JP5904485B2 - Method for manufacturing artificial joint member - Google Patents
Method for manufacturing artificial joint member Download PDFInfo
- Publication number
- JP5904485B2 JP5904485B2 JP2011274765A JP2011274765A JP5904485B2 JP 5904485 B2 JP5904485 B2 JP 5904485B2 JP 2011274765 A JP2011274765 A JP 2011274765A JP 2011274765 A JP2011274765 A JP 2011274765A JP 5904485 B2 JP5904485 B2 JP 5904485B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- artificial joint
- aluminum
- metal substrate
- joint member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title description 3
- 239000000758 substrate Substances 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 28
- 239000000843 powder Substances 0.000 claims description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 16
- 239000002344 surface layer Substances 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- 239000010410 layer Substances 0.000 claims description 13
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 7
- 229910000765 intermetallic Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 6
- 239000007921 spray Substances 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 16
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001257 Nb alloy Inorganic materials 0.000 description 2
- 229910010039 TiAl3 Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010525 oxidative degradation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910021362 Ti-Al intermetallic compound Inorganic materials 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical class [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Description
この発明は、人工関節部材とその製造方法に関するものである。この人工関節部材は、人工関節の摺動部に好適に利用されうる。 The present invention relates to an artificial joint member and a manufacturing method thereof. This artificial joint member can be suitably used for the sliding portion of the artificial joint.
人工関節は、全体的に高い破壊靭性が要請されるとともに、その摺動部には耐摩耗性が要請されることから、耐用年数を増すために、金属を基材とし、摺動部表面にアルミナやジルコニアなどの優れた耐摩耗性を示すセラミックスの膜を形成することが有効であると考えられている。 The artificial joint is required to have a high fracture toughness as a whole, and the sliding part is required to have wear resistance. Therefore, in order to increase the service life, a metal base material is used on the surface of the sliding part. It is considered effective to form a ceramic film exhibiting excellent wear resistance such as alumina and zirconia.
そこで、その手段として、TiAlの金属間化合物を酸素雰囲気中で加熱し、アルミニウムだけを酸化させる(特許文献1及び2)、Zr−Nb合金を表面酸化する(非特許文献1)、TiもしくはTi合金の基材の表面にアルミナ粉末を溶射する(特許文献3及び4、非特許文献2)、TiもしくはTi合金の基材の表面にアルミニウムを蒸着させるとともに酸素イオンを照射する(特許文献5及び6、非特許文献3)などの方法が提案されている。 Therefore, as a means, TiAl intermetallic compound is heated in an oxygen atmosphere to oxidize only aluminum (Patent Documents 1 and 2), Zr—Nb alloy is surface oxidized (Non-Patent Document 1), Ti or Ti Alumina powder is sprayed onto the surface of the alloy substrate (Patent Documents 3 and 4, Non-Patent Document 2). Aluminum is deposited on the surface of the Ti or Ti alloy substrate and oxygen ions are irradiated (Patent Documents 5 and 4). 6 and Non-Patent Document 3) have been proposed.
しかし、特許文献1、2に記載の方法で得られる部材は、基材のTi−Al金属間化合物が、脆く、低強度である。非特許文献1に記載の方法で得られる部材は、表面の酸化膜の厚さが薄く、更に基材のZr−Nb合金自体の強度が低い。特許文献3、4及び非特許文献2に記載の方法で得られる部材は、溶射時に基材の酸化劣化を生じるうえ、表面のアルミナ膜に熱応力を残存させることから、アルミナ膜の密着性に欠ける。特許文献5、6及び非特許文献3に記載の方法は、いずれも気相で膜形成を行うため、医療分野からの要請に見合う厚い膜の形成には不向きである。
それ故、この発明の課題は、高強度の金属基材と、その表面に形成されて緻密で高い硬度の表面層とが強固に結合することにより、人工関節の摺動部に適した部材を提供することにある。
However, in the member obtained by the methods described in Patent Documents 1 and 2, the Ti-Al intermetallic compound of the base material is brittle and has low strength. In the member obtained by the method described in Non-Patent Document 1, the thickness of the oxide film on the surface is thin, and the strength of the Zr—Nb alloy itself of the base material is low. The members obtained by the methods described in Patent Documents 3 and 4 and Non-Patent Document 2 cause oxidative degradation of the base material during thermal spraying and leave thermal stress in the alumina film on the surface. Lack. Since the methods described in Patent Documents 5 and 6 and Non-Patent Document 3 all perform film formation in the gas phase, they are not suitable for forming a thick film that meets the demand from the medical field.
Therefore, an object of the present invention is to provide a member suitable for a sliding portion of an artificial joint by firmly bonding a high-strength metal substrate and a dense and hard surface layer formed on the surface thereof. It is to provide.
その課題を解決するために、この発明の人工関節部材は、
金属基材と、
その金属基材の表面に連続し、主として金属基材中の金属成分とアルミニウム及びジルコニウムのうちから選ばれる1種以上の成分との金属間化合物からなる中間層と、
その中間層の上に連続し、実質的にアルミナ及びジルコニアのうちから選ばれる1種以上の酸化物からなる緻密な表面層と
を備え、前記中間層と表面層との合計厚さが10μm〜5mmであることを特徴とする。
In order to solve the problem, the artificial joint member of the present invention is
A metal substrate;
An intermediate layer composed of an intermetallic compound that is continuous with the surface of the metal substrate and mainly includes a metal component in the metal substrate and one or more components selected from aluminum and zirconium;
A dense surface layer made of one or more oxides selected from alumina and zirconia, and having a total thickness of 10 μm to the intermediate layer. It is characterized by being 5 mm.
アルミナやジルコニアは、生体に害を及ぼさず、既に人工関節の摺動部材として臨床応用されており、優れた耐摩耗性を示す実績もある。この発明の人工関節部材によれば、表面層がアルミナ及びジルコニアのうちから選ばれる1種以上の酸化物からなるので、優れた耐摩耗性を示す。しかも表面層が主として金属基材中の金属成分とアルミニウム及びジルコニウムのうちから選ばれる1種以上の成分との金属間化合物からなる中間層を介して基材と接合しているので、基材との高い密着性を示す。尚、前記中間層と表面層との合計厚さが10μmに満たない場合は、摺動部で使用する過程において、摩耗により長期に機能を維持することが難しく、5mmを超えると緻密な膜を得ることが困難になる。 Alumina and zirconia do not harm the living body and have already been clinically applied as sliding members for artificial joints, and have a proven track record of excellent wear resistance. According to the artificial joint member of the present invention, since the surface layer is made of one or more oxides selected from alumina and zirconia, excellent wear resistance is exhibited. Moreover, since the surface layer is joined to the base material mainly through an intermediate layer composed of an intermetallic compound of a metal component in the metal base material and one or more components selected from aluminum and zirconium, High adhesion. In addition, when the total thickness of the intermediate layer and the surface layer is less than 10 μm, it is difficult to maintain the function for a long time due to wear in the process of using in the sliding portion, and when the thickness exceeds 5 mm, a dense film is formed. It becomes difficult to obtain.
この発明の人工関節部材を製造する適切な方法は、
金属基材を準備し、その金属基材の表面をアルミニウム及びジルコニウムのうちから選ばれる1種以上の成分からなる粉末で被覆し、真空もしくは不活性ガス中で加熱した後、被覆部分の少なくとも表面を酸化させることを特徴とする。
A suitable method for manufacturing the artificial joint member of the present invention is as follows.
A metal substrate is prepared, the surface of the metal substrate is coated with a powder comprising one or more components selected from aluminum and zirconium, heated in a vacuum or an inert gas, and then at least the surface of the coated portion It is characterized by oxidizing.
この方法では、金属基材の表面をアルミニウム及びジルコニウムのうちから選ばれる1種以上の成分からなる粉末で被覆し、真空もしくは不活性ガス中で加熱することにより、金属基材と粉末とが酸化することなく界面で反応し、双方の成分からなる中間層が金属基材に連続して形成される。次いで、被覆部分の少なくとも表面を酸化させることにより、アルミナ及びジルコニアのうちから選ばれる1種以上の酸化物からなる表面層が中間層に連続して形成される。得られる中間層は、金属基材に近いほど金属基材中の成分比率が高く、表面層に近いほどアルミニウム及び/又はジルコニウムの成分比率の高い傾斜組成を有し、基材と表面層の双方に強固に結合している。中間層及び表面層の合計厚さは、被覆する粉末の量で制御可能であり、粉末層の厚さとほぼ同等である。また、各層の厚さの比率は、酸化前の加熱時間及び酸化時間によって制御可能である。 In this method, the surface of the metal substrate is coated with a powder comprising one or more components selected from aluminum and zirconium, and the metal substrate and the powder are oxidized by heating in a vacuum or an inert gas. Without reaction, an intermediate layer composed of both components is continuously formed on the metal substrate. Next, by oxidizing at least the surface of the covering portion, a surface layer made of one or more oxides selected from alumina and zirconia is continuously formed on the intermediate layer. The obtained intermediate layer has a gradient composition in which the component ratio in the metal substrate is higher as it is closer to the metal substrate, and the component ratio of aluminum and / or zirconium is higher as it is closer to the surface layer. It is firmly bonded to. The total thickness of the intermediate layer and the surface layer can be controlled by the amount of powder to be coated, and is approximately equal to the thickness of the powder layer. Moreover, the ratio of the thickness of each layer is controllable by the heating time and oxidation time before oxidation.
前記金属基材が、チタン、チタン合金、コバルト−クロム合金、あるいはステンレスであることが望ましい。これらの部材は、ある程度の強度を有し、生体環境下で使用された実績を有しているからである。
前記表面層は、0.5%以下の気孔率、1000以上のビッカース硬度を有することが望ましい。気孔率が0.5%を超えると、気孔の一部が表面にも存在して平滑性が失われるため、摩耗が促進される。ビッカース硬度が1000に満たないときも、摩耗が促進される。
The metal substrate is preferably titanium, a titanium alloy, a cobalt-chromium alloy, or stainless steel. This is because these members have a certain degree of strength and have been used in a living environment.
The surface layer preferably has a porosity of 0.5% or less and a Vickers hardness of 1000 or more. If the porosity exceeds 0.5%, some of the pores are also present on the surface and the smoothness is lost, so that wear is promoted. Wear is also promoted when the Vickers hardness is less than 1000.
金属基材の表面を前記金属粉末で被覆する手段としては、コールドスプレー法が挙げられる。コールドスプレー法では、粉末を不活性ガスとともに超音速で基材に衝突させるので、粉末が酸化することなく基材上で塑性変形する。このため金属基材の表面が湾曲していても粉末を所望の厚さで緻密に堆積させることができる。真空装置を必要とせず、基材の酸化劣化や熱変質を生じることがなく、熱応力も残留しない。 As a means for coating the surface of the metal substrate with the metal powder, a cold spray method may be mentioned. In the cold spray method, since the powder collides with the base material at a supersonic speed together with the inert gas, the powder is plastically deformed on the base material without being oxidized. For this reason, even if the surface of the metal substrate is curved, the powder can be densely deposited with a desired thickness. There is no need for a vacuum device, no oxidative degradation or thermal alteration of the substrate occurs, and no thermal stress remains.
粉末で被覆された金属基材を加熱する雰囲気の温度は、粉末がアルミニウムからなるときは600℃以上1000℃以下、粉末がジルコニウムからなるときは700℃以上1100℃以下であることが望ましい。温度が低いと、金属基材と前記粉末とが反応しない。温度が高すぎると、反応層が深部まで拡散してしまい、後工程で前記表面層を構成する金属(アルミニウムやジルコニウム)を最表面に留めることができない。 The temperature of the atmosphere for heating the metal substrate coated with the powder is desirably 600 ° C. or higher and 1000 ° C. or lower when the powder is made of aluminum, and 700 ° C. or higher and 1100 ° C. or lower when the powder is made of zirconium. When the temperature is low, the metal substrate does not react with the powder. If the temperature is too high, the reaction layer diffuses to the deep part, and the metal (aluminum or zirconium) constituting the surface layer cannot be retained on the outermost surface in a later step.
被覆部分の少なくとも表面を酸化させる手段としては、酸素を含む雰囲気中で加熱する、酸素が多めのガスバーナーで加熱するなどの方法が挙げられる。そのときの表面温度は600℃以上1200℃以下であることが望ましい。これにより、酸素が表面のアルミニウム又はジルコニウムと反応してアルミナ又はジルコニアからなる表面層が形成される。酸素を含まない雰囲気では酸化が進まないが、酸素が過剰にあると基材の酸化も並行して進み、基材の強度低下につながる。温度が低いと、表面酸化が進行しない。温度が高すぎると、基材の酸化も並行して進み、基材の強度低下につながる。 Examples of means for oxidizing at least the surface of the covering portion include heating in an oxygen-containing atmosphere and heating with a gas burner containing a large amount of oxygen. The surface temperature at that time is desirably 600 ° C. or higher and 1200 ° C. or lower. Thereby, oxygen reacts with aluminum or zirconium on the surface to form a surface layer made of alumina or zirconia. Oxidation does not proceed in an atmosphere that does not contain oxygen. However, if oxygen is excessive, the substrate is also oxidized in parallel, leading to a decrease in strength of the substrate. When the temperature is low, surface oxidation does not proceed. If the temperature is too high, the oxidation of the substrate proceeds in parallel, leading to a decrease in strength of the substrate.
以上のように、この発明の人工関節部材は、金属基材の表面にアルミナ及びジルコニアのうちから選ばれる1種以上の酸化物からなる表面層を有することから、摺動部ではアルミナまたはジルコニアの優れた耐摩耗性を示す。一方、基材が金属であるから、高い破壊靱性を示す。このため、人工関節の摺動部に適用された場合、摩耗粉が少量しか発生せず、且つ割れやかけを生じることもなく、長期間、人工関節部材として機能することができる。 As described above, since the artificial joint member of the present invention has a surface layer made of one or more oxides selected from alumina and zirconia on the surface of the metal substrate, the sliding portion is made of alumina or zirconia. Excellent wear resistance. On the other hand, since the substrate is a metal, it exhibits high fracture toughness. For this reason, when it is applied to the sliding portion of the artificial joint, only a small amount of wear powder is generated, and it can function as an artificial joint member for a long period without causing cracks and cracks.
−実施形態1−
Ti−6Al−2Nb−1Ta合金からなり滑らかな曲面を有する基材を研磨し、アセトン、2−プロパノール、超純水で順に各30分間超音波洗浄し、室温で乾燥する。この基材に平均粒径5〜15μmの純アルミニウム粉末を次の条件でコールドスプレーすることにより、粉末を所定の厚さに堆積させる。
Embodiment 1
A substrate made of a Ti-6Al-2Nb-1Ta alloy having a smooth curved surface is polished, ultrasonically washed with acetone, 2-propanol, and ultrapure water for 30 minutes each and dried at room temperature. A pure aluminum powder having an average particle diameter of 5 to 15 μm is cold-sprayed on the base material under the following conditions to deposit the powder to a predetermined thickness.
[コールドスプレー条件]
作動ガス:窒素、ヘリウム、またはそれらの混合
作動ガスの温度:300〜800℃
ガス流量:100〜4000L/分(温度と圧力に依存する。)
ガス圧力:0.5〜5MPa
スプレーガンの速度:50〜200mm/s
スプレーガンと基材の距離:20〜40mm
粒体供給量:10〜200g/分
[Cold spray conditions]
Working gas: Nitrogen, helium, or mixed working gas temperature: 300-800 ° C
Gas flow rate: 100 to 4000 L / min (depends on temperature and pressure)
Gas pressure: 0.5-5MPa
Spray gun speed: 50-200 mm / s
Distance between spray gun and substrate: 20-40mm
Granule supply amount: 10 to 200 g / min
その後、アルゴン雰囲気中800℃で2〜5時間加熱する。これによりアルミニウムがチタンと反応し、TiAl3などの金属間化合物からなる中間層が形成される。化合物種(結晶相)についてはTF−XRDなどにより、同定することができ、表面および断面微細構造(傾斜構造を含む)についてはSEMなどにより観察することができる。また、各元素の含有比はEDXで元素分析することで求めることができる。 Then, it heats at 800 degreeC in argon atmosphere for 2 to 5 hours. As a result, aluminum reacts with titanium to form an intermediate layer made of an intermetallic compound such as TiAl3. The compound species (crystal phase) can be identified by TF-XRD or the like, and the surface and cross-sectional microstructure (including the tilted structure) can be observed by SEM or the like. The content ratio of each element can be determined by elemental analysis using EDX.
次に、大気中800〜900℃で3〜10時間保持する。これにより、チタンと反応せずに表面に存在するアルミニウムおよび前記TiAl3などの金属間化合物が酸化されてα−Al2O3からなる表面層が形成され、人工関節部材が得られる。表面が実質的にα−Al2O3からなることは、表面をTF−XRD及びEDXで分析することにより同定される。また、表面層の緻密さの程度は、走査型電子顕微鏡で観察することができる。 Next, it hold | maintains at 800-900 degreeC in air | atmosphere for 3 to 10 hours. As a result, aluminum present on the surface without reacting with titanium and the intermetallic compound such as TiAl3 are oxidized to form a surface layer made of α-Al2O3, and an artificial joint member is obtained. That the surface consists essentially of α-Al 2 O 3 is identified by analyzing the surface with TF-XRD and EDX. Further, the degree of density of the surface layer can be observed with a scanning electron microscope.
−実施形態2−
純アルミニウム粉末に代えて平均粒径5〜15μmの純ジルコニウム粉末を用いることと、アルゴン雰囲気中での加熱温度を1000℃とすること以外は、実施形態1と同様にして人工関節部材を製造することができる。
Embodiment 2
An artificial joint member is manufactured in the same manner as in Embodiment 1 except that pure zirconium powder having an average particle diameter of 5 to 15 μm is used instead of pure aluminum powder and the heating temperature in an argon atmosphere is set to 1000 ° C. be able to.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011274765A JP5904485B2 (en) | 2011-12-15 | 2011-12-15 | Method for manufacturing artificial joint member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011274765A JP5904485B2 (en) | 2011-12-15 | 2011-12-15 | Method for manufacturing artificial joint member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013123580A JP2013123580A (en) | 2013-06-24 |
JP5904485B2 true JP5904485B2 (en) | 2016-04-13 |
Family
ID=48775181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011274765A Expired - Fee Related JP5904485B2 (en) | 2011-12-15 | 2011-12-15 | Method for manufacturing artificial joint member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5904485B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015137739A (en) * | 2014-01-23 | 2015-07-30 | 大陽日酸株式会社 | Member for sliding part, and method of manufacturing the same |
JP6309790B2 (en) * | 2014-03-11 | 2018-04-11 | 東洋アルミエコープロダクツ株式会社 | Orthopedic fixation material |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2895295B2 (en) * | 1991-12-26 | 1999-05-24 | 株式会社神戸製鋼所 | Artificial joint |
US5372660A (en) * | 1993-08-26 | 1994-12-13 | Smith & Nephew Richards, Inc. | Surface and near surface hardened medical implants |
JP3145586B2 (en) * | 1994-10-31 | 2001-03-12 | 京セラ株式会社 | Biological implant components |
EP3238665B1 (en) * | 2005-12-15 | 2023-10-18 | Smith & Nephew, Inc | Diffusion-hardened medical implant |
US20080288081A1 (en) * | 2007-05-16 | 2008-11-20 | Joel Scrafton | Implant articular surface wear reduction system |
JP2009235534A (en) * | 2008-03-28 | 2009-10-15 | Ihi Corp | Porous body forming method, electrode, and micro-spark coating device |
JP2011208166A (en) * | 2010-03-27 | 2011-10-20 | Iwate Industrial Research Center | Film-forming method and film-forming member |
-
2011
- 2011-12-15 JP JP2011274765A patent/JP5904485B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013123580A (en) | 2013-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101024324B (en) | Environment barrier coating for a component and method for fabricating the same | |
JP5044712B1 (en) | Steel back metal for friction material and method for manufacturing steel product | |
WO2019109752A1 (en) | High temperature anti-oxidation coating for tungsten-rhenium thermocouple and application thereof | |
CN113186493B (en) | Preparation method of diamond/metal carbide composite wear-resistant coating | |
JP2000516666A (en) | Oxidation protective layer for refractory metals | |
Oshida et al. | Titanium-porcelain system Part I: Oxidation kinetics of nitrided pure titanium, simulated to porcelain firing process | |
CN107740039A (en) | A kind of Ir-X coating based on surface alloying modification and preparation method thereof | |
JP5904485B2 (en) | Method for manufacturing artificial joint member | |
JP2019507828A (en) | Adhesion promoting layer for bonding a high temperature protective layer on a substrate and method for producing the same | |
JP6110852B2 (en) | Carbon material with thermal spray coating | |
JP2004323891A (en) | Steel surface reforming method | |
JP3361072B2 (en) | Method for producing metal member having excellent oxidation resistance | |
JP4690709B2 (en) | Heat resistant material and manufacturing method thereof | |
JP2006009115A (en) | Surface treated titanium material having excellent oxidation resistance, its production method and engine exhaust pipe | |
CN111513552A (en) | Ion permeable non-stick frying pan and preparation method thereof | |
JP6366643B2 (en) | Manufacturing method of base material having sprayed film | |
RU2678045C1 (en) | Method of obtaining ceramic matrix coating on steel, working in high-temperature aggressive environments | |
JP2002371383A (en) | Heat resistant coated member | |
TWI404627B (en) | Structure for emitting infrared light and manufacturing method therefor | |
RU2727412C1 (en) | Method of producing anticorrosion coating on articles from monolithic titanium nickelide | |
US20050194075A1 (en) | Method of hardening a beta titanium member | |
CN112656993A (en) | Composite film of blood vessel stent and preparation method thereof | |
JP3914989B2 (en) | MoSi2-2wt% SiO2 / B-added Mo5Si3-5wt% SiO2 / Mo-Nb-Si ternary alloy three-layer coated Nb-based alloy and method for producing the same | |
JPH01270574A (en) | Ceramics-joining component and joining method thereof | |
JP2015137739A (en) | Member for sliding part, and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160223 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160308 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5904485 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |