いてフランジ部を有するバンパーステイを成形する場合、ステイ素材7の場合と同様に、バンパーステイの軸部の拡管率をゼロか極めて小さく、元のステイ素材の断面形状をほぼそのままの形で軸部に残すようにすることができる。同じくステイ素材7の場合と同様に、バンパーステイの軸部の拡管率を所定の大きさに設定し、又は/及び、軸部の断面形状を元のステイ素材33,37,42の断面形状から実質的に変化させることもできる。   When a bumper stay having a flange portion is formed using the above stay materials 33, 37, and 42, as in the case of the stay material 7, the expansion rate of the bumper stay shaft portion is zero or extremely small, and the original stay material It is possible to leave the cross-sectional shape of the shaft portion in the shaft portion in a substantially unchanged form. Similarly, as in the case of the stay material 7, the expansion ratio of the shaft portion of the bumper stay is set to a predetermined size, and / or the cross-sectional shape of the shaft portion is determined from the cross-sectional shape of the original stay material 33, 37, 42. It can also be changed substantially.

フランジ部の成形に電磁成形を利用する場合、ステイ素材として次のような材質、形状が望ましい。
ステイ素材の材質は、熱伝導度が高く、熱処理により高強度化できるJIS6000系アルミニウム合金が好ましい。
ステイ素材の周壁の波形を構成する単位波形(1つの凸部と1つの凹部の組み合わせ)の数Nは、3≦N≦30の範囲から選択することが好ましく、中でもNは偶数であることが好ましい。Nがこれより多いと波形の曲率変化が大きく、フランジ部の成形の際に割れが発生する可能性があり、少ないと余剰線長を確保しにくい。
When electromagnetic forming is used for forming the flange portion, the following materials and shapes are desirable as the stay material.
The stay material is preferably a JIS 6000 series aluminum alloy that has high thermal conductivity and can be strengthened by heat treatment.
The number N of unit waveforms (combination of one convex part and one concave part) constituting the waveform of the peripheral wall of the stay material is preferably selected from the range of 3 ≦ N ≦ 30, and in particular, N is an even number. preferable. If N is more than this, the change in the curvature of the waveform is large, and there is a possibility that cracking may occur during molding of the flange portion.

ステイ素材の内径(最大内接円径)dは、20mm≦d≦200mmの範囲から選択することが好ましい。dがこれより大きいと周壁に凹凸がなくても十分なフランジ幅が確保でき、これより小さいと電磁成形でフランジ部を拡開成形するのが困難である。
ステイ素材の周壁の波形の振幅(ステイ素材の外径(最小外接円径)dと内径(最大内接円径)dの差)d−dは、2mm≦d−d≦40mmの範囲から選択することが好ましい。d−dがこれより大きいと拡管に必要な電磁力を作用させることが困難であり、小さいと有効な余剰線長を確保しにくい。
The inner diameter (maximum inscribed circle diameter) d 1 of the stay material is preferably selected from the range of 20 mm ≦ d 1 ≦ 200 mm. d 1 is even without irregularities larger than this and the peripheral wall can be ensured sufficient flange width, it is difficult to expanded molded smaller flange portion in electromagnetic forming this.
The amplitude of the waveform of the peripheral wall of the stay material (the difference between the outer diameter (minimum circumscribed circle diameter) d 2 and the inner diameter (maximum inscribed circle diameter) d 1 of the stay material) d 2 −d 1 is 2 mm ≦ d 2 −d 1 It is preferable to select from a range of ≦ 40 mm. If d 2 -d 1 is larger than this, it is difficult to apply an electromagnetic force necessary for tube expansion. If d 2 -d 1 is smaller, it is difficult to secure an effective surplus line length.

本発明の製造方法で製造するバンパーステイは、バンパーリインフォースにボルト・ナットで締結するタイプと、電磁成形によりバンパーリインフォースにかしめ接続するタイプの両方に適用できる。
図10は、バンパーステイ46とバンパーリインフォース47からなるバンパー構造体を示す。バンパーステイ46は、周方向に沿って波形状に起伏する周壁を有する筒状の軸部48と、その両端部に形成されたフランジ部49,51からなる。軸部46の軸方向に対し傾斜して成形されたフランジ部49が、バンパーリインフォース47の背面にボルト・ナットで締結されている。一方、サイドメンバ側(車体側)のフランジ部51は、軸部46の軸方向に対し垂直に形成され、図示しないサイドメンバの前端にボルト・ナットで締結される。
バンパーリインフォース47は、鋼製又はアルミニウム合金製の中空材からなり、鋼製の場合はロールフォーム鋼が、アルミニウム合金製の場合は押出材が好適に利用できる。
バンパーステイ46は、アルミニウム合金押出材からなるステイ素材、又はアルミニウム合金板を筒状に成形したステイ素材から成形される。
The bumper stay manufactured by the manufacturing method of the present invention can be applied to both a type in which the bumper reinforcement is fastened with a bolt and a nut and a type in which the bumper stay is crimped to the bumper reinforcement by electromagnetic forming.
FIG. 10 shows a bumper structure including a bumper stay 46 and a bumper reinforcement 47. The bumper stay 46 includes a cylindrical shaft portion 48 having a circumferential wall that undulates in the circumferential direction, and flange portions 49 and 51 formed at both ends thereof. A flange portion 49 formed to be inclined with respect to the axial direction of the shaft portion 46 is fastened to the back surface of the bumper reinforcement 47 with bolts and nuts. On the other hand, the flange portion 51 on the side member side (vehicle body side) is formed perpendicular to the axial direction of the shaft portion 46 and is fastened to the front end of a side member (not shown) with bolts and nuts.
The bumper reinforcement 47 is made of a hollow material made of steel or aluminum alloy, and roll foam steel can be suitably used when made of steel, and extruded material when made of aluminum alloy.
The bumper stay 46 is formed from a stay material made of an aluminum alloy extruded material or a stay material obtained by forming an aluminum alloy plate into a cylindrical shape.

図11(a),(b)は、バンパーステイ52とバンパーリインフォース53からなるバンパー構造体を示す。このバンパー構造体の基本構造は、特許文献3に記載されたものと同じである。
バンパーリインフォース53は、バンパーリインフォース47と同様に鋼製又はアルミニウム合金製の中空材からなり、両端部が前後方向に潰し加工され、断面略コの字状に成形されている。この潰し加工によりバンパーリインフォース53の前後壁は密着し、そこに円形のバーリング穴54が成形されている。バーリング穴54の穴フランジは、衝突時の危害を防止する観点から、サイドメンバ側に向いて突出して形成されている(特許文献3の図4参照)。
バンパーステイ52は、周方向に沿って波形状に起伏する筒状の周壁を有する軸部55と、サイドメンバ側の端部に形成されたフランジ部56からなり、軸部55の先端部(接続部55a)がバンパーリインフォース53にかしめ接続されている。接続部55aの周壁はバーリング穴54の内周面に密着し、先端が拡開して小さいフランジ部57が形成されている。
11A and 11B show a bumper structure including a bumper stay 52 and a bumper reinforcement 53. FIG. The basic structure of this bumper structure is the same as that described in Patent Document 3.
The bumper reinforcement 53 is made of a hollow material made of steel or aluminum alloy in the same manner as the bumper reinforcement 47, and both ends are crushed in the front-rear direction and formed into a substantially U-shaped cross section. By this crushing process, the front and rear walls of the bumper reinforcement 53 are brought into close contact with each other, and a circular burring hole 54 is formed there. The hole flange of the burring hole 54 is formed so as to protrude toward the side member side from the viewpoint of preventing harm at the time of collision (see FIG. 4 of Patent Document 3).
The bumper stay 52 includes a shaft portion 55 having a cylindrical peripheral wall that undulates along the circumferential direction, and a flange portion 56 formed at an end portion on the side member side. The part 55 a) is connected to the bumper reinforcement 53 by caulking. The peripheral wall of the connecting portion 55a is in close contact with the inner peripheral surface of the burring hole 54, and the tip is widened to form a small flange portion 57.

前記バンパー構造体の製造にあたり、筒状のステイ素材は、まず、図11(c)に示すように、ステイ中間材58に予成形される(特許文献3の図17参照)。ステイ中間材58は、元のステイ素材の周壁をそのまま残した小径軸部59、やや拡径した大径軸部61、及びサイドメンバ側の端部に形成された前記フランジ部56からなる。このステイ中間材58は、前記ステイ素材を電磁成形で拡管(小径軸部59を除く)することにより成形できる。   In manufacturing the bumper structure, a cylindrical stay material is first preformed into a stay intermediate material 58 as shown in FIG. 11C (see FIG. 17 of Patent Document 3). The stay intermediate member 58 includes a small-diameter shaft portion 59 that leaves the peripheral wall of the original stay material as it is, a large-diameter shaft portion 61 that is slightly enlarged in diameter, and the flange portion 56 that is formed at the end on the side member side. The stay intermediate material 58 can be formed by expanding the stay material (excluding the small diameter shaft portion 59) by electromagnetic forming.

続いて、ステイ中間材58の小径軸部59を前記バーリング穴54に挿入し、小径軸部59を電磁成形により拡管する。これにより、ステイ中間材58(電磁成形後はバンパーステイ52)はバンパーリインフォース53にかしめ接続される。この電磁成形にあたり、小径軸部59のみを局部的に加熱軟化することもできる(特許文献4参照)。
なお、ステイ素材を予成形することなく、ステイ素材のままその前方部分を前記バーリング穴54に挿入し、ステイ素材の全長を電磁成形で拡管することにより、軸部55及びフランジ部56を成形し、同時にバンパーリインフォース53にかしめ接続することも可能である(特許文献3参照)。
Subsequently, the small diameter shaft portion 59 of the stay intermediate member 58 is inserted into the burring hole 54, and the small diameter shaft portion 59 is expanded by electromagnetic forming. As a result, the stay intermediate member 58 (the bumper stay 52 after electromagnetic forming) is caulked and connected to the bumper reinforcement 53. In this electromagnetic forming, only the small-diameter shaft portion 59 can be locally heated and softened (see Patent Document 4).
The shaft portion 55 and the flange portion 56 are formed by inserting the front portion of the stay material as it is into the burring hole 54 without expanding the stay material, and expanding the entire length of the stay material by electromagnetic forming. At the same time, it is possible to perform caulking connection to the bumper reinforcement 53 (see Patent Document 3).

図12は、バンパーステイ62とバンパーリインフォース63からなるバンパー構造体を示す。このバンパー構造体の基本構造は、特許文献4に記載されたものと同じである。
バンパーリインフォース63は、バンパーリインフォース47と同様に鋼製又はアルミニウム合金製の中空材からなる。バンパーリインフォース63は、全長にわたり同じ断面形状を有し(両端部が潰し加工されていない)、バンパーリインフォース63の前後壁にバーリング穴64,65が形成され、両方のバーリング穴64,65の穴フランジがどちらもバンパーリインフォース63の中空内部側に突出している点で、図11に示すバンパーリインフォース53と異なる。
FIG. 12 shows a bumper structure including a bumper stay 62 and a bumper reinforcement 63. The basic structure of this bumper structure is the same as that described in Patent Document 4.
The bumper reinforcement 63 is made of a hollow material made of steel or aluminum alloy, like the bumper reinforcement 47. The bumper reinforcement 63 has the same cross-sectional shape over the entire length (both ends are not crushed), burring holes 64 and 65 are formed in the front and rear walls of the bumper reinforcement 63, and the hole flanges of both the burring holes 64 and 65 However, both are different from the bumper reinforcement 53 shown in FIG. 11 in that they protrude toward the hollow inner side of the bumper reinforcement 63.

バンパーステイ62は、周方向に沿って波形状に起伏する筒状の周壁を有する軸部66と、サイドメンバ側の端部に形成されたフランジ部67からなり、軸部66の先端部(接続部66a)がバンパーリインフォース63にかしめ接続されている。バンパーステイ62は、接続部66aが2つのバーリング穴64,65の内周面に密着し、かつバーリング穴64,65の間(バンパーリインフォース63の前後壁の間)で膨出している点で、図11に示すバンパーステイ52と異なる。
バンパーステイ62とバンパーリインフォース63からなるバンパー構造体前の製造にあたっては、図11に示すバンパー構造体と同様の方法が適用できる。
The bumper stay 62 includes a shaft portion 66 having a cylindrical peripheral wall that undulates along the circumferential direction, and a flange portion 67 formed at an end portion on the side member side. The portion 66 a) is caulked and connected to the bumper reinforcement 63. The bumper stay 62 is such that the connecting portion 66a is in close contact with the inner peripheral surfaces of the two burring holes 64 and 65 and bulges between the burring holes 64 and 65 (between the front and rear walls of the bumper reinforcement 63). Different from the bumper stay 52 shown in FIG.
In manufacturing the bumper structure including the bumper stay 62 and the bumper reinforcement 63, a method similar to that of the bumper structure shown in FIG. 11 can be applied.

図13は、バンパーステイ68とバンパーリインフォース69からなるバンパー構造体を示す。
バンパーリインフォース69はハット型断面であり、高張力鋼やホットスタンプ鋼からなる。両端部に円形のバーリング穴71が成形され、その穴フランジはサイドメンバ側に向いて突出して形成されている。
バンパーステイ68は、図11に示すバンパーステイ52と同様の構造を有する。
バンパーステイ68とバンパーリインフォース69からなるバンパー構造体前の製造にあたっては、図11に示すバンパー構造体と同様の方法が適用できる。
FIG. 13 shows a bumper structure including a bumper stay 68 and a bumper reinforcement 69.
The bumper reinforcement 69 has a hat-shaped cross section and is made of high-tensile steel or hot stamped steel. Circular burring holes 71 are formed at both ends, and the hole flanges are formed to protrude toward the side member.
The bumper stay 68 has the same structure as the bumper stay 52 shown in FIG.
In manufacturing the bumper structure including the bumper stay 68 and the bumper reinforcement 69, a method similar to that of the bumper structure shown in FIG. 11 can be applied.

7,18,33,37,42 ステイ素材
8,19,34,38,43 ステイ素材の周壁
8a 周壁の凸部
8b 周壁の凹部
9,35,39,44 周壁の外周面に接する最小外接円
11,36,41,45 周壁の内周面に接する最大内接円
12,28 バンパーステイ
13,21 金型
14,22 電磁成形コイル
15,26,29 バンパーステイの軸部
16,17,25 バンパーステイのフランジ部
24 パンチ
7, 18, 33, 37, 42 Stay material 8, 19, 34, 38, 43 Stay material peripheral wall 8a Peripheral wall convex part 8b Peripheral wall concave part 9, 35, 39, 44 Minimum circumscribed circle 11 in contact with the outer peripheral surface of the peripheral wall 36, 41, 45 Maximum inscribed circle in contact with the inner peripheral surface of the peripheral wall 12, 28 Bumper stay 13, 21 Mold 14, 22 Electromagnetic forming coil 15, 26, 29 Bumper stay shaft 16, 17, 25 Bumper stay Flange part 24 punch

Claims (5)

周方向に沿って波形状に起伏する周壁を長手方向の全長にわたり有し、該周壁の外周の周長円相当径が該周壁の最小外接円径より大きい筒状の金属製形材を素材とし、その端部周壁の全周を塑性加工により拡開してフランジ部を形成し、周方向に沿って波形状に起伏する筒状の周壁を有する軸部と前記フランジ部からなるエネルギー吸収部材を製造することを特徴とするエネルギー吸収部材の製造方法。 A cylindrical metal profile having a circumferential wall that undulates along the circumferential direction over the entire length in the longitudinal direction, and whose equivalent circumferential diameter of the outer circumference of the circumferential wall is larger than the minimum circumscribed circle diameter of the circumferential wall. An energy absorbing member comprising a shaft portion having a cylindrical peripheral wall that is undulated in a wave shape along the circumferential direction and the flange portion is formed by expanding the entire circumference of the end peripheral wall by plastic working to form a flange portion. The manufacturing method of the energy absorption member characterized by manufacturing. 前記軸部の周壁の外周の周長円相当径が最小外接円径より大きいことを特徴とする請求項1に記載されたエネルギー吸収部材の製造方法。 2. The method for manufacturing an energy absorbing member according to claim 1, wherein a circumference equivalent circle diameter of an outer periphery of the peripheral wall of the shaft portion is larger than a minimum circumscribed circle diameter. 前記金属製形材がアルミニウム合金押出材からなり、前記塑性加工の全部又は一部を電磁成形で行うことを特徴とする請求項1又は2に記載されたエネルギー吸収部材の製造方法。 The method for manufacturing an energy absorbing member according to claim 1 or 2, wherein the metal shaped material is made of an aluminum alloy extruded material, and all or part of the plastic working is performed by electromagnetic forming. 前記電磁成形により、前記金属製形材の周壁を外向きに膨出させ、前記軸部の周壁に外向きに膨出する複数個のクラッシュビードを形成することを特徴とする請求項3に記載されたエネルギー吸収部材の製造方法。 By the electromagnetic forming, it is bulged circumferential wall of the metal profile outward, according to claim 3, characterized by forming a plurality of crush beads that bulges outward peripheral wall of the shaft portion Manufacturing method of the obtained energy absorbing member. 前記エネルギー吸収部材がバンパーステイであることを特徴とする請求項1〜4のいずれかに記載されたエネルギー吸収部材の製造方法。 The method for manufacturing an energy absorbing member according to any one of claims 1 to 4, wherein the energy absorbing member is a bumper stay.
JP2012020370A 2012-02-01 2012-02-01 Manufacturing method of energy absorbing member Expired - Fee Related JP5912593B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012020370A JP5912593B2 (en) 2012-02-01 2012-02-01 Manufacturing method of energy absorbing member
PCT/JP2013/051489 WO2013115066A1 (en) 2012-02-01 2013-01-24 Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
US14/376,054 US9327664B2 (en) 2012-02-01 2013-01-24 Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
CN201380007563.7A CN104094011B (en) 2012-02-01 2013-01-24 The electromagnetism expansion tube method of energy-absorbing member and manufacture method and rectangular section component and polygonal cross-section component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020370A JP5912593B2 (en) 2012-02-01 2012-02-01 Manufacturing method of energy absorbing member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016016357A Division JP2016118298A (en) 2016-01-29 2016-01-29 Energy absorption component

Publications (2)

Publication Number Publication Date
JP2013160253A JP2013160253A (en) 2013-08-19
JP5912593B2 true JP5912593B2 (en) 2016-04-27

Family

ID=49172689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020370A Expired - Fee Related JP5912593B2 (en) 2012-02-01 2012-02-01 Manufacturing method of energy absorbing member

Country Status (1)

Country Link
JP (1) JP5912593B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101901147B1 (en) * 2016-12-19 2018-09-21 주식회사 성우하이텍 Crash box unit for vehicles and bonding method therof
JP2019010671A (en) * 2017-06-30 2019-01-24 トヨタ自動車株式会社 Caulking fixing member and manufacturing method of caulking fixing member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175452A (en) * 1988-12-28 1990-07-06 Isuzu Motors Ltd Shock absorber of vehicle
JPH06312226A (en) * 1993-04-28 1994-11-08 Showa Alum Corp Production of hollow material with changing cross section in longitudinal direction
JP4375239B2 (en) * 2005-01-28 2009-12-02 住友金属工業株式会社 Shock absorbing member and shock energy absorbing method
JP2006160260A (en) * 2006-01-13 2006-06-22 Kobe Steel Ltd Energy absorbing member for vehicle body
DE102006058043B4 (en) * 2006-12-07 2012-11-15 Autoliv Development Ab bumper assembly
JP5167823B2 (en) * 2008-01-15 2013-03-21 トヨタ自動車株式会社 Shock absorbing member
JP5399663B2 (en) * 2008-08-26 2014-01-29 昭和電工株式会社 Method for joining pipe and member to be joined

Also Published As

Publication number Publication date
JP2013160253A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
US9327664B2 (en) Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
WO2013024883A1 (en) Shock absorbing member
CN105050890B (en) Automobile structural member and its manufacture method
JP6488487B2 (en) Structural member
JP2013540067A (en) Extensive vehicle crash can
JPH08216684A (en) Door guard beam for automobile
CN102834641B (en) Collision energy absorbing structure
WO2005075254A1 (en) Impact absorbing device of vehicle
KR20130126716A (en) Metallic hollow column-like member
JP2008261493A (en) Shock absorbing member and manufacturing method thereof
US20160264081A1 (en) Bumper for a motor vehicle
JP2007261557A (en) Impact absorbing device for vehicle
JP6672933B2 (en) Automotive structural member, manufacturing method thereof, and mold
JP4045846B2 (en) Impact energy absorbing member
JP5912593B2 (en) Manufacturing method of energy absorbing member
JP2008094309A (en) Shock absorbing structure for vehicle frame
JP5235007B2 (en) Crash box
JP5322882B2 (en) Bumper stay manufacturing method and bumper stay manufacturing method
JP5618305B2 (en) Electromagnetic forming method for polygonal cross-section member
JP2012111356A (en) Method for manufacturing energy absorbing structure, and energy absorbing structure
JP2016118298A (en) Energy absorption component
JP5374832B2 (en) Metal hollow columnar member for impact absorbing member and manufacturing method thereof
JP2006335241A (en) Bumper stay and bumper device
JP4527613B2 (en) Bumper stay and bumper equipment
JP5997099B2 (en) Bumper reinforcement for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5912593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees