[go: up one dir, main page]

JP5885461B2 - Dryness measuring device and dryness measuring method - Google Patents

Dryness measuring device and dryness measuring method Download PDF

Info

Publication number
JP5885461B2
JP5885461B2 JP2011235049A JP2011235049A JP5885461B2 JP 5885461 B2 JP5885461 B2 JP 5885461B2 JP 2011235049 A JP2011235049 A JP 2011235049A JP 2011235049 A JP2011235049 A JP 2011235049A JP 5885461 B2 JP5885461 B2 JP 5885461B2
Authority
JP
Japan
Prior art keywords
dryness
wet steam
light
relationship
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011235049A
Other languages
Japanese (ja)
Other versions
JP2013092457A (en
Inventor
康博 五所尾
康博 五所尾
義一 西野
義一 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2011235049A priority Critical patent/JP5885461B2/en
Publication of JP2013092457A publication Critical patent/JP2013092457A/en
Application granted granted Critical
Publication of JP5885461B2 publication Critical patent/JP5885461B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は測定技術に係り、乾き度測定装置及び乾き度測定方法に関する。   The present invention relates to a measurement technique, and relates to a dryness measuring apparatus and a dryness measuring method.

水は沸点に達した後、水蒸気ガス(気相部分)と、水滴(液相部分)と、が混合した湿り蒸気となる。ここで、湿り蒸気に対する水蒸気ガスの重量比を、「乾き度」という。例えば、水蒸気ガスと、水滴と、が半分ずつ存在すれば、乾き度は0.5となる。また、水滴が存在せず、水蒸気ガスのみが存在する場合は、乾き度は1.0となる。熱交換器等において、湿り蒸気が保有する顕熱と、潜熱と、を有効に利用することや、水蒸気タービンにおいて、タービン翼の腐食を防止すること、等の観点から、湿り蒸気の乾き度を1.0に近い状態にすることが望まれている。そのため、乾き度を測定する様々な方法が提案されている。   After the water reaches the boiling point, it becomes wet steam in which water vapor gas (gas phase portion) and water droplets (liquid phase portion) are mixed. Here, the weight ratio of the water vapor gas to the wet steam is referred to as “dryness”. For example, if water vapor gas and water droplets are present in half, the dryness is 0.5. Moreover, when there is no water droplet and only water vapor gas is present, the dryness is 1.0. From the viewpoints of effectively utilizing the sensible heat and latent heat possessed by wet steam in heat exchangers, etc., and preventing corrosion of turbine blades in steam turbines, the wet steam dryness is controlled. It is desired to be in a state close to 1.0. Therefore, various methods for measuring the dryness have been proposed.

例えば、特許文献1は、配管に設けられた圧力調節弁の前後で全エンタルピに変化がないことを利用して、圧力調節弁の前後の湿り蒸気流量及び圧力に基づき、飽和蒸気表を用いて飽和水エンタルピと、飽和蒸気エンタルピと、を求めて、乾き度を算出する技術を開示している。   For example, Patent Document 1 uses a saturated steam table based on the wet steam flow rate and pressure before and after the pressure control valve, using the fact that there is no change in the total enthalpy before and after the pressure control valve provided in the pipe. A technique for calculating dryness by obtaining saturated water enthalpy and saturated steam enthalpy is disclosed.

特開平8−312908号公報JP-A-8-312908

しかし、特許文献1に開示された技術は、測定対象の湿り蒸気を二相状態から気相状態に状態変化させ、さらに測定対象を気相状態で安定化させる必要があるため、乾き度の測定に時間がかかるという問題がある。   However, since the technique disclosed in Patent Document 1 needs to change the wet vapor of the measurement object from the two-phase state to the gas phase state and further stabilize the measurement object in the gas phase state, measurement of dryness There is a problem that it takes time.

そこで、本発明は、乾き度を高速に測定可能な乾き度測定装置及び乾き度測定方法を提供することを目的の一つとする。   Therefore, an object of the present invention is to provide a dryness measuring apparatus and a dryness measuring method capable of measuring dryness at high speed.

本発明の態様は、(a)湿り蒸気に光を照射する発光体と、(b)湿り蒸気を透過した光を受光する受光素子と、(c)湿り蒸気の温度又は圧力を測定する環境センサと、(d)湿り蒸気を透過した光の強度と、湿り蒸気の乾き度と、の関係を、温度又は圧力毎に保存する関係記憶部と、(e)受光素子による光の強度の測定値と、環境センサによる温度又は圧力の測定値と、関係と、に基づき、湿り蒸気の乾き度の値を特定する乾き度特定部と、を備える乾き度測定装置であることを要旨とする。   Aspects of the present invention include (a) a light emitter that irradiates wet steam with light, (b) a light receiving element that receives light transmitted through the wet steam, and (c) an environmental sensor that measures the temperature or pressure of the wet steam. And (d) a relationship storage unit that stores the relationship between the intensity of light transmitted through the wet steam and the dryness of the wet steam for each temperature or pressure, and (e) a measurement value of the light intensity by the light receiving element. Further, the gist of the present invention is a dryness measuring apparatus including a dryness specifying unit that specifies a dryness value of wet steam based on a measured value of temperature or pressure by an environmental sensor and a relationship.

本発明の他の態様は、(a)湿り蒸気に光を照射することと、(b)湿り蒸気を透過した光を受光することと、(c)湿り蒸気の温度又は圧力を測定することと、(d)湿り蒸気を透過した光の強度と、湿り蒸気の乾き度と、の温度又は圧力毎における関係を用意することと、(e)湿り蒸気を透過した光の強度の測定値と、温度又は圧力の測定値と、関係と、に基づき、湿り蒸気の乾き度の値を特定することと、を含む乾き度測定方法であることを要旨とする。   Other aspects of the invention include: (a) irradiating the wet steam with light; (b) receiving light transmitted through the wet steam; and (c) measuring the temperature or pressure of the wet steam. (D) preparing a relationship for each temperature or pressure between the intensity of light transmitted through the wet steam and the dryness of the wet steam; and (e) a measured value of the intensity of light transmitted through the wet steam; The gist of the present invention is a dryness measurement method including specifying a dryness value of wet steam based on a measured value or a relationship of temperature or pressure.

本発明によれば、乾き度を高速に測定可能な乾き度測定装置及び乾き度測定方法を提供可能である。   ADVANTAGE OF THE INVENTION According to this invention, the dryness measuring apparatus and dryness measuring method which can measure dryness at high speed can be provided.

本発明の第1の実施の形態に係る乾き度測定装置の模式図である。It is a schematic diagram of the dryness measuring apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る標準大気圧における水の状態変化を示すグラフである。It is a graph which shows the state change of the water in the standard atmospheric pressure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る水分子のクラスタの模式図である。It is a schematic diagram of the cluster of the water molecule which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る乾き度に依存する水分子の状態を示す模式図である。It is a schematic diagram which shows the state of the water molecule depending on the dryness which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る水分子のクラスタが有する平均水素結合数と、温度と、の関係の例を示すグラフである。It is a graph which shows the example of the relationship between the average number of hydrogen bonds which the cluster of the water molecule which concerns on the 1st Embodiment of this invention has, and temperature. 本発明の第1の実施の形態に係る水分子の吸収スペクトルの例を示すグラフである。It is a graph which shows the example of the absorption spectrum of the water molecule which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る単独で存在する水分子の模式図である。It is a schematic diagram of the water molecule which exists independently according to the first embodiment of the present invention. 本発明の第1の実施の形態に係る一つの水素結合で結合している二つの水分子の模式図である。It is a schematic diagram of two water molecules couple | bonded by one hydrogen bond which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る二つの水素結合で結合している三つの水分子の模式図である。It is a schematic diagram of the three water molecules couple | bonded by the two hydrogen bonds which concern on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る湿り蒸気への加熱量と、湿り蒸気を透過した光の強度と、の関係を示すグラフである。It is a graph which shows the relationship between the amount of heating to the wet steam which concerns on the 1st Embodiment of this invention, and the intensity | strength of the light which permeate | transmitted the wet steam. 本発明の第2の実施の形態に係る湿り蒸気への加熱量と、吸光度の比と、の関係を示すグラフである。It is a graph which shows the relationship between the amount of heating to the wet steam which concerns on the 2nd Embodiment of this invention, and the ratio of light absorbency.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(第1の実施の形態)
本発明の第1の実施の形態に係る乾き度測定装置は、図1に示すように、測定対象の湿り蒸気に光を照射する発光体11と、測定対象の湿り蒸気を透過した光を受光する受光素子12と、測定対象の湿り蒸気の温度又は圧力を測定する環境センサ13と、を備える。さらに、乾き度測定装置は、予め取得された、湿り蒸気を透過した光の強度と、湿り蒸気の乾き度と、の関係を、温度又は圧力毎に保存する関係記憶部401と、受光素子12による光の強度の測定値と、環境センサ13による温度又は圧力の測定値と、関係記憶部401に保存されている関係と、に基づき、測定対象の湿り蒸気の乾き度の値を特定する乾き度特定部301と、を備える。ここで、光の強度とは、受光素子12による光の受光強度であっても、湿り蒸気による光の吸光度であってもよい。
(First embodiment)
As shown in FIG. 1, the dryness measuring apparatus according to the first embodiment of the present invention receives a light emitter 11 that irradiates light on wet vapor to be measured and light that has passed through the wet vapor to be measured. A light receiving element 12 that performs the measurement, and an environmental sensor 13 that measures the temperature or pressure of the wet steam to be measured. Furthermore, the dryness measuring apparatus includes a relationship storage unit 401 that stores the relationship between the intensity of light transmitted through the wet steam and the dryness of the wet steam for each temperature or pressure, and the light receiving element 12. Based on the measured value of the light intensity by the sensor, the measured value of the temperature or pressure by the environmental sensor 13, and the relationship stored in the relationship storage unit 401, the dryness specifying the dryness value of the wet steam to be measured A degree specifying unit 301. Here, the light intensity may be the light receiving intensity of the light receiving element 12 or the light absorbance of the wet steam.

図2に示すように、標準大気圧下においては、水は沸点(100℃)に達した後、液滴としての水と、蒸気と、が混合し、共存態にある湿り蒸気となる。ここで、湿り蒸気全量に対する、蒸気の重量比を、「乾き度」という。したがって、飽和蒸気の乾き度は1となり、飽和液の乾き度は0となる。あるいは、乾き度は、潜熱の比エンタルピに対する、湿り蒸気の比エンタルピと飽和液の比エンタルピとの差の比、としても定義される。   As shown in FIG. 2, under standard atmospheric pressure, water reaches a boiling point (100 ° C.), and then water as droplets and steam are mixed to form wet steam in a coexisting state. Here, the weight ratio of steam to the total amount of wet steam is referred to as “dryness”. Therefore, the dryness of the saturated steam is 1, and the dryness of the saturated liquid is 0. Alternatively, dryness is also defined as the ratio of the difference between the specific enthalpy of wet steam and the specific enthalpy of saturated liquid to the specific enthalpy of latent heat.

水は、水分子どうしが形成する水素結合の数の違いにより、相が変化する。湿り蒸気においては、水分子どうしは、水素結合を介して結合し、図3に示すように、クラスタを形成しうる。図4及び図5に示すように、乾き度が0の湿り蒸気におけるクラスタが有する平均水素結合数は、大気圧下で、例えば2.13である。クラスタが有する平均水素結合数は、乾き度が1に近づくにつれて減少し、単独で存在する水分子が増加する傾向にある。   The phase of water changes due to the difference in the number of hydrogen bonds formed by water molecules. In wet steam, water molecules can be bonded through hydrogen bonds to form clusters as shown in FIG. As shown in FIGS. 4 and 5, the average number of hydrogen bonds possessed by the cluster in the wet steam having a dryness of 0 is, for example, 2.13 under atmospheric pressure. The average number of hydrogen bonds possessed by the cluster tends to decrease as the dryness approaches 1, and the number of water molecules present alone tends to increase.

図6は、水分子が示す吸収スペクトルの一例である。図7に示すように単独で存在する水分子は、1840又は1880nmにピークを有する吸収スペクトルを与える。図8に示すように一つの水素結合で結合している二分子の水分子は、1910nmにピークを有する吸収スペクトルを与える。図9に示すように二つの水素結合で結合している三分子の水分子は、1950nmにピークを有する吸収スペクトルを与える。水分子が形成するクラスタに含まれる水素結合数が増えるほど、吸収スペクトルのピークの波長は長くなる傾向にある。   FIG. 6 is an example of an absorption spectrum shown by water molecules. As shown in FIG. 7, a water molecule present alone gives an absorption spectrum having a peak at 1840 or 1880 nm. As shown in FIG. 8, bimolecular water molecules bonded by one hydrogen bond give an absorption spectrum having a peak at 1910 nm. As shown in FIG. 9, trimolecular water molecules bonded by two hydrogen bonds give an absorption spectrum having a peak at 1950 nm. As the number of hydrogen bonds contained in the cluster formed by water molecules increases, the peak wavelength of the absorption spectrum tends to be longer.

図1に示す乾き度測定装置は、湿り蒸気となった冷媒等が通過するパイプ21に接続される。発光体11は、単一の波長を有する光を発する。例えば、発光体11が発する光の波長は、クラスタにおける水分子どうしが形成した水素結合の数と相関するよう、設定される。例えば、発光体11が発する光の波長は、水素結合数が0の場合の水分子の吸光ピークが表れる1880nmであってもよく、水素結合数が1の場合の水分子の吸光ピークが表れる1910nmであってもよい。ただし、発光体11が発する光の波長は、水に吸収される波長帯域内であれば、水分子の吸光ピーク波長と異なっていてもよい。例えば、発光体11が発する光の波長は、1880乃至1910nmの間であってもよい。発光体11には、発光ダイオード、スーパールミネッセントダイオード、半導体レーザ、レーザ発振器、蛍光放電管、低圧水銀灯、キセノンランプ、及び電球等が使用可能である。   The dryness measuring apparatus shown in FIG. 1 is connected to a pipe 21 through which refrigerant or the like that has become wet steam passes. The light emitter 11 emits light having a single wavelength. For example, the wavelength of light emitted from the light emitter 11 is set so as to correlate with the number of hydrogen bonds formed by water molecules in the cluster. For example, the wavelength of the light emitted from the light emitter 11 may be 1880 nm where the absorption peak of water molecules when the number of hydrogen bonds is 0, or 1910 nm where the absorption peak of water molecules when the number of hydrogen bonds is 1 It may be. However, the wavelength of the light emitted from the light emitter 11 may be different from the absorption peak wavelength of the water molecule as long as it is within the wavelength band absorbed by water. For example, the wavelength of light emitted from the light emitter 11 may be between 1880 and 1910 nm. As the light emitter 11, a light emitting diode, a super luminescent diode, a semiconductor laser, a laser oscillator, a fluorescent discharge tube, a low-pressure mercury lamp, a xenon lamp, a light bulb, and the like can be used.

発光体11には、光導波路31が接続されている。光導波路31は、発光体11が発した光を、パイプ21の内部に伝搬する。例えば、光導波路31は、パイプ21の側壁を貫通している。あるいは、パイプ21の側壁に光透過性の窓を設け、窓に光導波路31を接続してもよい。光導波路31で伝搬された光は、光導波路31の端部からパイプ21の内部に進入する。光導波路31には、ポリメタクリル酸メチル樹脂(PMMA:Poly(methyl methacrylate))からなるプラスチック光ファイバ、及び石英ガラスからなるガラス光ファイバ等が使用可能であるが、発光体11が発した光を伝搬可能であれば、これらに限定されない。   An optical waveguide 31 is connected to the light emitter 11. The optical waveguide 31 propagates the light emitted from the light emitter 11 into the pipe 21. For example, the optical waveguide 31 passes through the side wall of the pipe 21. Alternatively, a light transmissive window may be provided on the side wall of the pipe 21 and the optical waveguide 31 may be connected to the window. The light propagated through the optical waveguide 31 enters the pipe 21 from the end of the optical waveguide 31. For the optical waveguide 31, a plastic optical fiber made of polymethyl methacrylate resin (PMMA: Poly (methacrylate)), a glass optical fiber made of quartz glass, and the like can be used. If propagation is possible, it is not limited to these.

発光体11が、例えば、波長が1880nmの光を発した場合、パイプ21の内部において、波長が1880nmの光は、湿り蒸気に含まれる、単独で存在する水分子によって吸収される。上述したように、水分子クラスタが有する平均水素結合数は、乾き度が0から1に近づくにつれて減少する。したがって、パイプ21内部の湿り蒸気の乾き度が0から1に近づくにつれて、波長が1880nmの光はより多く吸収される傾向にある。   For example, when the illuminant 11 emits light having a wavelength of 1880 nm, the light having a wavelength of 1880 nm is absorbed by water molecules present alone in the wet steam. As described above, the average number of hydrogen bonds that the water molecule cluster has decreases as the dryness approaches from 0 to 1. Therefore, as the dryness of the wet steam inside the pipe 21 approaches 0 to 1, light having a wavelength of 1880 nm tends to be absorbed more.

あるいは、発光体11が、例えば、波長が1910nmの光を発した場合、パイプ21の内部において、波長が1910nmの光は、湿り蒸気に含まれる、一つの水素結合で結合している二分子の水分子によって吸収される。波長が1910nmの光は、パイプ21内部の湿り蒸気の乾き度が0から1に近づくにつれて、より少なく吸収される傾向にある。   Alternatively, for example, when the illuminant 11 emits light having a wavelength of 1910 nm, the light having a wavelength of 1910 nm inside the pipe 21 is a bimolecular molecule that is bonded by one hydrogen bond contained in the wet steam. Absorbed by water molecules. Light having a wavelength of 1910 nm tends to be absorbed less as the dryness of the wet steam in the pipe 21 approaches 0 to 1.

パイプ21には、パイプ21の内部を通過した光が進入する光導波路32が接続されている。光導波路32は、パイプ21の内部の湿り蒸気を透過した光を、受光素子12に導く。光導波路32の端部は、光導波路31の端部と対向している。また、例えば、光導波路32は、パイプ21の側壁を貫通している。あるいは、パイプ21の側壁に光透過性の窓を設け、窓に光導波路32を接続してもよい。   An optical waveguide 32 into which light that has passed through the pipe 21 enters is connected to the pipe 21. The optical waveguide 32 guides the light transmitted through the wet steam inside the pipe 21 to the light receiving element 12. The end portion of the optical waveguide 32 faces the end portion of the optical waveguide 31. For example, the optical waveguide 32 passes through the side wall of the pipe 21. Alternatively, a light transmissive window may be provided on the side wall of the pipe 21 and the optical waveguide 32 may be connected to the window.

なお、発光体11をパイプ21の側壁に配置し、光導波路31を省略してもよい。また、受光素子12をパイプ21の側壁に配置し、光導波路32を省略してもよい。また、図1では、発光体11と、受光素子12と、が対向しているが、発光体と、受光素子と、の両方が一体化した発光受光素子を用いてもよい。この場合、発光受光素子と対向するパイプの側壁に、反射板が配置される。発光受光素子から発せられた光は、パイプ内部を進行し、反射板で反射され、発光受光素子に受光される。受光素子12には、フォトダイオード等の光強度検出素子が使用可能である。   The light emitter 11 may be disposed on the side wall of the pipe 21 and the optical waveguide 31 may be omitted. Further, the light receiving element 12 may be disposed on the side wall of the pipe 21 and the optical waveguide 32 may be omitted. In FIG. 1, the light emitter 11 and the light receiving element 12 are opposed to each other, but a light emitting and receiving element in which both the light emitter and the light receiving element are integrated may be used. In this case, a reflector is disposed on the side wall of the pipe facing the light emitting / receiving element. The light emitted from the light emitting / receiving element travels inside the pipe, is reflected by the reflecting plate, and is received by the light emitting / receiving element. For the light receiving element 12, a light intensity detecting element such as a photodiode can be used.

図10は、発光体11から波長1904nmの光を発し、所定の温度又は圧力条件下の湿り蒸気を加熱した場合に、受光素子12で受光された光の強度の変化の実測例を示すグラフである。波長が1904nmの光は、湿り蒸気に含まれる、一つの水素結合で結合している二分子の水分子によって吸収されるため、湿り蒸気が加熱され、乾き度が0から1に近づくにつれて、湿り蒸気による吸収が低下し、受光素子12による受光強度が上昇する。したがって、パイプ21の内部の湿り蒸気の乾き度と、受光素子12による受光強度と、は、相関する。換言すれば、パイプ21の内部の湿り蒸気の乾き度と、湿り蒸気による光の吸光度と、は、相関する。   FIG. 10 is a graph showing an actual measurement example of a change in intensity of light received by the light receiving element 12 when light having a wavelength of 1904 nm is emitted from the light emitter 11 and wet steam is heated under a predetermined temperature or pressure condition. is there. The light having a wavelength of 1904 nm is absorbed by bimolecular water molecules bonded to one hydrogen bond contained in the wet steam, so that the wet steam is heated and the wetness increases as the dryness approaches from 0 to 1. Absorption due to the vapor decreases, and the light reception intensity by the light receiving element 12 increases. Therefore, the dryness of the wet steam inside the pipe 21 correlates with the intensity of light received by the light receiving element 12. In other words, the dryness of the wet steam inside the pipe 21 and the light absorbance by the wet steam are correlated.

ここで、図2に示したように、水の沸点は、標準大気圧下では100℃であるが、圧力に応じて変動する。したがって、上述したように、パイプ21の内部の湿り蒸気の乾き度と、湿り蒸気を透過した光の強度と、は、相関するが、相関の態様は、パイプ21の内部の湿り蒸気の温度又は圧力によって変化する。   Here, as shown in FIG. 2, the boiling point of water is 100 ° C. under standard atmospheric pressure, but varies depending on the pressure. Therefore, as described above, the dryness of the wet steam inside the pipe 21 and the intensity of the light transmitted through the wet steam are correlated, but the mode of correlation is the temperature of the wet steam inside the pipe 21 or Varies with pressure.

図1に示す環境センサ13には、任意の温度センサ又は圧力センサが使用可能である。 受光素子12及び環境センサ13には、中央演算処理装置(CPU)300が接続されている。乾き度特定部301は、CPU300に含まれている。CPU300には、関係記憶部401を含むデータ記憶装置400が接続されている。関係記憶部401は、例えば、予め取得された、受光素子12による受光強度と、湿り蒸気の乾き度と、の関係を、温度又は圧力条件毎に保存する。受光強度と、乾き度と、の関係は、式として保存されてもよいし、表として保存されてもよい。   As the environmental sensor 13 shown in FIG. 1, any temperature sensor or pressure sensor can be used. A central processing unit (CPU) 300 is connected to the light receiving element 12 and the environment sensor 13. The dryness specifying unit 301 is included in the CPU 300. A data storage device 400 including a relationship storage unit 401 is connected to the CPU 300. For example, the relationship storage unit 401 stores the relationship between the light reception intensity by the light receiving element 12 and the dryness of the wet steam, which is acquired in advance, for each temperature or pressure condition. The relationship between the received light intensity and the dryness may be stored as a formula or may be stored as a table.

受光素子12による受光強度と、湿り蒸気の乾き度と、の関係は、例えば、ボイラ等で湿り蒸気を加熱しながら、従来の乾き度計で湿り蒸気の乾き度を測定し、あわせて湿り蒸気を透過した光の強度を測定することによって、予め取得することが可能である。従来、種々の乾き度計があるが、関係を取得する際には、それらのいずれかを単独で用いても、組み合わせて用いてもよい。   The relationship between the intensity of light received by the light receiving element 12 and the dryness of the wet steam is measured, for example, by measuring the dryness of the wet steam with a conventional dryness meter while heating the wet steam with a boiler or the like. It is possible to obtain in advance by measuring the intensity of the light transmitted through. Conventionally, there are various dryness meters, but when acquiring the relationship, any one of them may be used alone or in combination.

乾き度特定部301は、例えば、受光素子12から、パイプ21内部の湿り蒸気を透過した光の受光強度の測定値を受信する。また、乾き度特定部301は、環境センサ13から、パイプ21内部の湿り蒸気の温度又は圧力の測定値を受信する。さらに乾き度特定部301は、関係記憶部401から、湿り蒸気の温度又は圧力の測定値に対応する温度又は圧力条件下の、受光素子12による受光強度と、湿り蒸気の乾き度と、の関係を読み出す。   The dryness specifying unit 301 receives, from the light receiving element 12, for example, a measurement value of the received light intensity of light transmitted through the wet steam inside the pipe 21. Further, the dryness specifying unit 301 receives the measured value of the temperature or pressure of the wet steam inside the pipe 21 from the environment sensor 13. Further, the dryness specifying unit 301 has a relationship between the received light intensity by the light receiving element 12 and the dryness of the wet steam under the temperature or pressure condition corresponding to the measured value of the wet steam temperature or pressure from the relationship storage unit 401. Is read.

ここで、乾き度特定部301は、温度又は圧力の測定値に一致する温度又は圧力条件下の関係が関係記憶部401に保存されている場合は、温度又は圧力の測定値に一致する温度又は圧力条件下の関係を関係記憶部401から読み出す。また、乾き度特定部301は、例えば、温度又は圧力の測定値に一致する温度又は圧力条件下の関係が関係記憶部401に保存されていない場合は、温度又は圧力の測定値に最も近似する温度又は圧力条件下の関係を関係記憶部401から読み出す。   Here, when the relationship under the temperature or pressure condition that matches the measured value of the temperature or pressure is stored in the relationship storage unit 401, the dryness specifying unit 301 matches the temperature or the measured value of the pressure or The relationship under the pressure condition is read from the relationship storage unit 401. In addition, the dryness specifying unit 301, for example, most closely approximates the measured value of temperature or pressure when the relationship under the temperature or pressure condition that matches the measured value of temperature or pressure is not stored in the relationship storage unit 401. The relationship under temperature or pressure conditions is read from the relationship storage unit 401.

乾き度特定部301は、読み出した関係と、受光強度の測定値と、に基づいて、湿り蒸気の乾き度の値を特定する。例えば、関係が、受光強度を独立変数とし、乾き度を従属変数とする式で表現されている場合、乾き度特定部301は、式の受光強度の独立変数に、受光強度の測定値を代入して、パイプ21内部の測定対象の湿り蒸気の乾き度の値を算出する。   The dryness specifying unit 301 specifies the dryness value of the wet steam based on the read relationship and the measured value of the received light intensity. For example, when the relationship is expressed by an expression in which the received light intensity is an independent variable and the dryness is a dependent variable, the dryness specifying unit 301 substitutes the measured value of the received light intensity for the independent variable of the received light intensity in the expression. Then, the dryness value of the wet steam to be measured inside the pipe 21 is calculated.

CPU300には、さらに入力装置321、出力装置322、プログラム記憶装置323、及び一時記憶装置324が接続される。入力装置321としては、スイッチ及びキーボード等が使用可能である。関係記憶部401に保存される温度又は圧力条件毎の受光強度と、乾き度と、の関係は、例えば、入力装置321を用いて入力される。出力装置322としては、光インジケータ、デジタルインジケータ、及び液晶表示装置等が使用可能である。出力装置322は、例えば、乾き度特定部301が特定したパイプ21内部の湿り蒸気の乾き度の値を表示する。プログラム記憶装置323は、CPU300に接続された装置間のデータ送受信等をCPU300に実行させるためのプログラムを保存している。一時記憶装置324は、CPU300の演算過程でのデータを一時的に保存する。   An input device 321, an output device 322, a program storage device 323, and a temporary storage device 324 are further connected to the CPU 300. As the input device 321, a switch, a keyboard, and the like can be used. The relationship between the received light intensity for each temperature or pressure condition stored in the relationship storage unit 401 and the dryness is input using the input device 321, for example. As the output device 322, an optical indicator, a digital indicator, a liquid crystal display device, or the like can be used. For example, the output device 322 displays the value of the dryness of the wet steam inside the pipe 21 specified by the dryness specifying unit 301. The program storage device 323 stores a program for causing the CPU 300 to execute data transmission / reception between devices connected to the CPU 300. The temporary storage device 324 temporarily stores data in the calculation process of the CPU 300.

以上説明した第1の実施の形態に係る乾き度測定装置、及び乾き度測定装置を用いる乾き度測定方法によれば、光学的手法により、湿り蒸気の相状態を変化させることなく、高い精度で高速に湿り蒸気の乾き度を測定することが可能となる。また、第1の実施の形態に係る乾き度測定装置は、配管に絞り弁や分流配管を設ける必要がない。そのため、第1の実施の形態に係る乾き度測定装置は、低いコストで設置することが可能である。   According to the dryness measuring apparatus and the dryness measuring method using the dryness measuring apparatus according to the first embodiment described above, the optical method can be used with high accuracy without changing the phase state of the wet steam. It becomes possible to measure the dryness of wet steam at high speed. Moreover, the dryness measuring apparatus according to the first embodiment does not need to be provided with a throttle valve or a diversion pipe in the pipe. Therefore, the dryness measuring apparatus according to the first embodiment can be installed at a low cost.

また、従来、超音波を用いた乾き度計があるが、超音波は、湿り蒸気の気相部分と、液相部分と、の境界面における音響インピーダンスの差が大きいため、境界面においてほとんど反射する。そのため、超音波を用いた乾き度計は、乾き度を実用的に測定できる水準に至っていない。これに対し、光は、気相部分と、液相部分と、の境界面を透過可能である。そのため、第1の実施の形態に係る光学式の乾き度測定装置は、乾き度を正確に測定することが可能である。   Conventionally, there is a dryness meter using ultrasonic waves. However, since ultrasonic waves have a large difference in acoustic impedance at the interface between the vapor phase part of wet steam and the liquid phase part, the ultrasonic wave is almost reflected at the interface. To do. Therefore, the dryness meter using ultrasonic waves has not reached a level at which the dryness can be practically measured. In contrast, light can pass through the boundary surface between the gas phase portion and the liquid phase portion. Therefore, the optical dryness measuring apparatus according to the first embodiment can accurately measure the dryness.

なお、関係記憶部401は、湿り蒸気による吸光度と、湿り蒸気の乾き度と、の関係を保存していてもよい。この場合、乾き度特定部301は、発光体11の発光強度と、受光素子12による受光強度と、から、測定対象の湿り蒸気による吸光度の測定値を算出し、吸光度と乾き度の関係と、吸光度の測定値と、に基づいて、測定対象の湿り蒸気の乾き度の値を特定すればよい。   The relationship storage unit 401 may store a relationship between the absorbance due to the wet steam and the dryness of the wet steam. In this case, the dryness specifying unit 301 calculates the measurement value of the absorbance due to the wet vapor of the measurement target from the light emission intensity of the light emitter 11 and the light reception intensity of the light receiving element 12, and the relationship between the absorbance and the dryness, The dryness value of the wet steam to be measured may be specified based on the absorbance measurement value.

また、パイプ21の内部の湿り蒸気の乾き度と、湿り蒸気を透過した光強度と、の相関の態様は、湿り蒸気内の光透過体積によっても変化し得る。例えば、光透過体積の変化の要因としては、パイプ径や発光体の面積並びに受光素子の面積などが挙げられる。したがって、関係記憶部401は、湿り蒸気の光透過体積毎に、湿り蒸気の乾き度と、湿り蒸気を透過した光強度と、の相関を保存してもよい。この場合、乾き度特定部301は、関係記憶部401から、湿り蒸気の温度又は圧力の測定値、並びに測定対象の湿り蒸気の光透過体積の値に対応する、受光強度と、乾き度と、の関係を読み出せばよい。   Moreover, the aspect of the correlation between the dryness of the wet steam inside the pipe 21 and the light intensity transmitted through the wet steam can be changed by the light transmission volume in the wet steam. For example, factors for the change in the light transmission volume include the pipe diameter, the area of the light emitter, and the area of the light receiving element. Therefore, the relationship memory | storage part 401 may preserve | save the correlation of the dryness of wet steam and the light intensity which permeate | transmitted wet steam for every light transmission volume of wet steam. In this case, the dryness specifying unit 301, from the relationship storage unit 401, the received light intensity corresponding to the measured value of the temperature or pressure of the wet steam, and the value of the light transmission volume of the wet steam to be measured, the dryness, It is sufficient to read the relationship.

(第2の実施の形態)
第1の実施の形態においては、図1に示す発光体11が、単一の波長を有する光を発する例を示した。これに対し、第2の実施の形態においては、発光体11は、少なくとも二つの異なる波長の光を発する。例えば、少なくとも二つの異なる波長の一つは、水素結合数が0の場合の水分子の吸光ピークが表れる1880nmであり、他の波長は、水素結合数が1の場合の水分子の吸光ピークが表れる1910nmである。このように、第2の実施の形態においては、発光体11が発する光は、複数の波長のそれぞれにおける吸光度が、クラスタにおける水分子どうしが形成した水素結合の数と相関するよう、設定される。
(Second Embodiment)
In the first embodiment, an example has been shown in which the light emitter 11 shown in FIG. 1 emits light having a single wavelength. In contrast, in the second embodiment, the light emitter 11 emits light of at least two different wavelengths. For example, at least one of the two different wavelengths is 1880 nm where the absorption peak of a water molecule when the number of hydrogen bonds is 0, and the other wavelength is the absorption peak of a water molecule when the number of hydrogen bonds is 1. It is 1910 nm that appears. Thus, in the second embodiment, the light emitted from the light emitter 11 is set so that the absorbance at each of a plurality of wavelengths correlates with the number of hydrogen bonds formed by water molecules in the cluster. .

発光体11は、それぞれ異なる波長の光を発する複数の発光素子を備えていてもよい。あるいは、発光体11は、広波長帯域の光を発してもよい。発光体11が広波長帯域の光を発する場合は、少なくとも二つの異なる波長のみを透過させるフィルタを受光素子12の前に配置してもよい。例えば受光素子12は、少なくとも、水素結合数が0の場合の水分子が最も吸光する1880nmの波長の光と、水素結合数が1の場合の水分子が最も吸光する1910nmの波長の光と、を受光する。   The light emitter 11 may include a plurality of light emitting elements that emit light of different wavelengths. Alternatively, the light emitter 11 may emit light in a wide wavelength band. When the light emitter 11 emits light in a wide wavelength band, a filter that transmits only at least two different wavelengths may be disposed in front of the light receiving element 12. For example, the light receiving element 12 includes at least light having a wavelength of 1880 nm where water molecules absorb most when the number of hydrogen bonds is 0, and light having a wavelength of 1910 nm where water molecules absorb most when the number of hydrogen bonds is 1. Is received.

図11は、所定の温度又は圧力条件の下、波長が1880nmの光の吸光度をI1、波長が1910nmの光の吸光度をI2、とし、下記式(1)で与えられる比Rの実測例を、湿り蒸気への加熱量に対してプロットしたグラフである。
R = I1 / I2 ・・・(1)
FIG. 11 shows an example of measurement of the ratio R given by the following equation (1), where I 1 is the absorbance of light having a wavelength of 1880 nm and I 2 is the absorbance of light having a wavelength of 1910 nm under a predetermined temperature or pressure condition. Is a graph plotting the amount of heat to wet steam.
R = I 1 / I 2 ... (1)

吸光度の比Rは、一つの水素結合で結合している二分子の水分子からなるクラスタに対する、水素結合を形成していない単独で存在する水分子の比、と相関する。上述したように、クラスタが有する平均水素結合数は、乾き度が0から1に近づくにつれて減少し、単独で存在する水分子が増加する傾向にある。したがって、吸光度の比Rは、湿り蒸気が加熱され、乾き度が0から1に近づくにつれて大きくなる傾向にある。   The absorbance ratio R correlates with the ratio of water molecules present alone that do not form hydrogen bonds to clusters composed of bimolecular water molecules bonded by one hydrogen bond. As described above, the average number of hydrogen bonds of the cluster tends to decrease as the dryness approaches from 0 to 1, and the number of water molecules present alone tends to increase. Therefore, the absorbance ratio R tends to increase as the wet steam is heated and the dryness approaches 0 to 1.

なお、波長が1760nmの光の吸光度をI0とし、下記式(2)で与えられる比Rを、湿り蒸気への加熱量に対してプロットしても、同様の結果が得られる。
R = (I1 - I0) / (I2 - I0) ・・・(2)
ここで、波長が1760nmの光の吸光度をI0は、水の分子吸光と無関係な部分であるが、捉えようとしている吸光スペクトルの増減に影響を及ぼす。したがって、式(2)において、I1とI0との差、並びにI2とI0との差、をとることにより、分光スペクトルのベースラインを一定にすることが可能となる。
The same result can be obtained by plotting the ratio R given by the following formula (2) against the heating amount to the wet steam, where the absorbance of light having a wavelength of 1760 nm is I 0 .
R = (I 1 -I 0 ) / (I 2 -I 0 ) (2)
Here, the absorbance of light having a wavelength of 1760 nm, I 0, is a portion unrelated to the molecular absorption of water, but affects the increase / decrease of the absorption spectrum to be captured. Therefore, by taking the difference between I 1 and I 0 and the difference between I 2 and I 0 in equation (2), the baseline of the spectral spectrum can be made constant.

第2の実施の形態において、関係記憶部401は、例えば、上記式(1)又は式(2)で表される吸光度の比Rと、乾き度と、の予め取得された関係を、温度又は圧力条件毎に保存する。吸光度の比Rと、乾き度と、の関係は、式として保存されてもよいし、表として保存されてもよい。   In the second embodiment, the relationship storage unit 401, for example, shows the previously acquired relationship between the absorbance ratio R expressed by the above formula (1) or formula (2) and the dryness as temperature or Store for each pressure condition. The relationship between the absorbance ratio R and the dryness may be stored as an equation or a table.

第2の実施の形態において、乾き度特定部301は、複数の波長のそれぞれにおける湿り蒸気を透過した光の強度の複数の測定値の大小関係に基づいて、湿り蒸気の乾き度を算出する。例えば、乾き度特定部301は、受光素子12から、パイプ21内部の湿り蒸気を透過した光の強度スペクトルを受信する。さらに、乾き度特定部301は、パイプ21内部の湿り蒸気を透過する前の光の強度スペクトルと、パイプ21内部の湿り蒸気を透過した光の強度スペクトルと、に基づき、湿り蒸気による光の吸収スペクトルを算出する。またさらに、乾き度特定部301は、吸収スペクトルに基づいて、上記式(1)又は式(2)で表される吸光度の比Rの値を算出する。   In the second embodiment, the dryness specifying unit 301 calculates the dryness of the wet steam based on the magnitude relationship between the plurality of measured values of the intensity of light transmitted through the wet steam at each of the plurality of wavelengths. For example, the dryness specifying unit 301 receives from the light receiving element 12 an intensity spectrum of light transmitted through the wet steam inside the pipe 21. Further, the dryness specifying unit 301 absorbs light by the wet steam based on the intensity spectrum of the light before transmitting the wet steam inside the pipe 21 and the intensity spectrum of the light transmitted through the wet steam inside the pipe 21. Calculate the spectrum. Furthermore, the dryness specifying unit 301 calculates the value of the absorbance ratio R represented by the above formula (1) or (2) based on the absorption spectrum.

さらに、乾き度特定部301は、関係記憶部401から、湿り蒸気の温度又は圧力の測定値に対応する温度又は圧力条件下の、吸光度の比Rと、乾き度と、の関係を読み出す。乾き度特定部301は、算出された吸光度の比Rの値、並びに吸光度の比Rと、乾き度と、の関係に基づき、パイプ21内部の湿り蒸気の値を算出する。   Further, the dryness specifying unit 301 reads the relationship between the absorbance ratio R and the dryness under the temperature or pressure condition corresponding to the measured value of the temperature or pressure of the wet steam from the relationship storage unit 401. The dryness specifying unit 301 calculates the value of wet steam in the pipe 21 based on the calculated value of the absorbance ratio R and the relationship between the absorbance ratio R and the dryness.

第2の実施の形態に係る乾き度測定装置のその他の構成要件は、第1の実施の形態と同様である。第2の実施の形態に係る乾き度測定装置によれば、複数の波長の光を用いることにより、発光体11の出力のばらつきや、ノイズの影響を抑制することが可能となる。そのため、より高い精度で測定対象の湿り蒸気の乾き度の値を特定することが可能となる。   Other components of the dryness measuring apparatus according to the second embodiment are the same as those of the first embodiment. According to the dryness measuring apparatus according to the second embodiment, it is possible to suppress variations in the output of the light emitter 11 and the influence of noise by using light of a plurality of wavelengths. Therefore, the dryness value of the wet steam to be measured can be specified with higher accuracy.

(その他の実施の形態)
上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば、第2の実施の形態では、波長1880nmにおける吸光度と、波長1910nmにおける吸光度と、を比較する例を示した。ここで、上記式(1)及び式(2)のそれぞれの右辺の分母と分子とを置き換えてもよい。また、水素結合数0に相関する波長の吸光度と、水素結合数2に相関する波長の吸光度と、を比較してもよい。あるいは水素結合数0に相関する波長の吸光度と、水素結合数3に相関する波長の吸光度と、を比較してもよい。さらには、水素結合数1に相関する波長の吸光度と、水素結合数2に相関する波長の吸光度と、を比較してもよいし、水素結合数1に相関する波長の吸光度と、水素結合数3に相関する波長の吸光度と、を比較してもよいし、水素結合数2に相関する波長の吸光度と、水素結合数3に相関する波長の吸光度と、を比較してもよい。この様に、異なる水素結合数に相関する任意の複数の波長の吸光度の比に基づき、乾き度を算出してもよい。あるいは、異なる水素結合数に相関する任意の複数の波長の吸光度の差と、乾き度と、の相関を予め取得し、複数の波長の吸光度の差の測定値から乾き度の値を求めてもよい。本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。
(Other embodiments)
Although the present invention has been described by the embodiments as described above, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art. For example, in the second embodiment, an example is shown in which the absorbance at a wavelength of 1880 nm is compared with the absorbance at a wavelength of 1910 nm. Here, the denominator and the numerator of the right side of each of the above formulas (1) and (2) may be replaced. Also, the absorbance at a wavelength correlated with the number of hydrogen bonds 0 may be compared with the absorbance at a wavelength correlated with the number of hydrogen bonds 2. Or you may compare the light absorbency of the wavelength correlated with the hydrogen bond number 0 with the light absorbency of the wavelength correlated with the hydrogen bond number 3. Furthermore, the absorbance at a wavelength correlated with the number of hydrogen bonds 1 may be compared with the absorbance at a wavelength correlated with the number of hydrogen bonds 2, or the absorbance at a wavelength correlated with the number of hydrogen bonds 1 and the number of hydrogen bonds. The absorbance at a wavelength correlated with 3 may be compared, or the absorbance at a wavelength correlated with 2 hydrogen bonds may be compared with the absorbance at a wavelength correlated with 3 hydrogen bonds. In this manner, the dryness may be calculated based on the ratio of the absorbances of a plurality of wavelengths correlated with different numbers of hydrogen bonds. Alternatively, it is also possible to obtain a correlation between the difference in absorbance at a plurality of wavelengths correlated with different numbers of hydrogen bonds and the dryness in advance, and obtain the value of the dryness from the measured value of the difference in absorbance at a plurality of wavelengths. Good. It should be understood that the present invention includes various embodiments and the like not described herein.

本発明の実施の形態に係る乾き度測定装置は、減圧弁による潜熱増加効果の可視化、最適ボイラ効率を得るための乾き度計測、水蒸気タービンの湿り損失計測、熱効果器の最適乾き度制御、製麺蒸し工程等の食品製造工程の制御、及び化学工程の制御等に利用可能である。   The dryness measuring device according to the embodiment of the present invention is a visualization of the latent heat increase effect by the pressure reducing valve, dryness measurement to obtain the optimum boiler efficiency, wet loss measurement of the steam turbine, optimal dryness control of the heat effector, It can be used for the control of food production processes such as a noodle-making process and the control of chemical processes.

11 発光体
12 受光素子
13 環境センサ
21 パイプ
31、32 光導波路
301 乾き度特定部
321 入力装置
322 出力装置
323 プログラム記憶装置
324 一時記憶装置
400 データ記憶装置
401 関係記憶部
DESCRIPTION OF SYMBOLS 11 Light emitter 12 Light receiving element 13 Environmental sensor 21 Pipe 31, 32 Optical waveguide 301 Dryness specific | specification part 321 Input device 322 Output device 323 Program storage device 324 Temporary storage device 400 Data storage device 401 Relational storage unit

Claims (16)

湿り蒸気に、水に吸収される波長帯域の光を照射する発光体と、
前記湿り蒸気を透過した前記光を受光する受光素子と、
前記湿り蒸気の温度又は圧力を測定する環境センサと、
湿り蒸気の吸光度と、湿り蒸気の乾き度と、の関係を、温度又は圧力毎に保存する関係記憶部と、
前記受光素子を用いて測定された前記湿り蒸気の吸光度の測定値と、前記環境センサによる前記温度又は圧力の測定値と、前記関係と、に基づき、前記湿り蒸気の乾き度の値を特定する乾き度特定部と、
を備える乾き度測定装置。
A light emitter that irradiates wet steam with light in a wavelength band absorbed by water;
A light receiving element that receives the light transmitted through the wet steam;
An environmental sensor for measuring the temperature or pressure of the wet steam;
A relationship storage unit that stores the relationship between the absorbance of wet steam and the dryness of wet steam for each temperature or pressure;
Based on the measured value of the absorbance of the wet steam measured using the light receiving element, the measured value of the temperature or pressure by the environmental sensor, and the relationship, the value of the dryness of the wet steam is specified. A dryness specific part,
Dryness measuring device comprising.
前記関係記憶部が、前記湿り蒸気の吸光度と、前記乾き度と、の関係を、前記温度又は圧力毎、並びに前記湿り蒸気の光透過体積毎に保存する、請求項1に記載の乾き度測定装置。   The dryness measurement according to claim 1, wherein the relationship storage unit stores the relationship between the absorbance of the wet steam and the dryness for each temperature or pressure, and for each light transmission volume of the wet steam. apparatus. 前記乾き度特定部が、前記湿り蒸気の吸光度の測定値と、前記温度又は圧力の測定値と、前記湿り蒸気の光透過体積の値と、前記関係と、に基づき、前記湿り蒸気の乾き度の値を特定する、請求項に記載の乾き度測定装置。 The dryness specifying unit is based on the measured value of the absorbance of the wet steam, the measured value of the temperature or pressure, the value of the light transmission volume of the wet steam, and the relationship, and the dryness of the wet steam. The dryness measuring apparatus according to claim 2 , wherein the value is specified. 前記湿り蒸気が冷媒である、請求項1乃至のいずれか1項に記載の乾き度測定装置。 The dryness measuring apparatus according to any one of claims 1 to 3 , wherein the wet steam is a refrigerant. 前記光が単一の波長を有する、請求項1乃至のいずれか1項に記載の乾き度測定装置。 The dryness measuring apparatus according to any one of claims 1 to 4 , wherein the light has a single wavelength. 前記光が複数の波長を有する、請求項1乃至のいずれか1項に記載の乾き度測定装置。 The dryness measuring apparatus according to any one of claims 1 to 4 , wherein the light has a plurality of wavelengths. 前記乾き度特定部が、前記複数の波長のそれぞれにおける前記湿り蒸気の吸光度の複数の測定値の大小関係に基づいて、前記乾き度の値を特定する、請求項に記載の乾き度測定装置。 The dryness measuring device according to claim 6 , wherein the dryness specifying unit specifies the dryness value based on a magnitude relationship among a plurality of measured values of the absorbance of the wet steam at each of the plurality of wavelengths. . 前記乾き度特定部が、2つの波長における前記湿り蒸気の吸光度の比に基づいて、前記乾き度の値を特定する、請求項又はに記載の乾き度測定装置。 The dryness measuring apparatus according to claim 6 or 7 , wherein the dryness specifying unit specifies the value of the dryness based on a ratio of absorbances of the wet steam at two wavelengths. 湿り蒸気に、水に吸収される波長帯域の光を照射することと、
前記湿り蒸気を透過した前記光を受光することと、
前記湿り蒸気の温度又は圧力を測定することと、
湿り蒸気の吸光度と、湿り蒸気の乾き度と、の温度又は圧力毎における関係を用意することと、
前記湿り蒸気を透過した前記光を用いて測定された前記湿り蒸気の吸光度の測定値と、
前記温度又は圧力の測定値と、前記関係と、に基づき、前記湿り蒸気の乾き度の値を特定することと、
を含む乾き度測定方法。
Irradiating wet steam with light in a wavelength band absorbed by water;
Receiving the light transmitted through the wet steam;
Measuring the temperature or pressure of the wet steam;
Preparing a relationship between the absorbance of wet steam and the dryness of wet steam for each temperature or pressure;
A measurement of the absorbance of the wet vapor measured using the light transmitted through the wet vapor;
Based on the measured value of the temperature or pressure and the relationship, specifying a value of the dryness of the wet steam;
Dryness measurement method including
前記湿り蒸気の吸光度と、前記乾き度と、の関係を、前記温度又は圧力毎、並びに前記湿り蒸気の光透過体積毎に用意する、請求項に記載の乾き度測定方法。 The dryness measuring method according to claim 9 , wherein a relationship between the absorbance of the wet steam and the dryness is prepared for each temperature or pressure and for each light transmission volume of the wet steam. 前記湿り蒸気の吸光度の測定値と、前記温度又は圧力の測定値と、前記湿り蒸気の光透過体積の値と、前記関係と、に基づき、前記湿り蒸気の乾き度の値を特定する、請求項10に記載の乾き度測定方法。 The dryness value of the wet steam is specified based on the measured value of the absorbance of the wet steam, the measured value of the temperature or pressure, the value of the light transmission volume of the wet steam, and the relationship. Item 11. The dryness measuring method according to Item 10 . 前記湿り蒸気が冷媒である、請求項乃至11のいずれか1項に記載の乾き度測定方法。 The wet steam is refrigerant dryness fraction measuring method according to any one of claims 9 to 11. 前記光が単一の波長を有する、請求項乃至12のいずれか1項に記載の乾き度測定方法。 The dryness measuring method according to any one of claims 9 to 12 , wherein the light has a single wavelength. 前記光が複数の波長を有する、請求項乃至12のいずれか1項に記載の乾き度測定方法。 It said light has a plurality of wavelengths, the dryness measuring method according to any one of claims 9 to 12. 前記複数の波長のそれぞれにおける前記湿り蒸気の吸光度の複数の測定値の大小関係に基づいて、前記乾き度の値を特定する、請求項14に記載の乾き度測定方法。 The dryness measurement method according to claim 14 , wherein the dryness value is specified based on a magnitude relationship between a plurality of measured values of absorbance of the wet steam at each of the plurality of wavelengths. 2つの波長における前記湿り蒸気の吸光度の測定値の比に基づいて、前記乾き度の値を特定する、請求項14又は15に記載の乾き度測定方法。 The dryness measurement method according to claim 14 or 15 , wherein the dryness value is specified based on a ratio of absorbance measurement values of the wet steam at two wavelengths.
JP2011235049A 2011-10-26 2011-10-26 Dryness measuring device and dryness measuring method Expired - Fee Related JP5885461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011235049A JP5885461B2 (en) 2011-10-26 2011-10-26 Dryness measuring device and dryness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011235049A JP5885461B2 (en) 2011-10-26 2011-10-26 Dryness measuring device and dryness measuring method

Publications (2)

Publication Number Publication Date
JP2013092457A JP2013092457A (en) 2013-05-16
JP5885461B2 true JP5885461B2 (en) 2016-03-15

Family

ID=48615678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011235049A Expired - Fee Related JP5885461B2 (en) 2011-10-26 2011-10-26 Dryness measuring device and dryness measuring method

Country Status (1)

Country Link
JP (1) JP5885461B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132786A (en) * 2019-05-28 2019-08-16 宁波奥克斯电气股份有限公司 A kind of steam box mass dryness fraction detection device and mass dryness fraction detection method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091331B2 (en) * 2013-05-24 2017-03-08 アズビル株式会社 Dryness measuring device and piping for wet steam
JP6057859B2 (en) * 2013-08-08 2017-01-11 アズビル株式会社 Dryness measuring device
JP6236317B2 (en) * 2013-12-27 2017-11-22 アズビル株式会社 Dryness measuring device
JP2015127649A (en) * 2013-12-27 2015-07-09 アズビル株式会社 Dryness measuring device and dryness measuring method
JP6175370B2 (en) * 2013-12-27 2017-08-02 アズビル株式会社 Dryness measuring device and dryness measuring method
CN103743740B (en) * 2013-12-30 2016-04-06 中国石油天然气股份有限公司 steam dryness measuring method and device
CN103940809B (en) * 2014-05-07 2016-05-04 厦门福芯微电子科技有限公司 Steam quality testing arrangement and method of testing thereof
JP2015232520A (en) * 2014-06-10 2015-12-24 アズビル株式会社 Dryness measuring device
JP6307390B2 (en) * 2014-09-10 2018-04-04 アズビル株式会社 Dryness measuring device and dryness measuring method
JP6379007B2 (en) * 2014-10-23 2018-08-22 アズビル株式会社 Piping and dryness measuring device
JP6307427B2 (en) * 2014-12-25 2018-04-04 アズビル株式会社 Dryness measuring device and dryness measuring method
JP2016151572A (en) * 2015-02-19 2016-08-22 アズビル株式会社 Dryness measurement device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199943A (en) * 1981-06-03 1982-12-08 Hitachi Ltd Measuring device for wetness of steam
JPS5814033A (en) * 1981-07-20 1983-01-26 Toshiba Corp Measuring device for wetness of steam
JP2000266430A (en) * 1999-03-17 2000-09-29 Mitsubishi Electric Corp Controller for refrigerating machine
JP2005156438A (en) * 2003-11-27 2005-06-16 Nissan Motor Co Ltd Gas-liquid two phase sample analyzer and analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132786A (en) * 2019-05-28 2019-08-16 宁波奥克斯电气股份有限公司 A kind of steam box mass dryness fraction detection device and mass dryness fraction detection method

Also Published As

Publication number Publication date
JP2013092457A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5885461B2 (en) Dryness measuring device and dryness measuring method
JP5539176B2 (en) Dryness measuring device and dryness measuring method
JP6045352B2 (en) Dryness distribution measuring device and dryness distribution measuring method
US7381954B2 (en) Apparatus and method for measuring steam quality
JP6006605B2 (en) Steam flow measuring device and steam flow measuring method
JP5885462B2 (en) Dryness control device and dryness control method
JP2016151572A (en) Dryness measurement device
US7345280B2 (en) Measurement of steam quality using multiple broadband lasers
JP6175370B2 (en) Dryness measuring device and dryness measuring method
WO2017203841A1 (en) Dryness measurement device and moist vapor inspection device
JP2014029307A (en) Steam heat quantity measuring apparatus and steam heat quantity measuring method
JP6392673B2 (en) Hygrometer and humidity measurement method
WO2017183433A1 (en) Dryness measurement device and wet steam inspection device
WO2017183434A1 (en) Dryness measurement device and wet steam inspection device
WO2017104241A1 (en) Dryness measurement device
WO2018135130A1 (en) Dryness measurement device and method for measuring dryness
JP6307427B2 (en) Dryness measuring device and dryness measuring method
WO2017073256A1 (en) Dryness-fraction measuring device
JP6392661B2 (en) Dryness measuring device
JP6392627B2 (en) Dryness measuring device and dryness measuring method
JP2016151571A (en) Dryness measurement device
WO2015098278A1 (en) Steam-quality measurement device and steam-quality measurement method
JP2018169218A (en) Dryness measuring device and dryness measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160209

R150 Certificate of patent or registration of utility model

Ref document number: 5885461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees