JP5911934B2 - 輪郭線計測装置およびロボットシステム - Google Patents
輪郭線計測装置およびロボットシステム Download PDFInfo
- Publication number
- JP5911934B2 JP5911934B2 JP2014190182A JP2014190182A JP5911934B2 JP 5911934 B2 JP5911934 B2 JP 5911934B2 JP 2014190182 A JP2014190182 A JP 2014190182A JP 2014190182 A JP2014190182 A JP 2014190182A JP 5911934 B2 JP5911934 B2 JP 5911934B2
- Authority
- JP
- Japan
- Prior art keywords
- camera
- edge
- line
- image
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
- G06T7/593—Depth or shape recovery from multiple images from stereo images
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
- B25J9/1697—Vision controlled systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/60—Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/90—Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37359—Contour, to sense corners, edges of surface
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/40—Robotics, robotics mapping to robotics vision
- G05B2219/40564—Recognize shape, contour of object, extract position and orientation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
- G06T2207/10012—Stereo images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30164—Workpiece; Machine component
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S901/00—Robots
- Y10S901/02—Arm motion controller
- Y10S901/09—Closed loop, sensor feedback controls arm movement
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Quality & Reliability (AREA)
- Software Systems (AREA)
- Signal Processing (AREA)
- Geometry (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Manipulator (AREA)
Description
本発明は、ステレオカメラを用いて対象物の3次元輪郭線形状を計測する輪郭線計測装置およびロボットシステムに関する。
産業用ロボットを用いてワークに対し各種作業を行うためには、ワークの3次元輪郭線形状を把握する必要がある。ワークに個体差がない場合には、設計データからワークの輪郭線形状の情報を得ることができる。しかしながら、例えばワークが鋳物である場合には、鋳型ごとにワークに個体差があるため、個々のワークの輪郭線形状を計測する必要がある。
この点に関し、従来、2台のカメラを用いたステレオ法により、ワークの正確な3次元輪郭線情報を得るようにした装置が知られている(例えば特許文献1,2参照)。上記特許文献1,2記載の装置では、2台のカメラでワークを異なる位置から撮像し、これによって得られた一対のカメラ画像からそれぞれエッジ線(輪郭線の像)を抽出する。そして、同一のエピポーラ面から得られたエピポーラ線と各カメラ画像上のエッジ線との交点を求め、各カメラ画像上の交点を互いに対応付け、これら対応点を用いてワークの輪郭線上の3次元点の位置を求める。
しかしながら、上記特許文献1,2記載の装置では、エピポーラ線と交わるエッジ線が複数存在する場合、各カメラ画像上の交点が1対1に対応せず、対応点を求めることが困難である。
本発明の一態様である輪郭線計測装置は、対象物を撮像して第1の対象物画像および第2の対象物画像をそれぞれ取得する第1のカメラおよび第2のカメラと、第1のカメラおよび第2のカメラの位置姿勢に基づき、対象物と交差するような複数のエピポーラ面を生成するエピポーラ面生成部と、複数のエピポーラ面を第1のカメラの撮像面および第2のカメラの撮像面に投影した複数のエピポーラ線を算出するエピポーラ線算出部と、対象物の3次元の基準輪郭線を設定する基準輪郭線設定部と、基準輪郭線を第1のカメラの撮像面および第2のカメラの撮像面にそれぞれ投影した第1の基準輪郭線像および第2の基準輪郭線像をそれぞれ算出する基準輪郭線像算出部と、第1の基準輪郭線像の近傍に第1の画像処理領域を設定し、第1の画像処理領域内の第1の対象物画像から対象物の輪郭線の画像である第1のエッジ線を抽出する一方、第2の基準輪郭線像の近傍に第2の画像処理領域を設定し、第2の画像処理領域内の第2の対象物画像から対象物の輪郭線の画像である第2のエッジ線を抽出するエッジ線抽出部と、第1のエッジ線と複数のエピポーラ線との交点である複数の第1のエッジ点および第2のエッジ線と複数のエピポーラ線との交点である複数の第2のエッジ点をそれぞれ生成するエッジ点生成部と、複数の第1のエッジ点および複数の第2のエッジ点の中から、互いに同一のエピポーラ面を用いて生成された第1のエッジ点および第2のエッジ点であり、かつ、基準輪郭線の互いに同一部位に対応する第1のエッジ点と第2のエッジ点とからなる一対のエッジ点を選択する対応点選択部と、一対のエッジ点を通る第1のカメラの視線と第2のカメラの視線とに基づき対象物の輪郭線上の3次元点を算出する3次元点算出部とを備える。
また、本発明の他の態様である輪郭線計測装置は、対象物を撮像して第1の対象物画像および第2の対象物画像をそれぞれ取得する第1のカメラおよび第2のカメラと、対象物の3次元の基準輪郭線を設定する基準輪郭線設定部と、基準輪郭線を第1のカメラの撮像面および第2のカメラの撮像面に投影した第1の基準輪郭線像および第2の基準輪郭線像をそれぞれ算出する基準輪郭線像算出部と、第1の基準輪郭線像の近傍に第1の画像処理領域を設定し、第1の画像処理領域内の第1の対象物画像から対象物の輪郭線の画像である第1のエッジ線を抽出する一方、第2の基準輪郭線像の近傍に第2の画像処理領域を設定し、第2の画像処理領域内の第2の対象物画像から対象物の輪郭線の画像である第2のエッジ線を抽出するエッジ線抽出部と、第1のエッジ線上に複数の第1のエッジ点を生成する第1のエッジ点生成部と、第1のカメラおよび第2のカメラの位置姿勢に基づき、複数の第1のエッジ点をそれぞれ通る複数のエピポーラ面を生成するエピポーラ面生成部と、複数のエピポーラ面を第2のカメラの撮像面に投影した複数のエピポーラ線を算出するエピポーラ線算出部と、複数のエピポーラ線と第2のエッジ線との交点である複数の第2のエッジ点を生成する第2のエッジ点生成部と、複数の第1のエッジ点と複数の第2のエッジ点の中から、第1のエッジ点と、この第1のエッジ点から求められた第2のエッジ点とからなる一対のエッジ点であって、基準輪郭線の互いに同一部位に対応する一対のエッジ点を選択する対応点選択部と、一対のエッジ点を通る第1のカメラの視線および第2のカメラの視線に基づき対象物の輪郭線上の3次元点を算出する3次元点算出部とを備える。
さらに本発明の別の態様は、ロボットと、ロボットを制御するロボット制御部と、上述の輪郭線計測装置とを備えるロボットシステムであって、輪郭線計測装置を構成する第1のカメラおよび第2のカメラはロボットのアーム先端部に取り付けられ、または第1のカメラおよび第2のカメラにより撮像される対象物はロボットのアーム先端部で把持される。
本発明によれば、対象物の基準輪郭線の互いに同一部位に対応する一対のエッジ点を選択するので、エピポーラ線と交わるエッジ線が複数存在する場合であっても、一対のエッジ点同士が良好に対応付けられ、対象物の3次元輪郭線形状を精度よく計測することができる。
−第1の実施形態−
以下、図1〜図13を参照して本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態に係る輪郭線計測装置100の主要な構成を示す図である。輪郭線計測装置100は、作業台1に載置されたワーク2を撮像する一対のカメラ3(第1のカメラ3Aおよび第2のカメラ3B)と、第1のカメラ3Aおよび第2のカメラ3Bと通信してワーク2の輪郭線形状を算出する視覚センサ制御装置5とを備える。なお、ワーク2は輪郭線(図5の2a)によって形状が規定される。したがって、輪郭線形状を算出することでワーク形状を特定できる。
以下、図1〜図13を参照して本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態に係る輪郭線計測装置100の主要な構成を示す図である。輪郭線計測装置100は、作業台1に載置されたワーク2を撮像する一対のカメラ3(第1のカメラ3Aおよび第2のカメラ3B)と、第1のカメラ3Aおよび第2のカメラ3Bと通信してワーク2の輪郭線形状を算出する視覚センサ制御装置5とを備える。なお、ワーク2は輪郭線(図5の2a)によって形状が規定される。したがって、輪郭線形状を算出することでワーク形状を特定できる。
カメラ3は、例えばCCD等の撮像素子を有する電子カメラであり、撮像により2次元画像を撮像面(CCDアレイ面上)で検出する機能を持つ周知の受光デバイスである。なお、撮像面における2次元座標系を以下ではセンサ座標系と呼ぶ。第1のカメラ3Aおよび第2のカメラ3Bはそれぞれ架台4により支持され、第1のカメラ3Aとワーク2および第2のカメラ3Bとワーク2との距離が互いにほぼ等しくなるように、かつ、第1のカメラ3Aと第2のカメラ3Bにより互いにほぼ同じ範囲を撮影可能となるように(図5参照)、3次元のワールド座標系における一対のカメラ3A,3Bの位置および姿勢が決定されている。なお、3次元のワールド座標系を、以下ではロボット座標系と呼ぶ。
図2は、図1の輪郭線計測装置100の制御構成を示すブロック図である。図2に示すように、輪郭線制御装置100は、一対のカメラ3A,3Bと視覚センサ制御装置5の他、視覚センサ操作盤6を備える。視覚センサ操作盤6は、視覚センサ制御装置5に対し各種指令を入力する。視覚センサ制御装置5は、CPU,ROM,RAM,その他の周辺回路などを有する演算処理装置を含んで構成され、機能的構成として、輪郭線情報記憶部7、キャリブレーションデータ記憶部8と、画像処理部10とを有する。
輪郭線情報記憶部7は、予め基準となるワーク2の輪郭線、すなわち基準輪郭線の3次元形状情報と位置情報とを記憶する。基準輪郭線は設計値によって与えられる。視覚センサ制御装置5は、基準輪郭線の3次元形状情報を例えば所定のファイル形式で外部から直接読み込むことができる。なお、視覚センサ制御装置5がワーク2の3次元CADデータを外部から読み込み、視覚センサ操作盤6を介してワーク2の輪郭線の位置をユーザが指定して、3次元形状情報を与えるようにしてもよい。
基準輪郭線の3次元形状情報は、例えばワーク2上に1つの座標系(ワーク座標系)を定義し、基準輪郭線を構成する点や線などの位置を、ワーク座標系を基準とした座標データで表すことによって与えられる。この場合、ロボット座標系に対するワーク座標系の位置姿勢、すなわちロボット座標系におけるワーク座標系の原点の位置およびその位置におけるワーク座標系の姿勢が、基準輪郭線の位置情報に相当する。
キャリブレーションデータ記憶部8は、予め一対のカメラ3A,3Bのキャリブレーションデータを記憶する。なお、キャリブレーションデータを求める方法やキャリブレーションデータの形式は周知であり、この点についての説明は省略する。キャリブレーションデータが求まると、ロボット座標系における3次元点(注視点と呼ぶ)のカメラ画像上での位置、すなわちセンサ座標系における2次元点を算出することができる。また、注視点の像がセンサ座標系の2次元点として与えられると、ロボット座標系における注視点とカメラ3の焦点を通る3次元直線である視線を算出することができる。
さらに一対のカメラ3A,3Bのそれぞれについてキャリブレーションデータが求まると、注視点のロボット座標系における3次元位置が与えられたときに、この注視点と第1のカメラ3Aの焦点と第2のカメラ3Bの焦点とを通る平面、すなわちエピポーラ面(図6参照)を算出することができる。また、注視点の像が第1のカメラ3Aのセンサ座標系の2次元点および第2のカメラ3Bのセンサ座標系の2次元として与えられると、ロボット座標系における注視点の位置を特定でき、注視点の3次元位置座標を算出することができる。
画像処理部は、第1のカメラ3Aと、第2のカメラ3Bと、輪郭線情報記憶部7と、キャリブレーションデータ記憶部8と、視覚センサ操作盤6とからの信号に基づき所定の処理(輪郭線計測処理)を実行する。これにより、ワーク2の輪郭線上の3次元点(計測点)に対応する第1のカメラ3Aのセンサ座標系の2次元点、および同一の計測点に対応する第2のカメラ3Aのセンサ座標系の2次元点、すなわち一対の対応点を求めるとともに、一対の対応点を用いてロボット座標系における計測点の位置を特定し、その3次元位置(3次元位置座標)を算出する。図3は、画像処理部10の詳細な構成を示すブロック図であり、図4は、画像処理部10で実行される処理の一例を示すフローチャートである。
図3に示すように、画像処理部10は、エピポーラ面生成部11と、エピポーラ線算出部12と、カメラ制御部13と、基準輪郭線像算出部14と、エッジ線抽出部15と、エッジ点生成部16と、対応点選択部17と、3次元点算出部18とを有する。
図4に示す輪郭線計測処理は、例えば視覚センサ操作盤6を介してユーザがワーク2の輪郭線計測指令を入力すると開始される。なお、以下では、ワーク2が、輪郭線情報記憶部7に記憶された位置情報が示す位置の近傍に配置されているものとして図4の処理を説明する。図5は、ワーク2の平面図であり、輪郭線2aの一例を示している。図5のワーク2の面は、カメラ3A,3Bに対向しており、図5には、第1のカメラ3Aによる撮像範囲AR1と第2のカメラ3Bによる撮像範囲AR2を投影して示している。これら撮像範囲AR1,AR2はほぼ等しく、撮像範囲AR1,AR2はワーク全体を含む。
ステップS1では、エピポーラ面生成部11での処理により、第1のカメラ3Aと第2のカメラ3Bの共通視野内に、ワーク2と交差するような複数のエピポーラ面ESを生成する。図6は、エピポーラ面ESの一例を示す図である。なお、図6には、カメラ3の撮像面30(30A,30B)を併せて示している。エピポーラ面ESの個数は、ワーク2の輪郭線2a上の計測点の密度、および計測点の3次元位置の算出に要する計算時間等を考慮して決定する。エピポーラ面ESを生成するためには、3次元空間に少なくともエピポーラ面ESと同数の注視点Pを設定する必要がある。注視点Pは、例えば以下の手順で設定する。なお、以下では、説明を簡単にするために、第1のカメラ3Aの光軸と第2のカメラ3Bの光軸とが、それぞれのカメラ3A,3Bから適切な距離だけ離れた1点で交わるものとする。
まず、第1のカメラ3Aの光軸の方向ベクトルと、第2のカメラ3Bの光軸の方向ベクトルの和(ベクトルA)を算出する。次に、第1のカメラ3Aの光軸と第2のカメラ3Bの光軸の交点(交点A)を算出する。次に、第1のカメラ3Aの光軸と第2のカメラ3Bの光軸とによって作られる平面(平面A)を算出する。次に、交点Aを通り、かつ、ベクトルAを法線とする平面(平面B)を算出する。次に、平面Aと平面Bの交線(直線A)を算出する。次に、平面B上にあり、かつ、交点Aを通って直線Aに直交する直線(直線B)を算出する。最後に、図5に示すように、直線B上に所定の間隔で注視点P(P1,P2,・・Pn)を生成する。これら各注視点Pについて、図6に示すように、第1のカメラ3Aの焦点FP1と第2のカメラ3Bの焦点FP2を通るエピポーラ面ESを生成する。
ステップS2では、エピポーラ線算出部12での処理により、ステップS1で生成した複数のエピポーラ面ESのそれぞれについてエピポーラ線ELを算出する。すなわち、図6に示すように、エピポーラ面ESを第1のカメラ3Aの撮像面30Aおよび第2のカメラ3Bの撮像面30Bにそれぞれ投影し、エピポーラ線ELを算出する。これを複数のエピポーラ面ESについて行い、複数のエピポーラ線ELを取得する。図7は、一方のカメラ3の撮像面30における複数のエピポーラ線EL(EL1,EL2,・・ELn)の一例を示す図である。
なお、ステップS1で生成したエピポーラ面ESとステップS2で算出したエピポーラ線ELは、一対のカメラ3A,3Bの位置関係や各カメラ3A,3Bの焦点距離などの光学条件が変わらなければ改めて求める必要はない。したがって、一旦生成したエピポーラ面ESおよび一旦算出したエピポーラ線ELを、例えば視覚センサ制御装置5の内部または外部の記憶装置に記憶し、ワーク2の輪郭線計測を行う際にそれらを読み込むようにしてもよい。これにより、エピポーラ面ESとエピポーラ線ELを求める計算を省略することができ、輪郭線形状を高速に計測することができる。
ステップS3では、カメラ制御部13での処理により、カメラ3A,3Bに制御信号を出力し、第1のカメラ3Aおよび第2のカメラ3Bにそれぞれワーク2を撮像させる。これにより各カメラ3A,3Bの撮像面30A,30Bにカメラ画像(ワーク画像)が得られる。
ステップS4では、基準輪郭線像算出部14での処理により、輪郭線情報記憶部7に記憶されたワーク2の基準輪郭線を第1のカメラ3Aのカメラ画像上および第2のカメラ3Bのカメラ画像上にそれぞれ投影し、基準輪郭線像40(図8参照)を算出する。具体的には、まず、基準輪郭線上に所定の間隔で複数の3次元点を設定する。例えば、ワーク座標系で複数の3次元点を設定した後、その3次元点の座標をロボット座標系の座標に変換することで、複数の3次元点を設定する。次いで、複数の3次元点を各カメラ3A,3Bのカメラ画像上にそれぞれ投影し、センサ座標系上の複数の2次元点を求める。このようにして得られた複数の2次元点を順次接続し、基準輪郭線像40を取得する。
ステップS5では、エッジ線抽出部15での処理により、各カメラ3A,3Bのカメラ画像からエッジ線50を抽出する。エッジ線50とは、カメラ画像内の輝度値の変化量が大きい部分を接続した線分の集合である。エッジ線50は、例えばSobelフィルタやCannyエッジ検出器を用いて抽出することができる。図8は、撮像面30におけるカメラ画像上のエッジ線50の一例を示す図である。
エッジ線50を抽出する際には、まず、図8に示すように基準輪郭線像40の近傍、例えば基準輪郭線像40から所定距離ΔL内にエッジ線検出領域41を設定する。所定距離ΔLは、予め視覚センサ制御装置5内のメモリに記憶しておくことも、視覚センサ操作盤6を介して設定することもできる。また、所定距離ΔLは、基準輪郭線像40の全体にわたって一定であっても、基準輪郭線像40の場所に応じて変化させてもよい。
エッジ線抽出部15は、エッジ線検出領域41内のカメラ画像からエッジ線50を探索し、抽出する。このようにエッジ線50の探索領域を制限することで、検出対象となるワークの輪郭線以外のものがエッジ線50として抽出されることを抑制する効果がある。また、エッジ線50を高速に抽出することができるという効果もある。複数のエッジ線50を接続したものは実際のワーク2の輪郭線の画像を表す。なお、基準輪郭線と実際のワーク2の輪郭線との間には、ワーク2の個体差や位置情報のずれ等に起因したずれがあるため、図8では、基準輪郭線像40とエッジ線50との間にずれが生じている。
ステップS6では、エッジ点生成部16での処理により、ステップS5で抽出した各カメラ画像上のエッジ線50とエピポーラ線ELとの交点をエッジ点EPとして算出する。各カメラ3A,3Bのカメラ画像上には、それぞれ複数のエッジ点EPが得られる。以下では、第1のカメラ3Aのカメラ画像上の複数のエッジ点EPを第1のエッジ点群と呼び、第2のカメラ3Bのカメラ画像上の複数のエッジ点EPを第2のエッジ点群と呼ぶ。
なお、図6では、エピポーラ線ELに複数のエッジ線50が交差しており、同一のエピポーラ面ES上に複数のエッジ点EP(EP1とEP2,EP3とEP4)が生成されている。本実施形態では、エッジ線50とエピポーラ線ELとが平行に近い箇所においては、エッジ点EPの誤差が大きくなるので、エッジ点生成部16はこのような個所にエッジ点を生成しない。
ステップS7では、対応点選択部17での処理により、ステップS6で取得した第1のエッジ点群と第2のエッジ点群の中から、互いに対応するエッジ点EPをそれぞれ1つずつ選択する。以下では、選択された一対のエッジ点EP、すなわち第1のエッジ点群から選択したエッジ点EP(第1のエッジ点)と第2のエッジ点群から選択したエッジ点EP(第2のエッジ点)とをそれぞれ対応点と呼び、第1のエッジ点EPと第2のエッジ点EPの組み合わせをエッジ点ペアと呼ぶ。エッジ点ペアの選択は例えば以下のように行う。
まず、第1のエッジ点群および第2のエッジ点群の中から、互いに同一のエピポーラ面ES上に存在するエッジ点EPをそれぞれ抽出する。抽出したエッジ点EPはエッジ点ペアの候補となる。第1のエッジ点群から抽出した第1のエッジ点EPと第2のエッジ点群から抽出した第2のエッジ点EPとがそれぞれ1点である場合、同一のエピポーラ面ES上でエッジ点EP同士が1対1で対応するため、これらをエッジ点ペアとする。なお、第1のエッジ点群から抽出した第1のエッジ点EPと第2のエッジ点群から抽出した第2のエッジ点EPの少なくとも一方が存在しない場合、同一のエピポーラ面ES上でエッジ点EPが対応しないため、エッジ点ペアを作ることはできない。
一方、第1のエッジ点群から抽出した第1のエッジ点EPと第2のエッジ点群から抽出した第2のエッジ点EPの少なくとも一方が複数である場合、各エッジ点EPに対応する基準輪郭線像40上の最近傍点NPを求める。図9は、最近傍点NP(NP1,NP2)の一例を示す図である。最近傍点NPとはエッジ点EPからの距離が最少となる基準輪郭線像40上の点であり、例えば図9に示すように、エッジ点EP1,EP2におけるエッジ線50に対する垂線51と、基準輪郭線像40との交点が最近傍点NP1,NP2となる。この交点を起点としてエッジ点EPからの距離が最小となる基準輪郭線像40上の点を探索し、これを最近傍点NPとしてもよい。図10に示すように、エッジ線50が基準輪郭線像40と一致するようにエッジ線50全体を平行移動および/または回転移動させた後、その移動後のエッジ線50’上におけるエッジ点EP1’,EP2’からの距離が最少となるような点を求め、これを最近傍点NP1,NP2としてもよい。
次に、第1のカメラ3Aのカメラ画像上の最近傍点NPを通る第1のカメラ3Aの視線とワーク2の基準輪郭線との交点である第1の投影元点を算出するとともに、第2のカメラ3Bのカメラ画像上の最近傍点NPを通る第2のカメラ3Bの視線と基準輪郭線との交点である第2の投影元点を算出する。この場合、第1のエッジ点EPと第2のエッジ点EPの少なくとも一方は複数であるため、第1の投影元点と第2の投影元点の少なくとも一方も複数求められ、このうち第1の投影元点と第2の投影元点との間の距離(投影元点間距離)が所定値αより短いものをエッジ点ペアとして選択する。
なお、投影元点間距離は、第1の投影元点と第2の投影元点の直線距離であってもよいし、第1の投影元点と第2の投影元点の間の基準輪郭線の長さとしてもよい。所定値αは、各カメラ3A,3Bのカメラ画像上の最近傍点NPが基準輪郭線の互いに同一部位を表しているか否かを判定するための閾値である。投影元点間距離が所定値αより短いエッジ点ペアが複数存在する場合には、投影元点間距離が最少となるものをエッジ点ペアとして選択すればよい。投影元点間距離が近いものが複数存在する場合には、最近傍点NPとエッジ点EPの距離も考慮してエッジ点ペアを選択してもよい。
第1のエッジ点群から抽出した第1のエッジ点EPと第2のエッジ点群から抽出した第2のエッジ点EPとがそれぞれ1点である場合にも、上述したのと同様に投影元点間距離を算出し、投影元点間距離が所定値αより短いかいことを条件としてエッジ点ペアを選択してもよい。これにより第1のエッジ点EPと第2のエッジ点EPとが良好に対応しているか否か、すなわち有効なエッジ点ペアであるか否かを評価できる。
ステップS8では、3次元点算出部18での処理により、ステップS7で求めたエッジ点ペアを構成する第1のエッジ点EPと第1のカメラ3Aの焦点とを結ぶ視線、および第2のエッジ点EPと第2のカメラ3Bの焦点とを結ぶ視線をそれぞれ算出し、さらにこれら2本の視線の交点(計測点)を算出する。これによりワーク2の輪郭線上における計測点の3次元位置を求めることができる。
このように第1の実施形態では、カメラ画像上に最近傍点NPを設定することで、第1のエッジ点群および第2のエッジ点群の中から、互いに同一のエピポーラ面ES上に存在し、かつ、基準輪郭線の互いに同一部位に対応する第1のエッジ点EPと第2のエッジ点EPのペアを選択し、このエッジ点ペアを用いてロボット座標系における計測点の位置を特定し、計測点の3次元位置を算出するようにした。これによりエピポーラ線ELと交わるエッジ線50が複数存在してエッジ点ペアの候補が複数存在する場合であっても、第1のエッジ点EPと第2のエッジ点EPとを良好に1対1に対応付けることができ、ワーク2の輪郭線上の3次元点の位置を精度よく算出することができる。
また、本実施形態では、カメラ2台という比較的簡易な構成で、ワーク2の3次元輪郭線形状を求めることができる。さらに、カメラ3A,3Bによる撮像は、1回だけ行えばよいので、輪郭線形状の計測を高速に行うことができる。また、本実施形態によれば、特定の平面上にワーク2の3次元輪郭線ある場合だけでなく、3次元輪郭線が平面上にない場合であっても、輪郭線の位置を求めることができる。
対応点選択部17における同一のエピポーラ面ES上の点EPが可能な限り1対1で対応するように、エピポーラ面ESを事前に分割しておくこともできる。図11は、第1のカメラ3Aと第2のカメラ3Bにそれぞれ対応する分割線DAと分割線DBとでエピポーラ面ESを分割する方法を示す図である。まず、複数のエピポーラ面ESそれぞれに対して、基準輪郭線との交点Pα、Pβを算出する。交点が1つだけ存在する、または、交点が存在しない場合には、そのまま次のステップに進む。交点が複数存在する場合には、そのエピポーラ面上の隣り合う交点Pα、Pβ間の中点Pγを全て求め、それぞれの中点Pγと第1のカメラ3Aの焦点FP1または第2のカメラ3Bの焦点FP2を結んだ分割線DA、DBでエピポーラ面ESを分割する。
エピポーラ面ESは第1のカメラ3Aと第2のカメラ3Bそれぞれで異なる分割線DA,DBで分割されるが、図12に示すように同一の中点Pγ1、Pγ2、Pγ3で分割された第1のカメラ3Aと第2のカメラ3Bのエピポーラ面には同じインデックスA1〜A4、B1〜B4を割り当て、同一のものとして扱う。分割されたエピポーラ面はそれぞれ異なるエピポーラ面として扱い、第1のエッジ点群および第2のエッジ点群の中から、互いに同一の分割されたエピポーラ面ES上に存在するエッジ点EPをそれぞれ抽出することで、対応点の候補の数を制限することができる。基準輪郭線の分割やエッジ線50の抽出領域の分割でも、エピポーラ面ESの分割と同様の効果が得られることは自明であるので、説明は省略する。
図13は、図4の変形例を示すフローチャートである。ステップS11では、図4のステップS3と同様、カメラ制御部13での処理により第1のカメラおよび第2のカメラに撮像動作を行わせ、一対のカメラ画像を取得する。ステップS12では、図4のステップS4と同様、基準輪郭線像算出部14での処理により、一対のカメラ画像上にそれぞれ基準輪郭線を投影し、基準輪郭線像40を算出する。ステップS13では、図4のステップS5と同様、エッジ線抽出部15での処理により、一対のカメラ画像からエッジ線50を抽出する。
ステップS14では、第1のカメラ3Aのカメラ画像から抽出したエッジ線50上に、所定間隔で複数のエッジ点EP(第1のエッジ点群)を生成する。第1のエッジ点EPは、輪郭線上の3次元点を求めるための基準となる点であり、十分に密な3次元点が得られるように所定間隔が設定される。
ステップS15では、エピポーラ面生成部11での処理により、テップS14で生成した第1のエッジ点EPのそれぞれについて、各エッジ点EPとカメラ3A,3Bの焦点とを通る複数のエピポーラ面ESを生成する。
ステップS16では、エピポーラ線算出部12での処理により、ステップS15で生成した複数のエピポーラ面ESを第2のカメラ3Bの撮像面30Bにそれぞれ投影し、複数のエピポーラ線ELを算出する。
ステップS17では、エッジ点生成部16での処理により、ステップS16で算出した複数のエピポーラ線ELとエッジ線50との交点である複数の第2のエッジ点EP(第2のエッジ点群)を算出する。
ステップS18では、対応点選択部17での処理により、第1のエッジ点群と第2のエッジ点群の中から、第1のエッジ点EPと、この第1のエッジ点EPからエピポーラ面ESおよびエピポーラ線ELを生成することで求められた第2のエッジ点EPとを選択し、これらをエッジ点ペアとする。
この場合、同一のエピポーラ面EP上に複数の第1のエッジ点EPおよび/または複数の第2のエッジ点EPが存在する場合には、上述したのと同様に、各エッジ点EPに対応する最近傍点NPおよび投影元点を順次求め、さらに投影元点間距離が所定値αより短い第1のエッジ点と第2のエッジ点を、エッジ点ペアとする。これにより、基準輪郭線の互いに同一部位に対応する第1のエッジ点EPと第2のエッジ点EPをエッジ点ペアとすることができる。
ステップS19では、図4のステップS8と同様、3次元点算出部18での処理により、ステップS18で算出したエッジ点ペアを用いてワーク2の輪郭線上における計測点の3次元位置を求める。
−第2の実施形態−
図14〜図17を参照して本発明の第2の実施形態について説明する。なお、以下では図1〜図10と同一の個所には同一の符号を付し、第1の実施形態との相違点を主に説明する。第2の実施形態は、輪郭線計測装置100を有するロボットシステムであり、一対のカメラ3A,3Bまたはワーク2の少なくとも一方を、ロボットを用いて移動可能に設ける。
図14〜図17を参照して本発明の第2の実施形態について説明する。なお、以下では図1〜図10と同一の個所には同一の符号を付し、第1の実施形態との相違点を主に説明する。第2の実施形態は、輪郭線計測装置100を有するロボットシステムであり、一対のカメラ3A,3Bまたはワーク2の少なくとも一方を、ロボットを用いて移動可能に設ける。
図14は、本発明の第2の実施形態に係るロボットシステム200の主要な構成を示す図である。図14に示すように、ロボットシステムは、一対のカメラ3A,3Bと、一対のカメラ3A,3Bと通信してワーク2の輪郭線形状を算出する視覚センサ制御装置5と、一対のカメラ3A,3Bを支持するロボット60と、ロボット60を制御するロボット制御装置65とを備える。なお、一対のカメラ3A,3Bと視覚センサ制御装置5とは、輪郭線計測装置100を構成する。図示は省略するが、視覚センサ制御装置5は、図2と同様、輪郭線情報記憶部7とキャリブレーションデータ記憶部8と、画像処理部10とを有する。
ロボット60は、回動可能な複数のアーム61を連結してなる多関節ロボットであり、アーム先端部にハンド62を有する。ロボット60のアーム先端部にはブラケット63が取り付けられ、ブラケット63に一対のカメラ3A,3Bが固定されている。これにより、アーム61を駆動すると、第1のカメラ3Aと第2のカメラ3Bは、その相対位置姿勢を一定に維持したまま3次元空間を移動することができ、ワーク2に対するカメラ3A,3Bの相対位置姿勢を変更することができる。
視覚センサ制御装置5とロボット制御装置65とは、RS232CやLAN等、周知の方法で接続されており、互いに通信可能である。これにより、視覚センサ制御装置5がロボット制御装置65からロボット60の現在位置情報を取得することができる。また、ロボット制御装置65が視覚センサ制御装置5からワーク2の輪郭線形状の情報を取得することができる。
第2の実施形態は第1の実施形態と異なり、ロボット座標系でカメラ3A,3Bが移動可能である。この点を考慮して、視覚センサ制御装置5内のキャリブレーションデータ記憶部8には、ロボット60のアーム先端部に設定した座標系(メカニカルインターフェース座標系)を基準としたカメラ3A,3Bのキャリブレーションデータ、すなわちメカニカルインターフェース座標系におけるキャリブレーションデータが記憶されている。一方、ロボット制御装置65は、ロボット座標系におけるアーム先端部の位置を把握することができる。
したがって、キャリブレーションデータ記憶部8に記憶されたキャリブレーションデータにより、センサ座標系の2次元点とメカニカルインターフェース座標系の3次元点とを対応付け、さらにロボット制御装置65によって把握されるアーム先端部の位置に応じて、メカニカルインターフェース座標系をロボット座標系に座標変換することで、センサ座標系の2次元点とロボット座標系の3次元点とを対応付けることができる。すなわち、ロボット座標系から見たセンサ座標系の位置姿勢を求めることができる。これにより第1の実施形態と同様、センサ座標系で表現された画像データを用いて、ワーク2の輪郭線の3次元点位置を計測することができる。
なお、キャリブレーションデータ記憶部8に、ロボット座標系におけるカメラ3A,3Bのキャリブレーションデータとともに、キャリブレーション実行時のロボット60の位置情報を記憶するようにしてもよい。この場合、ワーク撮像時のロボットの位置情報とキャリブレーション実行時のロボットの位置情報とを用いることで、ワーク撮像時のロボット座標系から見たセンサ座標系の位置姿勢を求めることができる。
ロボット60を用いてカメラ3A,3Bを移動可能に構成するのではなく、ワーク2を移動可能に構成することもできる。図15は、その一例を示す図である。図15では、一対のカメラ3A,3Bが作業台4に固定され、ワーク2がロボット60のアーム先端部のハンド62に把持されている。したがって、ロボット60を駆動するとワーク2が移動し、これによりカメラ3A,3Bに対するワーク2の相対位置姿勢を変更することができる。
この場合、視覚センサ制御装置5内の輪郭線情報記憶部7には、ロボット座標系から見たワーク座標系の位置姿勢ではなく、メカニカルインターフェース座標系から見たワーク座標系の位置姿勢が記憶されている。このメカニカルインターフェース座標系から見たワーク座標系の位置姿勢を、ワーク撮像時のロボットの位置情報に基づき座標変換することで、メカニカルインターフェース座標系から見たワーク座標系の位置姿勢から、ロボット座標系から見たワーク座標系の位置姿勢を求めることができる。これにより、第1の実施形態と同様、センサ座標系で表現された画像データを用いて、ワーク2の輪郭線の3次元点位置を計測することができる。
第2の実施形態では、ロボット60を用いてカメラ3A,3Bまたはワーク2を移動することにより、ワーク2の輪郭線の異なる部位の3次元点を計測することができる。図16は、第2の実施形態に係る画像処理部10の構成を示す図である。画像処理部10は、図3の構成に加え、撮像位置算出部21と、評価部22とをさらに備える。
撮像位置算出部21は、アーム先端部の目標位置(位置姿勢)を算出し、ロボット制御装置65は、アーム先端部をこの目標位置へ移動するようにロボット60を制御する。カメラ制御部13は、アーム先端部が目標位置に移動した状態で、カメラ3A,3Bによりワーク2を撮像させる。
撮像位置算出部21は、基準輪郭線を計測しやすいように基準輪郭線上の注視点における法線方向を考慮して、アーム先端部の目標位置を定める。例えば、基準輪郭線がワーク2の加工面の縁を表すとき、注視点における法線方向が加工面に対して垂直となるようにアーム先端部の目標位置を定める。
さらに、(1)第1のカメラ3Aの光軸と第2のカメラ3Bの光軸の交点が注視点と同じ位置になること、(2)第1のカメラ3Aの光軸の向きを表すベクトルと第2のカメラ3Bの光軸の向きを表すベクトルの和に対し、注視点における法線方向が平行になること、(3)第1のカメラ3Aの光軸と第2のカメラ3Bの光軸とがなす平面と、注視点を通り、注視点における法線によって規定される平面との交線と、基準輪郭線の注視点における接線とが直角になること、の3つの条件を満足するように、目標位置を決定する。これにより、カメラ画像上のエピポーラ線ELとエッジ線50とが平行になりにくく、基準輪郭線を計測しやすくなる。
第2の実施形態において、カメラ3A,3Bの撮像範囲AR1,AR2に対して輪郭線が大きい場合には、複数の目標位置を設定し、輪郭線の計測を複数回に分けて行うことが好ましい。この場合、ロボット制御装置65がアーム先端部を複数の目標位置へ順次移動し、アーム先端部が複数の目標位置に移動する度に、第1のカメラ3Aおよび第2のカメラ3Bがワーク2を撮像するように構成する。
複数の目標位置は、手動で設定することも、自動で設定することもできる。目標位置を自動で設定する場合、初めに基準輪郭線上に注視点を設定し、上述したようにしてアーム先端部の目標位置を定める。この目標位置に対応した第1のカメラ3Aの撮像範囲AR1と第2のカメラ3Bの撮像範囲AR2の両方に含まれる基準輪郭線の部位を、仮想的な撮像済み部位としてメモリに記憶する。なお、撮像範囲AR1,AR2は、カメラ自体によって物理的に制限されるだけでなく、ソフトウェア的に処理領域を設定することでも制限される。
次に、仮想的な撮像済み部位の外側に新たに注視点を設定した上で、注視点を用いて上述した処理を繰り返し、仮想的な撮像済み部位をメモリに追加的に記憶する。新たな注視点の設定および仮想的な撮像済み部位のメモリへの記憶は、仮想的な撮像済み部位がワーク全体を含むようになるまで繰り返す。これにより、輪郭線全体の計測を行うことができる。この場合、互いに隣接する仮想的な撮像済み部位は、その間に未撮像の部位が存在しないように、一部重複することが好ましい。注視点は、仮想的な撮像済み部位の重複状態を評価しながら逐次的に求めてもよい。
目標位置の設定方法は上述したものに限らない。例えば、目標位置から次の目標位置までのアーム先端部の移動距離を考慮して目標位置を定めてもよい。目標位置の設定にあたっては、ロボットの可動範囲を考慮することが好ましい。
図16に示す評価部22は、アーム先端部の目標位置の妥当性を評価する。図17は、主に評価部22における処理の一例を示すフローチャートである。このフローチャートに示す処理は、例えば撮像位置算出部21によりアーム先端部の目標位置が算出される度に開始される。
ステップS21では、一対のカメラ3A,3Bが取り付けられているロボット60(図14)またはワーク2を把持しているロボット60(図15)のアーム先端部を、目標位置に仮想的に移動させる。ステップS22では、アーム先端部を目標位置に仮想的に移動した状態で、ワーク2の基準輪郭線を第1のカメラ3Aの撮像面30Aと第2のカメラの撮像面に投影し、仮の基準輪郭線像を算出する。
ステップS23では、第1のカメラ3Aと第2のカメラ3Bの共通視野内に複数のエピポーラ面ESを生成する。エピポーラ面ESは、図4のステップS1と同様に所定間隔で生成してもよいし、図13のステップS15と同様に仮の基準輪郭線像上に所定間隔で複数の点を生成し、これらの点を通るようにエピポーラ面ESを生成してもよい。ステップS24では、複数のエピポーラ面ESとカメラ30A,30Bの撮像面30A,30Bとが交差する複数のエピポーラ線ELを算出する。
ステップS25では、仮の基準輪郭線像と複数のエピポーラ線ELとが交差する複数の交点を算出する。ステップS26では、各交点における、仮の基準輪郭線像とエピポーラ線ELとの交差角度を算出する。例えば、仮の基準輪郭線像の角度からエピポーラ線ELの角度を減算したものを交差角度とし、交差角度が90°より大きい場合は180°を減算して、交差角度の範囲が、−90°以上90°以下の範囲になるようにする。
ステップS27では、ステップS26で算出した交差角度に基づき目標位置が妥当か否かを判定する。例えば、全ての交点における交差角度の絶対値が所定角度よりも大きければ、エピポーラ線ELと基準輪郭線像とが平行または平行に近い場合が除外されるため、目標位置が妥当であると判定する。交差角度の絶対値が所定角度以下である交点の個数、あるいは交差角度の絶対値が所定角度以下である交点の個数の交点全体に対する割合に基づき、目標位置の妥当性を評価することもできる。予め輪郭線を計測したい部位を指定し、その部位における交点の交差角度の絶対値が所定角度よりも大きいときに、目標位置が妥当である判定してもよい。
ステップS27が肯定されると、処理を終了する。その後、ロボット制御装置65は、評価部22により妥当であると評価された目標位置へロボット60のアーム先端部を移動する。一方、ステップS27が否定されるとステップS28に進む。
ステップS28では、撮像位置算出部21が、交差角度の絶対値を大きくするような新たな目標位置を算出し、ステップS21に戻る。新たな目標位置は例えば、以下のように算出することができる。まず、第1のカメラの光軸の向きを表すベクトルと第2のカメラの光軸の向きを表すベクトルの和を算出する。次に、このベクトルの和を回転軸として、回転軸を中心にしてアーム先端部を回転させる。この場合の回転角度は、例えば予め設定したステップ角度、あるいは0〜90°の範囲を複数回に分割できるステップ角度とすればよい。回転角度を−90°〜90°の範囲でステップ角度づつ増加または減少させることで、評価部22で妥当であると評価される目標位置を探索する。もしくは、−90°または90°に交差角度の平均値または中央値または最頻値を加算した値を、回転角度としてもよい。アーム先端部の回転方向はいずれの方向であってもよく、ロボット60の位置姿勢や、移動等を考慮して回転方向を決定すればよい。どちらにも回転可能な場合は、回転角度の絶対値が小さい方向を選択すればよい。
アーム先端部を回転しても全ての交点の交差角を一度で十分に大きくできない場合、目標位置を複数設定し、各目標位置において輪郭線上の3次元点の計測を行うようにしてもよい。例えば、交差角度が−90〜90°の範囲に均等に分布している場合には、交点の交差角を一度で十分に大きくできないため、この方法が有効である。
以上では、ロボット制御装置65と視覚センサ制御装置5とを別々に設けたが(図14、図15)、視覚センサ制御装置5をロボット制御装置65内に設けることもできる。図18は、その一例を示す図である。図18に示すように、ロボット制御装置65内には、ロボット制御部651と、視覚センサ制御装置5とが設けられている。ロボット制御部61には、ロボット60の動作に関する各種指令を入力するロボット操作盤652と、ロボット60とが接続されている。
−変形例−
上記第1の実施形態および第2の実施形態は、さらに以下のような変形が可能である。ワークの位置姿勢を計測する位置姿勢計測部(例えば3次元計測センサ)を追加的に設け、位置計測部で計測されたワーク2の位置姿勢を輪郭線情報記憶部7に記憶するようにしてもよい。この場合、例えば基準輪郭線像算出部14が、計測されたワーク2の位置姿勢に基づいて、輪郭線情報記憶部7に記憶されたワークの位置情報を変更し、変更後のワーク位置情報による基準輪郭線をカメラ画像上に投影すればよい。これにより、輪郭線情報記憶部7に記憶されたワーク位置とは異なる位置にワーク2が配置されていたとしても、ワーク2の輪郭線を適切に検出することができる。
上記第1の実施形態および第2の実施形態は、さらに以下のような変形が可能である。ワークの位置姿勢を計測する位置姿勢計測部(例えば3次元計測センサ)を追加的に設け、位置計測部で計測されたワーク2の位置姿勢を輪郭線情報記憶部7に記憶するようにしてもよい。この場合、例えば基準輪郭線像算出部14が、計測されたワーク2の位置姿勢に基づいて、輪郭線情報記憶部7に記憶されたワークの位置情報を変更し、変更後のワーク位置情報による基準輪郭線をカメラ画像上に投影すればよい。これにより、輪郭線情報記憶部7に記憶されたワーク位置とは異なる位置にワーク2が配置されていたとしても、ワーク2の輪郭線を適切に検出することができる。
3次元計測センサは、架台などに固定して設置してもよく、ロボット60のアーム先端部に装着してもよい。一対のカメラ3A,3Bの少なくとも一方が3次元計測センサの機能を有するようにしてもよい。3次元計測センサとしては、レーザスキャンセンサやステレオカメラを用いることができる。力センサによる3点タッチアップ方式を利用して、あるいは2次元カメラにより、ワーク2の位置姿勢を計測することもできる。ワーク2の位置姿勢は、6軸方向(直交3軸方向および回転3軸方向)の成分(6つの成分)によって定まるが、3次元計測センサにより一部の成分だけを計測してもよい。なお、3次元計測センサでワーク2の位置姿勢を計測しても、ワーク2には固定差があるため、ワーク2の3次元輪郭線形状を正確に求めることはできない。
上記実施形態(図14、図15)では、ロボットシステムが一対のカメラ3A,3Bにより一対のカメラ画像を得るようにしたが、単一のカメラ3(例えば第1のカメラ3A)で一対のカメラ画像を得ることもでき、これによりコストを低減できる。この場合、単一のカメラ3が取り付けられているロボット(図14)のアーム先端部を、ワーク2に対する一対のカメラ3A,3Bの相対位置姿勢に対応する第1の位置及び第2の位置に順次移動するか、ワーク2を把持しているロボット(図16)のアーム先端部を、一対のカメラ3A,3Bに対するワーク2の相対位置姿勢に対応する第1の位置及び第2の位置に順次移動して、第1の位置および第2の位置でそれぞれワーク2を撮像することで、一対のカメラ3A,3Bのカメラ画像に相当するカメラ画像を取得すればよい。
単一のカメラ3Aを用いる場合、一対のカメラ3A,3Bの相対位置が一定であるとして第1の位置および第2の位置を決定してもよく、相対位置がワーク2の撮像部位に応じて変更されるように第1の位置および第2の位置を決定してもよい。単一のカメラ3Aを用いてワーク2の輪郭線を複数回に分けて撮像する場合には、複数の第1の位置および複数の第2の位置でそれぞれワークを撮像する。この場合、第1の位置と第2の位置での撮像を繰り返し交互に行うのではなく、複数の第1の位置で撮像した後、複数の第2の位置で撮像してもよい。これによりロボット60の移動量を低減することができ、輪郭線の計測を効率よく行うことができる。
上記実施形態では、対応点選択部17での処理により、エッジ点ペアの候補である第1のエッジ点群および第2のエッジ点群の中から、互いに対応する第1のエッジ点EPおよび第2のエッジ点EPを選択した。このとき、エッジ点EPを通るエッジ線50の傾きと、エッジ点EPに対応する最近傍点NPにおける基準輪郭線像40の傾きとの差を演算し、この差が所定角度以上となるエッジ点EPをエッジ点ペアの候補から除外してもよい。すなわち、対応点選択部17は、傾きの差が所定角度より小さいことを条件として一対のエッジ点を選択するようにしてもよい。これによりエッジ点EPと最近傍点NPとが良好に対応し、最近傍点NPを介して正確な一対のエッジ点ペアを選択することができる。
また、上記実施形態では、エッジ線抽出部15が、カメラ画像上のエッジ線50から、第1のエッジ点群および第2のエッジ点群を求めるためのエッジ線50を抽出するようにしたが、エッジ点EPにおけるエッジ線50の明暗の向きと、最近傍点NPにおける基準輪郭線像40の明暗の向きとが一致するようなエッジ線50を抽出するようにしてもよい。ここで、明暗の向きとは、基準輪郭線像40およびエッジ線50を境界とする2つの領域でどちらが明るいかを示すものである。例えば、エッジ線50の傾きを2次元ベクトルaで表すと、aと−aは、エッジ線50の傾きは等しいが明暗の向きは異なることを意味する。
明暗の向きは、基準輪郭線像40の近傍の明暗情報およびエッジ線50の近傍の明暗情報により特定できる。基準輪郭線像40の近傍の明暗情報は、基準輪郭線の情報として予め輪郭線情報記憶部7に記憶されている。一方、エッジ線50の明暗情報は、カメラ画像により取得できる。このようにエッジ線50と基準輪郭線像40との明暗の向きを考慮してエッジ線50を抽出することで、基準輪郭線像40を介してエッジ点ペアを選択する際に、正しいエッジ点ペアを選択することができる。
上記実施形態では、一対のカメラ画像上の基準輪郭線像40(第1の基準輪郭線像、第2の基準輪郭線像)の近傍にエッジ線検出領域41(第1の画像処理領域、第2の画像処理領域)を設定し、このエッジ線検出領域内でエッジ線50(第1のエッジ線、第2のエッジ線)を抽出するようにしたが、画像処理領域を設定せずにエッジ線50を抽出してもよく、エッジ線抽出部15の構成は上述したものに限らない。画像処理部10における一部の処理(例えば目標位置の設定や評価)は、オフラインシミュレーション装置を用いて行うことができる。
上記実施形態では、輪郭線計測装置によりワーク2の輪郭線を計測するようにしたが、他の対象物の輪郭線も同様に計測することができる。上記実施形態では、一対のカメラ画像上の互いに対応する一対のエッジ点を求める際に、予め基準線情報記憶部7に記憶された3次元の基準輪郭線を設定するようにしたが、基準輪郭線設定部の構成はこれに限らない。ワーク2に対するカメラ3A,3Bの相対位置姿勢を変更可能とするのであれば、ロボットシステムを構成するロボット60の構成はいかなるものでもよい。
上記実施形態では、一対のカメラ画像上のエッジ点EP(第1のエッジ点、第2のエッジ点)に対応する最近傍点NPをそれぞれ、さらに各々の最近傍点NPに対応する基準輪郭線像(第1の基準輪郭線像、第2の基準輪郭線像)上の投影元点(第1の投影元点、第2の投影元点)をそれぞれ求め、第1の投影元点と第2の投影元点との位置関係に基づき一対のエッジ点を選択するようにしたが、対応点選択部17の構成はこれに限らない。すなわち、一対のカメラ画像上のエッジ線50(第1のエッジ線、第2のエッジ線)と複数のエピポーラ線ELとの交点である複数の第1のエッジ点EPおよび複数の第2のエッジ点EPの中から、互いに同一のエピポーラ面ESを用いて生成され、かつ、基準輪郭線の互いに同一部位に対応する第1のエッジ点EPと第2のエッジ点EPとからなる一対のエッジ点を選択するのであれば、対応点選択部17による処理は、図4のステップS7の処理に限定されない。また、複数の第1のエッジ点EPと複数の第2のエッジ点EPの中から、第1のエッジ点EPとこの第1のエッジ点EPから求められた第2のエッジ点EPとからなり、基準輪郭線の互いに同一部位に対応する一対のエッジ点EPを選択するのであれば、対応点選択部17による処理は、図13のステップS17の処理に限定されない。
以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態および変形例の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。すなわち、本発明の技術的思想の範囲内で考えられる他の形態についても、本発明の範囲内に含まれる。また、上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能である。
3,3A,3B カメラ
11 エピポーラ面生成部
12 エピポーラ線算出部
13 カメラ制御部
14 基準輪郭線像算出部
15 エッジ線抽出部
16 エッジ点生成部
17 対応点選択部
18 3次元点算出部
21 撮像位置算出部
22 評価部
40 基準輪郭線像
41 エッジ線検出領域
50 エッジ線
60 ロボット
65 ロボット制御装置
100 輪郭線計測装置
ES エピポーラ面
EL エピポーラ線
EP エッジ点
11 エピポーラ面生成部
12 エピポーラ線算出部
13 カメラ制御部
14 基準輪郭線像算出部
15 エッジ線抽出部
16 エッジ点生成部
17 対応点選択部
18 3次元点算出部
21 撮像位置算出部
22 評価部
40 基準輪郭線像
41 エッジ線検出領域
50 エッジ線
60 ロボット
65 ロボット制御装置
100 輪郭線計測装置
ES エピポーラ面
EL エピポーラ線
EP エッジ点
Claims (13)
- 対象物を撮像して第1の対象物画像および第2の対象物画像をそれぞれ取得する第1のカメラおよび第2のカメラと、
前記第1のカメラおよび前記第2のカメラの位置姿勢に基づき、前記対象物と交差するような複数のエピポーラ面を生成するエピポーラ面生成部と、
前記複数のエピポーラ面を前記第1のカメラの撮像面および前記第2のカメラの撮像面に投影した複数のエピポーラ線を算出するエピポーラ線算出部と、
前記対象物の3次元の基準輪郭線を設定する基準輪郭線設定部と、
前記基準輪郭線を前記第1のカメラの撮像面および前記第2のカメラの撮像面に投影した第1の基準輪郭線像および第2の基準輪郭線像をそれぞれ算出する基準輪郭線像算出部と、
前記第1の基準輪郭線像の近傍に第1の画像処理領域を設定し、該第1の画像処理領域内の前記第1の対象物画像から前記対象物の輪郭線の画像である第1のエッジ線を抽出する一方、前記第2の基準輪郭線像の近傍に第2の画像処理領域を設定し、該第2の画像処理領域内の前記第2の対象物画像から前記対象物の輪郭線の画像である第2のエッジ線を抽出するエッジ線抽出部と、
前記第1のエッジ線と前記複数のエピポーラ線との交点である複数の第1のエッジ点および前記第2のエッジ線と前記複数のエピポーラ線との交点である複数の第2のエッジ点をそれぞれ生成するエッジ点生成部と、
前記複数の第1のエッジ点および前記複数の第2のエッジ点の中から、互いに同一の前記エピポーラ面を用いて生成された第1のエッジ点および第2のエッジ点であり、かつ、前記基準輪郭線の互いに同一部位に対応する第1のエッジ点と第2のエッジ点とからなる一対のエッジ点を選択する対応点選択部と、
前記一対のエッジ点を通る前記第1のカメラの視線と前記第2のカメラの視線とに基づき前記対象物の輪郭線上の3次元点を算出する3次元点算出部と、を備えることを特徴とする輪郭線計測装置。 - 対象物を撮像して第1の対象物画像および第2の対象物画像をそれぞれ取得する第1のカメラおよび第2のカメラと、
前記対象物の3次元の基準輪郭線を設定する基準輪郭線設定部と、
前記基準輪郭線を前記第1のカメラの撮像面および前記第2のカメラの撮像面にそれぞれ投影した第1の基準輪郭線像および第2の基準輪郭線像をそれぞれ算出する基準輪郭線像算出部と、
前記第1の基準輪郭線像の近傍に第1の画像処理領域を設定し、該第1の画像処理領域内の前記第1の対象物画像から前記対象物の輪郭線の画像である第1のエッジ線を抽出する一方、前記第2の基準輪郭線像の近傍に第2の画像処理領域を設定し、該第2の画像処理領域内の前記第2の対象物画像から前記対象物の輪郭線の画像である第2のエッジ線を抽出するエッジ線抽出部と、
前記第1のエッジ線上に複数の第1のエッジ点を生成する第1のエッジ点生成部と、
前記第1のカメラおよび前記第2のカメラの位置姿勢に基づき、前記複数の第1のエッジ点をそれぞれ通る複数のエピポーラ面を生成するエピポーラ面生成部と、
前記複数のエピポーラ面を前記第2のカメラの撮像面に投影した複数のエピポーラ線を算出するエピポーラ線算出部と、
前記複数のエピポーラ線と前記第2のエッジ線との交点である複数の第2のエッジ点を生成する第2のエッジ点生成部と、
前記複数の第1のエッジ点と前記複数の第2のエッジ点の中から、第1のエッジ点と、該第1のエッジ点から求められた第2のエッジ点とからなる一対のエッジ点であって、前記基準輪郭線の互いに同一部位に対応する一対のエッジ点を選択する対応点選択部と、
前記一対のエッジ点を通る前記第1のカメラの視線および前記第2のカメラの視線に基づき前記対象物の輪郭線上の3次元点を算出する3次元点算出部と、を備えることを特徴とする輪郭線計測装置。 - 請求項1または2に記載の輪郭線計測装置において、
前記対象物の位置姿勢を計測する位置姿勢計測部をさらに備え、
前記基準輪郭線設定部は、前記位置姿勢計測部により計測された前記対象物の位置姿勢に基づいて前記基準輪郭線の位置姿勢を変更することを特徴とする輪郭線計測装置。 - 請求項1〜3のいずれか1項に記載の輪郭線計測装置において、
前記対応点選択部は、前記複数のエピポーラ面それぞれの前記基準輪郭線との交点を全て求め、1つのエピポーラ面に対し、該交点が複数存在する場合には、該エピポーラ面に対する該交点が1つになるように該エピポーラ面を分割し、該分割したエピポーラ面に対応するエッジ点から互いに同一部位に対応する一対のエッジ点を選択することを特徴とする輪郭線計測装置。 - 請求項1〜4のいずれか1項に記載の輪郭線計測装置において、
前記対応点選択部は、前記複数の第1のエッジ点のそれぞれについて、該第1のエッジ点に対応する前記第1の基準輪郭線像上の最近傍点を算出するとともに、該最近傍点を通る前記第1のカメラからの視線と前記基準輪郭線との交点を第1の投影元点として算出する一方、前記複数の第2のエッジ点のそれぞれについて、該第2のエッジ点に対応する前記第2の基準輪郭線像上の最近傍点を算出するとともに、該最近傍点を通る前記第2のカメラからの視線と前記基準輪郭線との交点を第2の投影元点として算出し、さらに、前記第1の投影元点と前記第2の投影元点との位置関係に基づき、前記一対のエッジ点を選択することを特徴とする輪郭線計測装置。 - 請求項5に記載の輪郭線計測装置において、
前記対応点選択部は、前記第1のエッジ線の傾きと該第1のエッジ線に対応する前記最近傍点における前記第1の基準輪郭線像の傾きとの差、および前記第2のエッジ線の傾きと該第2のエッジ線に対応する前記最近傍点における前記第2の基準輪郭線像の傾きとの差が所定角度より小さいことを条件として前記一対のエッジ点を選択することを特徴とする輪郭線計測装置。 - 請求項1〜6のいずれか1項に記載の輪郭線計測装置において、
前記第1の基準輪郭線像および前記第2の基準輪郭線像は、それぞれ前記第1の基準輪郭線像の近傍および前記第2の基準輪郭線像の近傍における画像の明暗情報を含み、
前記エッジ線抽出部は、前記第1のエッジ線の近傍および前記第2のエッジ線の近傍における画像の明暗の方向が、前記明暗情報によって得られる前記第1の基準輪郭線像の近傍および前記第2の基準輪郭線像の近傍における明暗の方向と一致するような第1のエッジ線および第2のエッジ線を抽出することを特徴とする輪郭線計測装置。 - ロボットと、
該ロボットを制御するロボット制御部と、
請求項1〜7のいずれか1項に記載の輪郭線計測装置と、を備えるロボットシステムであって、
前記輪郭線計測装置を構成する第1のカメラおよび第2のカメラは前記ロボットのアーム先端部に取り付けられ、または前記第1のカメラおよび前記第2のカメラにより撮像される対象物は前記ロボットのアーム先端部で把持されることを特徴とするロボットシステム。 - 請求項8に記載のロボットシステムにおいて、
前記ロボットのアーム先端部の目標位置を算出する撮像位置算出部をさらに備え、
前記ロボット制御部は、前記ロボットのアーム先端部を前記目標位置へ移動し、
前記第1のカメラおよび前記第2のカメラは、前記ロボットのアーム先端部が前記目標位置に移動した状態で、前記対象物を撮像することを特徴とするロボットシステム。 - 請求項9に記載のロボットシステムにおいて、
前記撮像位置算出部は、前記第1のカメラおよび前記第2のカメラにより前記対象物を複数回に分けて撮像するように複数の前記目標位置を算出し、
前記ロボット制御部は、前記ロボットのアーム先端部を前記複数の目標位置へ順次移動し、
前記第1のカメラおよび前記第2のカメラは、前記ロボットのアーム先端部が前記複数の目標位置に移動する度に、前記対象物を撮像することを特徴とするロボットシステム。 - 請求項9または10に記載のロボットシステムにおいて、
前記ロボットのアーム先端部の目標位置の妥当性を評価する評価部をさらに備え、
前記評価部は、前記ロボットのアーム先端部が前記目標位置へ移動したと仮定して、該目標位置において前記対象物の基準輪郭線を前記第1のカメラの撮像面および前記第2のカメラの撮像面に投影した第1の基準輪郭線像および第2の基準輪郭線像をそれぞれ算出するとともに、前記第1の基準輪郭線像と前記エピポーラ線との交点における交差角度および前記第2の基準輪郭線像と前記エピポーラ線との交点における交差角度をそれぞれ算出し、全ての前記交点における前記交差角度が所定角度よりも大きければ、前記目標位置が妥当であると評価し、
前記ロボット制御部は、前記評価部により妥当であると評価された前記目標位置へ前記ロボットのアーム先端部を移動することを特徴とするロボットシステム。 - 請求項11に記載のロボットシステムにおいて、
前記撮像位置算出部は、前記評価部により前記目標位置が妥当でないと評価されると、前記交差角度を大きくするような新たな目標位置を算出することを特徴とするロボットシステム。 - 請求項8〜12のいずれか1項に記載のロボットシステムにおいて、
前記第1のカメラおよび前記第2のカメラは、単一のカメラにより構成され、
前記ロボット制御部は、前記単一のカメラと前記対象物の相対位置関係が異なる位置姿勢で前記第1の対象物画像および前記第2の対象物画像を取得するように、前記ロボットのアーム先端部を移動することを特徴とするロボットシステム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014190182A JP5911934B2 (ja) | 2014-09-18 | 2014-09-18 | 輪郭線計測装置およびロボットシステム |
US14/851,158 US9672630B2 (en) | 2014-09-18 | 2015-09-11 | Contour line measurement apparatus and robot system |
DE102015011914.1A DE102015011914B4 (de) | 2014-09-18 | 2015-09-11 | Konturlinienmessvorrichtung und Robotersystem |
CN201510599190.8A CN105444691B (zh) | 2014-09-18 | 2015-09-18 | 轮廓线测量装置以及机器人系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014190182A JP5911934B2 (ja) | 2014-09-18 | 2014-09-18 | 輪郭線計測装置およびロボットシステム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016061687A JP2016061687A (ja) | 2016-04-25 |
JP5911934B2 true JP5911934B2 (ja) | 2016-04-27 |
Family
ID=55444855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014190182A Active JP5911934B2 (ja) | 2014-09-18 | 2014-09-18 | 輪郭線計測装置およびロボットシステム |
Country Status (4)
Country | Link |
---|---|
US (1) | US9672630B2 (ja) |
JP (1) | JP5911934B2 (ja) |
CN (1) | CN105444691B (ja) |
DE (1) | DE102015011914B4 (ja) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10290118B2 (en) * | 2015-08-06 | 2019-05-14 | Cognex Corporation | System and method for tying together machine vision coordinate spaces in a guided assembly environment |
US9445081B1 (en) * | 2015-09-25 | 2016-09-13 | Intel Corporation | Method and system of 3D image capture with dynamic cameras |
US10003786B2 (en) | 2015-09-25 | 2018-06-19 | Intel Corporation | Method and system of 3D image capture with dynamic cameras |
JP6088679B1 (ja) * | 2016-02-19 | 2017-03-01 | ファナック株式会社 | カメラの画像により故障を判定するロボットシステムの故障診断装置 |
DE102016005699B3 (de) * | 2016-05-12 | 2017-05-18 | Carl Zeiss Automated Inspection GmbH | Verfahren zum Kalibrieren einer Messvorrichtung zur Vermessung von Karosserieteilen und anderen Werkstücken sowie zur Durchführung des Verfahrens geeignete Messvorrichtung |
CN107442973B (zh) * | 2016-05-30 | 2020-06-16 | 上海气焊机厂有限公司 | 基于机器视觉的焊道定位方法及装置 |
JP6721211B2 (ja) * | 2016-06-02 | 2020-07-08 | ヤマハファインテック株式会社 | 位置決め装置及び穿孔装置 |
DE102016112197B4 (de) * | 2016-07-04 | 2018-05-24 | Asm Assembly Systems Gmbh & Co. Kg | Verfahren und Vorrichtung zum stereoskopischen Bestimmen von einer Information bezüglich der Höhenlage der Vorderseite eines Anschlusses |
CN106441148A (zh) * | 2016-08-31 | 2017-02-22 | 成都铁安科技有限责任公司 | 固定方法、固定机架与火车车轮外形测量系统 |
JP6858878B2 (ja) * | 2017-02-28 | 2021-04-14 | クオリティー ヴィジョン インターナショナル インコーポレイテッドQuality Vision International, Inc. | 3dモデルの試験対象物への自動アライメント |
WO2018173178A1 (ja) * | 2017-03-23 | 2018-09-27 | 株式会社Fuji | ロボットシステム |
CN107144236A (zh) * | 2017-05-25 | 2017-09-08 | 西安交通大学苏州研究院 | 一种机器人自动扫描仪及扫描方法 |
JP2019084609A (ja) * | 2017-11-06 | 2019-06-06 | セイコーエプソン株式会社 | ロボット制御装置、ロボットおよびロボットシステム |
TWI645157B (zh) * | 2017-11-24 | 2018-12-21 | 國立高雄應用科技大學 | 工件輪廓的光學量測系統及量測方法 |
CN108133477A (zh) * | 2017-12-29 | 2018-06-08 | 深圳市越疆科技有限公司 | 一种物体检测方法及智能机械臂 |
JP7240115B2 (ja) * | 2018-08-31 | 2023-03-15 | キヤノン株式会社 | 情報処理装置及びその方法及びコンピュータプログラム |
JP6836561B2 (ja) | 2018-09-20 | 2021-03-03 | ファナック株式会社 | 画像処理装置及び画像処理方法 |
JP6871220B2 (ja) | 2018-11-08 | 2021-05-12 | ファナック株式会社 | 制御システム |
JP7318377B2 (ja) * | 2019-07-10 | 2023-08-01 | 株式会社Soken | 物体検知装置 |
JP7396872B2 (ja) * | 2019-11-22 | 2023-12-12 | ファナック株式会社 | 拡張現実を用いたシミュレーション装置及びロボットシステム |
EP4131173B1 (en) | 2020-03-30 | 2025-07-16 | Panasonic Intellectual Property Management Co., Ltd. | Imaging instruction method, imaging method, imaging instruction device, and imaging device |
JP7618472B2 (ja) * | 2020-03-31 | 2025-01-21 | 株式会社ユーシン精機 | 金型及びアタッチメントの法線ベクトルの推定方法及びシステム |
CN113340230A (zh) * | 2021-04-26 | 2021-09-03 | 西安交通大学 | 一种升降式的多视角三维轮廓测量系统及工作方法 |
CN114229396B (zh) * | 2022-02-18 | 2022-05-13 | 深圳市创新特科技有限公司 | 电路板取放位置校正装置及校正方法 |
US12017371B2 (en) | 2022-03-15 | 2024-06-25 | Fanuc Corporation | Efficient and robust line matching approach |
CN115278080A (zh) * | 2022-07-28 | 2022-11-01 | 北京五八信息技术有限公司 | 一种蒙版生成方法、设备及存储介质 |
CN116245898A (zh) * | 2022-12-05 | 2023-06-09 | 网易(杭州)网络有限公司 | 模型边缘的提取方法、装置、电子设备及存储介质 |
DE102023105231B4 (de) * | 2023-03-03 | 2024-10-02 | Precitec Gmbh & Co. Kg | Verfahren zur Laserbearbeitung und Laserbearbeitungssystem |
CN117115450A (zh) * | 2023-08-10 | 2023-11-24 | 江苏佰匠科技有限公司 | 一种机器视觉信息处理方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001183133A (ja) * | 1999-12-22 | 2001-07-06 | Sony Corp | 3次元形状計測装置および方法、並びに記録媒体 |
CN1203292C (zh) | 2003-08-15 | 2005-05-25 | 清华大学 | 测量物体三维表面轮廊的方法 |
JP5093653B2 (ja) * | 2007-06-21 | 2012-12-12 | 株式会社ニコン | 測距装置およびその測距方法 |
JP5713624B2 (ja) | 2009-11-12 | 2015-05-07 | キヤノン株式会社 | 三次元計測方法 |
JP5671281B2 (ja) * | 2010-08-20 | 2015-02-18 | キヤノン株式会社 | 位置姿勢計測装置、位置姿勢計測装置の制御方法及びプログラム |
JP5744587B2 (ja) * | 2011-03-24 | 2015-07-08 | キヤノン株式会社 | ロボット制御装置、ロボット制御方法、プログラム及び記録媒体 |
JP2012202732A (ja) * | 2011-03-24 | 2012-10-22 | Dainippon Screen Mfg Co Ltd | 3次元位置・姿勢認識装置、3次元位置・姿勢認識方法、3次元位置・姿勢認識プログラム |
JP5858773B2 (ja) | 2011-12-22 | 2016-02-10 | キヤノン株式会社 | 3次元計測方法、3次元計測プログラム及びロボット装置 |
CN103075973A (zh) | 2012-12-31 | 2013-05-01 | 吉林大学 | 车身缝隙尺寸非接触在线检测方法 |
JP5845212B2 (ja) | 2013-06-28 | 2016-01-20 | ファナック株式会社 | 視覚センサ及び力センサを備えたバリ取り装置 |
-
2014
- 2014-09-18 JP JP2014190182A patent/JP5911934B2/ja active Active
-
2015
- 2015-09-11 DE DE102015011914.1A patent/DE102015011914B4/de active Active
- 2015-09-11 US US14/851,158 patent/US9672630B2/en active Active
- 2015-09-18 CN CN201510599190.8A patent/CN105444691B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
US9672630B2 (en) | 2017-06-06 |
US20160086343A1 (en) | 2016-03-24 |
JP2016061687A (ja) | 2016-04-25 |
DE102015011914B4 (de) | 2022-02-03 |
CN105444691A (zh) | 2016-03-30 |
DE102015011914A1 (de) | 2016-03-24 |
CN105444691B (zh) | 2017-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5911934B2 (ja) | 輪郭線計測装置およびロボットシステム | |
CN108965690B (zh) | 图像处理系统、图像处理装置及计算机可读存储介质 | |
JP6465789B2 (ja) | デプスカメラの内部パラメータを算出するプログラム、装置及び方法 | |
JP5602392B2 (ja) | 情報処理装置、情報処理方法およびプログラム | |
JP5624394B2 (ja) | 位置姿勢計測装置、その計測処理方法及びプログラム | |
JP6363863B2 (ja) | 情報処理装置および情報処理方法 | |
WO2012053521A1 (ja) | 光学情報処理装置、光学情報処理方法、光学情報処理システム、光学情報処理プログラム | |
CN108700408B (zh) | 三维形状数据及纹理信息生成系统、方法及拍摄控制方法 | |
KR20140008262A (ko) | 로봇 시스템, 로봇, 로봇 제어 장치, 로봇 제어 방법 및 로봇 제어 프로그램 | |
JP2013513095A (ja) | 物体の改善されたステレオ画像を得る方法およびシステム | |
JP2020047049A (ja) | 画像処理装置及び画像処理方法 | |
JP2021193400A (ja) | アーチファクトを測定するための方法 | |
JP2017033429A (ja) | 3次元物体検査装置 | |
WO2014108976A1 (ja) | 物体検出装置 | |
JP6420530B2 (ja) | 情報処理装置、計測システム、制御システム、光量決定方法、プログラム及び記憶媒体 | |
US20230070281A1 (en) | Methods and systems of generating camera models for camera calibration | |
JP6973233B2 (ja) | 画像処理システム、画像処理装置および画像処理プログラム | |
JP7427370B2 (ja) | 撮像装置、画像処理装置、画像処理方法、撮像装置の校正方法、ロボット装置、ロボット装置を用いた物品の製造方法、制御プログラムおよび記録媒体 | |
WO2022124232A1 (ja) | 画像処理システム及び画像処理方法 | |
JP2015007639A (ja) | 情報処理装置、情報処理方法およびプログラム | |
JP2011257293A (ja) | 情報処理装置、プログラム、および情報処理システム | |
CN117881959A (zh) | 外观检查装置以及外观检查方法 | |
JP2000205821A (ja) | 三次元形状計測装置及びその三次元形状計測方法 | |
JP5610579B2 (ja) | 3次元寸法測定装置 | |
JP4351090B2 (ja) | 画像処理装置および画像処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160330 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5911934 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |