JP5903298B2 - N−サクシニル−dl−アミノ酸に対する向上されたd体選択性を有する改変型d−サクシニラーゼ - Google Patents
N−サクシニル−dl−アミノ酸に対する向上されたd体選択性を有する改変型d−サクシニラーゼ Download PDFInfo
- Publication number
- JP5903298B2 JP5903298B2 JP2012046441A JP2012046441A JP5903298B2 JP 5903298 B2 JP5903298 B2 JP 5903298B2 JP 2012046441 A JP2012046441 A JP 2012046441A JP 2012046441 A JP2012046441 A JP 2012046441A JP 5903298 B2 JP5903298 B2 JP 5903298B2
- Authority
- JP
- Japan
- Prior art keywords
- residue
- amino acid
- substitution
- succinyl
- positions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
- C12N9/80—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P41/00—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
- C12P41/006—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
- C12P41/007—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures by reactions involving acyl derivatives of racemic amines
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
(1)下記(A)又は(B)のアミノ酸配列からなることを特徴とするタンパク質。
(A)配列番号2に示すアミノ酸配列において、下記(a)〜(k)から選択される少なくとも1個のアミノ酸残基の置換を有するアミノ酸配列
(a)72位のグルタミン残基のアルギニン残基への置換
(b)181位のグリシン残基のトリプトファン残基、リジン残基、アルギニン残基、アスパラギン酸又はグルタミン酸残基への置換
(c)182位のロイシン残基のトリプトファン残基、セリン残基、システイン残基、チロシン残基、リジン残基、アルギニン残基、アスパラギン酸残基、グルタミン酸残基又はプロリン残基への置換
(d)183位のスレオニン残基のプロリン残基、ロイシン残基又はアスパラギン残基への置換
(e)184位のロイシン残基のプロリン残基への置換
(f)185位のアスパラギン残基のプロリン残基、フェニルアラニン残基、セリン残基又はアスパラギン酸残基への置換
(g)305位のアルギニン残基のスレオニン残基、アラニン残基、グリシン残基、ヒスチジン残基、グルタミン残基、セリン残基、アスパラギン残基又はバリン残基への置換
(h)348位のロイシン残基のイソロイシン残基、グルタミン酸残基、プロリン残基、メチオニン残基、トリプトファン残基、セリン残基、スレオニン残基、システイン残基、リジン残基、ヒスチジン残基又はグルタミン残基への置換
(i)351位のフェニルアラニン残基のロイシン残基、イソロイシン残基、メチオニン残基、アスパラギン残基又はグルタミン残基への置換
(j)461位のアスパラギン残基のイソロイシン残基、フェニルアラニン残基、スレオニン残基、リジン残基又はアルギニン残基への置換
(k)539位のグリシン残基のプロリン残基、バリン残基、メチオニン残基、スレオニン残基又はアスパラギン残基への置換
(B)上記(A)のアミノ酸配列において、72位、181〜185位、305位、348位、351位、461位、及び539位以外の箇所に、1若しくは数個のアミノ酸残基の置換、欠失、挿入、付加および/または逆位を有するアミノ酸配列であって、N−サクシニル−DL−アミノ酸に対してD体選択的に作用してD−アミノ酸を生成する活性を有するタンパク質をコードするアミノ酸配列。
(2)(1)の(A)のアミノ酸配列が、配列番号2に示すアミノ酸配列において、182位のロイシン残基のグルタミン酸残基への置換、及び348位のロイシン残基のイソロイシン残基への置換を有するアミノ酸配列であることを特徴とする(1)に記載のタンパク質。
(3)下記(A)又は(B)の塩基配列からなることを特徴とする遺伝子。
(A)配列番号1に示す塩基配列において、下記(a)〜(k)から選択される少なくとも1個の塩基配列の置換を有する塩基配列
(a)214〜216位の塩基配列caaの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)541〜543位の塩基配列ggcの、tgg、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa又はgagへの置換
(c)544〜546位の塩基配列ctgの、tgg、tct、tcc、tca、tcg、agt、agc、tgt、tgc、tat、tac、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa、gag、cct、ccc、cca又はccgへの置換
(d)547〜549位の塩基配列acgの、cct、ccc、cca、ccg、tta、ttg、ctt、ctc、cta、ctg、aat又はaacへの置換
(e)550〜552位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(f)553〜555位の塩基配列aatの、cct、ccc、cca、ccg、ttt、ttc、tct、tcc、tca、tcg、agt、agc、gat又はgacへの置換
(g)913〜915位の塩基配列cggの、act、acc、aca、acg、gct、gcc、gca、gcg、ggt、ggc、gga、ggg、cat、cac、caa、cag、tct、tcc、tca、tcg、agt、agc、aat、aac、gtt、gtc、gta又はgtgへの置換
(h)1042〜1044位の塩基配列ctgの、att、atc、ata、gaa、gag、cct、ccc、cca、ccg、atg、tgg、tct、tcc、tca、tcg、agt、agc、act、acc、aca、acg、tgt、tgc、aaa、aag、cat、cac、caa又はcagへの置換
(i)1051〜1053位の塩基配列ttcの、tta、ttg、ctt、ctc、cta、ctg、att、atc、ata、atg、aat、aac、caa又はcagへの置換
(j)1381〜1383位の塩基配列aacの、att、atc、ata、ttt、ttc、act、acc、aca、acg、aaa、aag、cgt、cgc、cga、cgg、aga又はaggへの置換
(k)1615〜1617位の塩基配列ggcの、cct、ccc、cca、ccg、gtt、gtc、gta、gtg、atg、act、acc、aca、acg、aat又はaacへの置換
(B)上記(A)の(a)〜(k)から選択される塩基配列の置換を有し、かつ、(A)の塩基配列と90%以上の同一性を有する塩基配列であって、N−サクシニル−DL−アミノ酸に対してD体選択的に作用してD−アミノ酸を生成する活性を有するタンパク質をコードする塩基配列。
(4)(3)の(A)の塩基配列が、配列番号1に示す塩基配列において、544〜546位の塩基配列ctgの、gaa又はgagへの置換、及び1042〜1044位の塩基配列ctgの、att,atc又はataへの置換を有する塩基配列であることを特徴とする(3)に記載の遺伝子。
(5)下記(A)又は(B)のアミノ酸配列からなることを特徴とするタンパク質。
(A)配列番号4に示すアミノ酸配列において、下記(a)〜(e)から選択される少なくとも1個のアミノ酸残基の置換を有するアミノ酸配列
(a)177位のロイシン残基のアルギニン残基への置換
(b)180位のアスパラギン残基のアスパラギン酸残基への置換
(c)344位のロイシン残基のプロリン残基への置換
(d)347位のフェニルアラニン残基のイソロイシン残基への置換
(e)457位のアスパラギン残基のイソロイシン残基への置換
(B)上記(A)のアミノ酸配列において、177位、180位、344位、347位、及び457位以外の箇所に、1若しくは数個のアミノ酸残基の置換、欠失、挿入、付加および/または逆位を有するアミノ酸配列であって、N−サクシニル−DL−アミノ酸に対してD体選択的に作用してD−アミノ酸を生成する活性を有するタンパク質をコードするアミノ酸配列。
(6)下記(A)又は(B)の塩基配列からなることを特徴とする遺伝子。
(A)配列番号3に示す塩基配列において、下記(a)〜(e)から選択される少なくとも1個の塩基配列の置換を有する塩基配列
(a)529〜531位の塩基配列ctgの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)538〜540位の塩基配列aacの、gat又はgacへの置換
(c)1030〜1032位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(d)1039〜1041位の塩基配列ttcの、att、atc又はataへの置換
(e)1369〜1371位の塩基配列aatの、att、atc又はataへの置換
(B)上記(A)の(a)〜(e)から選択される塩基配列の置換を有し、かつ、(A)の塩基配列と90%以上の同一性を有する塩基配列であって、N−サクシニル−DL−アミノ酸に対してD体選択的に作用してD−アミノ酸を生成する活性を有するタンパク質をコードする塩基配列。
(7)配列番号2と90%以上の同一性を有するアミノ酸配列において、配列番号2の72位、181〜185位、305位、348位、351位、461位、及び539位のうちのいずれかと同等な位置のアミノ酸残基が、(1)の(A)に示すアミノ酸残基に置換されているアミノ酸配列からなるタンパク質であって、N−サクシニル−DL−アミノ酸に対してD体選択的に作用してD−アミノ酸を生成する活性を有することを特徴とするタンパク質。
(8)(7)に記載のタンパク質をコードすることを特徴とする遺伝子。
(9)配列番号4と90%以上の同一性を有するアミノ酸配列において、配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置のアミノ酸残基が、(3)の(A)に示すアミノ酸残基に置換されているアミノ酸配列からなるタンパク質であって、N−サクシニル−DL−アミノ酸に対してD体選択的に作用してD−アミノ酸を生成する活性を有することを特徴とするタンパク質。
(10)(9)に記載のタンパク質をコードすることを特徴とする遺伝子。
(11)(3),(4),(6),(8)又は(10)に記載の遺伝子をベクターに挿入して組換えベクターを調製し、この組換えベクターで宿主細胞を形質転換して形質転換体を調製し、この形質転換体を培養する工程を含むことを特徴とする(1),(2),(5),(7)又は(9)に記載のタンパク質の製造方法。
(12)(1),(2),(5),(7)又は(9)に記載のタンパク質を用いてN−サクシニル−DL−アミノ酸中のN−サクシニル−D−アミノ酸を特異的に加水分解する工程を含むことを特徴とするD−アミノ酸の製造方法。
(13)N−サクシニルアミノ酸ラセマーゼを用いてN−サクシニル−L−アミノ酸をラセミ化してN−サクシニル−D−アミノ酸を生成させる工程をさらに含むことを特徴とする(12)に記載の方法。
(a)72位のグルタミン残基のアルギニン残基への置換
(b)181位のグリシン残基のトリプトファン残基、リジン残基、アルギニン残基、アスパラギン酸又はグルタミン酸残基への置換
(c)182位のロイシン残基のトリプトファン残基、セリン残基、システイン残基、チロシン残基、リジン残基、アルギニン残基、アスパラギン酸残基、グルタミン酸残基又はプロリン残基への置換
(d)183位のスレオニン残基のプロリン残基、ロイシン残基又はアスパラギン残基への置換
(e)184位のロイシン残基のプロリン残基への置換
(f)185位のアスパラギン残基のプロリン残基、フェニルアラニン残基、セリン残基又はアスパラギン酸残基への置換
(g)305位のアルギニン残基のスレオニン残基、アラニン残基、グリシン残基、ヒスチジン残基、グルタミン残基、セリン残基、アスパラギン酸残基又はバリン残基への置換
(h)348位のロイシン残基のグルタミン酸残基、プロリン残基、メチオニン残基、トリプトファン残基、セリン残基、スレオニン残基、システイン残基、リジン残基、ヒスチジン残基又はグルタミン残基への置換
(i)351位のフェニルアラニン残基のロイシン残基、イソロイシン残基、メチオニン残基、アスパラギン残基又はグルタミン残基への置換
(j)461位のアスパラギン残基のイソロイシン残基、フェニルアラニン残基、スレオニン残基、リジン残基又はアルギニン残基への置換
(k)539位のグリシン残基のプロリン残基、バリン残基、メチオニン残基、スレオニン残基又はアスパラギン残基への置換
配列番号2は、Cupriavidus sp.P4−10−C株のD−サクシニラーゼのアミノ酸配列である。
なお、実用上の観点からは、D体に対するL体の分解比率だけではなく、L体分解率及びD体分解率それぞれの値も考慮すべきである。具体的には、L体分解率が12%以下であることが好ましく、L体分解率が12%以下でかつD体分解率が25%以上であることがさらに好ましく、L体分解率が0%でかつD体分解率が25%以上であることが特に好ましい。
(一般式(I)中、Rは、置換基を有してもよい炭素数4〜20のアリール基、または置換基を有してもよい炭素数5〜20のアラルキル基を示す。)
上記Rにおける置換基を有していてもよい炭素数6〜20のアリール基としては、フェニル基、4−ヒドロキシフェニル基などが挙げられる。置換基としては、アミノ基、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、アルキル基、アラルキル基、アリール基、アルカノイル基、アルケニル基、アルキニル基、アルコキシル基、又はハロゲン原子等が挙げられる。また、置換基を有していてもよい炭素数7〜20のアラルキル基としては、特に限定されず、例えば、ベンジル基、インドリルメチル基、4−フェニルベンジル基、4−ヒドロキシベンジル基等が挙げられる。
(A)配列番号1に示す塩基配列において、下記(a)〜(k)から選択される少なくとも1個の塩基配列の置換を有する塩基配列からなることを特徴とする遺伝子
(a)214〜216位の塩基配列caaの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)541〜543位の塩基配列ggcの、tgg、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa又はgagへの置換
(c)544〜546位の塩基配列ctgの、tgg、tct、tcc、tca、tcg、agt、agc、tgt、tgc、tat、tac、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa、gag、cct、ccc、cca又はccgへの置換
(d)547〜549位の塩基配列acgの、cct、ccc、cca、ccg、tta、ttg、ctt、ctc、cta、ctg、aat又はaacへの置換
(e)550〜552位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(f)553〜555位の塩基配列aatの、cct、ccc、cca、ccg、ttt、ttc、tct、tcc、tca、tcg、agt、agc、gat又はgacへの置換
(g)913〜915位の塩基配列cggの、act、acc、aca、acg、gct、gcc、gca、gcg、ggt、ggc、gga、ggg、cat、cac、caa、cag、tct、tcc、tca、tcg、agt、agc、aat、aac、gtt、gtc、gta又はgtgへの置換
(h)1042〜1044位の塩基配列ctgの、gaa、gag、cct、ccc、cca、ccg、atg、tgg、tct、tcc、tca、tcg、agt、agc、act、acc、aca、acg、tgt、tgc、aaa、aag、cat、cac、caa又はcagへの置換
(i)1051〜1053位の塩基配列ttcの、tta、ttg、ctt、ctc、cta、ctg、att、atc、ata、atg、aat、aac、caa又はcagへの置換
(j)1381〜1383位の塩基配列aacの、att、atc、ata、ttt、ttc、act、acc、aca、acg、aaa、aag、cgt、cgc、cga、cgg、aga又はaggへの置換
(k)1615〜1617位の塩基配列ggcの、cct、ccc、cca、ccg、gtt、gtc、gta、gtg、atg、act、acc、aca、acg、aat又はaacへの置換
配列番号1は、Cupriavidus sp.P4−10−C株のD−サクシニラーゼの塩基配列である。
(a)177位のロイシン残基のアルギニン残基への置換
(b)180位のアスパラギン残基のアスパラギン酸残基への置換
(c)344位のロイシン残基のプロリン残基への置換
(d)347位のフェニルアラニン残基のイソロイシン残基への置換
(e)457位のアスパラギン残基のイソロイシン残基への置換
配列番号4は、Cupriavidus metalliduransのD−サクシニラーゼのアミノ酸配列である。
(A)配列番号3に示す塩基配列において、下記(a)〜(e)から選択される少なくとも1個の塩基配列の置換を有する塩基配列からなることを特徴とする遺伝子
(a)529〜531位の塩基配列ctgの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)538〜540位の塩基配列aacの、gat又はgacへの置換
(c)1030〜1032位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(d)1039〜1041位の塩基配列ttcの、att、atc又はataへの置換
(e)1369〜1371位の塩基配列aatの、att、atc又はataへの置換
配列番号3は、Cupriavidus metalliduransのD−サクシニラーゼの塩基配列である。
Cupriavidus oxalaticus;
Cupriavidus gilardii;
Cupriavidus basilensis;
Cupriavidus campinensis;
Cupriavidus pauculus;
Cupriavidus pinatubonensis;
Cupriavidus respiraculi;
Cupriavidus sp。
なお、上述のCupriavidus属の細菌の中には、Ralstonia(ラルストニア)属の細菌として文献に表記されているものもあるが、Cupriavidus属が正式な属名として一般的に使用されてきている。これらの細菌の学術名は、将来の再分類により、統一又は変更される可能性がある。
本発明の第4の側面において、改変のベースとするD−サクシニラーゼは、Cupriavidus metalliduransの近縁種からの野生型D−サクシニラーゼに限定されず、これらの野生型D−サクシニラーゼに何らかの変異を生じさせたものも、配列番号4と70%以上の相同性を有する限り、改変のベースとして使用することができる。
本発明の第4の側面において、改変は、これらのベースとするD−サクシニラーゼのアミノ酸配列中の、配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置のアミノ酸残基を、本発明の第2の側面の改変型D−サクシニラーゼと同じアミノ酸残基に置換することによって行われる。ここで、「配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置」は、ベースとするD−サクシニラーゼのアミノ酸配列を配列番号4のアミノ酸配列とアラインメントさせることによって特定することができる。アラインメントは、Blastなどの公知のアルゴリズムに基づく市販のアミノ酸配列解析ソフトを使用して容易に行うことができる。例えば、先に例示したCupriavidus属の細菌のうち、Cupriavidus necator及びCupriavidus taiwanensisのD−サクシニラーゼのアミノ酸配列の場合、配列番号4のアミノ酸配列とのアラインメント結果は、図3に示す通りであり、図3中の網掛けされた位置のアミノ酸残基が「配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置」のアミノ酸残基に相当する。アミノ酸置換の方法、及び得られたタンパク質の活性の確認方法は、第3の側面と同様であるので、説明を省略する。
移動相:pH2.3リン酸水溶液/アセトニトリル=75/25
流速:0.7ml/min
カラム温度:40℃
検出:UV280nm
移動相:pH2.3リン酸水溶液/アセトニトリル=75/25
流速:0.7ml/min
カラム温度:40℃
検出:UV210nm
移動相:pH2.3リン酸水溶液/アセトニトリル=75/25
流速:1.5ml/min
カラム温度:40℃
検出:UV254nm
移動相:メタノール/0.2M酢酸=90/10(V/V)アンモニアでpH7.0
に調製
流速:1.0ml/min
カラム温度:35℃
検出:UV210nm
移動相:過塩素酸水溶液(pH2.0)/メタノール=90/10
流速:0.7ml/min
カラム温度:15℃
検出:UV280nm
移動相:過塩素酸水溶液(pH2.0)
流速:1.2ml/min
カラム温度:15℃
検出:UV210nm
移動相:過塩素酸水溶液(pH2.0)/メタノール=85/15
流速:1.5ml/min
カラム温度:50℃
検出:UV254nm
<試薬>
14mM N−サクシニル−D−バリン
2.5(U/mL) ペルオキシダーゼ(東洋紡製PEO−302)
1.5mM 4−アミノアンチピリン(第一化学薬品製)
2.4mM TOOS(同人化学研究所製)
6.0(U/mL) D−アミノ酸オキシダーゼ(バイオザイム製DOX2)
を含む25mMリン酸緩衝溶液を反応試薬とする。
なお、N−サクシニル−D−トリプトファンに対する酵素活性を測定する際には、14mM N−サクシニル−D−バリンの代わりに、33mM N−サクシニル−D−トリプトファンを使用した。
N−サクシニル−D−バリンの合成は以下のようにして行った。D−バリン(ナカライテスク製、4.7g)と無水コハク酸(ナカライテスク製、4.0g)を40mLの酢酸(ナカライテスク製)に溶解した。溶液を50〜60℃に加熱し、溶媒を揮発させて結晶化した。次に、結晶化した白い沈殿を集めて、酢酸エチル20mLとメタノール20mLの混合液にて再結晶化した。沈殿を乳鉢で破砕し、乾燥させ、N−サクシニル−D−バリンを得た。詳細はSakai A.et al.,Biochemistry,2006,45(14),4455−62に記載されている。
<測定条件>
反応試薬3.0mLを37℃で5分間予備加温する。酵素溶液0.1mLを添加しゆるやかに混和後、水を対照に37℃に制御された分光光度計で、555nmの吸光度変化を5分記録し、直線部分から1分間あたりの吸光度変化(ΔODTEST)を測定する。盲検は、酵素溶液の代わりに酵素を溶解する溶液を試薬混液に加えて同様に1分間あたりの吸光度変化(ΔODBLANK)を測定する。これらの値から次の式に従ってD−サクシニラーゼ活性を求める。ここでD−サクシニラーゼ活性における1単位(U)とは、上記条件下で1分間に1マイクロモルのD−アミノ酸を生成する酵素量として定義する。
活性(U/mL)=
{(ΔODTEST−ΔODBLANK)×3.1×希釈倍率}/{31.0×1/2×0.1×1.0}
なお、式中の3.1は反応試薬+酵素溶液の液量(mL)、31.0は本活性測定条件におけるミリモル分子吸光係数(cm2/マイクロモル)、1/2は酵素反応で生成したH2O2の1分子から形成するQuinoneimine色素が1/2分子であることによる係数、0.1は酵素溶液の液量(mL)、1.0はセルの光路長(cm)を示す。
HEPES(1.0M/pH7.9)を10μl(終濃度100mM)、酢酸コバルトを1μl(終濃度0.1mM)滅菌蒸留水を49μlを混和し、この溶液に酵素液10μlを加え、この反応液に、基質となるN−サクシニル−D−フェニルアラニン溶液を30μl(終濃度60mM)を加えて30℃で反応を行い、適当な時間で移動相(メタノール/0.2M酢酸=90/10(V/V)アンモニアでpH7.0に調製したもの)により反応停止させた。生成したN−サクシニル−L−フェニルアラニンを高速液体クロマトグラフィーにより定量し、酵素活性を算出する。酵素活性はN−サクシニル−D−フェニルアラニンからN−サクシニル−L−フェニルアラニンが1分間に1μmole生成された場合を1unit(U)と定義した。
(1)野生型D−サクシニラーゼの精製
Cupriavidus sp.P4−10−C株(日本国茨城県つくば市東1丁目1番地1 中央第6の独立行政法人産業技術総合研究所 特許生物寄託センターに受託番号FERM BP−11387として2011年6月28日に国際寄託済)を、普通ブイヨン“栄研”1.8%に、粉末酵母エキスD−3 0.2%(和光純薬工業(株)製、Code:390−00531)、カザミノ酸「ダイゴ」0.1%(和光純薬工業(株)製、Code:392−00655)、リン酸水素二カリウム0.3%、及びグルコース0.2%を添加したpH7.5の培地で培養した。具体的には、500mLフラスコに上記培地200mLを加えオートクレーブ滅菌した培地27本を用い、35℃、150r/min、回転攪拌で2日間培養した。培養終了時の濁度(ABS660nm)は2.7であり、pHは8.6であった。培養後、冷却遠心分離機(日立工機(株)製)を用い、8000r/minで30分間遠心分離を行い、集菌した。集菌した菌体を、20mM HEPES−NaOH(pH7.5)緩衝液で洗浄した後、再度遠心分離し、菌体を36g得た。取得菌体量の約3倍の20mM HEPES−NaOH(pH7.5)緩衝液100mLで懸濁後、氷冷下の超音波細胞破砕装置 BD−1(東湘電気(株)製)を用い、5分サイクルで10回超音波破砕を行った。破砕後、高速冷却遠心機(日立工機(株)製)で8000r/min、4℃、60分間遠心分離し、上清液178mLを得た。これを粗酵素液とした。なお、本菌株は培養時にN−サクシニル−D−フェニルアラニンを添加しなくともD−サクシニラーゼを産生した。粗酵素液を透析チューブに詰め、20mM HEPES−NaOH(pH7.5)1.2M硫酸アンモニウム含有緩衝液中に投入し、低温室内(4℃)で攪拌を行いながら、数回緩衝液を交換し、一昼夜透析を行った。透析終了後、高速冷却遠心機(日立工機(株)製)で4000r/min、4℃、30分間遠心分離し、上清液100mLを得た。この上清液100mLを、予め20mM HEPES−NaOH(pH7.5)1.2M硫酸アンモニウム含有緩衝液で平衡化したButyl−TOYOPEARL 650Mカラム(東ソー(株)製)(3.2cmφ×20cm)に供して目的酵素を吸着させ、20mM HEPES−NaOH(pH7.5)1.2M硫酸アンモニウム含有緩衝液と20mM HEPES−NaOH(pH7.5)緩衝液を総量2000mL用い、直線濃度勾配法で酵素を溶出し、D−サクシニラーゼ活性のある画分を回収した。Butyl−TOYOPEARLで得られた活性画分を70%硫酸アンモニウム飽和にて濃縮し、遠心分離10,000r/min、4℃、60分間にて沈殿を回収した。回収した硫安沈殿を、5mMリン酸緩衝液(pH7.2)で透析した。この透析した酵素液33mLを、予め5mMリン酸緩衝液(pH7.2)で平衡化したMacro−Prep CHT TypeI(BIO−RAD社製)ハイドロキシアパタイトカラム(1.6cmφ×20cm)に吸着させた。次に、5mMリン酸緩衝液(pH7.2)と300mM リン酸緩衝液(pH7.2)を総量150mL用いて直線濃度勾配法で酵素を溶出し、D−サクシニラーゼ活性のある画分を回収した。Macro−Prep CHT TypeIにより得られた活性画分130mLを、ビバスピン 20(ザルトリウス(株)製)分画分子量10000の限外ろ過膜を用いて、20mLに濃縮した。回収した濃縮液を、20mM HEPES−NaOH(pH7.5)酸緩衝液で透析した。この透析液を、予め20mM HEPES−NaOH(pH7.5)緩衝液で平衡化したHi Trap Q F.F.カラム5mL(GEヘルスケア バイオサイエンス社製)に供し、続いて20mM HEPES−NaOH(pH7.5)と20mM HEPES−NaOH(pH7.5)0.3M塩化ナトリウム酸緩衝液を総量200mL用いて直線濃度勾配法で酵素を溶出し、D−サクシニラーゼ活性のある画分を回収した。D−サクシニラーゼ活性が確認された画分の少量を定法のSDS−ポリアクリルアミドゲル電気泳動(SDS−PAGE)分析に供し、不純蛋白質が混在しない画分を回収し、新規D−サクシニラーゼを得た。精製後の電気泳動結果を図1に示す。
SDS−PAGE後に該酵素に相当するバンドをアクリルアミドゲル上からPVDF膜(Bio−Rad:シーケ−ブロットPVDFメンブレン)に転写し、N末端アミノ酸配列分析、及び内部アミノ酸配列分析を行い、約60kDaのバンドから内部アミノ酸配列;SNNWVIAGSRTSTGR、約23kDaのバンドからN末端アミノ酸配列;APPTDRYAAPGLEKPと内部アミノ酸配列;MARDFGPAYVDGDRRを得た。
培養液50mLの菌体を遠心分離操作に供し、ゲノム抽出キット(東洋紡:Genomic DNA purification Kit)を用いて、そのプロトコールに従ってゲノム精製を行った。しかし、本キットで精製したゲノムDNAでは全長配列のクローニングのためのPCR反応において、長鎖のDNA断片を増幅させることができなかった。PCR条件を検討しても改善は見られなかったため、これはゲノムDNAの純度に問題があると考え、「current protocols in molucular biology」に記載されている公知の方法に基づいて、再びゲノムDNAの抽出を行った。まず、50mLの培地で培養し、集菌した菌体をTE(50mM Tris−HCl(pH8.0)、20mM EDTA)に懸濁して洗浄し、遠心分離操作により菌体を回収した後、再びこの菌体を11.3mLのTEに懸濁した。さらに、この懸濁液に0.06mlの20mg/mLプロテイナーゼK溶液、0.6mLの10%SDS溶液を加えた後、37℃で1時間インキュベートした。インキュベート後、2mLの5M NaCl溶液を加えて十分に攪拌し、1.6mLのCTAB/NaCl溶液(10% CTAB/0.7M NaCl)を混合し、65℃で10分間インキュベートした。インキュベート後、等量の25/24/1=フェノール/クロロホルム/イソアミルアルコール溶液で除タンパクを行った。通常の細菌であれば、この工程で水層に濁りは見られないが、本菌においては濁りが残っていた。そこで、もう一度、等量の25/24/1=フェノール/クロロホルム/イソアミルアルコール溶液で除タンパクを行った。これにより、濁りが完全に除去されたので、続いて、分離した水層に対して等量の24/1=クロロホルム/イソアミルアルコールを加えて混合し、水層を回収した。これと等量のイソプロパノールを加えてDNAを沈殿させ、回収した。沈殿したDNAを0.5mLのTEに溶解した後、5μlの10mg/mL RNaseを加えて、37℃で一晩反応させた。反応後、等量の25/24/1=フェノール/クロロホルム/イソアミルアルコール溶液で除タンパクを行い、24/1=クロロホルム/イソアミルアルコールを加えて攪拌し、水層を回収した。この操作をさらに2回行った後に得られた水層に終濃度0.4Mとなるように3M酢酸ナトリウム溶液(pH5.2)を加え、さらに2倍容のエタノールを加えた。沈殿となって生じたDNAを回収し、70%エタノールで洗浄、乾燥させ、1mLのTEに溶解させた。
上記(2)で同定したアミノ酸配列をもとに縮重プライマーを合成し(表1の配列番号5、6)、Cupriavidus sp.P4−10−Cから、上記(3)で抽出したゲノムDNAを鋳型として、DNAポリメラーゼKOD−Plus(東洋紡製)を用いて推奨する条件のもとPCRを行った。該PCRで増幅されたPCR産物をクローニングキットTarget Clone−Plus(東洋紡製)を用いて、そのプロトコールに従って操作を行い、ベクターpBluescriptにクローニングし、エシェリヒア・コリー(Escherichia coli)DH5α株コンピテントセル(東洋紡製)に形質転換し、該形質転換体を取得した。該形質転換体をLB培地で培養し、プラスミドを抽出し、BigDye(商標登録)Terminator v3.1 Cycle Sequencing Kit(Applied Biosystems)により遺伝子配列を確認し、部分配列575bpを取得した。さらに、全長配列を取得するために以下のような操作を行った。TAKARA LA PCR In Vitro Cloning Kit(タカラバイオ製)を用いて、そのプロトコールに従って操作を行い、既知配列からC末端方向へのDNA断片を増幅させることに成功し、開始コドンを含むN末端から既知の部分遺伝子配列までの塩基配列を決定した。しかしながら、上記キットではC末端側の塩基配列を決定することができなかったため、既知の塩基配列に基づき、遺伝子の外側方向に向けた2種類のプライマー(表1の配列番号7、8)を新たに設計した。このプライマーを用い、先に得たDNAを鋳型にInverse PCR法を行った。これにより、既に取得した部分遺伝子より外側の遺伝子部分を含むDNA断片を取得し、C末端配列を決定した。続いて、酵素のN末端より上流と推定される部分にNdeIの切断部位を結合させた配列を有するDNAプライマー(表1の配列番号9)とC末端より下流と推定される部分にEcoRIの切断部位を結合させた配列を有するDNAプライマー(表1の配列番号10)を用いて、この配列の間のDNAを先に得たDNAを鋳型にしたPCRにより増幅することでサクシニラーゼ遺伝子の全長を含むDNA断片を取得した。得られたDNA断片の塩基配列を解析し、D−サクシニラーゼ遺伝子の全長が含まれていることを確認し、そのアミノ酸配列を推定した。得られた塩基配列及びアミノ酸配列をそれぞれ、配列表の配列番号1及び2に示す。
上記(4)で得られたCupriavidus sp.P4−10−C株由来D−サクシニラーゼ遺伝子をNCBI−BLAST(http://blast.ncbi.nlm.nih.gov/Blast.cgi)により検索すると、Cupriavidus melallidurans CH34のpeptidase S45,penicillin amidase(ACCESSION No.YP_587763)として登録されている遺伝子と76%の相同性を示した。このpenicillin amidaseが属しているpenicillin acylaseファミリーは、ペニシリンGやセファロスポリンC等を加水分解する酵素であり、このような酵素がN−サクシニル−D−アミノ酸を加水分解することを推定することは困難であり、機能から予測してホモロジー検索により本遺伝子を取得することは不可能に近いものであった。
また、Cupriavidus sp.P4−10−Cの近縁種であるCupriavidus metallidurans由来のD−サクシニラーゼのクローニングも行った。
独立行政法人製品評価技術基盤機構よりCupriavidus metallidurans(NBRC番号101272)の菌株を取得し、液体培地で培養した。培養して得た菌体から、ゲノム抽出キット(東洋紡:Genomic DNA purification Kit)によりゲノムを抽出した。遺伝子特異的プライマーを合成し(表7の配列番号43、44)、得られたゲノムを鋳型にDNAポリメラーゼKOD−Plus(東洋紡製)を用いたPCRにより遺伝子を取得した。クローニングキットTarget Clone−Plus(東洋紡製)を用いて、そのプロトコールに従って操作を行い、ベクターpBluescriptにクローニングし、組換え発現プラスミドpCmDSAを取得した。pCmDSAをエシェリヒア・コリー(Escherichia coli)DH5α株コンピテントセル(東洋紡製)に形質転換し、該形質転換体を取得した。該形質転換体をLB培地で培養し、プラスミドを抽出し、BigDye(商標登録)Terminator v3.1 Cycle Sequencing Kit(Applied Biosystems)により遺伝子配列を確認し、アミノ酸配列を推定した。得られた塩基配列及びアミノ酸配列をそれぞれ、配列表の配列番号3及び4に示す。
参考例1で得られたD−サクシニラーゼ遺伝子のN末端、C末端部分にそれぞれ制限酵素NdeI及びEcoRIの切断部位を結合させた配列を有するプライマー(表1の配列番号9、10)を用いて、この間のDNAを参考例1で得たゲノムDNAを鋳型にしたPCRにより増幅することで、オープンリーディングフレームを含むDNA断片を取得した。このDNA断片を制限酵素NdeIとEcoRIで切断し、同酵素で切断したベクタープラスミドpBSKと混合し、混合液と等量のライゲーション試薬(東洋紡製ラーゲーションハイ)を加えてインキュベーションすることにより、ライゲーションを実施した。このようにライゲーションしたDNAをエシェリヒア・コリーDH5α株コンピテントセル(東洋紡績製コンピテントハイDH5α)に当製品に添付のプロトコールに従ってそれぞれ形質転換し、該形質転換体を取得した。このようにしてD−サクシニラーゼ遺伝子を大量に発現できるように設計されたpBSKP4DSAを取得した。
参考例3で構築したプラスミド、pBSKP4DSAをエシェリヒア・コリーDH5α株コンピテントセル(東洋紡績製コンピテントハイDH5α)に当製品に添付のプロトコールに従ってそれぞれ形質転換し、該形質転換体を取得した。
特開2007−82534号公報の実施例に記載の方法で、Chloroflexus aurantiacus(クロロフレクス・アウランチアクス)由来のN−サクシニルアミノ酸ラセマーゼを調製し、25.6(KU/mL)、100(mg/mL)の精製酵素標品を得た。
(1)改変型P4DSA遺伝子を含む発現プラスミドの作成
参考例1で得られたpBSKP4DSAのP4DSA遺伝子全長を増幅するよう設計したプライマーを用いて、P4DSA遺伝子に変異が生じるよう、クロンテック社製、Diversify PCR Random Mutagenesis KitでPCR反応を実施した。続いて、反応液を制限酵素NdeIとEcoRIで処理後、アガロースゲル電気泳動に供し、ランダムな変異を生じたP4DSA遺伝子のNdeI+EcoRI断片をゲルから回収した。また、pBSKP4DSAを制限酵素NdeIとEcoRIで処理し、同様にしてpBSKP4DSAのベクターNdeIとEcoRI断片を回収した。最後に、ランダムな変異を生じたP4DSA遺伝子のNdeI+EcoRI断片とpBSKP4DSAのNdeI+EcoRIベクター断片とをライゲーションし、ランダムな変異を有するP4DSA遺伝子が挿入されたpBSKP4DSAのプラスミド集団を作成した。
(1)で調製したpBSKP4DSAのプラスミド集団を用いて、エシェリヒア・コリーDH5α株コンピテントセル(東洋紡績製コンピテントハイDH5α)に、当製品に添付のプロトコールに従ってそれぞれ形質転換を行った。そうして得られたコロニー、約5,000株をLB培地(アンピシリン50μg/mLを含む)にそれぞれ接種し、37℃で16時間振とう培養した。その培養液から遠心分離により調製した菌体を、N−サクシニル−D−トリプトファン溶液(25mM KPB(pH7.0)、100mM N−サクシニル−D−トリプトファン)及びN−サクシニル−L−トリプトファン溶液(25mM KPB(pH7.0)、100mM N−サクシニル−L−トリプトファン)とそれぞれ混合し、37℃で16時間反応させた。その反応液の一部をTLCプレート(Merck社製)に供し、n−ブタノール:酢酸:水(3:1:1、v/v)からなる展開溶媒で展開し、ニンヒドリンスプレーにより、D−トリプトファン、L−トリプトファンを検出し、D−トリプトファンのスポットに対するL−トリプトファンのスポットの割合が野生型よりも小さい、即ち、野生型P4DSAと比較して、D体に反応しやすい変異株を選抜した。結果の一例を図2に示す。図2中、変異株2や変異株3が望ましい変異体であり、このような変異体を選抜した。そして、立体選択性が向上した変異株よりプラスミドを抽出し、P4DSA遺伝子全塩基配列を確認し、変異箇所を同定した。その結果、72番目、176番目、181〜185番目、286番目、305番目、348番目、351番目、388番目、461番目、518番目及び539番目のアミノ酸残基が立体選択性向上に寄与している部位として候補に挙がった。
(1)で得た変異株の中には、複数のアミノ酸変異をもつ変異株もあったため、また、置換するアミノ酸の種類を検討するために、部位特異的(Site−Directed mutagenesis)に変異させた改変型DSA発現プラスミドを作成した。部位特異的変異の作製には、STRATAGENE社製QuikChange Site−Directed mutagenesis Kitを使用した。また、変異させる際には、置換アミノ酸の至適化も行うため、(2)で立体選択性向上に寄与していると推測された72番目、181〜185番目、305番目、348番目、351番目、461番目及び539番目のアミノ酸残基それぞれを20種のアミノ酸に置換するように、かつ、2本鎖DNAのそれぞれの鎖に相補的になるように設計した合成オリゴDNAプライマーをそれぞれ合成した(配列番号11〜42)。なお、一部の合成オリゴDNAプライマーは、置換されるアミノ酸が1種類になるように、合成した。変異導入に使用した合成オリゴDNAプライマーの配列を表2に示す。
98℃ 10秒
60℃ 30秒
68℃ 6分 × 25サイクル
改変型P4DSA遺伝子搭載プラスミドを持つ大腸菌形質転換体をLB培地3ml(アンピシリン50μg/mLを含む)に接種し、37℃で16時間振とう培養した。その培養液から遠心分離により調製した菌体を超音波破砕し、その遠心後の上清を改変型P4DSAの粗酵素液とした。
実施例1で調製した粗酵素液を用いて、N−サクシニルトリプトファン及びN−サクシニルフェニルアラニンに対する立体選択性の評価を行った。具体的には、以下の組成のN−サクシニル−D−アミノ酸溶液及びN−サクシニル−L−アミノ酸溶液のそれぞれに対して粗酵素液を添加した。
N−サクシニル−D−トリプトファン溶液:25mM KPB(pH7.0)、1% N−サクシニル−D−トリプトファン
N−サクシニル−L−トリプトファン溶液:25mM KPB(pH7.0)、1% N−サクシニル−L−トリプトファン
N−サクシニル−D−フェニルアラニン溶液:25mM KPB(pH7.0)、1% N−サクシニル−D−フェニルアラニン
N−サクシニル−L−フェニルアラニン溶液:25mM KPB(pH7.0)、1% N−サクシニル−L−フェニルアラニン
得られた反応液を40℃で16時間インキュベートした後に、残存する基質濃度から分解率及びD体に対するL体の分解比率(L/D)を算出した。なお、改変型P4DSAは、L体に対する反応性がかなり低下しており、基質の減少量を定量する方法では、識別しづらかったため、L体を4、D体を1、すなわちL:D=4:1のタンパク質比率で反応させた。また、酵素タンパク質濃度は、L体の反応の場合は最終酵素タンパク質濃度が2.0mg/mlになるように調節し、D体の反応の場合は最終酵素タンパク質濃度が0.5mg/mlになるように調節した。その結果を表3に示す。
次に、実施例2でN−サクシニルトリプトファン及びN−サクシニルフェニルアラニンに対する立体選択性に関与していることが明らかとなった改変型P4DSAについて、他の芳香族アミノ酸に対してもD体選択的に作用するかどうかを確認した。他の芳香族アミノ酸としては、非天然型アミノ酸の一種であるN−サクシニルビフェニルアラニンを選択し、実施例1で調製した粗酵素液を用いて、実施例2と同様の手順で、N−サクシニルビフェニルアラニンに対する立体選択性の評価を行った。ただし、本実施例3では、以下に示すようなラセミ体溶液を反応基質として使用した。
N−サクシニル−DL−ビフェニルアラニン反応溶液:25mM KPB(pH7.0)、2% N−サクシニル−DL−ビフェニルアラニン
(1)
改変型P4DSA(L182E、L182P、R305N)の調製
実施例1で得られた改変型P4DSA(L182E、L182P、R305N)を発現する大腸菌形質転換体のコロニーを、試験管に入った5mLのLB培地(アンピシリン50μg/mLを含む)にそれぞれ植菌し、振とう数180rpm、30℃で16時間培養し、種培養液とした。この種培養液を、500mLの坂口フラスコに入った60mLのTB培地(アンピシリン50μg/mLを含む)に接種し、振とう数310rpm、30℃で18時間培養した。培養終了時の濁度(Abs660nm)は、15.0、16.2、15.5であった。続いて、得られた菌体を遠心分離にて集菌し、25mMリン酸緩衝溶液(pH7.0)に懸濁し、氷冷下で超音波細胞破砕装置を用いて破砕した。その後、65℃で1時間、熱処理を行い、その後、一般的な方法で脱塩処理を行い、アミノ酸合成用の酵素サンプル(L182E:27.9mg/mL、5.2U/mL、L182P:7.3mg/mL、1.8U/mL、R305N:28.5mg/mL、4.3U/mL)を調製した。なお、酵素活性の基質には、N−サクシニル−D−トリプトファンを用いた。
5%N−サクシニル−DL−トリプトファン水溶液(pH7.5)5mL、5%N−サクシニル−DL−フェニルアラニン水溶液(pH7.5)5mL、5%N−サクシニル−DL−ビフェニルアラニン水溶液(pH7.5)5mLをそれぞれ基質として用い、塩化コバルト水溶液を終濃度1mMとなるようにそれぞれ添加後、上記(1)で調製した改変型DSA(L182E、L182P、R305N)の酵素液(0.16U、0.2U、0.08U)をそれぞれの基質に加え、さらに参考例5で調製したChloroflexus aurantiacus株由来のN−サクシニルアミノ酸ラセマーゼ溶液25mg(6400U)をそれぞれに対して加え、45℃で3日間反応させた。また、一方でコントロールとして、PCT/JP2011/064943の実施例に記載の方法で調製した野生型DSA酵素液を用い、同様に反応させ、変換率及びD−アミノ酸の光学純度を算出した。変換率は、上記記載のジーエルサイエンス社製「Inertsil ODS−3」(5μm、4.6×100mm)を利用した高速液体クロマトグラフィーで酵素反応前と反応後の基質のピーク面積値を測定することによって算出した。光学純度は、上記記載のダイセル化学工業株式会社製光学分割カラム「CROWNPAK CR(+)」(5μm、4.0×150mm)で生成した遊離体のアミノ酸の光学純度を測定することによって算出した。結果を表5〜7に示す。
(1)二重変異改変型プラスミドの構築
二重変異改変体を発現するプラスミドを作製するために、実施例1で得られた改変型P4DSA(L182E)を含む発現プラスミドを鋳型とし、上記に記載の方法でPCR反応を実施し、182番目のロイシンがグルタミン酸に置換され、かつ、348番目のロイシンがイソロイシンに置換された二重変異改変型P4DSA(L182E+L348I)を含む発現プラスミドを構築した。
(1)で得られた二重変異改変型P4DSA(L182E+L348I)を発現する大腸菌形質転換体のコロニーを、試験管に入った5mLのLB培地(アンピシリン50μg/mLを含む)に植菌し、振とう数180rpm、30℃で16時間培養し、種培養液とした。この種培養液を、500mLの坂口フラスコに入った60mLのTB培地(アンピシリン50μg/mLを含む)に接種し、振とう数310rpm、30℃で18時間培養した。培養終了時の濁度(Abs660nm)は15.6であった。続いて、得られた菌体を遠心分離で集菌し、25mMリン酸緩衝溶液(pH7.5)に懸濁し、氷冷下で超音波細胞破砕装置を用いて破砕した。その後、55℃で3時間、熱処理を行い、その後、0.45飽和になるように硫酸アンモニウムを徐々に添加し、目的のタンパク質を沈殿させた。その後、上清を取り除き、25mMリン酸緩衝溶液(pH7.5)を加えて、沈殿を再溶解させ、一般的な脱塩処理を行った後、25mMリン酸緩衝溶液(pH7.5)で平衡化した5mLのDEAEセファロースFast Flow(GEヘルスケア製)カラムにかけ、素通り画分を回収した。このようにして、アミノ酸合成用の酵素サンプル(L182E+L348I:7.0mg/mL、11.4U/mL)を調製した。なお、酵素活性の基質には、N−サクシニル−D−トリプトファンを用いた。
5%N−サクシニル−DL−トリプトファン水溶液(pH7.5)5mLを基質として用い、塩化コバルト水溶液を終濃度1mMとなるように添加後、上記(2)で調製した二重変異改変型DSA(L182E+L348I)の酵素液0.05mgと参考例5で調製したChloroflexus aurantiacus株由来のN−サクシニルアミノ酸ラセマーゼ溶液2.5mgを添加し、45℃で3日間反応させた。また、一方でコントロールとして、PCT/JP2011/064943の実施例に記載の方法で調製した野生型DSA酵素液0.025mgと参考例5で調製したChloroflexus aurantiacus株由来のN−サクシニルアミノ酸ラセマーゼ溶液2.5mgを添加し、45℃で3日間反応させ、変換率及びD−アミノ酸の光学純度を算出した。変換率は、上記記載のジーエルサイエンス社製「Inertsil ODS−3」(5μm、4.6×100mm)を利用した高速液体クロマトグラフィーで酵素反応前と反応後の基質のピーク面積値を測定することによって算出した。光学純度は、上記記載のダイセル化学工業株式会社製光学分割カラム「CROWNPAK CR(+)」(5μm、4.0×150mm)で生成した遊離体のアミノ酸の光学純度を測定することによって算出した。結果を表8に示す。なお、表8には、比較のため、表5のL182Eの単変異のデータを併記している。
5%N−サクシニル−DL−フェニルアラニン水溶液(pH7.5)5mLを基質として用い、塩化コバルト水溶液を終濃度1mMとなるように添加後、上記(2)で調製した二重変異改変型DSA(L182E+L348I)の酵素液0.075mgと参考例5で調製したChloroflexus aurantiacus株由来のN−サクシニルアミノ酸ラセマーゼ溶液2.5mgを添加し、45℃で3日間反応させた。また、一方でコントロールとして、PCT/JP2011/064943の実施例に記載の方法で調製した野生型DSA酵素液0.025mgと参考例5で調製したChloroflexus aurantiacus株由来のN−サクシニルアミノ酸ラセマーゼ溶液2.5mgを添加し、45℃で3日間反応させ、変換率及びD−アミノ酸の光学純度を算出した。変換率は、上記記載のジーエルサイエンス社製「Inertsil ODS−3」(5μm、4.6×100mm)を利用した高速液体クロマトグラフィーで酵素反応前と反応後の基質のピーク面積値を測定することによって算出した。光学純度は、上記記載のダイセル化学工業株式会社製光学分割カラム「CROWNPAK CR(+)」(5μm、4.0×150mm)で生成した遊離体のアミノ酸の光学純度を測定することによって算出した。結果を表9に示す。なお、表9には、比較のため、表6のL182Eの単変異のデータを併記している。
5%N−サクシニル−DL−ビフェニルアラニン水溶液(pH7.5)5mLを基質として用い、塩化コバルト水溶液を終濃度1mMとなるように添加後、上記(2)で調製した二重変異改変型DSA(L182E+L348I)の酵素液0.05mgと参考例5で調製したChloroflexus aurantiacus株由来のN−サクシニルアミノ酸ラセマーゼ溶液25mgを添加し、45℃で3日間反応させた。また、一方でコントロールとして、PCT/JP2011/064943の実施例に記載の方法で調製した野生型DSA酵素液0.025mgと参考例5で調製したChloroflexus aurantiacus株由来のN−サクシニルアミノ酸ラセマーゼ溶液25mgを添加し、45℃で3日間反応させ、変換率及びD−アミノ酸の光学純度を算出した。変換率は、上記記載のジーエルサイエンス社製「Inertsil ODS−3」(5μm、4.6×100mm)を利用した高速液体クロマトグラフィーで酵素反応前と反応後の基質のピーク面積値を測定することによって算出した。光学純度は、上記記載のダイセル化学工業株式会社製光学分割カラム「CROWNPAK CR(+)」(5μm、4.0×150mm)で生成した遊離体のアミノ酸の光学純度を測定することによって算出した。結果を表10に示す。なお、表10には、比較のため、表7のL182Eの単変異のデータを併記している。
Cupriavidus sp.P4−10−C株由来のD−サクシニラーゼにおいて明らかとなった立体選択性に関与するアミノ酸残基が、その他のCupriavidus属細菌のD−サクシニラーゼにおいて、保存されているかどうかを調べるために、Cupriavidus sp.P4−10−C、Cupriavidus metallidurans、Cupriavidus necator及びCupriavidus taiwanensisのD−サクシニラーゼのアミノ酸配列の相同性比較を行った。なお、Cupriavidus sp.P4−10−CとCupriavidus metalliduransについては、参考例1及び2で明らかにしたアミノ酸配列を、Cupriavidus necatorとCupriavidus taiwanensisについては、NCBI(http://blast.ncbi.nlm.nih.gov)に公開されているアミノ酸配列を用いた。詳しくはCupriavidus necatorについては、Penicillin G acylase(ACCESSION No.YP_842011)として登録されているアミノ酸配列を、Cupriavidus taiwanensisについては、Penicillin G amidaseprecursor(ACCESSION No.YP_002008843)として登録されているアミノ酸配列を用いた。また、アミノ酸配列解析ソフトは、GENETYX CORPORATIONから販売されているGENETYX WIN Version 6.1のものを使用した。結果を図3に示す。その結果、Cupriavidus sp.P4−10−C株由来のD−サクシニラーゼで明らかになった立体選択性に関与しているアミノ酸残基の全てが、比較した全てのCupriavidus属細菌のD−サクシニラーゼで保存されていることが明らかになった。なお、これらの4種のCupriavidus属細菌のD−サクシニラーゼの相同性は、以下の表11に示すように75%〜93%であった。
そこで、実施例6のアミノ酸配列のアライメント結果に基づき、近縁種においても、P4DSAの立体選択性に関与する72位、181〜185位、305位、348位、351位、461位、539位に同等な部位をアミノ酸置換することにより、N−サクシニル−DL−アミノ酸に対して、D体選択的に作用するようになるということを示すために、近縁種の一種であるCupriavidus metalliduransの改変型CmDSAを作成し、立体選択性を評価することにした。
(1)改変型CmDSA遺伝子発現プラスミドの構築
実施例1(3)に記載した方法と同様の方法で改変型CmDSA遺伝子発現プラスミドを構築した。作製した改変型酵素と変異導入に使用した合成オリゴDNAプライマーの配列を表12に示す。
実施例1(4)に記載した方法と同様の方法で、CmDSA及び改変型CmDSAの粗酵素液を調製した。
実施例7で調製した粗酵素液を用いて、実施例1と同様の条件及び手順で、N−サクシニルトリプトファンに対する立体選択性の評価を行った。その結果を表13に示す。
Claims (13)
- 下記(A)又は(B)のアミノ酸配列からなることを特徴とするタンパク質。
(A)配列番号2に示すアミノ酸配列において、下記(a)〜(k)から選択される少なくとも1個のアミノ酸残基の置換を有するアミノ酸配列
(a)72位のグルタミン残基のアルギニン残基への置換
(b)181位のグリシン残基のトリプトファン残基、リジン残基、アルギニン残基、アスパラギン酸又はグルタミン酸残基への置換
(c)182位のロイシン残基のトリプトファン残基、セリン残基、システイン残基、チロシン残基、リジン残基、アルギニン残基、アスパラギン酸残基、グルタミン酸残基又はプロリン残基への置換
(d)183位のスレオニン残基のプロリン残基、ロイシン残基又はアスパラギン残基への置換
(e)184位のロイシン残基のプロリン残基への置換
(f)185位のアスパラギン残基のプロリン残基、フェニルアラニン残基、セリン残基又はアスパラギン酸残基への置換
(g)305位のアルギニン残基のスレオニン残基、アラニン残基、グリシン残基、ヒスチジン残基、グルタミン残基、セリン残基、アスパラギン残基又はバリン残基への置換
(h)348位のロイシン残基のイソロイシン残基、グルタミン酸残基、プロリン残基、メチオニン残基、トリプトファン残基、セリン残基、スレオニン残基、システイン残基、リジン残基、ヒスチジン残基又はグルタミン残基への置換
(i)351位のフェニルアラニン残基のロイシン残基、イソロイシン残基、メチオニン残基、アスパラギン残基又はグルタミン残基への置換
(j)461位のアスパラギン残基のイソロイシン残基、フェニルアラニン残基、スレオニン残基、リジン残基又はアルギニン残基への置換
(k)539位のグリシン残基のプロリン残基、バリン残基、メチオニン残基、スレオニン残基又はアスパラギン残基への置換
(B)上記(A)のアミノ酸配列において、72位、181〜185位、305位、348位、351位、461位、及び539位以外の箇所に、1若しくは数個のアミノ酸残基の置換、欠失、挿入、付加および/または逆位を有するアミノ酸配列であって、N−サクシニル−DL−アミノ酸に対してD体選択的に作用してD−アミノ酸を生成する活性を有するタンパク質をコードするアミノ酸配列。 - 請求項1の(A)のアミノ酸配列が、配列番号2に示すアミノ酸配列において、182位のロイシン残基のグルタミン酸残基への置換、及び348位のロイシン残基のイソロイシン残基への置換を有するアミノ酸配列であることを特徴とする請求項1に記載のタンパク質。
- 下記(A)又は(B)の塩基配列からなることを特徴とする遺伝子。
(A)配列番号1に示す塩基配列において、下記(a)〜(k)から選択される少なくとも1個の塩基配列の置換を有する塩基配列
(a)214〜216位の塩基配列caaの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)541〜543位の塩基配列ggcの、tgg、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa又はgagへの置換
(c)544〜546位の塩基配列ctgの、tgg、tct、tcc、tca、tcg、agt、agc、tgt、tgc、tat、tac、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa、gag、cct、ccc、cca又はccgへの置換
(d)547〜549位の塩基配列acgの、cct、ccc、cca、ccg、tta、ttg、ctt、ctc、cta、ctg、aat又はaacへの置換
(e)550〜552位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(f)553〜555位の塩基配列aatの、cct、ccc、cca、ccg、ttt、ttc、tct、tcc、tca、tcg、agt、agc、gat又はgacへの置換
(g)913〜915位の塩基配列cggの、act、acc、aca、acg、gct、gcc、gca、gcg、ggt、ggc、gga、ggg、cat、cac、caa、cag、tct、tcc、tca、tcg、agt、agc、aat、aac、gtt、gtc、gta又はgtgへの置換
(h)1042〜1044位の塩基配列ctgの、att、atc、ata、gaa、gag、cct、ccc、cca、ccg、atg、tgg、tct、tcc、tca、tcg、agt、agc、act、acc、aca、acg、tgt、tgc、aaa、aag、cat、cac、caa又はcagへの置換
(i)1051〜1053位の塩基配列ttcの、tta、ttg、ctt、ctc、cta、ctg、att、atc、ata、atg、aat、aac、caa又はcagへの置換
(j)1381〜1383位の塩基配列aacの、att、atc、ata、ttt、ttc、act、acc、aca、acg、aaa、aag、cgt、cgc、cga、cgg、aga又はaggへの置換
(k)1615〜1617位の塩基配列ggcの、cct、ccc、cca、ccg、gtt、gtc、gta、gtg、atg、act、acc、aca、acg、aat又はaacへの置換
(B)上記(A)の(a)〜(k)から選択される塩基配列の置換を有し、かつ、(A)の塩基配列と90%以上の同一性を有する塩基配列であって、N−サクシニル−DL−アミノ酸に対してD体選択的に作用してD−アミノ酸を生成する活性を有するタンパク質をコードする塩基配列。 - 請求項3の(A)の塩基配列が、配列番号1に示す塩基配列において、544〜546位の塩基配列ctgの、gaa又はgagへの置換、及び1042〜1044位の塩基配列ctgの、att,atc又はataへの置換を有する塩基配列であることを特徴とする請求項3に記載の遺伝子。
- 下記(A)又は(B)のアミノ酸配列からなることを特徴とするタンパク質。
(A)配列番号4に示すアミノ酸配列において、下記(a)〜(e)から選択される少なくとも1個のアミノ酸残基の置換を有するアミノ酸配列
(a)177位のロイシン残基のアルギニン残基への置換
(b)180位のアスパラギン残基のアスパラギン酸残基への置換
(c)344位のロイシン残基のプロリン残基への置換
(d)347位のフェニルアラニン残基のイソロイシン残基への置換
(e)457位のアスパラギン残基のイソロイシン残基への置換
(B)上記(A)のアミノ酸配列において、177位、180位、344位、347位、及び457位以外の箇所に、1若しくは数個のアミノ酸残基の置換、欠失、挿入、付加および/または逆位を有するアミノ酸配列であって、N−サクシニル−DL−アミノ酸に対してD体選択的に作用してD−アミノ酸を生成する活性を有するタンパク質をコードするアミノ酸配列。 - 下記(A)又は(B)の塩基配列からなることを特徴とする遺伝子。
(A)配列番号3に示す塩基配列において、下記(a)〜(e)から選択される少なくとも1個の塩基配列の置換を有する塩基配列
(a)529〜531位の塩基配列ctgの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)538〜540位の塩基配列aacの、gat又はgacへの置換
(c)1030〜1032位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(d)1039〜1041位の塩基配列ttcの、att、atc又はataへの置換
(e)1369〜1371位の塩基配列aatの、att、atc又はataへの置換
(B)上記(A)の(a)〜(e)から選択される塩基配列の置換を有し、かつ、(A)の塩基配列と90%以上の同一性を有する塩基配列であって、N−サクシニル−DL−アミノ酸に対してD体選択的に作用してD−アミノ酸を生成する活性を有するタンパク質をコードする塩基配列。 - 配列番号2と90%以上の同一性を有するアミノ酸配列において、配列番号2の72位、181〜185位、305位、348位、351位、461位、及び539位のうちのいずれかと同等な位置のアミノ酸残基が、請求項1の(A)に示すアミノ酸残基に置換されているアミノ酸配列からなるタンパク質であって、N−サクシニル−DL−アミノ酸に対してD体選択的に作用してD−アミノ酸を生成する活性を有することを特徴とするタンパク質。
- 請求項7に記載のタンパク質をコードすることを特徴とする遺伝子。
- 配列番号4と90%以上の同一性を有するアミノ酸配列において、配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置のアミノ酸残基が、請求項3の(A)に示すアミノ酸残基に置換されているアミノ酸配列からなるタンパク質であって、N−サクシニル−DL−アミノ酸に対してD体選択的に作用してD−アミノ酸を生成する活性を有することを特徴とするタンパク質。
- 請求項9に記載のタンパク質をコードすることを特徴とする遺伝子。
- 請求項3,4,6,8又は10に記載の遺伝子をベクターに挿入して組換えベクターを調製し、この組換えベクターで宿主細胞を形質転換して形質転換体を調製し、この形質転換体を培養する工程を含むことを特徴とする請求項1,2,5,7又は9に記載のタンパク質の製造方法。
- 請求項1,2,5,7又は9に記載のタンパク質を用いてN−サクシニル−DL−アミノ酸中のN−サクシニル−D−アミノ酸を特異的に加水分解する工程を含むことを特徴とするD−アミノ酸の製造方法。
- N−サクシニルアミノ酸ラセマーゼを用いてN−サクシニル−L−アミノ酸をラセミ化してN−サクシニル−D−アミノ酸を生成させる工程をさらに含むことを特徴とする請求項12に記載の方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012046441A JP5903298B2 (ja) | 2011-03-14 | 2012-03-02 | N−サクシニル−dl−アミノ酸に対する向上されたd体選択性を有する改変型d−サクシニラーゼ |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011055365 | 2011-03-14 | ||
JP2011055365 | 2011-03-14 | ||
JP2012046441A JP5903298B2 (ja) | 2011-03-14 | 2012-03-02 | N−サクシニル−dl−アミノ酸に対する向上されたd体選択性を有する改変型d−サクシニラーゼ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012205587A JP2012205587A (ja) | 2012-10-25 |
JP5903298B2 true JP5903298B2 (ja) | 2016-04-13 |
Family
ID=46830588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012046441A Active JP5903298B2 (ja) | 2011-03-14 | 2012-03-02 | N−サクシニル−dl−アミノ酸に対する向上されたd体選択性を有する改変型d−サクシニラーゼ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5903298B2 (ja) |
WO (1) | WO2012124513A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107952065A (zh) | 2012-11-13 | 2018-04-24 | 阿道恰公司 | 包含经取代阴离子化合物的速效胰岛素制剂 |
FR3020947B1 (fr) | 2014-05-14 | 2018-08-31 | Adocia | Composition aqueuse comprenant au moins une proteine et un agent solubilisant, sa preparation et ses utilisations |
US9795678B2 (en) | 2014-05-14 | 2017-10-24 | Adocia | Fast-acting insulin composition comprising a substituted anionic compound and a polyanionic compound |
FR3043557B1 (fr) | 2015-11-16 | 2019-05-31 | Adocia | Composition a action rapide d'insuline comprenant un citrate substitue |
CN106399412B (zh) * | 2016-06-03 | 2019-12-10 | 南京红杉生物科技有限公司 | 合成d-联苯基丙氨酸的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008061642A (ja) * | 2006-08-10 | 2008-03-21 | Toyobo Co Ltd | D−アミノ酸の製造方法 |
WO2012002450A1 (ja) * | 2010-06-30 | 2012-01-05 | 積水メディカル株式会社 | D-サクシニラーゼ、およびこれを用いたd-アミノ酸の製造方法 |
-
2012
- 2012-03-02 WO PCT/JP2012/055409 patent/WO2012124513A1/ja active Application Filing
- 2012-03-02 JP JP2012046441A patent/JP5903298B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
WO2012124513A1 (ja) | 2012-09-20 |
JP2012205587A (ja) | 2012-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7316916B2 (en) | DNA for encoding D-hydantoin hydrolases, DNA for encoding N-carbamyl-D-amino acid hydrolases, recombinant DNA containing the genes, cells transformed with the recombinant DNA, methods for producing proteins utilizing the transformed cells and methods for producing D-amino acids | |
JP5232247B2 (ja) | L−サクシニルアミノアシラーゼ、およびこれを用いたl−アミノ酸の製造方法 | |
JP6048850B2 (ja) | D−サクシニラーゼ、およびこれを用いたd−アミノ酸の製造方法 | |
CN113969269B (zh) | D-氨基酸氧化酶突变体及其在制备l-草铵膦中的应用 | |
JP2008061642A (ja) | D−アミノ酸の製造方法 | |
JP5903298B2 (ja) | N−サクシニル−dl−アミノ酸に対する向上されたd体選択性を有する改変型d−サクシニラーゼ | |
JP5516664B2 (ja) | N−アセチル−(R,S)−β−アミノ酸アシラーゼ遺伝子 | |
JP4561009B2 (ja) | D−ヒダントインハイドロラーゼをコードするdna、n−カルバミル−d−アミノ酸ハイドロラーゼをコードするdna、該遺伝子を含む組み換えdna、該組み換えdnaにより形質転換された細胞、該形質転換細胞を用いるタンパク質の製造方法、および、d−アミノ酸の製造方法 | |
CN112779233B (zh) | 重组草铵膦脱氢酶、基因工程菌及其在制备l-草铵膦中的应用 | |
JP4118687B2 (ja) | Arthrobacter crystallopoietes(アリスロバクテリア クリスタロポイテス)DSM20117株由来のD−カルバモイラーゼ | |
EP1365023A1 (en) | Dna encoding novel d-aminoacylase and process for producing d-amino acid by using the same | |
JP6487852B2 (ja) | 2−デオキシ−シロ−イノソース還元酵素 | |
JP5119783B2 (ja) | N−アセチル−(R,S)−β−アミノ酸アシラーゼ遺伝子 | |
JP4489598B2 (ja) | D−アミノアシラーゼ | |
CN106795511A (zh) | 氧化酶、编码该酶的多核苷酸、以及它们的应用 | |
JP4274767B2 (ja) | (r)−体のアミド結合を選択的に加水分解するアミダーゼ遺伝子及びその利用 | |
JP4116798B2 (ja) | 新規アミダーゼ及びそれをコードする遺伝子 | |
JP4627039B2 (ja) | アミダーゼ活性を有するポリペプチド及びその遺伝子 | |
JP5954539B2 (ja) | 1−ベンジル−4−ヒドロキシ−3−ピペリジンカルボン酸アルキルエステルの製造方法 | |
JPH099973A (ja) | ロードコッカス属細菌由来のニトリルヒドラターゼ遺伝子およびアミダーゼ遺伝子 | |
WO2005123921A1 (ja) | 新規グリセロール脱水素酵素、その遺伝子、及びその利用法 | |
JPWO2003085108A1 (ja) | ヒダントイナーゼ遺伝子及びカルバミラーゼ遺伝子を有する組換えdna、並びにアミノ酸製造方法 | |
JP2008194037A (ja) | 生体触媒による4−ハロ−3−ヒドロキシ酪酸エステルの光学分割法 | |
JP2005304498A (ja) | α−アミノアジピン酸セミアルデヒド誘導体およびα−アミノアジピン酸誘導体を製造するための新規微生物と酵素、およびα−アミノアジピン酸セミアルデヒド誘導体とα−アミノアジピン酸誘導体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160314 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5903298 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |