[go: up one dir, main page]

JP5888877B2 - Chemical substance decomposition agent composition and chemical substance decomposition treatment method using the same - Google Patents

Chemical substance decomposition agent composition and chemical substance decomposition treatment method using the same Download PDF

Info

Publication number
JP5888877B2
JP5888877B2 JP2011120620A JP2011120620A JP5888877B2 JP 5888877 B2 JP5888877 B2 JP 5888877B2 JP 2011120620 A JP2011120620 A JP 2011120620A JP 2011120620 A JP2011120620 A JP 2011120620A JP 5888877 B2 JP5888877 B2 JP 5888877B2
Authority
JP
Japan
Prior art keywords
chemical substance
persulfate
iron
soil
agent composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011120620A
Other languages
Japanese (ja)
Other versions
JP2012246434A (en
Inventor
崇良 金田
崇良 金田
英和 冨岡
英和 冨岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2011120620A priority Critical patent/JP5888877B2/en
Publication of JP2012246434A publication Critical patent/JP2012246434A/en
Application granted granted Critical
Publication of JP5888877B2 publication Critical patent/JP5888877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Catalysts (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、化学物質によって汚染された土壌に添加することで、当該化学物質を効率よく分解処理することができる化学物質分解剤組成物及びそれを用いた化学物質の分解処理方法に関する。   The present invention relates to a chemical substance decomposing agent composition capable of efficiently decomposing a chemical substance when added to soil contaminated with the chemical substance, and a chemical substance decomposing method using the same.

従来、有機塩素化合物などの化学物質が洗浄剤などとして半導体工場やクリーニング店(工場)などで広く使用されてきたが、その環境負荷が大きいため、近年はその使用が敬遠されている。しかしながら、既に使用されたこれらの化学物質が、土壌や地下水に混入している場合も多く、土地の再利用をするに際し大きな社会問題となっているのが現状である。そこで様々な手段で、こうした汚染土壌や汚染水を浄化する試みがなされている。   Conventionally, chemical substances such as organic chlorine compounds have been widely used as cleaning agents in semiconductor factories and cleaning shops (factories), but their use has been refrained in recent years due to their large environmental impact. However, these chemical substances that have already been used are often mixed in soil and groundwater, and this is a major social problem when reusing land. Therefore, attempts have been made to purify such contaminated soil and contaminated water by various means.

汚染土壌や汚染水を物理的に除去する方法や、汚染物質を生物的あるいは化学的に分解する方法が知られているが、物理的な方法は、除去した汚染土壌等の二次的な処理が必要となる欠点がある。また、生物的に汚染物質を分解する方法においては、環境への影響が少ないという利点はあるものの、高濃度の汚染物質や有機塩素化合物等の難分解性化合物への適用は難しい。これに対して化学的に分解する方法では、現地で汚染物質の分解が可能であるため二次的な処理は不要であり、更に高濃度の汚染物質や有機塩素化合物等の難分解性化合物への適用も可能である。   There are known methods for physically removing contaminated soil and contaminated water, and methods for biologically or chemically decomposing pollutants. Physical methods include secondary treatment of removed contaminated soil, etc. There is a drawback that is required. In addition, the method of biologically decomposing pollutants has the advantage of having little impact on the environment, but is difficult to apply to highly degradable compounds such as high-concentration pollutants and organic chlorine compounds. On the other hand, the chemical decomposition method does not require secondary treatment because it is possible to decompose pollutants on the site, and further to high-concentration pollutants and refractory compounds such as organochlorine compounds. Is also possible.

化学的に分解する方法としては、過酸化水素や過硫酸塩を用いて汚染物質を酸化分解する方法が知られている。分解方法としては地盤中に注入する方法が一般的であるが、過酸化水素は不安定で分解が早いため、地盤に注入すると直ちに分解してしまい、浄化する範囲が極端に狭くなる欠点がある。一方、過硫酸塩は安定であるため、酸化剤として使用するためには触媒等の活性化剤が必要である。こうした触媒としては鉄イオン等の金属イオンを使用することが知られており、更に幅広いpH領域に対応させるため、あるいは触媒の鉄イオン等がオキシ水酸化鉄等の不溶性物質になることを抑制するために、クエン酸やグルコン酸等のキレート剤を併用することが知られている(例えば、特許文献1及び2を参照)。過硫酸塩と触媒とを含む組成物は、キレート剤の使用により汚染物質の酸化分解の分解効率や分解速度を一定の範囲でコントロールできる。近年、過硫酸塩を含む組成物による汚染物質の分解処理が活発に検討されている。   As a method of chemically decomposing, a method of oxidatively decomposing pollutants using hydrogen peroxide or persulfate is known. As a decomposition method, a method of injecting into the ground is common, but hydrogen peroxide is unstable and decomposes quickly, so when it is injected into the ground, it is immediately decomposed and there is a disadvantage that the range to be purified becomes extremely narrow. . On the other hand, since persulfate is stable, an activator such as a catalyst is required for use as an oxidizing agent. As such a catalyst, it is known to use metal ions such as iron ions, and in order to cope with a wider pH range, or to prevent the iron ions of the catalyst from becoming insoluble substances such as iron oxyhydroxide. Therefore, it is known to use a chelating agent such as citric acid or gluconic acid together (for example, see Patent Documents 1 and 2). In the composition containing the persulfate and the catalyst, the decomposition efficiency and decomposition rate of the oxidative decomposition of the contaminant can be controlled within a certain range by using the chelating agent. In recent years, decomposition treatment of pollutants by a composition containing persulfate has been actively studied.

特開2010−082600号公報JP 2010-082600 A 特開2011−020108号公報JP 2011-020108 A

しかしながら、過硫酸塩と触媒とを含む組成物は、触媒の量が少ないと分解効率が極端に低くなってしまう。一方、触媒の量を多くすると分解効率は上がるが、過硫酸塩が短時間で大量に消費され、過硫酸塩と触媒とを含む組成物が土壌中に拡散する前に汚染物質を分解する効力が短時間で消失するため、土壌中の狭い範囲の汚染物質しか分解できない欠点があった。
従って、本発明は、化学物質の分解効率が高く、且つ過硫酸塩が短時間で消費されることなく分解能力を長期に維持することのできる化学物質分解剤組成物を提供することを目的とする。
However, a composition containing a persulfate and a catalyst has an extremely low decomposition efficiency when the amount of the catalyst is small. On the other hand, when the amount of the catalyst is increased, the decomposition efficiency increases, but the persulfate is consumed in a large amount in a short time, and the effect of decomposing the pollutant before the composition containing the persulfate and the catalyst diffuses into the soil. Disappears in a short time, so there is a drawback that only a small range of pollutants in the soil can be decomposed.
Accordingly, an object of the present invention is to provide a chemical substance decomposing agent composition having high chemical substance decomposition efficiency and capable of maintaining the decomposition ability for a long period of time without consuming persulfate in a short time. To do.

そこで、本発明者等は、鋭意検討した結果、化学物質の分解効率が高く、且つ分解能力が長期にわたって維持される組成物を見出し、本発明に至った。即ち、本発明は、過硫酸塩(A)、2価又は3価の鉄イオン(B)及びアスコルビン酸(C)を含有することを特徴とする化学物質分解剤組成物である。   Thus, as a result of intensive studies, the present inventors have found a composition having a high chemical substance decomposition efficiency and maintaining the decomposition ability over a long period of time, and have reached the present invention. That is, this invention is a chemical substance decomposition agent composition characterized by containing persulfate (A), a bivalent or trivalent iron ion (B), and ascorbic acid (C).

本発明によれば、化学物質の分解効率が高く、且つ過硫酸塩が短時間で消費されることなく分解能力を長期に維持することのできる化学物質分解剤組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the decomposition efficiency of a chemical substance is high, and the chemical substance decomposition agent composition which can maintain decomposition | disassembly capability for a long term, without persulfate being consumed for a short time can be provided.

本発明の化学物質分解剤組成物は、過硫酸塩(A)、2価又は3価の鉄イオン(B)及びアスコルビン酸(C)の3成分を含有する組成物である。
分解の対象となる化学物質は、有機物であれば種類を選ばず、例えば、ヘキサン、石油エーテル等の脂肪族炭化水素化合物;ベンゼン、トルエン、キシレン、ナフタレン、アントラセン、フェナントレン、ピレン、クリセン等の芳香族炭化水素化合物;灯油、軽油、重油、ガソリン、軽油、潤滑油等の石油製品;ジクロロメタン、クロロホルム、四塩化炭素、ブロモトリフルオロメタン、ブロモクロロジフルオロメタン、ジブロモジフルオロメタン、ジブロモテトラフルオロエタン、トリブロモフルオロメタン、テトラクロロエチレン、トリクロロエチレン、1,1−ジクロロエチレン、1,2−ジクロロエチレン、クロロエチレン、ヘキサクロロエタン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,1−ジクロロエタン、1,2−ジクロロエタン、1,2−ジクロロテトラフルオロエタン、1,3−ジクロロプロペン、2−クロロ−1,3−ブタジエンが挙げられる。ハロゲン化脂環式化合物としては、例えば、1,2,3,4,5,6−ヘキサクロロシクロヘキサン、アルドドリン(Aldrin)、ディルドリン(Dieldrin)、エンドリン(Endrin)、クロルデン(Chlorden)、ヘプタクロル(Heptachor)、マイレックス(Mirex)、トキサフェン(Toxaphene)が挙げられる。ハロゲン化芳香族化合物としては、例えば、ジクロロジフェニルトリクロロエタン(DDT)、2,4−ジクロロフェノール、2,4,5−トリクロロフェノール、2,4,6−トリクロロフェノール、ペンタクロロフェノール、ポリ塩化ビフェニル類(PCB)、ダイオキシン類等の有機ハロゲン化合物等が挙げられる。本発明の化学物質分解剤組成物は、難分解性として知られる有機ハロゲン化合物に対して効果的に使用することができる。
The chemical substance decomposing agent composition of the present invention is a composition containing three components of persulfate (A), divalent or trivalent iron ion (B) and ascorbic acid (C).
The chemical substance to be decomposed is not limited as long as it is organic, for example, aliphatic hydrocarbon compounds such as hexane and petroleum ether; aromatics such as benzene, toluene, xylene, naphthalene, anthracene, phenanthrene, pyrene and chrysene Petroleum products such as kerosene, light oil, heavy oil, gasoline, light oil, lubricating oil; dichloromethane, chloroform, carbon tetrachloride, bromotrifluoromethane, bromochlorodifluoromethane, dibromodifluoromethane, dibromotetrafluoroethane, tribromo Fluoromethane, tetrachloroethylene, trichloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene, chloroethylene, hexachloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1-dichloro Tan, 1,2-dichloroethane, 1,2-dichlorotetrafluoroethane, 1,3-dichloropropene, and a 2-chloro-1,3-butadiene. Examples of the halogenated alicyclic compound include 1,2,3,4,5,6-hexachlorocyclohexane, aldodrine, dieldrin, endrin, chlordane, heptachlor. , Mirex, and Toxaphene. Examples of the halogenated aromatic compound include dichlorodiphenyltrichloroethane (DDT), 2,4-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol, and polychlorinated biphenyls. (PCB), organic halogen compounds such as dioxins, and the like. The chemical substance decomposing agent composition of the present invention can be effectively used for an organic halogen compound known to be hardly decomposable.

上記の化学物質が混入した対象物を浄化する目的で、本発明の化学物質分解剤組成物は使用されるが、こうした対象物としては、例えば、土壌、汚泥、工場排水、生活排水、河川水、湖沼水、地下水等が挙げられる。   The chemical substance decomposing agent composition of the present invention is used for the purpose of purifying the object mixed with the above chemical substances. Examples of such objects include soil, sludge, factory effluent, domestic effluent, and river water. , Lake water, groundwater, etc.

本発明の化学物質分解剤組成物に使用される(A)成分の過硫酸塩としては、例えば、過硫酸リチウム、過硫酸ナトリウム及び過硫酸カリウム等が挙げられる。これらの中でも、過硫酸ナトリウム及び過硫酸カリウムが好ましく、経済的に安価で水溶性の高い過硫酸ナトリウムが更に好ましい。上記した過硫酸塩は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   Examples of the persulfate of the component (A) used in the chemical substance decomposing agent composition of the present invention include lithium persulfate, sodium persulfate, and potassium persulfate. Among these, sodium persulfate and potassium persulfate are preferable, and sodium persulfate that is economically inexpensive and highly water-soluble is more preferable. The persulfate described above may be used alone or in combination of two or more.

本発明の化学物質分解剤組成物に使用される(B)成分は2価又は3価の鉄イオンである。これらの鉄イオンのイオン源は、水に溶解あるいは分散するものであれば特に限定されないが、水への溶解性が良好なことから鉄塩を使用することが好ましい。こうした鉄塩としては、例えば、塩化鉄(II)、塩化鉄(III)、過塩酸鉄(II)、過塩酸鉄(III)、臭化鉄(II)、臭化鉄(III)、ヨウ化鉄(II)、ヨウ化鉄(III)、硝酸鉄(II)、硝酸鉄(III)、チオシアン酸鉄(II)、チオシアン酸鉄(III)、酢酸鉄(II)、シュウ酸鉄(III)、硫酸アンモニウム鉄(II)、硫酸アンモニウム鉄(III)、硫酸カリウム鉄(III)、硫酸鉄(II)、硫酸鉄(III)、フェロシアン化ナトリウム、フェリシアン化ナトリウム、フェロシアン化カリウム、フェリシアン化カリウム、フェロシアン化アンモニウム、フェリシアン化アンモニウム等が挙げられ、有機物質の分解率と経済性の点から、塩化鉄(II)、塩化鉄(III)、硝酸鉄(II)、硝酸鉄(III)、硫酸鉄(II)、硫酸鉄(III)が好ましく、塩化鉄(II)、硝酸鉄(II)、硫酸鉄(II)が更に好ましく、塩化鉄(II)及び硫酸鉄(II)が最も好ましい。これらの鉄塩は無水塩でもよいし水和物でもよく、水への溶解または分散のしやすさを考慮して、適宜選択すればよい。なお、本発明において水和物とは結晶水を有する塩をいい、例えば、硫酸鉄(II)は無水塩の他に、一水和物、四水和物、五水和物及び七水和物が知られている。上記した鉄イオンのイオン源は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   The component (B) used in the chemical substance decomposer composition of the present invention is a divalent or trivalent iron ion. The ion source of these iron ions is not particularly limited as long as it dissolves or disperses in water, but it is preferable to use an iron salt because of its good solubility in water. Examples of such iron salts include iron (II) chloride, iron (III) chloride, iron (II) perhydrochloride, iron (III) perhydrochloride, iron (II) bromide, iron (III) bromide, and iodide. Iron (II), iron (III) iodide, iron (II) nitrate, iron (III) nitrate, iron (II) thiocyanate, iron (III) thiocyanate, iron (II) acetate, iron (III) oxalate , Ammonium iron (II) sulfate, iron (III) sulfate, potassium iron (III) sulfate, iron (II) sulfate, iron (III) sulfate, sodium ferrocyanide, sodium ferricyanide, potassium ferrocyanide, potassium ferricyanide, ferrocyanide Ammonium chloride, ammonium ferricyanide and the like, and from the viewpoint of the decomposition rate and economic efficiency of organic substances, iron (II) chloride, iron (III) chloride, iron (II) nitrate, Iron (III) acid, iron (II) sulfate, and iron (III) sulfate are preferable, iron chloride (II), iron (II) nitrate, and iron (II) sulfate are more preferable, and iron (II) chloride and iron sulfate ( II) is most preferred. These iron salts may be anhydrous salts or hydrates, and may be appropriately selected in consideration of ease of dissolution or dispersion in water. In the present invention, the hydrate refers to a salt having water of crystallization. For example, iron (II) sulfate is monohydrate, tetrahydrate, pentahydrate and heptahydrate in addition to anhydrous salts. Things are known. The above iron ion source may be used alone or in combination of two or more.

本発明の化学物質分解剤組成物に使用される(C)成分はアスコルビン酸である。アスコルビン酸には、L体とD体の2つの光学異性体が存在するが、安全性が高く、安価であることからL−アスコルビン酸が好ましい。なお、上記(B)成分と(C)成分とが複合して、例えば、アスコルビン酸鉄塩等を形成してもよい。   The component (C) used in the chemical substance decomposer composition of the present invention is ascorbic acid. Ascorbic acid has two optical isomers, L-form and D-form, but L-ascorbic acid is preferred because it is highly safe and inexpensive. In addition, the (B) component and the (C) component may be combined to form, for example, ascorbic acid iron salt.

本発明の化学物質分解剤組成物に使用される(A)成分、(B)成分及び(C)成分の配合比は特に規定されないが、化学物質を効率よく分解する点から、(A)成分1モルに対して、(B)成分を0.1〜1モル、好ましくは0.2〜0.8モル、より好ましくは0.3〜0.7モル配合し、更に(C)成分を0.005〜0.1モル、好ましくは0.01〜0.05モル、より好ましくは0.01〜0.03モル配合すればよい。(B)成分が0.1モルより少ないと化学物質の分解が進まない場合があり、1モルを超えると(A)成分が短時間で消費されて持続性が損なわれる場合や、配合量に見合った効果が得られない場合がある。また(C)成分が0.005モルより少ないと化学物質の分解が進まない場合があり、0.1モルを超えると(A)成分が短時間で消費されて持続性が損なわれる場合がある。   Although the compounding ratio of the component (A), the component (B) and the component (C) used in the chemical substance decomposing agent composition of the present invention is not particularly defined, the component (A) is used because it efficiently decomposes the chemical substance. The component (B) is added in an amount of 0.1 to 1 mol, preferably 0.2 to 0.8 mol, more preferably 0.3 to 0.7 mol, and the component (C) is added to 0 mol. 0.005 to 0.1 mol, preferably 0.01 to 0.05 mol, more preferably 0.01 to 0.03 mol. If the amount of the component (B) is less than 0.1 mol, the decomposition of the chemical substance may not proceed. If the amount exceeds 1 mol, the component (A) is consumed in a short time and the sustainability is impaired. You may not get the appropriate effect. Further, if the amount of the component (C) is less than 0.005 mol, the decomposition of the chemical substance may not proceed, and if the amount exceeds 0.1 mol, the component (A) may be consumed in a short time and the sustainability may be impaired. .

本発明の化学物質の分解処理方法は、本発明の化学物質分解剤組成物(以下、「本薬剤」という)を、化学物質に汚染された土壌又は水と接触させ、当該化学物質を分解処理する方法である。
化学物質に汚染された工場排水や地下水等の汚染水を浄化する場合には、汚染水に本薬剤を添加した後、攪拌を行って混合する。本薬剤は、添加後に汚染水中で素早く分散することから水溶液の状態が好ましい。本薬剤の添加量は、化学物質の種類や量によって適宜決めればよく、具体的には、化学物質1モルに対して、本薬剤中の(A)成分である過硫酸塩が5〜50モルになるように添加するのが好ましく、8〜30モルがより好ましく、10〜20モルが更に好ましい。過硫酸塩の量が5モル未満の場合は化学物質の分解が完全に終了しない場合があり、50モルを超えると添加量に見合った効果が得られない場合がある。なお、過硫酸塩の添加量が5モル未満であっても、必要量の本薬剤をその後に追加添加することで化学物質を分解処理することが可能である。本薬剤を添加後は、添加剤が均一に分散していれば攪拌を続けていても静置してもよい。更に、定期的に汚染水をサンプリングして汚染物質のモニタリングを行い、化学物質の濃度が目標値以下に達すれば分解処理が終了する。なお、化学物質の濃度が目標値以下に達しない場合は、一定量の本薬剤を汚染水に追加すればよい。
The chemical substance decomposition method of the present invention comprises contacting the chemical substance decomposition agent composition of the present invention (hereinafter referred to as “the present drug”) with soil or water contaminated with a chemical substance, and decomposing the chemical substance. It is a method to do.
When purifying contaminated water such as industrial wastewater and groundwater contaminated with chemical substances, add this chemical to the contaminated water, and then mix by stirring. The drug is preferably in the form of an aqueous solution because it is quickly dispersed in the contaminated water after addition. The addition amount of this drug may be appropriately determined depending on the type and amount of the chemical substance. Specifically, the persulfate as component (A) in this drug is 5 to 50 mol per 1 mol of the chemical substance. It is preferable to add so that it may become, 8-30 mol is more preferable, and 10-20 mol is still more preferable. When the amount of persulfate is less than 5 mol, the decomposition of the chemical substance may not be completed completely, and when it exceeds 50 mol, the effect corresponding to the addition amount may not be obtained. In addition, even if the addition amount of persulfate is less than 5 mol, it is possible to decompose the chemical substance by additionally adding the necessary amount of the drug thereafter. After the addition of this drug, stirring may be continued or left as long as the additive is uniformly dispersed. Furthermore, the polluted water is periodically sampled and the pollutant is monitored, and the decomposition process ends when the concentration of the chemical substance reaches a target value or less. If the concentration of the chemical substance does not reach the target value or less, a certain amount of the drug may be added to the contaminated water.

次に、化学物質により汚染された土壌を浄化する場合について説明する。汚染された土壌を浄化するには、汚染された土壌を掘り返し、当該土壌に水を加えてスラリー状にしてから分解処理してもよいし、汚染された土壌に本薬剤を直接注入して分解処理してもよい。スラリーにして浄化する方法は、掘削や土壌撹拌が必要であることによる浄化コストや、土壌のスラリー化による土粒子の構造変化や間隙率の増大による地盤の脆弱化対策の必要性等の問題がある。よって汚染土壌の浄化方法としては、浄化コストや地盤の安定性の点から、土壌に本薬剤を直接注入することが好ましい。なお、本薬剤を土壌に直接注入する場合において、本薬剤を構成する成分をそれぞれ別々に土壌に注入してもよい。   Next, the case where the soil contaminated with the chemical substance is purified will be described. In order to purify the contaminated soil, the contaminated soil may be dug up, and water may be added to the soil to form a slurry, followed by decomposition treatment. Alternatively, the drug is directly injected into the contaminated soil for decomposition. It may be processed. The purification method using slurry has problems such as the cost of purification due to the need for excavation and soil agitation, and the need for countermeasures for soil weakening due to soil particle structural changes and increased porosity due to soil slurrying. is there. Therefore, as a purification method for contaminated soil, it is preferable to inject this drug directly into the soil from the viewpoint of purification cost and ground stability. In addition, when inject | pouring this chemical | medical agent directly into soil, you may inject | pour each component which comprises this chemical | medical agent separately into soil.

土壌に注入する本薬剤は、注入後に土壌中に広がりやすいことから水溶液の状態が好ましく、具体的には、(A)成分である過硫酸塩が1〜20質量%の水溶液になるように本薬剤を水で希釈し、浄化しようとする土量1mに対して、水で希釈した本薬剤中の(A)成分である過硫酸塩が0.5〜50kgになるように本薬剤の水溶液を添加するのが好ましく、1〜40kgがより好ましく、2〜20kgが更に好ましい。過硫酸塩が0.5kg未満の場合は化学物質の分解速度が遅くなる場合や、分解が完全に終了しない場合があり、50kgを超えると環境に悪影響を与える場合や、添加量に見合った効果が得られない場合がある。また、本薬剤を構成する成分をそれぞれ別々に土壌に注入することも可能であり、この場合は過硫酸塩が1〜20質量%水溶液の溶液Aと、鉄イオン及びアスコルビン酸の合計の濃度が0.05〜30質量%水溶液の溶液Bをそれぞれ調整し、溶液A及び溶液Bを別々に土壌に注入すればよいが、化学物質を効率よく分解するためには最初に溶液B、次に溶液Aの順で土壌に注入することが好ましい。しかしながら別々に注入する場合は、各成分の比率が本発明の範囲内になるように調整して注入しなければならないため、こうした調整の必要がない本薬剤を直接注入する方法が好ましい。 The drug to be injected into the soil is preferably in the form of an aqueous solution because it easily spreads in the soil after the injection. Specifically, the drug is prepared so that the persulfate as the component (A) is an aqueous solution of 1 to 20% by mass. Aqueous solution of this drug so that persulfate as component (A) in this drug diluted with water is 0.5-50 kg with respect to 1 m 3 of soil to be purified by diluting the drug with water Is preferably added, more preferably 1 to 40 kg, and still more preferably 2 to 20 kg. If the persulfate is less than 0.5 kg, the decomposition rate of the chemical substance may be slow, or the decomposition may not be completed completely. If it exceeds 50 kg, the environment may be adversely affected, or the effect commensurate with the amount added May not be obtained. Moreover, it is also possible to inject | pour into the soil each component which comprises this chemical | medical agent separately, In this case, the density | concentration of the sum total of the solution A of 1-20 mass% aqueous solution of persulfate, and an iron ion and ascorbic acid is A solution B of 0.05 to 30% by mass aqueous solution is prepared, and the solution A and the solution B may be separately poured into the soil. However, in order to efficiently decompose the chemical substance, the solution B is first and then the solution. It is preferable to inject into the soil in the order of A. However, in the case of injecting separately, since it is necessary to adjust and inject so that the ratio of each component falls within the scope of the present invention, a method of directly injecting the present drug that does not require such adjustment is preferable.

本薬剤を土壌に注入する場合には、汚染深度に達する注入用の井戸を、例えば、1〜20m、好ましくは1.5〜5m程度の間隔で設置する。また、本薬剤の拡散を促進するために揚水用の井戸を設置し、地下水を揚水しながら本発明の分解処理方法に用いる薬剤を注入することが好ましい。注入井戸の間に観測井戸を設置し、定期的に地下水あるいは土壌をサンプリングし、化学物質の分解率のモニタリングを行い、化学物質の濃度が目標値以下に達したら注入を停止すればよい。   When inject | pouring this chemical | medical agent into soil, the well for injection | pouring which reaches the depth of contamination is installed, for example at intervals of about 1 to 20 m, preferably about 1.5 to 5 m. In order to promote the diffusion of the drug, it is preferable to install a well for pumping water and inject the drug used for the decomposition treatment method of the present invention while pumping up groundwater. An observation well should be installed between the injection wells, periodically sampling groundwater or soil, monitoring the decomposition rate of chemical substances, and stopping the injection when the concentration of chemical substances falls below the target value.

以下、本発明を実施例により具体的に説明する。
下記試験方法に従い、粉砕及び乾燥した土とトリクロロエチレン(TCE)とを含むモデル汚染土壌に対して薬剤を使用してTCEの分解試験を行った。
Hereinafter, the present invention will be specifically described by way of examples.
In accordance with the following test method, a TCE decomposition test was conducted using a chemical on a model-contaminated soil containing ground and dried soil and trichlorethylene (TCE).

<試験方法>
120mlの遮光バイアル瓶に、粉砕及び乾燥した土を10g、TCEが200mg/lの水溶液を50g入れた。表1及び表2に記載のモル比で各成分を配合し、過硫酸塩の濃度が6000mg/lになるように水で希釈して各薬剤(実施例1〜8及び比較例1〜7)を調製した。これらの薬剤50gを、土とTCE水溶液の入った遮光バイアル瓶にそれぞれ添加した。その後、遮光バイアル瓶を上下に振って内容物を均一化し、25℃の恒温槽内に静置した。この時点(分解前)でのTCE濃度は100mg/lである。
2日間静置後、遮光バイアル瓶中の上澄み水を10ml採取し、ガスクロマトグラフィーを用いて残存TCE量と残存過硫酸塩量とを測定した。ガスクロマトグラフィーの条件は下記の通りである。なお、比較例2及び比較例3については、残存過硫酸塩量が0%になるまで(7日間静置)分解を続けた。2日静置後のデータを表1及び表2に、7日間静置後の比較例2及び比較例3のデータを表3に示す。
<Test method>
In a 120 ml light-shielding vial, 10 g of ground and dried soil and 50 g of an aqueous solution having a TCE of 200 mg / l were placed. Each component is blended in the molar ratios described in Table 1 and Table 2, and diluted with water so that the concentration of persulfate is 6000 mg / l. Each drug (Examples 1-8 and Comparative Examples 1-7) Was prepared. 50 g of these chemicals were added to each of the light-shielding vials containing the soil and the TCE aqueous solution. Thereafter, the light-shielding vial was shaken up and down to make the contents uniform, and left in a constant temperature bath at 25 ° C. The TCE concentration at this point (before decomposition) is 100 mg / l.
After standing for 2 days, 10 ml of the supernatant water in the light-shielding vial was collected, and the residual TCE amount and the residual persulfate amount were measured using gas chromatography. The conditions for gas chromatography are as follows. In addition, about the comparative example 2 and the comparative example 3, decomposition | disassembly was continued until the amount of residual persulfate became 0% (7 days still standing). The data after 2 days of standing are shown in Tables 1 and 2, and the data of Comparative Example 2 and Comparative Example 3 after 7 days of standing are shown in Table 3.

<ガスクロマトグラフィー条件>
機器:GC−2014(島津製作所株式会社製)
カラム:InterCap1(内径0.25mm、長さ30m、膜厚1.5μm;GLサイエンス社製)
カラム温度:40℃から200℃に昇温(5℃/min)
インジェクション温度:200℃
ディテクター温度:250℃
注入量:0.1ml
スプリット比:1:50
<Gas chromatography conditions>
Equipment: GC-2014 (manufactured by Shimadzu Corporation)
Column: InterCap1 (inner diameter 0.25 mm, length 30 m, film thickness 1.5 μm; manufactured by GL Science)
Column temperature: 40 ° C to 200 ° C (5 ° C / min)
Injection temperature: 200 ° C
Detector temperature: 250 ° C
Injection volume: 0.1ml
Split ratio: 1:50

下記表1及び2において、各成分の数字はモル比であり、過硫酸ナトリウムあるいは過硫酸カリウム1モルに対するその他の化合物の配合モル数である。   In the following Tables 1 and 2, the numbers of the respective components are molar ratios, and are the number of moles of other compounds added relative to 1 mole of sodium persulfate or potassium persulfate.

Figure 0005888877
Figure 0005888877

Figure 0005888877
Figure 0005888877

Figure 0005888877
Figure 0005888877

上記結果より、実施例の薬剤はいずれもTCE濃度を1mg/l未満に低下させており、本発明の薬剤の分解能力が高いことが分かる。また、実施例では過硫酸塩も一定量以上残存しており、2日経過後も分解能力を維持していることが分かる。一方、比較例の薬剤はいずれもTCE濃度を1mg/l未満に低下させることができなかった。また、比較例では過硫酸塩の残量が0%になるまで試験を継続してもTCE濃度が1mg/l未満に達していないことから、本発明の薬剤と比較例の薬剤との間には、分解能力に大きな差があることが確認された。   From the above results, it can be seen that all of the drugs of the Examples have the TCE concentration lowered to less than 1 mg / l, and the degradation ability of the drug of the present invention is high. Further, in the examples, a certain amount or more of the persulfate remains, and it can be seen that the decomposition ability is maintained even after 2 days. On the other hand, none of the drugs of Comparative Examples could reduce the TCE concentration to less than 1 mg / l. In the comparative example, the TCE concentration did not reach less than 1 mg / l even when the test was continued until the remaining amount of persulfate reached 0%. Therefore, between the drug of the present invention and the drug of the comparative example, It was confirmed that there was a big difference in decomposition ability.

Claims (4)

過硫酸塩(A)、2価又は3価の鉄イオン(B)及びアスコルビン酸(C)を含有することを特徴とする化学物質分解剤組成物。   A chemical substance decomposing agent composition comprising a persulfate (A), a divalent or trivalent iron ion (B) and ascorbic acid (C). 過硫酸塩(A)1モルに対して、2価又は3価の鉄イオン(B)を0.1〜1モル、アスコルビン酸(C)を0.005〜0.1モル含有する水溶液であることを特徴とする請求項1に記載の化学物質分解剤組成物。   It is an aqueous solution containing 0.1 to 1 mol of divalent or trivalent iron ion (B) and 0.005 to 0.1 mol of ascorbic acid (C) with respect to 1 mol of persulfate (A). The chemical substance decomposer composition according to claim 1. 過硫酸塩(A)が過硫酸ナトリウム又は過硫酸カリウムであり、2価又は3価の鉄イオン(B)のイオン源が硫酸鉄であり、且つアスコルビン酸(C)がL−アスコルビン酸であることを特徴とする請求項1又は2に記載の化学物質分解剤組成物。   The persulfate (A) is sodium persulfate or potassium persulfate, the ion source of divalent or trivalent iron ions (B) is iron sulfate, and ascorbic acid (C) is L-ascorbic acid. The chemical substance decomposing agent composition according to claim 1 or 2. 請求項1〜3の何れか一項に記載の化学物質分解剤組成物を、化学物質に汚染された土壌又は水と接触させて当該化学物質を分解処理することを特徴とする化学物質の分解処理方法。   The chemical substance decomposition agent composition according to any one of claims 1 to 3, wherein the chemical substance is decomposed by bringing the chemical substance decomposition agent composition into contact with soil or water contaminated with the chemical substance. Processing method.
JP2011120620A 2011-05-30 2011-05-30 Chemical substance decomposition agent composition and chemical substance decomposition treatment method using the same Active JP5888877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011120620A JP5888877B2 (en) 2011-05-30 2011-05-30 Chemical substance decomposition agent composition and chemical substance decomposition treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011120620A JP5888877B2 (en) 2011-05-30 2011-05-30 Chemical substance decomposition agent composition and chemical substance decomposition treatment method using the same

Publications (2)

Publication Number Publication Date
JP2012246434A JP2012246434A (en) 2012-12-13
JP5888877B2 true JP5888877B2 (en) 2016-03-22

Family

ID=47467203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120620A Active JP5888877B2 (en) 2011-05-30 2011-05-30 Chemical substance decomposition agent composition and chemical substance decomposition treatment method using the same

Country Status (1)

Country Link
JP (1) JP5888877B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114904909B (en) * 2022-07-19 2022-11-08 张家口市绿洁环保技术开发有限公司 Method for efficiently degrading soil di-p-chlorophenyl trichloroethane based on chlorine dioxide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239783A (en) * 1997-12-25 1999-09-07 Ebara Corp Method for purifying organic halogen compound pollutant by dehalogenation
US6019548A (en) * 1998-05-05 2000-02-01 United Technologies Corporation Chemical oxidation of volatile organic compounds
US6319328B1 (en) * 1999-07-01 2001-11-20 Richard S. Greenberg Soil and/or groundwater remediation process
JP2006326121A (en) * 2005-05-30 2006-12-07 Adeka Corp Chemical substance decomposition agent and cleaning method using thereof
JP5029562B2 (en) * 2008-10-02 2012-09-19 三菱瓦斯化学株式会社 Soil and / or groundwater purification method
JP5368201B2 (en) * 2009-07-21 2013-12-18 オルガノ株式会社 Method and apparatus for treating chemical contamination

Also Published As

Publication number Publication date
JP2012246434A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
Petri et al. Fundamentals of ISCO using hydrogen peroxide
US7745680B1 (en) Compositions, methods, and systems for reducing contamination
US9814919B2 (en) Degrading halogenated organic compounds
Zhang et al. Degradation of p-chloroaniline by pyrite in aqueous solutions
ES2687753T3 (en) Treatment of environmental pollutants
JP5029562B2 (en) Soil and / or groundwater purification method
JP5817718B2 (en) Chemical substance treatment agent containing persulfate and silver complex, and chemical substance decomposition method using the same
EP2828209B1 (en) Environmental remediation process
US7928277B1 (en) Method for reducing contamination
JP2015514570A (en) Organic acid activity of persulfate
TWI566806B (en) A composition for decomposing a chemical substance and a method for decomposing a chemical substance by using the composition
JP2007209824A (en) Method for cleaning contaminated soil or contaminated groundwater
JP4167052B2 (en) Purification method for organic compound contamination
JP5666832B2 (en) Organic substance decomposition treatment method and organic substance decomposition treatment agent kit
Han et al. Kill two birds with one stone: Solubilizing PAHs and activating PMS by photoresponsive surfactants for the cycle remediation of contaminated groundwater
Muff et al. Identification and fate of halogenated PAHs formed during electrochemical treatment of saline aqueous solutions
JP5888877B2 (en) Chemical substance decomposition agent composition and chemical substance decomposition treatment method using the same
JP2002307049A (en) Method of cleaning chemical substance-polluted matter, and method of cleaning underground polluted region
JP2005185870A (en) Additive used for restoration of contaminated soil, ground water or bottom deposit
JP2010149083A (en) Cleaning method of chemical pollution
JP4548782B2 (en) Purification method for organic pollutants
JP4027209B2 (en) Purification method for contamination by chemical substances
JP2017043706A (en) Chemical material decomposition composition and decomposition treatment method of chemical material
JP4803346B2 (en) Composition having organic compound decomposability and decomposition method
Smith Destruction of dense non-aqueous phase liquids (DNAPLs) by modified Fenton's reagent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160216

R150 Certificate of patent or registration of utility model

Ref document number: 5888877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250