[go: up one dir, main page]

JP5883350B2 - Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming - Google Patents

Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming Download PDF

Info

Publication number
JP5883350B2
JP5883350B2 JP2012131417A JP2012131417A JP5883350B2 JP 5883350 B2 JP5883350 B2 JP 5883350B2 JP 2012131417 A JP2012131417 A JP 2012131417A JP 2012131417 A JP2012131417 A JP 2012131417A JP 5883350 B2 JP5883350 B2 JP 5883350B2
Authority
JP
Japan
Prior art keywords
less
temperature
hot press
area
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012131417A
Other languages
Japanese (ja)
Other versions
JP2013014841A (en
Inventor
純也 内藤
純也 内藤
村上 俊夫
俊夫 村上
池田 周之
周之 池田
圭介 沖田
圭介 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47296191&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5883350(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012131417A priority Critical patent/JP5883350B2/en
Publication of JP2013014841A publication Critical patent/JP2013014841A/en
Application granted granted Critical
Publication of JP5883350B2 publication Critical patent/JP5883350B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/22Deep-drawing with devices for holding the edge of the blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、自動車部品の構造部材に使用されるような、強度が必要とされる熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板に関し、特に予め加熱された鋼板(ブランク)を所定の形状に成形加工する際に、形状付与と同時に熱処理を施して所定の強度を得る熱間プレス成形品、そのような熱間プレス成形品の製造方法および熱間プレス成形用薄鋼板に関するものである。   TECHNICAL FIELD The present invention relates to a hot press-formed product that requires strength, such as used for structural members of automobile parts, a manufacturing method thereof, and a thin steel plate for hot press forming, and in particular, a pre-heated steel plate (blank). The present invention relates to a hot press-formed product that obtains a predetermined strength by performing heat treatment at the same time as forming the shape, and a method for producing such a hot press-formed product, and a thin steel sheet for hot press forming. Is.

地球環境問題に端を発する自動車の燃費向上対策の一つとして、車体の軽量化が進められており、自動車に使用される鋼板をできるだけ高強度化することが必要となる。しかしながら、自動車の軽量化のために鋼板を高強度化していくと、伸びELやr値(ランクフォード値)が低下し、プレス成形性や形状凍結性が劣化することになる。   As one of the measures to improve the fuel efficiency of automobiles that originated from global environmental problems, the weight of the vehicle body has been reduced, and it is necessary to increase the strength of steel plates used in automobiles as much as possible. However, when the strength of steel sheets is increased to reduce the weight of automobiles, the elongation EL and r value (Rankford value) decrease, and the press formability and shape freezeability deteriorate.

このような課題を解決するために、鋼板を所定の温度(例えば、オーステナイト相となる温度)に加熱して強度を下げた(即ち、成形を容易にした)後、薄鋼板に比べて低温(例えば室温)の金型で成形することによって、形状の付与と同時に、両者の温度差を利用した急冷熱処理(焼入れ)を行って、成形後の強度を確保する熱間プレス成形法が部品製造に採用されている。   In order to solve such a problem, the steel sheet is heated to a predetermined temperature (for example, a temperature at which it becomes an austenite phase) to reduce the strength (that is, to facilitate forming), and then at a lower temperature than the thin steel sheet ( For example, a hot press molding method that secures the strength after molding by forming a mold with a room temperature mold and performing a quenching heat treatment (quenching) using the temperature difference between the two at the same time as giving the shape. It has been adopted.

こうした熱間プレス成形法によれば、低強度状態で成形されるので、スプリングバックも小さくなると共に(形状凍結性が良好)、Mn、B等の合金元素を添加した焼入性の良い材料を使用することで、急冷によって引張強度で1500MPa級の強度が得られることになる。尚、このような熱間プレス成形法は、ホットプレス法の他、ホットフォーミング法、ホットスタンピング法、ホットスタンプ法、ダイクエンチ法等、様々な名称で呼ばれている。   According to such a hot press forming method, since the material is formed in a low strength state, the spring back becomes small (good shape freezing property), and a material with good hardenability to which alloy elements such as Mn and B are added. By using it, the strength of 1500 MPa class is obtained by the tensile cooling. Such a hot press forming method is called by various names such as a hot forming method, a hot stamping method, a hot stamp method, and a die quench method in addition to the hot press method.

図1は、上記のような熱間プレス成形(以下、「ホットスタンプ」で代表することがある)を実施するための金型構成を示す概略説明図であり、図中1はパンチ、2はダイ、3はブランクホルダー、4は鋼板(ブランク)、BHFはしわ押え力、rpはパンチ肩半径、rdはダイ肩半径、CLはパンチ/ダイ間クリアランスを夫々示している。また、これらの部品のうち、パンチ1とダイ2には冷却媒体(例えば水)を通過させることができる通路1a,2aが夫々の内部に形成されており、この通路に冷却媒体を通過させることによってこれらの部材が冷却されるように構成されている。   FIG. 1 is a schematic explanatory view showing a mold configuration for carrying out the above hot press molding (hereinafter may be represented by “hot stamp”). In FIG. Die, 3 is a blank holder, 4 is a steel plate (blank), BHF is a crease pressing force, rp is a punch shoulder radius, rd is a die shoulder radius, and CL is a punch / die clearance. Of these components, the punch 1 and the die 2 have passages 1a and 2a through which a cooling medium (for example, water) can pass, and the cooling medium is allowed to pass through the passages. These members are configured to be cooled.

こうした金型を用いてホットスタンプ(例えば、熱間深絞り加工)するに際しては、鋼板(ブランク)4を、(Ac1変態点〜Ac3変態点)の二相域温度またはAc3変態点以上の単相域温度に加熱して軟化させた状態で成形を開始する。即ち、高温状態にある鋼板4をダイ2とブランクホルダー3間に挟んだ状態で、パンチ1によってダイ2の穴内(図1の2,2間)に鋼板4を押し込み、鋼板4の外径を縮めつつパンチ1の外形に対応した形状に成形する。また、成形と並行してパンチ1およびダイ2を冷却することによって、鋼板4から金型(パンチ1およびダイ2)への抜熱を行なうと共に、成形下死点(パンチ先端が最深部に位置した時点:図1に示した状態)で更に保持冷却することによって素材の焼入れを実施する。こうした成形法を実施することによって、寸法精度の良い1500MPa級の成形品を得ることができ、しかも冷間で同じ強度クラスの部品を成形する場合に比較して、成形荷重が低減できることからプレス機の容量が小さくて済むことになる。 When hot stamping (for example, hot deep drawing) using such a mold, the steel plate (blank) 4 is set to the two-phase region temperature (Ac 1 transformation point to Ac 3 transformation point) or higher than the Ac 3 transformation point. Molding is started in a state of being softened by heating to a single phase temperature. That is, in a state where the steel plate 4 in a high temperature state is sandwiched between the die 2 and the blank holder 3, the steel plate 4 is pushed into the hole of the die 2 (between 2 and 2 in FIG. 1) by the punch 1, and the outer diameter of the steel plate 4 is reduced. While shrinking, it is formed into a shape corresponding to the outer shape of the punch 1. Further, by cooling the punch 1 and the die 2 in parallel with the forming, heat is removed from the steel plate 4 to the mold (punch 1 and die 2), and the bottom dead center of the forming (the punch tip is located at the deepest part). The material is quenched by further holding and cooling in the state shown in FIG. By carrying out such a molding method, it is possible to obtain a 1500 MPa class molded product with good dimensional accuracy and to reduce the molding load compared to the case of molding parts of the same strength class in the cold. The capacity of the can be small.

現在広く使用されているホットスタンプ用鋼板としては、22MnB5鋼を素材とするものが知られている。この鋼板では、引張強度が1500MPaで伸びが6〜8%程度であり、耐衝撃部材(衝突時に極力変形させず、破断しない部材)に適用されている。また、C含有量を増やし、22MnB5鋼をベースに、更に高強度化(1500MPa以上、1800MPa級)する開発も進められている。   As steel plates for hot stamping that are currently widely used, steel plates made of 22MnB5 steel are known. This steel sheet has a tensile strength of 1500 MPa and an elongation of about 6 to 8%, and is applied to an impact resistant member (a member that is not deformed as much as possible and does not break). In addition, the development of increasing the C content and further increasing the strength (1500 MPa or higher, 1800 MPa class) based on 22MnB5 steel is also in progress.

しかしながら、22MnB5鋼以外の鋼種はほとんど適用されておらず、部品の強度、伸びをコントロール(例えば、低強度化:980MPa級、高伸び化:20%等)し、耐衝撃部材以外へ適用範囲を広げる鋼種・工法の検討はほとんどされていないのが現状である。   However, steel grades other than 22MnB5 steel are rarely applied, and the strength and elongation of parts are controlled (for example, low strength: 980 MPa class, high elongation: 20%, etc.) At present, there is almost no examination of the steel types and construction methods to be expanded.

中型以上の乗用車では、側面衝突時や後方衝突時にコンパチビィリティ(小型車が衝突してきたときに相手側も守る機能)を考慮して、Bピラーやリアサイドメンバの部品内に、耐衝撃性部位とエネルギー吸収部位の両機能を持たせる場合がある。こうした部材を作製するには、これまでは、例えば980MPa級の高強度超ハイテンと、440MPa級の伸びのあるハイテンをレーザー溶接(テーラードウェルドブランク:TWB)して、冷間でプレス成型する方法が主流であった。しかしながら、最近では、ホットスタンプで部品内の強度を作り分ける技術の開発が進められている。   For medium-sized and larger passenger cars, considering the compatibility (function to protect the other party when a small car collides) at the time of a side collision or a rear collision, in the parts of the B pillar and rear side member, There are cases where both functions of the energy absorption site are provided. In order to produce such a member, there has been a method in which, for example, laser welding (tailored weld blank: TWB) of high strength super high tensile strength of 980 MPa class and high tensile strength of 440 MPa class is performed by cold press molding. It was mainstream. However, recently, development of a technique for separately creating strength in a part by hot stamping has been advanced.

例えば、非特許文献1では、ホットスタンプ用の22MnB5鋼と、金型で焼入れしても高強度とならない材料をレーザー溶接(テーラードウェルドブランク:TWB)して、ホットスタンプする方法が提案されており、高強度側(耐衝撃部位側)で引張強度:1500MPa(伸び6〜8%)、低強度側(エネルギー吸収部位側)で引張強度:440MPa(伸び12%)となる作り分けを行っている。また、部品内で強度を作り分けるための技術として、例えば非特許文献2〜4のような技術も提案されている。   For example, Non-Patent Document 1 proposes a method of hot stamping 22MnB5 steel for hot stamping and a material that does not become high strength even if quenched with a mold and laser welding (tailored weld blank: TWB). The tensile strength is 1500 MPa (elongation 6 to 8%) on the high strength side (impact resistant site side), and the tensile strength is 440 MPa (elongation 12%) on the low strength side (energy absorption site side). . In addition, as a technique for creating different strengths in a part, techniques such as Non-Patent Documents 2 to 4 have been proposed.

上記非特許文献1,2の技術では、エネルギー吸収部位側で引張強度が600MPa以下、伸びが12〜18%程度であるが、事前にレーザー溶接(テーラードウェルドブランク:TWB)する必要があり、工程が増加すると共に高コストとなる。また、本来、焼入を行う必要のないエネルギー吸収部位を加熱することになり、熱量消費の観点からも好ましくない。   In the techniques of Non-Patent Documents 1 and 2 above, the tensile strength is 600 MPa or less and the elongation is about 12 to 18% on the energy absorption site side, but it is necessary to perform laser welding (tailored weld blank: TWB) in advance, As the number increases, the cost increases. Moreover, the energy absorption site | part which does not need to quench naturally is heated, and it is unpreferable also from a viewpoint of heat consumption.

非特許文献3の技術では、22MnB5鋼をベースとしているが、ボロン添加の影響によって、二相域温度の加熱に対して焼入れ後の強度のロバスト性が悪く、エネルギー吸収部位側の強度コントロールが難しく、更に伸びも15%程度しか得られていない。   The technology of Non-Patent Document 3 is based on 22MnB5 steel, but due to the influence of boron addition, the robustness of the strength after quenching is poor with respect to the heating at the two-phase region temperature, and it is difficult to control the strength on the energy absorption site side. Further, only about 15% of elongation is obtained.

非特許文献4の技術では、22MnB5鋼をベースとしており、本来、焼入れ性の良い22MnB5鋼に焼きが入らないように制御する点(金型冷却制御)で合理的ではない。   The technique of Non-Patent Document 4 is based on 22MnB5 steel, which is not rational in terms of controlling the 22MnB5 steel with good hardenability so as not to be quenched (mold cooling control).

Klaus Lamprecht, Gunter Deinzer, Anton Stich, Jurgen Lechler, Thomas Stohr, Marion Merklein,“Thermo-Mechanical Properties of Tailor Welded Blanks in Hot Sheet Metal Forming Processes”, Proc. IDDRG2010, 2010.Klaus Lamprecht, Gunter Deinzer, Anton Stich, Jurgen Lechler, Thomas Stohr, Marion Merklein, “Thermo-Mechanical Properties of Tailor Welded Blanks in Hot Sheet Metal Forming Processes”, Proc. IDDRG2010, 2010. Usibor1500P(22MnB5)/1500MPa・8%-Ductibor500/550〜700MPa・17%[平成23年4月27日検索]インターネット〈http://www.arcelormittal.com/tailoredblanks/pre/seifware.pl〉Usibor1500P (22MnB5) / 1500MPa ・ 8% -Ductibor500 / 550 ~ 700MPa ・ 17% [Search April 27, 2011] Internet <http://www.arcelormittal.com/tailoredblanks/pre/seifware.pl> 22MnB5/above AC3/1500MPa・8%-below AC3/Hv190・Ferrite/Cementite Rudiger Erhardt and Johannes Boke, “Industrial application of hot forming process simulation”, Proc, of 1st Int. Conf. on Hot Sheet Metal Forming of High-Performance steel, ed. By Steinhoff, K., Oldenburg, M, Steinhoff, and Prakash, B., pp83-88, 2008.22MnB5 / above AC3 / 1500MPa ・ 8% -below AC3 / Hv190 ・ Ferrite / Cementite Rudiger Erhardt and Johannes Boke, “Industrial application of hot forming process simulation”, Proc, of 1st Int. Conf. On Hot Sheet Metal Forming of High- Performance steel, ed. By Steinhoff, K., Oldenburg, M, Steinhoff, and Prakash, B., pp83-88, 2008. Begona Casas, David Latre, Noemi Rodriguez, and Isaac Valls, “Tailor made tool materials for the present and upcoming tooling solutions in hot sheet metal forming”, Proc, of 1st Int. Conf. on Hot Sheet Metal Forming of High-Performance steel, ed. By Steinhoff, K., Oldenburg, M, Steinhoff, and Prakash, B., pp23-35, 2008.Begona Casas, David Latre, Noemi Rodriguez, and Isaac Valls, “Tailor made tool materials for the present and upcoming tooling solutions in hot sheet metal forming”, Proc, of 1st Int. Conf. On Hot Sheet Metal Forming of High-Performance steel , ed.By Steinhoff, K., Oldenburg, M, Steinhoff, and Prakash, B., pp23-35, 2008.

本発明は上記事情に鑑みてなされたものであって、その目的は、強度と伸びのバランスを適切な範囲にコントロールでき、且つ高延性である熱間プレス成形品、このような熱間プレス成形品を製造するための有用な方法および熱間プレス成形用薄鋼板を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hot press-molded product that can control the balance between strength and elongation within an appropriate range and has high ductility, and such hot press molding. It is an object of the present invention to provide a useful method for manufacturing a product and a thin steel sheet for hot press forming.

上記目的を達成することのできた本発明の熱間プレス成形品とは、熱間プレス成形法によって薄鋼板を成形した熱間プレス成形品であって、金属組織が、フェライト:30〜80面積%、ベイニティックフェライト:30面積%未満(0面積%を含まない)、マルテンサイト:30面積%以下(0面積%を含まない)、残留オーステナイト:3〜20面積%からなるものである点に要旨を有するものである。   The hot press-formed product of the present invention that has achieved the above object is a hot press-formed product obtained by forming a thin steel plate by a hot press forming method, and the metal structure is ferrite: 30 to 80 area%. Bainitic ferrite: less than 30 area% (excluding 0 area%), martensite: 30 area% or less (not including 0 area%), residual austenite: 3-20 area% It has a gist.

本発明の熱間プレス成形品において、その化学成分組成は限定されないが、代表的なものとして、C:0.1〜0.3%(質量%の意味。以下、化学成分組成について同じ。)、Si:0.5〜3%、Mn:0.5〜2%、P:0.05%以下(0%を含まない)、S:0.05%以下(0%を含まない)、Al:0.01〜0.1%、およびN:0.001〜0.01%を夫々含有し、残部が鉄および不可避不純物からなるものが挙げられる。   In the hot press-formed product of the present invention, the chemical component composition is not limited, but as a typical example, C: 0.1 to 0.3% (meaning mass%. Hereinafter, the same applies to the chemical component composition). , Si: 0.5 to 3%, Mn: 0.5 to 2%, P: 0.05% or less (not including 0%), S: 0.05% or less (not including 0%), Al : 0.01-0.1% and N: 0.001-0.01%, respectively, and the remainder consists of iron and inevitable impurities.

本発明の熱間プレス成形品においては、必要に応じて、更に他の元素として、(a)B:0.01%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)、(b)Cu,Ni,CrおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない)、(c)Vおよび/またはNb:合計で0.1%以下(0%を含まない)等を含有させることも有用であり、含有される元素の種類に応じて、熱間プレス成形品の特性が更に改善される。   In the hot press-formed product of the present invention, if necessary, as other elements, (a) B: 0.01% or less (excluding 0%) and Ti: 0.1% or less (0%) (B) one or more selected from the group consisting of Cu, Ni, Cr and Mo: 1% or less in total (not including 0%), (c) V and / or Nb: in total It is also useful to contain 0.1% or less (not including 0%) and the like, and the properties of the hot press-formed product are further improved depending on the type of element contained.

本発明の熱間プレス成形品を製造するに当たっては、フェライトが50面積%以上の金属組織を有する熱延鋼板、または冷延率30%以上を施した冷延鋼板を、プレス成形金型を用いてプレス成形するに際して、前記熱延鋼板または冷延鋼板をAc1変態点以上、(Ac1変態点×0.3+Ac3変態点×0.7)以下の温度に加熱した後、成形を開始し、成形中は金型内で20℃/秒以上の平均冷却速度を確保しつつ、(ベイナイト変態開始温度Bs−100℃)以下の温度で成形を終了するようにすれば良い。また、成形終了温度を、(ベイナイト変態開始温度Bs−100℃)以下、マルテンサイト変態開始温度Ms点以上の温度範囲とし、その温度範囲で10秒以上保持して成形することが好ましい。 In producing the hot press-formed product of the present invention, a hot-rolled steel sheet having a metal structure of 50% by area or more of ferrite or a cold-rolled steel sheet having a cold rolling rate of 30% or more is used. In the press forming, the hot-rolled steel sheet or the cold-rolled steel sheet is heated to a temperature not lower than the Ac 1 transformation point and not higher than (Ac 1 transformation point × 0.3 + Ac 3 transformation point × 0.7). During the molding, the molding may be terminated at a temperature of (bainite transformation start temperature Bs-100 ° C.) or less while securing an average cooling rate of 20 ° C./second or more in the mold. The molding end temperature is preferably (bainite transformation start temperature Bs-100 ° C.) or lower, a temperature range higher than the martensite transformation start temperature Ms point, and is preferably held for 10 seconds or longer in that temperature range.

或は、他の方法として、プレス成形金型を用いて薄鋼板をプレス成形するに際して、前記薄鋼板をAc3変態点以上、1000℃以下の温度に加熱した後、10℃/秒以下の平均冷却速度で700℃以下、500℃以上の温度まで冷却し、その後成形を開始し、成形中は金型内で20℃/秒以上の平均冷却速度を確保しつつ、(ベイナイト変態開始温度Bs−100℃)以下の温度で成形を終了するようにしても良い。この方法においても、成形終了温度を、(ベイナイト変態開始温度Bs−100℃)以下、マルテンサイト変態開始温度Ms点以上の温度範囲とし、その温度範囲で10秒以上保持して成形することが好ましい。 Alternatively, as another method, when press forming a thin steel sheet using a press mold, the thin steel sheet is heated to a temperature not lower than the Ac 3 transformation point and not higher than 1000 ° C., and then an average of not higher than 10 ° C./second. Cooling is performed at a cooling rate of 700 ° C. or lower and 500 ° C. or higher, and then molding is started. During the molding, while maintaining an average cooling rate of 20 ° C./second or higher in the mold (Bainite transformation start temperature Bs− The molding may be completed at a temperature of 100 ° C. or lower. Also in this method, it is preferable that the molding end temperature is (bainite transformation start temperature Bs-100 ° C.) or less, a temperature range of the martensite transformation start temperature Ms point or more, and is held for 10 seconds or more in the temperature range. .

本発明は上記のような熱間プレス成形品を製造するための熱間プレス成形用薄鋼板をも包含し、この薄鋼板は、フェライトが50面積%以上の金属組織を有する熱延鋼板、または冷延率30%以上を施した冷延鋼板であることを特徴とする。   The present invention also includes a thin steel sheet for hot press forming for producing the above hot press-formed product, and the thin steel sheet is a hot-rolled steel sheet having a metal structure of ferrite of 50 area% or more, or It is a cold-rolled steel sheet with a cold rolling rate of 30% or more.

本発明によれば、熱間プレス成形法において、その条件を適切に制御することによって、適正量の残留オーステナイトを存在させて金属組織を調整することができ、従来の22MnB5鋼を用いたときよりも、成形品に内在する延性(残存延性)をより高くした熱間プレス成形品が実現でき、また熱処理条件や成形前鋼板の組織(初期組織)との組み合わせにより、強度および伸びを制御できる。また、二相域での加熱温度を調整することで、強度および伸びを自由に作り分けることが可能となる。   According to the present invention, in the hot press forming method, by appropriately controlling the conditions, it is possible to adjust the metal structure in the presence of an appropriate amount of retained austenite, compared with the case of using the conventional 22MnB5 steel. However, it is possible to realize a hot press-formed product having a higher ductility (residual ductility) inherent in the formed product, and the strength and elongation can be controlled by a combination with the heat treatment conditions and the structure (initial structure) of the steel sheet before forming. Further, by adjusting the heating temperature in the two-phase region, it is possible to freely make strength and elongation.

熱間プレス成形を実施するための金型構成を示す概略説明図である。It is a schematic explanatory drawing which shows the metal mold | die structure for implementing hot press molding.

本発明者らは、鋼板を所定の温度に加熱した後、熱間プレス成形して成形品を製造するに際して、成形後において所定強度を確保しつつ良好な延性(伸び)をも示すような熱間プレス成形品を実現するべく、様々な角度から検討した。   The inventors of the present invention, after heating a steel plate to a predetermined temperature, when producing a molded product by hot press forming, heat that shows good ductility (elongation) while securing a predetermined strength after forming. In order to realize a press-formed product, we examined it from various angles.

その結果、プレス成形金型を用いて鋼板を熱間プレス成形するに際して、鋼板の種類、加熱温度、および成形時の条件を適切に制御し、残留オーステナイトを3〜20面積%含むように組織を制御すれば、強度−延性バランスに優れた熱間プレス成形品が実現できることを見出し、本発明を完成した。   As a result, when hot pressing a steel sheet using a press mold, the type of steel sheet, the heating temperature, and the conditions at the time of forming are appropriately controlled, and the structure is adjusted so as to contain 3-20% by area of retained austenite. It has been found that a hot press-molded product excellent in strength-ductility balance can be realized by controlling, and the present invention has been completed.

本発明の熱間プレス成形品における各組織(基本組織)の範囲設定理由は次の通りである。   The reason for setting the range of each structure (basic structure) in the hot press-formed product of the present invention is as follows.

[フェライト:30〜80面積%]
主要組織を、微細で且つ延性の高いフェライトにすることで、熱間プレス成形品の高延性を実現することができる。こうした観点から、フェライトの面積分率は、30面積%以上とする必要がある。しかしながら、この面積分率が80面積%を超えると、所定強度が確保できなくなる。フェライト分率の好ましい下限は40面積%以上(より好ましくは45面積%以上)であり、好ましい上限は70面積%以下(より好ましくは65面積%以下)である。
[Ferrite: 30-80 area%]
By making the main structure fine and ferrite having high ductility, it is possible to achieve high ductility of a hot press-formed product. From such a viewpoint, the area fraction of ferrite needs to be 30 area% or more. However, when the area fraction exceeds 80 area%, the predetermined strength cannot be secured. A preferred lower limit of the ferrite fraction is 40 area% or more (more preferably 45 area% or more), and a preferred upper limit is 70 area% or less (more preferably 65 area% or less).

[ベイニティックフェライト:30面積%未満(0面積%を含まない)]
ベイニティックフェライトは強度の向上には有効であるが、延性がやや低下するため、その分率の上限は30面積%未満とする必要がある。ベイニティックフェライト分率の好ましい下限は5面積%以上(より好ましくは10面積%以上)であり、好ましい上限は25面積%以下(より好ましくは20面積%以下)である。
[Bainitic ferrite: less than 30 area% (excluding 0 area%)]
Although bainitic ferrite is effective in improving the strength, the ductility is somewhat lowered, so the upper limit of the fraction must be less than 30 area%. The preferable lower limit of the bainitic ferrite fraction is 5 area% or more (more preferably 10 area% or more), and the preferable upper limit is 25 area% or less (more preferably 20 area% or less).

[マルテンサイト:30面積%以下(0面積%を含まない)]
マルテンサイトは強度の向上には有効であるが、延性を大幅に低下させるため、その分率の上限は30面積%以下とする必要がある。マルテンサイト分率の好ましい下限は5面積%以上(より好ましくは10面積%以上)であり、好ましい上限は25面積%以下(より好ましくは20面積%以下)である。
[Martensite: 30 area% or less (excluding 0 area%)]
Martensite is effective in improving the strength, but the upper limit of the fraction must be 30% by area or less in order to greatly reduce the ductility. A preferred lower limit of the martensite fraction is 5 area% or more (more preferably 10 area% or more), and a preferred upper limit is 25 area% or less (more preferably 20 area% or less).

[残留オーステナイト:3〜20面積%]
残留オーステナイトは、塑性変形中にマルテンサイトに変態することで、加工硬化率を上昇させ(変態誘起塑性)、成形品の延性を向上させる効果がある。こうした効果を発揮させるためには、残留オーステナイトの分率を3面積%以上とする必要がある。延性に対しては、残留オーステナイト分率が多ければ多いほど良好になるが、自動車用鋼板に用いられる組成では、確保できる残留オーステナイトは限られており、20面積%程度が上限となる。残留オーステナイトの好ましい下限は5面積%以上(より好ましくは7面積%以上)であり、好ましい上限は15面積%以下(より好ましくは10面積%以下)である。
[Residual austenite: 3 to 20 area%]
Residual austenite has the effect of increasing the work hardening rate (transformation-induced plasticity) and improving the ductility of the molded product by transforming into martensite during plastic deformation. In order to exert such an effect, the fraction of retained austenite needs to be 3 area% or more. As for the ductility, the higher the retained austenite fraction, the better. However, in the composition used for the steel sheet for automobiles, the retained austenite that can be secured is limited, and the upper limit is about 20 area%. The preferable lower limit of retained austenite is 5 area% or more (more preferably 7 area% or more), and the preferable upper limit is 15 area% or less (more preferably 10 area% or less).

本発明の熱間プレス成形品を製造するに当たっては、フェライトが50面積%以上の金属組織を有する熱延鋼板、または冷延率30%以上を施した冷延鋼板を、プレス成形金型を用いてプレス成形するに際して、前記熱延鋼板または冷延鋼板をAc1変態点以上、(Ac1変態点×0.3+Ac3変態点×0.7)以下の温度に加熱した後、成形を開始し、成形中は金型内で20℃/秒以上の平均冷却速度を確保しつつ(ベイナイト変態開始温度Bs−100℃)以下の温度で成形を終了するようにすれば良い。この方法における各要件を規定した理由は次の通りである。 In producing the hot press-formed product of the present invention, a hot-rolled steel sheet having a metal structure of 50% by area or more of ferrite or a cold-rolled steel sheet having a cold rolling rate of 30% or more is used. In the press forming, the hot-rolled steel sheet or the cold-rolled steel sheet is heated to a temperature not lower than the Ac 1 transformation point and not higher than (Ac 1 transformation point × 0.3 + Ac 3 transformation point × 0.7). During molding, the molding may be terminated at a temperature not higher than the average cooling rate of 20 ° C./second or more (bainite transformation start temperature Bs-100 ° C.) in the mold. The reasons for specifying each requirement in this method are as follows.

[フェライトが50面積%以上の金属組織を有する熱延鋼板、または冷延率30%以上を施した冷延鋼板を用いる]
二相域温度に加熱時に、延性への寄与の大きいフェライト組織を得るためには、鋼板(成形用鋼板)の種類を適切に選ぶ必要がある。成形用鋼板として熱延鋼板を用いる場合には、フェライト分率が高く、二相域温度に加熱時にフェライトが残存するようにすることが重要である。こうした観点から、用いる熱延鋼板はフェライトが50面積%以上の金属組織を有するものであることが好ましい。このフェライト分率の好ましい下限は、60面積%以上(より好ましくは70面積%以上)であるが、フェライト分率があまり高くなると、成形品中のフェライト分率が多くなり過ぎるので、95面積%以下であることが好ましい。より好ましくは90面積%以下である。
[Use a hot-rolled steel sheet having a metal structure with ferrite of 50 area% or more, or a cold-rolled steel sheet with a cold rolling rate of 30% or more]
In order to obtain a ferrite structure that greatly contributes to ductility when heated to a two-phase region temperature, it is necessary to appropriately select the type of steel plate (forming steel plate). When a hot-rolled steel sheet is used as the forming steel sheet, it is important that the ferrite fraction is high and the ferrite remains at the two-phase temperature when heated. From such a viewpoint, it is preferable that the hot-rolled steel sheet to be used has a ferrite metal structure of 50 area% or more. The preferred lower limit of this ferrite fraction is 60 area% or more (more preferably 70 area% or more), but if the ferrite fraction becomes too high, the ferrite fraction in the molded product becomes too large, so 95 area% The following is preferable. More preferably, it is 90 area% or less.

一方、冷延鋼板を用いる場合には、加熱中に再結晶が起こり、転位を含まないフェライトが形成されることが重要な要件となるため、再結晶が起こるように一定以上の冷延(冷間圧延)を施す必要がある。また、冷延鋼板の場合には、その組織についてはどのようなものであっても良い。こうした観点から、冷延鋼板を用いる場合には、冷延率30%以上を施した冷延鋼板を用いることが好ましい。冷延率は好ましくは40%以上であり、より好ましくは50%以上である。尚、上記「冷延率」とは、下記(1)式によって求められる値である。
冷延率(%)=[(冷間圧延前の鋼板厚さ−冷間圧延後の鋼板厚さ)/冷間圧延前の鋼板厚さ]×100…(1)
On the other hand, when using a cold-rolled steel sheet, recrystallization takes place during heating, and it is an important requirement that ferrite not containing dislocations be formed. Intermediate rolling) must be performed. In the case of a cold-rolled steel sheet, any structure may be used. From such a viewpoint, when using a cold-rolled steel sheet, it is preferable to use a cold-rolled steel sheet with a cold rolling rate of 30% or more. The cold rolling rate is preferably 40% or more, more preferably 50% or more. The “cold rolling ratio” is a value obtained by the following equation (1).
Cold rolling rate (%) = [(steel plate thickness before cold rolling−steel plate thickness after cold rolling) / steel plate thickness before cold rolling] × 100 (1)

[鋼板をAc1変態点以上、(Ac1変態点×0.3+Ac3変態点×0.7)以下の温度に加熱した後、成形を開始する]
鋼板中に含まれるフェライトを残存させつつ、部分的にオーステナイトにさせるためには、加熱温度は所定の範囲に制御する必要がある。この加熱温度を適切に制御することによって、その後の冷却過程で、残留オーステナイト若しくはマルテンサイトに変態させ、最終的な熱間プレス成形品で所望の組織に作り込むことができる。鋼板の加熱温度がAc1変態点未満であると、加熱時に十分な量のオーステナイトが得られず、最終組織(成形品の組織)で所定量の残留オーステナイトを確保できない。また、薄鋼板の加熱温度が(Ac1変態点×0.3+Ac3変態点×0.7)を超えると、加熱時にオーステナイトへの変態量が増加し過ぎて、最終組織(成形品の組織)で所定量のフェライトを確保できない。
[After the steel sheet is heated to a temperature not lower than Ac 1 transformation point and not higher than (Ac 1 transformation point × 0.3 + Ac 3 transformation point × 0.7), forming is started]
In order to partially make austenite while retaining the ferrite contained in the steel sheet, it is necessary to control the heating temperature within a predetermined range. By appropriately controlling the heating temperature, it can be transformed into retained austenite or martensite in the subsequent cooling process, and can be formed into a desired structure by a final hot press-formed product. When the heating temperature of the steel sheet is less than the Ac 1 transformation point, a sufficient amount of austenite cannot be obtained during heating, and a predetermined amount of retained austenite cannot be secured in the final structure (structure of the molded product). When the heating temperature of the thin steel plate exceeds (Ac 1 transformation point × 0.3 + Ac 3 transformation point × 0.7), the transformation amount to austenite increases too much during heating, and the final structure (structure of the molded product) The predetermined amount of ferrite cannot be secured.

[成形中は金型内で20℃/秒以上の平均冷却速度を確保しつつ、(ベイナイト変態開始温度Bs−100℃)以下の温度で成形を終了する]
上記加熱工程で形成されたオーステナイトを、セメンタイトが形成されるのを阻止しつつ、所定量の残留オーステナイトを確保するためには、成形中の平均冷却速度および成形終了温度を適切に制御する必要がある。こうした観点から、成形中の平均冷却速度は20℃/秒以上とし、成形終了温度は、(ベイナイト変態開始温度Bs−100℃:以下「Bs−100℃」と略記することがある)以下とする必要がある。成形中の平均冷却速度は、好ましくは30℃/秒以上(より好ましくは40℃/秒以上)である。また、成形終了温度は、上記平均冷却速度で室温まで冷却しながら成形を終了してもよいが、Bs−100℃以下まで冷却した後に冷却を停止し、その後成形を終了するようにしても良い。尚、成形中の平均冷却速度の制御は、(a)成形金型の温度を制御する(前記図1に示した冷却媒体)、(b)金型の熱伝導率を制御する等の手段によって達成できる(下記の方法における冷却においても同じ)。
[During molding, molding is terminated at a temperature of (bainite transformation start temperature Bs-100 ° C.) or less while securing an average cooling rate of 20 ° C./second or more in the mold.
In order to secure a predetermined amount of retained austenite while preventing the formation of cementite from the austenite formed in the heating step, it is necessary to appropriately control the average cooling rate during molding and the molding end temperature. is there. From such a viewpoint, the average cooling rate during molding is set to 20 ° C./second or more, and the molding end temperature is set to be equal to or lower than (bainite transformation start temperature Bs-100 ° C .: hereinafter sometimes abbreviated as “Bs-100 ° C.”). There is a need. The average cooling rate during molding is preferably 30 ° C./second or more (more preferably 40 ° C./second or more). Moreover, although shaping | molding completion temperature may be complete | finished cooling to room temperature with the said average cooling rate, after cooling to Bs-100 degrees C or less, cooling may be stopped and shaping | molding may be complete | finished after that. . The average cooling rate during the molding is controlled by means such as (a) controlling the temperature of the molding die (cooling medium shown in FIG. 1), (b) controlling the thermal conductivity of the die. It can be achieved (same for cooling in the following method).

本発明のプレス成形品を製造するための他の方法として、プレス成形金型を用いて鋼板をプレス成形するに際して、前記薄鋼板をAc3変態点以上、1000℃以下の温度に加熱した後、10℃/秒以下の平均冷却速度で700℃以下、500℃以上の温度まで冷却し、その後成形を開始し、成形中は金型内で20℃/秒以上の平均冷却速度を確保しつつ、(ベイナイト変態開始温度Bs−100℃)以下の温度で成形を終了するようにしても良い。この方法における各要件を規定した理由は次の通りである(冷却終了温度に関しては、上記と同じ)。 As another method for producing the press-formed product of the present invention, when press-molding a steel sheet using a press-molding die, the thin steel sheet is heated to a temperature not lower than the Ac 3 transformation point and not higher than 1000 ° C. Cooling to a temperature of 700 ° C. or lower and an average cooling rate of 10 ° C./second or lower to a temperature of 700 ° C. or lower, and then starting molding, while securing an average cooling rate of 20 ° C./second or higher in the mold You may make it complete | finish shaping | molding at the temperature below (bainite transformation start temperature Bs-100 degreeC). The reason why the requirements in this method are specified is as follows (the cooling end temperature is the same as above).

[薄鋼板をAc3変態点以上、1000℃以下の温度に加熱する]
熱間プレス成形品の組織を適切に調整するためには、加熱温度は所定の範囲に制御する必要がある。この加熱温度を適切に制御することによって、その後の冷却過程で、所定量の残留オーステナイトを確保しつつフェライトを主体とする組織に変態させ、最終的な熱間プレス成形品で所望の組織に作り込むことができる。鋼板の加熱温度がAc3変態点未満であると、加熱時に十分な量のオーステナイトが得られず、最終組織(成形品の組織)で所定量の残留オーステナイトを確保できない。また、薄鋼板の加熱温度が1000℃を超えると、加熱時にオーステナイトの粒径が大きくなり、その後の冷却でフェライトが生成できない。
[The thin steel plate is heated to a temperature not lower than Ac 3 transformation point and not higher than 1000 ° C.]
In order to appropriately adjust the structure of the hot press-formed product, it is necessary to control the heating temperature within a predetermined range. By appropriately controlling this heating temperature, it is transformed into a structure mainly composed of ferrite while securing a predetermined amount of retained austenite in the subsequent cooling process, and the desired structure is formed with the final hot press-formed product. Can be included. When the heating temperature of the steel sheet is less than the Ac 3 transformation point, a sufficient amount of austenite cannot be obtained during heating, and a predetermined amount of retained austenite cannot be secured in the final structure (structure of the molded product). On the other hand, when the heating temperature of the thin steel plate exceeds 1000 ° C., the austenite grain size increases during heating, and ferrite cannot be generated by subsequent cooling.

[10℃/秒以下の平均冷却速度で700℃以下、500℃以上の温度まで冷却し、その後成形を開始する]
この冷却工程は、冷却中にフェライトを形成させる上で重要な工程である。このときの平均冷却速度が10℃/秒を超えて速くなると、所定量のフェライトが確保できなくなる。この平均冷却速度は、好ましくは7℃/秒以下であり、より好ましくは5℃/秒以下である。この冷却工程における冷却停止温度(この温度を「冷却速度変更温度」と呼ぶことがある)は、700℃以下、500℃以上とする必要がある。この冷却停止温度が、700℃を超えると十分なフェライト量が確保できず、500℃未満となると、フェライト分率が多くなり過ぎ、所定の強度を確保できなくなる。冷却停止温度の好ましい上限は680℃以下(より好ましくは660℃以下)であり、好ましい下限は520℃以上(より好ましくは550℃以上)である。
[Cool at an average cooling rate of 10 ° C./second or lower to a temperature of 700 ° C. or lower and 500 ° C. or higher, and then start molding]
This cooling step is an important step in forming ferrite during cooling. If the average cooling rate at this time exceeds 10 ° C./second, a predetermined amount of ferrite cannot be secured. This average cooling rate is preferably 7 ° C./second or less, more preferably 5 ° C./second or less. The cooling stop temperature in this cooling step (this temperature may be referred to as “cooling rate changing temperature”) needs to be 700 ° C. or lower and 500 ° C. or higher. When the cooling stop temperature exceeds 700 ° C., a sufficient amount of ferrite cannot be secured, and when the cooling stop temperature is less than 500 ° C., the ferrite fraction becomes too large to secure a predetermined strength. A preferable upper limit of the cooling stop temperature is 680 ° C. or lower (more preferably 660 ° C. or lower), and a preferable lower limit is 520 ° C. or higher (more preferably 550 ° C. or higher).

いずれの方法によっても、上記成形終了温度は、(Bs−100℃)以下とする必要があるが、マルテンサイト変態開始温度Ms点以上の温度範囲(この温度を「冷却速度変更温度」と呼ぶことがある)とし、その温度範囲で10秒以上保持することが好ましい。上記の温度範囲で10秒以上保持することによって、過冷オーステナイトからベイナイト変態が進行してフェライトを主体とする組織とすることができる。このときの保持時間は、好ましくは50秒以上(より好ましくは100秒以上)であるが、保持時間が長くなり過ぎると、オーステナイトが分解を始め、残留オーステナイト分率が確保できなくなるので、1000秒以下であることが好ましい(より好ましくは800秒以下)。   In any method, the molding end temperature needs to be (Bs-100 ° C.) or less, but a temperature range above the martensite transformation start temperature Ms point (this temperature is referred to as “cooling rate change temperature”). It is preferable to hold for 10 seconds or more in that temperature range. By holding for 10 seconds or more in the above temperature range, the bainite transformation proceeds from supercooled austenite to obtain a structure mainly composed of ferrite. The holding time at this time is preferably 50 seconds or more (more preferably 100 seconds or more). However, if the holding time becomes too long, the austenite starts to decompose, and the retained austenite fraction cannot be secured. Or less (more preferably 800 seconds or less).

上記のような保持は、上記温度範囲内であれば、等温保持、単調な冷却、再加熱工程のいずれであっても良い。また、このような保持と成形の関係については、成形を終了した段階で上記のような保持を加えても良いが、成形を終了する途中で、上記温度範囲内で保持工程を加えても良い。このようにして成形を終了した後は、放冷または適切な冷却速度で、室温(25℃)まで冷却すれば良い。   The holding as described above may be any of isothermal holding, monotonous cooling, and reheating step as long as it is within the above temperature range. As for the relationship between such holding and molding, the above-described holding may be added at the stage of completion of molding, but a holding step may be added within the above temperature range in the middle of finishing molding. . After the molding is completed in this manner, it may be cooled to room temperature (25 ° C.) by cooling or at an appropriate cooling rate.

本発明の熱間プレス成形品の製造方法では、上記いずれも方法を採用しても、前記図1に示したような単純な形状の熱間プレス成形品を製造する場合(ダイレクト工法)は勿論のこと、比較的複雑な形状の成形品を製造る場合にも適用できるものである。但し、複雑な部品形状の場合には、1回のプレス成形で製品の最終形状までを作り込むことが難しいことがある。このような場合には、熱間プレス成形の前工程で冷間プレス成形を行う方法(この方法は、「インダイレクト工法」と呼ばれている)を採用することができる。この方法では、成形が難しい部分を冷間加工によって近似形状まで予め成形しておき、その他の部分を熱間プレス成形する方法である。こうした方法と採用すれば、例えば成形品の凹凸部(山部)が3箇所ある様な部品を成形する際に、冷間プレス成形によって、その2箇所まで成形しておき、その後に3箇所目を熱間プレス成形することになる。   In the method for producing a hot press-formed product of the present invention, even if any of the above methods is adopted, the case where a hot press-formed product having a simple shape as shown in FIG. That is, the present invention can also be applied to the production of a molded product having a relatively complicated shape. However, in the case of a complicated part shape, it may be difficult to create the final shape of the product by a single press molding. In such a case, a method of performing cold press forming in a pre-process of hot press forming (this method is called “indirect method”) can be employed. This method is a method in which a portion that is difficult to be molded is preliminarily molded to an approximate shape by cold working, and the other portions are hot press molded. If such a method is adopted, for example, when a part having three uneven portions (peaks) of a molded product is formed, the two parts are formed by cold press molding, and then the third part is formed. Will be hot pressed.

本発明では、高強度鋼板からなる熱間プレス成形品を想定してなされたものであり、その鋼種については高強度鋼板としての通常の化学成分組成のものであれば良いが、C、Si、Mn、P、S、AlおよびNについては、適切な範囲に調整するのが良い。こうした観点から、これらの化学成分の好ましい範囲およびその範囲限定理由は下記の通りである。   In the present invention, it is made assuming a hot press-formed product made of a high-strength steel plate, and its steel type may be of a normal chemical composition as a high-strength steel plate, but C, Si, About Mn, P, S, Al, and N, it is good to adjust to an appropriate range. From such a viewpoint, the preferable ranges of these chemical components and the reasons for limiting the ranges are as follows.

[C:0.1〜0.3%]
Cは、残留オーステナイトを確保する上で重要な元素である。二相域温度またはAc3変態点以上の単相域温度の加熱時に、オーステナイトに濃化することで、焼入れ後に残留オーステナイトを形成させる。また、マルテンサイト量の増加にも寄与する。C含有量が0.1%未満では、所定の残留オーステナイト量が確保できず、良好な延性が得られない。またC含有量が過剰になって0.3%を超えると、強度が高くなり過ぎることになる。C含有量のより好ましい下限は0.15%以上(更に好ましくは0.20%以上)であり、より好ましい上限は0.27%以下(更に好ましくは0.25%以下)である。
[C: 0.1 to 0.3%]
C is an important element in securing retained austenite. At the time of heating at a two-phase region temperature or a single-phase region temperature equal to or higher than the Ac 3 transformation point, the austenite is concentrated to form residual austenite after quenching. It also contributes to an increase in the amount of martensite. When the C content is less than 0.1%, a predetermined retained austenite amount cannot be secured, and good ductility cannot be obtained. On the other hand, if the C content is excessive and exceeds 0.3%, the strength becomes too high. A more preferable lower limit of the C content is 0.15% or more (more preferably 0.20% or more), and a more preferable upper limit is 0.27% or less (more preferably 0.25% or less).

[Si:0.5〜3%]
Siは、二相域温度またはAc3変態点以上の単相域温度に加熱後のオーステナイトがセメンタイトに形成されることを抑制し、残留オーステナイトを増加させる作用を発揮する。また、固溶強化によって、延性をあまり劣化させずに強度を高める作用も発揮する。Si含有量が0.5%未満では、所定の残留オーステナイト量が確保できず、良好な延性が得られない。またSi含有量が過剰になって3%を超えると、固溶強化量が大きくなり過ぎ、延性が大幅に劣化することになる。Si含有量のより好ましい下限は1.15%以上(更に好ましくは1.20%以上)であり、より好ましい上限は2.7%以下(更に好ましくは2.5%以下)である。
[Si: 0.5-3%]
Si suppresses the formation of austenite after heating to cementite at a two-phase temperature or a single-phase temperature equal to or higher than the Ac 3 transformation point, and exerts an effect of increasing residual austenite. In addition, the solid solution strengthening also exerts the effect of increasing the strength without significantly degrading the ductility. If the Si content is less than 0.5%, a predetermined retained austenite amount cannot be secured, and good ductility cannot be obtained. On the other hand, if the Si content is excessive and exceeds 3%, the solid solution strengthening amount becomes too large, and the ductility is greatly deteriorated. The more preferable lower limit of the Si content is 1.15% or more (more preferably 1.20% or more), and the more preferable upper limit is 2.7% or less (more preferably 2.5% or less).

[Mn:0.5〜2%]
Mnは、オーステナイトを安定化させる元素であり、残留オーステナイトの増加に寄与する。こうした効果を発揮させるためには、Mnは0.5%以上含有させることが好ましい。しかしながら、Mn含有量が過剰になると、フェライトの形成を妨げることで、所定量のフェライトを確保できなくなるので、2%以下とすることが好ましい。また、オーステナイトの強度を大幅に向上させるため、熱間圧延の負荷が大きくなり、鋼板の製造が困難になるため、生産性の上からも、2%を超えて含有させることは好ましくない。Mn含有量のより好ましい下限は0.7%以上(更に好ましくは0.9%以上)であり、より好ましい上限は1.8%以下(更に好ましくは1.6%以下)である。
[Mn: 0.5-2%]
Mn is an element that stabilizes austenite and contributes to an increase in retained austenite. In order to exhibit such an effect, it is preferable to contain 0.5% or more of Mn. However, if the Mn content is excessive, it becomes impossible to secure a predetermined amount of ferrite by hindering the formation of ferrite, so 2% or less is preferable. Further, since the strength of austenite is significantly improved, the hot rolling load becomes large and the production of the steel sheet becomes difficult. Therefore, it is not preferable to contain more than 2% from the viewpoint of productivity. A more preferable lower limit of the Mn content is 0.7% or more (more preferably 0.9% or more), and a more preferable upper limit is 1.8% or less (more preferably 1.6% or less).

[P:0.05%以下(0%を含まない)]
Pは、鋼中に不可避的に含まれる元素であるが延性を劣化させるので、Pは極力低減することが好ましい。しかしながら、極端な低減は製鋼コストの増大を招き、0%とすることは製造上困難であるので、0.05%以下(0%を含まない)とすることが好ましい。P含有量のより好ましい上限は0.045%以下(更に好ましくは0.040%以下)である。
[P: 0.05% or less (excluding 0%)]
P is an element inevitably contained in the steel, but it deteriorates ductility, so it is preferable to reduce P as much as possible. However, extreme reduction leads to an increase in steelmaking cost, and since it is difficult to make it 0%, it is preferable to make it 0.05% or less (not including 0%). A more preferable upper limit of the P content is 0.045% or less (more preferably 0.040% or less).

[S:0.05%以下(0%を含まない)]
SもPと同様に鋼中に不可避的に含まれる元素であり、延性を劣化させるので、Sは極力低減することが好ましい。しかしながら、極端な低減は製鋼コストの増大を招き、0%とすることは製造上困難であるので、0.05%以下(0%を含まない)とすることが好ましい。S含有量のより好ましい上限は0.045%以下(更に好ましくは0.040%以下)である。
[S: 0.05% or less (excluding 0%)]
Similarly to P, S is an element inevitably contained in steel, and deteriorates ductility. Therefore, S is preferably reduced as much as possible. However, extreme reduction leads to an increase in steelmaking cost, and since it is difficult to make it 0%, it is preferable to make it 0.05% or less (not including 0%). A more preferable upper limit of the S content is 0.045% or less (more preferably 0.040% or less).

[Al:0.01〜0.1%]
Alは、脱酸元素として有用であると共に、鋼中に存在する固溶NをAlNとして固定し、延性の向上に有用である。こうした効果を有効に発揮させるためには、Al含有量は0.01%以上とすることが好ましい。しかしながら、Al含有量が過剰になって0.1%を超えると、Al23が過剰に生成し、延性を劣化させる。尚、Al含有量のより好ましい下限は0.013%以上(更に好ましくは0.015%以上)であり、より好ましい上限は0.08%以下(更に好ましくは0.06%以下)である。
[Al: 0.01 to 0.1%]
Al is useful as a deoxidizing element, and also fixes solid solution N present in steel as AlN, which is useful for improving ductility. In order to effectively exhibit such effects, the Al content is preferably 0.01% or more. However, when the Al content is excessive and exceeds 0.1%, Al 2 O 3 is excessively generated, and ductility is deteriorated. A more preferable lower limit of the Al content is 0.013% or more (more preferably 0.015% or more), and a more preferable upper limit is 0.08% or less (more preferably 0.06% or less).

[N:0.001〜0.01%]
Nは、不可避的に混入する元素であり、低減することが好ましいが、実プロセスの中で低減するには限界があるため、0.001%を下限とした。また、N含有量が過剰になると、歪み時効により延性が劣化したり、Bを添加している場合はBNとして析出し、固溶Bによる焼入れ性改善効果を低下させるため、上限を0.01%とした。N含有量のより好ましい上限は0.008%以下(更に好ましくは0.006%以下)である。
[N: 0.001 to 0.01%]
N is an element inevitably mixed in, and is preferably reduced. However, since there is a limit to reducing it in the actual process, 0.001% was set as the lower limit. If the N content is excessive, the ductility deteriorates due to strain aging, or when B is added, it precipitates as BN and lowers the effect of improving hardenability by solute B, so the upper limit is 0.01. %. The upper limit with more preferable N content is 0.008% or less (more preferably 0.006% or less).

本発明のプレス成形品における基本的な化学成分は、上記の通りであり、残部は実質的に鉄である。尚、「実質的に鉄」とは、鉄以外にも本発明の鋼材の特性を阻害しない程度の微量成分(例えば、Mg,Ca,Sr,Baの他、La等のREM、およびZr,Hf,Ta,W,Mo等の炭化物形成元素等)も許容できる他、P,S,N以外の不可避不純物(例えば、O,H等)も含み得るものである。   The basic chemical components in the press-formed product of the present invention are as described above, and the balance is substantially iron. In addition, “substantially iron” means a trace component that does not inhibit the properties of the steel material of the present invention other than iron (for example, Mg, Ca, Sr, Ba, REM such as La, and Zr, Hf). , Ta, W, Mo and other carbide-forming elements) are acceptable, and inevitable impurities other than P, S, N (for example, O, H, etc.) can also be included.

本発明のプレス成形品には、必要によって更に、(a)B:0.01%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)、(b)Cu,Ni,CrおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない)、(c)Vおよび/またはNb:合計で0.1%以下(0%を含まない)等を含有させることも有用であり、含有される元素の種類に応じて、熱間プレス成形品の特性が更に改善される。これらの元素を含有するときの好ましい範囲およびその範囲限定理由は下記の通りである。   In the press-formed product of the present invention, if necessary, (a) B: 0.01% or less (not including 0%) and Ti: 0.1% or less (not including 0%), (b) Cu 1 or more selected from the group consisting of Ni, Cr and Mo: 1% or less in total (excluding 0%), (c) V and / or Nb: 0.1% or less in total (0% It is also useful to contain (not contained) and the like, and the properties of the hot press-formed product are further improved depending on the type of element contained. The preferable range when these elements are contained and the reason for limiting the range are as follows.

[B:0.01%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)]
Bは、加熱後の冷却中に、セメンタイトの形成を防止し、残留オーステナイトの確保に寄与する元素である。こうした効果を発揮させるためには、Bは0.0001%以上含有させることが好ましいが、0.01%を超えて過剰に含有させても効果が飽和する。B含有量のより好ましい下限は0.0002%以上(更に好ましくは0.0005%以上)であり、より好ましい上限は0.008%以下(更に好ましくは0.005%以下)である。
[B: 0.01% or less (not including 0%) and Ti: 0.1% or less (not including 0%)]
B is an element that prevents formation of cementite during cooling after heating and contributes to securing retained austenite. In order to exhibit such an effect, B is preferably contained in an amount of 0.0001% or more, but the effect is saturated even if it is contained in excess of 0.01%. A more preferable lower limit of the B content is 0.0002% or more (more preferably 0.0005% or more), and a more preferable upper limit is 0.008% or less (more preferably 0.005% or less).

一方、Tiは、Nを固定し、Bを固溶状態で維持させることで焼入れ性の改善効果を発現させる。こうした効果を発揮させるためには、Tiは少なくともNの含有量の4倍以上含有させることが好ましいが、Ti含有量が過剰になって0.1%を超えると、TiCを多量に形成し、析出強化により強度が上昇するが延性が劣化する。Ti含有量のより好ましい下限は0.05%以上(更に好ましくは0.06%以上)であり、より好ましい上限は0.09%以下(更に好ましくは0.08%以下)である。   On the other hand, Ti fixes N and maintains B in a solid solution state, thereby exhibiting an effect of improving hardenability. In order to exert such an effect, it is preferable to contain Ti at least four times the content of N. However, if the Ti content is excessive and exceeds 0.1%, a large amount of TiC is formed, The strength increases by precipitation strengthening, but the ductility deteriorates. A more preferable lower limit of the Ti content is 0.05% or more (more preferably 0.06% or more), and a more preferable upper limit is 0.09% or less (more preferably 0.08% or less).

[Cu,Ni,CrおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない)]
Cu,Ni,CrおよびMoは、加熱後の冷却中に、セメンタイトの形成を防止し、残留オーステナイトの確保に有効に作用する。こうした効果を発揮させるためには、合計で0.01%以上含有させることが好ましい。特性だけを考慮すると含有量は多いほうが好ましいが、合金添加のコストが上昇することから、合計で1%以下とすることが好ましい。また、オーステナイトの強度を大幅に高める作用を有するため、熱間圧延の負荷が大きくなり、鋼板の製造が困難になるため、製造性の観点からも1%以下とすることが好ましい。これらの元素含有量のより好ましい下限は合計で0.05%以上(更に好ましくは0.06%以上)であり、より好ましい上限は合計で0.9%以下(更に好ましくは0.8%以下)である。
[One or more selected from the group consisting of Cu, Ni, Cr and Mo: 1% or less in total (excluding 0%)]
Cu, Ni, Cr and Mo prevent the formation of cementite during cooling after heating and effectively act to secure retained austenite. In order to exhibit such an effect, it is preferable to contain 0.01% or more in total. Considering only the characteristics, it is preferable that the content is large, but since the cost of alloy addition increases, the total content is preferably 1% or less. Moreover, since it has the effect | action which raises the intensity | strength of austenite significantly, since the load of hot rolling becomes large and manufacture of a steel plate becomes difficult, it is preferable to set it as 1% or less also from a viewpoint of productivity. The more preferable lower limit of the content of these elements is 0.05% or more (more preferably 0.06% or more) in total, and the more preferable upper limit is 0.9% or less (more preferably 0.8% or less) in total. ).

[Vおよび/またはNb:合計で0.1%以下(0%を含まない)]
VおよびNbは、微細な炭化物を形成し、ピン止め効果により組織を微細にする効果がある。こうした効果を発揮させるためには、合計で0.001%以上含有させることが好ましい。しかしながら、これらの元素の含有量が過剰になると、粗大な炭化物が形成され、破壊の起点になることで逆に延性を劣化させるので、合計で0.1%以下とすることが好ましい。これらの元素含有量のより好ましい下限は合計で0.005%以上(更に好ましくは0.008%以上)であり、より好ましい上限は合計で0.08%以下(更に好ましくは0.06%以下)である。
[V and / or Nb: 0.1% or less in total (excluding 0%)]
V and Nb have the effect of forming fine carbides and making the structure fine by the pinning effect. In order to exhibit such an effect, it is preferable to contain 0.001% or more in total. However, if the content of these elements is excessive, coarse carbides are formed and the ductility is deteriorated by becoming the starting point of destruction, so the total content is preferably 0.1% or less. The more preferable lower limit of the content of these elements is 0.005% or more (more preferably 0.008% or more) in total, and the more preferable upper limit is 0.08% or less (more preferably 0.06% or less) in total. ).

尚、本発明の熱間プレス成形用薄鋼板は、非めっき鋼板、めっき鋼板のいずれでも良い。めっき鋼板である場合、そのめっきの種類としては、一般的な亜鉛系めっき、アルミ系めっき等のいずれでも良い。また、めっきの方法は、溶融めっき、電気めっき等のいずれでも良く、更にめっき後に合金化熱処理を施しても良く、複層めっきを施しても良い。   The hot press-formed thin steel sheet of the present invention may be either a non-plated steel sheet or a plated steel sheet. In the case of a plated steel sheet, the type of plating may be any of general zinc-based plating and aluminum-based plating. The plating method may be any one of hot dipping, electroplating, etc., and may be further subjected to alloying heat treatment after plating, or may be subjected to multilayer plating.

本発明によれば、プレス成形条件(加熱温度や冷却速度)を適切に調整することによって、成形品の強度や伸び等の特性を制御することができ、しかも高延性(残存延性)の熱間プレス成形品が得られるので、これまでの熱間プレス成形品では適用しにくかった部位(例えば、エネルギー吸収部材)にも適用が可能となり、熱間プレス成形品の適用範囲を拡げる上で極めて有用である。また、本発明で得られる成形品は、冷間プレス成形した後に通常の焼鈍しを施して組織調整した成形品と比べて、残存延性が更に大きなものとなる。   According to the present invention, by appropriately adjusting the press molding conditions (heating temperature and cooling rate), properties such as strength and elongation of the molded product can be controlled, and high hotness (residual ductility) can be achieved. Since a press-molded product can be obtained, it can be applied to parts that have been difficult to apply with conventional hot-pressed products (for example, energy absorbing members), which is extremely useful in expanding the range of application of hot-pressed products. It is. In addition, the molded product obtained by the present invention has a larger residual ductility than a molded product whose structure is adjusted by performing normal annealing after cold press molding.

以下、本発明の効果を実施例によって更に具体的に示すが、下記実施例は本発明を限定するものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, the effects of the present invention will be described more specifically by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.

下記表1に示した化学成分組成を有する鋼材を真空溶製し、実験用スラブとした後、熱間圧延を行い、その後に冷却して巻き取った。更に、冷間圧延をして薄鋼板とした後、所定の初期組織となるよう焼入れ処理を行っている。尚、表1中のAc1変態点、Ac3変態点、Ms点、(Bs−100℃)は、下記の(2)式〜(5)式に基づいて求めたものである(例えば、「レスリー鉄鋼材料学」丸善,(1985)参照)。また、表1には、(Ac1変態点×0.3+Ac3変態点×0.7)の計算値(以下、「A値」とする)も同時に示した。 A steel material having the chemical composition shown in Table 1 below was vacuum-melted to obtain a slab for experiment, then hot rolled, and then cooled and wound up. Further, after cold rolling to obtain a thin steel sheet, a quenching process is performed so as to have a predetermined initial structure. The Ac 1 transformation point, Ac 3 transformation point, Ms point, and (Bs-100 ° C.) in Table 1 are determined based on the following formulas (2) to (5) (for example, “ Lesley Iron and Steel Material Science, Maruzen, (1985)). Table 1 also shows the calculated value (hereinafter referred to as “A value”) of (Ac 1 transformation point × 0.3 + Ac 3 transformation point × 0.7).

Ac1変態点(℃)=723+29.1×[Si]−10.7×[Mn]+16.9×[Cr]−16.9[Ni] …(2)
Ac3変態点(℃)=910−203×[C]1/2+44.7×[Si]−30×[Mn]+700×[P]+400×[Al]+400×[Ti]+104×[V]−11×[Cr]+31.5×[Mo]−20×[Cu]−15.2×[Ni] …(3)
Ms点(℃)=550−361×[C]−39×[Mn]−10×[Cu]−17×[Ni]−20×[Cr]−5×[Mo]+30×[Al] …(4)
Bs点(℃)=830−270×[C]−90×[Mn]−37×[Ni]−70×[Cr]−83×[Mo] …(5)
但し、[C],[Si],[Mn],[P],[Al],[Ti],[V],[Cr],[Mo],[Cu]および[Ni]は、夫々C,Si,Mn,P,Al,Ti,V,Cr,Mo,CuおよびNiの含有量(質量%)を示す。また、上記(2)式〜(5)式の各項に示された元素が含まれない場合は、その項がないものとして計算する。
Ac 1 transformation point (° C.) = 723 + 29.1 × [Si] −10.7 × [Mn] + 16.9 × [Cr] −16.9 [Ni] (2)
Ac 3 transformation point (° C.) = 910−203 × [C] 1/2 + 44.7 × [Si] −30 × [Mn] + 700 × [P] + 400 × [Al] + 400 × [Ti] + 104 × [V ] -11 × [Cr] + 31.5 × [Mo] −20 × [Cu] −15.2 × [Ni] (3)
Ms point (° C.) = 550−361 × [C] −39 × [Mn] −10 × [Cu] −17 × [Ni] −20 × [Cr] −5 × [Mo] + 30 × [Al] ( 4)
Bs point (° C.) = 830−270 × [C] −90 × [Mn] −37 × [Ni] −70 × [Cr] −83 × [Mo] (5)
However, [C], [Si], [Mn], [P], [Al], [Ti], [V], [Cr], [Mo], [Cu] and [Ni] are C, The contents (mass%) of Si, Mn, P, Al, Ti, V, Cr, Mo, Cu and Ni are shown. Moreover, when the element shown by each term of said Formula (2)-Formula (5) is not included, it calculates as the thing without the term.

Figure 0005883350
Figure 0005883350

得られた鋼板を下記表2に示す各条件で加熱した後、平均冷却速度をコントロールできる鉄鋼用高速熱処理試験装置(CASシリーズ アルバック理工製)を用いて、成形・冷却処理を実施した。冷却時の鋼板サイズは、190mm×70mm(板厚:1.4mm)とした。尚、試験No.1〜14、17〜19、22〜25は、成形用鋼板として熱延鋼板を用いたものであり、試験No.15、16、20は、成形用鋼板として冷延鋼板を用いたものである。また、表2に示した「冷却1」とは加熱温度から700〜500℃までの冷却を示し、「冷却2」とはそれ以降から[(Bs−100℃)〜Ms点]の温度範囲までの冷却を示す(試験No.19〜20、22および23ではこの段階で成形を開始)。尚、必要によって溶融させた亜鉛に鋼板を浸漬し、鋼板表面に亜鉛めっきを付着させた(試験No.25)。 The obtained steel sheet was heated under the conditions shown in Table 2 below, and then subjected to forming and cooling treatment using a rapid heat treatment test apparatus for steel (CAS series ULVAC-RIKO) that can control the average cooling rate. The steel plate size at the time of cooling was 190 mm x 70 mm (plate thickness: 1.4 mm). Test No. Nos. 1 to 14, 17 to 19, and 22 to 25 are hot-rolled steel plates as forming steel plates. Nos. 15, 16, and 20 use cold-rolled steel plates as forming steel plates. “Cooling 1” shown in Table 2 indicates cooling from the heating temperature to 700 to 500 ° C., and “Cooling 2” refers to the temperature range from [(Bs−100 ° C.) to Ms point] thereafter. (Test Nos. 19 to 20, 22, and 23 start molding at this stage). In addition, the steel plate was immersed in the molten zinc as needed, and zinc plating was made to adhere to the steel plate surface (test No. 25).

上記の処理(加熱、成形、冷却)を行った各鋼板につき、引張強度(TS)、および伸び(全伸びEL)、金属組織の観察(各組織の分率)を下記要領で行った。   For each steel plate subjected to the above treatment (heating, forming, cooling), the tensile strength (TS), elongation (total elongation EL), and observation of metal structure (fraction of each structure) were performed as follows.

[引張強度(TS)、および伸び(全伸びEL)]
JIS5号試験片を用いて引張試験を行い、引張強度(TS)、伸び(EL)を測定した。このとき、引張試験の歪速度:10mm/秒とした。本発明では、(a)引張強度(TS)が780〜979MPaで伸び(EL)が25%以上、(b)引張強度(TS)が980〜1179MPaで伸び(EL)が15%以上のいずれかを満足するときに合格と評価した。
[Tensile strength (TS) and elongation (total elongation EL)]
A tensile test was performed using a JIS No. 5 test piece, and tensile strength (TS) and elongation (EL) were measured. At this time, the strain rate of the tensile test was set to 10 mm / second. In the present invention, either (a) the tensile strength (TS) is 780 to 979 MPa and the elongation (EL) is 25% or more, and (b) the tensile strength (TS) is 980 to 1179 MPa and the elongation (EL) is 15% or more. When it was satisfied, it was evaluated as passing.

[金属組織の観察(各組織の分率)]
(1)鋼板中のフェライト、ベイニティックフェライトの組織については、鋼板をナイタールで腐食し、SEM(倍率:1000倍または2000倍)観察により、フェライト、ベイニティックフェライトを区別し、夫々の分率(面積率)を求めた。
(2)鋼板中の残留オーステナイト分率(面積率)は、鋼板の1/4の厚さまで研削した後、化学研磨してからX線回折法によって測定した(例えば、ISJJ Int.Vol.33.(1933),No.7,P.776)。
(3)マルテンサイト(焼入れままマルテンサイト)の面積率については、鋼板をレペラ腐食し、SEM観察により白いコントラストを、マルテンサイト(焼入れままマルテンサイト)と残留オーステナイトの混合組織として面積率を測定し、そこからX線回折により求めた残留オーステナイト分率を差いて、焼入れままマルテンサイト分率を計算した。
[Observation of metal structure (fraction of each structure)]
(1) Regarding the structure of ferrite and bainitic ferrite in the steel sheet, the steel sheet is corroded with nital, and the ferrite and bainitic ferrite are distinguished by SEM (magnification: 1000 times or 2000 times) observation. The rate (area ratio) was determined.
(2) The retained austenite fraction (area ratio) in the steel sheet was measured by an X-ray diffraction method after grinding to a thickness of 1/4 of the steel sheet and then chemical polishing (for example, ISJJ Int. Vol. 33. (1933), No. 7, P.776).
(3) For the area ratio of martensite (as-quenched martensite), the steel sheet was repeller-corroded, and the area ratio was measured as a mixed structure of martensite (as-quenched martensite) and residual austenite by SEM observation Then, the fraction of retained austenite determined by X-ray diffraction was calculated, and the martensite fraction was calculated as quenched.

これらの結果を、成形前鋼板の種類(フェライト分率、冷延鋼板の場合の冷延率)と共に、下記表3に示す。   These results are shown in Table 3 below together with the type of steel sheet before forming (ferrite fraction, cold rolling ratio in the case of cold rolled steel sheet).

Figure 0005883350
Figure 0005883350

Figure 0005883350
Figure 0005883350

この結果から、次のように考察できる。試験No.1〜10、13、15、19、20、25のものは、本発明で規定する要件を満足する実施例であり、強度−延性バランスの良好な部品が得られていることが分かる。 From this result, it can be considered as follows. Test No. 1 to 10 , 13 , 15 , 19 , 20 , and 25 are examples that satisfy the requirements defined in the present invention, and it can be seen that parts having a good balance between strength and ductility are obtained.

これに対し、試験No.11〜12、14、16〜18、22〜24のものは本発明で規定するいずれかの要件を満足しない比較例であり、いずれかの特性が劣化している。即ち、試験No.11のものは、Cの含有量が不足する鋼(表1の鋼種K)を用いたものであり、残留オーステナイトが確保されておらず、低い伸び(EL)しか得られていない。試験No.12のものは、Siの含有量が不足する鋼(表1の鋼種L)を用いたものであり、残留オーステナイトが確保されておらず、低い伸び(EL)しか得られていない。   In contrast, test no. Nos. 11 to 12, 14, 16 to 18, and 22 to 24 are comparative examples that do not satisfy any of the requirements defined in the present invention, and any of the characteristics is deteriorated. That is, test no. No. 11 uses steel with insufficient C content (steel type K in Table 1), retained austenite is not secured, and only low elongation (EL) is obtained. Test No. No. 12 is a steel using a steel with insufficient Si content (steel type L in Table 1). Residual austenite is not ensured and only low elongation (EL) is obtained.

試験No.14のものは、従来の22MnB5相当鋼(表1の鋼種N)を対象としたものであり、高い強度は得られているものの、残留オーステナイトが確保されておらず、低い伸び(EL)しか得られていない。試験No.16のものは、冷延率の低い冷延鋼板を用いたものであり、成形品組織がフェライト:25面積%であり、伸び(EL)が低くなっている。試験No.17のものは、加熱温度がAc1変態点よりも低くなっており、成形品組織がフェライト:81面積%であり(残部マルテンサイトとセメンタイト)、残留オーステナイトが確保されておらず、伸び(EL)および引張強度が低くなっている。試験No.18のものは、加熱温度がA値よりも高くなっており、マルテンサイトが過剰に生成してフェライトおよびベイニティックフェライトが確保されておらず、伸び(EL)が低くなっている。 Test No. No. 14 is a conventional 22MnB5 equivalent steel (steel type N in Table 1). Although high strength is obtained, retained austenite is not ensured and only low elongation (EL) is obtained. It is not done. Test No. No. 16 is a cold-rolled steel sheet having a low cold-rolling rate, and the structure of the molded product is ferrite: 25 area%, and the elongation (EL) is low. Test No. In No. 17, the heating temperature is lower than the Ac 1 transformation point, the structure of the molded product is ferrite: 81 area% (remaining martensite and cementite), residual austenite is not secured, and elongation (EL ) And tensile strength is low. Test No. In No. 18, the heating temperature is higher than the value A, the martensite is generated excessively, ferrite and bainitic ferrite are not secured, and the elongation (EL) is low.

試験No.22のものは、冷却1での平均冷却速度が速くなっており、ベイニティックフェライトが生成してフェライトが確保されておらず、伸び(EL)が低くなっている。試験No.23のものは、冷却1での平均冷却速度が遅く、且つ冷却速度変更温度が低くなっており、成形品組織がフェライト:83面積%であり(残部ベイニティックフェライト)、残留オーステナイトが確保されておらず、伸び(EL)が低くなっている。試験No.24のものは、成形終了温度が高くなっており、成形品組織にパーライトが生成して、残留オーステナイトが確保されておらず、伸び(EL)が低くなっている。   Test No. In the case of No. 22, the average cooling rate in the cooling 1 is high, bainitic ferrite is generated, ferrite is not secured, and elongation (EL) is low. Test No. In No. 23, the average cooling rate in cooling 1 is slow and the cooling rate changing temperature is low, the structure of the molded product is ferrite: 83 area% (remainder bainitic ferrite), and retained austenite is secured. The elongation (EL) is low. Test No. In No. 24, the molding end temperature is high, pearlite is generated in the molded product structure, the retained austenite is not secured, and the elongation (EL) is low.

1 パンチ
2 ダイ
3 ブランクホルダー
4 鋼板(ブランク)
1 Punch 2 Die 3 Blank holder 4 Steel plate (blank)

Claims (8)

鋼板から成形された熱間プレス成形品であって、
化学成分組成が、
C :0.1〜0.3%(質量%の意味。以下、化学成分組成について同じ。)、
Si:0.5〜3%、
Mn:0.5〜2%、
P :0.05%以下(0%を含まない)、
S :0.05%以下(0%を含まない)、
Al:0.01〜0.1%、および
N:0.001〜0.01%、
を夫々含有し、残部が鉄および不可避不純物からなり、
金属組織が、フェライト:30〜80面積%、ベイニティックフェライト:30面積%未満(0面積%を含まない)、マルテンサイト:30面積%以下(0面積%を含まない)、残留オーステナイト:3〜20面積%からなるものであることを特徴とする熱間プレス成形品。
A hot press-formed product formed from a thin steel plate,
The chemical composition is
C: 0.1 to 0.3% (meaning mass%, hereinafter the same for the chemical composition)
Si: 0.5-3%,
Mn: 0.5-2%
P: 0.05% or less (excluding 0%),
S: 0.05% or less (excluding 0%),
Al: 0.01-0.1%, and
N: 0.001 to 0.01%,
Each of which contains iron and inevitable impurities,
Metal structure: ferrite: 30 to 80 area%, bainitic ferrite: less than 30 area% (excluding 0 area%), martensite: 30 area% or less (excluding 0 area%), residual austenite: 3 A hot press-molded product comprising ˜20 area%.
更に他の元素として、B:0.01%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)を含有するものである請求項に記載の熱間プレス成形品。 The hot press according to claim 1 , further comprising B: 0.01% or less (not including 0%) and Ti: 0.1% or less (not including 0%) as other elements. Molding. 更に他の元素として、Cu,Ni,CrおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない)含有するものである請求項またはに記載の熱間プレス成形品。 The heat according to claim 1 or 2 , further comprising at least one element selected from the group consisting of Cu, Ni, Cr and Mo as a further element: 1% or less (excluding 0%) in total. Inter-press molded product. 更に他の元素として、Vおよび/またはNb:合計で0.1%以下(0%を含まない)含有するものである請求項のいずれかに記載の熱間プレス成形品。 The hot press-formed product according to any one of claims 1 to 3 , further comprising V and / or Nb: 0.1% or less (excluding 0%) in total as other elements. 請求項1〜のいずれかに記載の熱間プレス成形品を製造するに当たり、フェライトが50面積%以上の金属組織を有する熱延鋼板、または冷延率30%以上を施した冷延鋼板を、プレス成形金型を用いてプレス成形するに際して、前記熱延鋼板または冷延鋼板をAc1変態点以上、(Ac1変態点×0.3+Ac3変態点×0.7)以下の温度に加熱した後、成形を開始し、成形中は金型内で20℃/秒以上の平均冷却速度を確保しつつ、(ベイナイト変態開始温度Bs−100℃)以下の温度で成形を終了することを特徴とする熱間プレス成形品の製造方法。 In manufacturing the hot press-formed product according to any one of claims 1 to 4 , a hot-rolled steel sheet having a metal structure of ferrite of 50 area% or more, or a cold-rolled steel sheet subjected to a cold-rolling rate of 30% or more. When performing press forming using a press molding die, the hot-rolled steel sheet or cold-rolled steel sheet is heated to a temperature not lower than Ac 1 transformation point and not higher than (Ac 1 transformation point × 0.3 + Ac 3 transformation point × 0.7). Then, molding is started, and during the molding, the average cooling rate of 20 ° C./second or more is secured in the mold, and the molding is finished at a temperature of (bainite transformation start temperature Bs-100 ° C.) or less. A method for producing a hot press-formed product. 請求項1〜のいずれかに記載の熱間プレス成形品を製造するに当たり、プレス成形金型を用いて薄鋼板をプレス成形するに際して、前記薄鋼板をAc3変態点以上、1000℃以下の温度に加熱した後、10℃/秒以下の平均冷却速度で700℃以下、500℃以上の温度まで冷却し、その後成形を開始し、成形中は金型内で20℃/秒以上の平均冷却速度を確保しつつ、(ベイナイト変態開始温度Bs−100℃)以下の温度で成形を終了することを特徴とする熱間プレス成形品の製造方法。 In producing the hot press-formed product according to any one of claims 1 to 4 , when the thin steel plate is press-formed using a press mold, the thin steel plate has an Ac 3 transformation point or higher and 1000 ° C or lower. After heating to a temperature, it is cooled to a temperature of 700 ° C. or lower and 500 ° C. or higher at an average cooling rate of 10 ° C./second or less, and then molding is started. A method for producing a hot press-molded product, characterized in that the molding is terminated at a temperature equal to or lower than (bainite transformation start temperature Bs-100 ° C) while securing the speed. 成形終了温度を、(ベイナイト変態開始温度Bs−100℃)以下、マルテンサイト変態開始温度Ms点以上の温度範囲とし、その温度範囲で10秒以上保持して成形する請求項またはに記載の製造方法。 The forming finishing temperature, (bainite transformation starting temperature Bs-100 ° C.) or less, and martensite transformation start temperature Ms point or temperature range, according to claim 5 or 6 is molded and held at that temperature range for 10 seconds or more Production method. 請求項1〜のいずれかに記載の熱間プレス成形品を製造するための熱間プレス成形用薄鋼板において、フェライトが50面積%以上の金属組織を有する熱延鋼板であることを特徴とする熱間プレス成形用薄鋼板。 In hot press forming for thin steel sheet for making a hot press-formed article according to any one of claims 1-4, wherein the ferrite is a hot-rolled steel plate having 50 area% or more of the metal structure A thin steel sheet for hot press forming.
JP2012131417A 2011-06-10 2012-06-08 Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming Expired - Fee Related JP5883350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012131417A JP5883350B2 (en) 2011-06-10 2012-06-08 Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011130636 2011-06-10
JP2011130636 2011-06-10
JP2012131417A JP5883350B2 (en) 2011-06-10 2012-06-08 Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming

Publications (2)

Publication Number Publication Date
JP2013014841A JP2013014841A (en) 2013-01-24
JP5883350B2 true JP5883350B2 (en) 2016-03-15

Family

ID=47296191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012131417A Expired - Fee Related JP5883350B2 (en) 2011-06-10 2012-06-08 Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming

Country Status (6)

Country Link
US (1) US20140056753A1 (en)
EP (1) EP2719787B1 (en)
JP (1) JP5883350B2 (en)
CN (1) CN103597106B (en)
ES (1) ES2569190T3 (en)
WO (1) WO2012169639A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013026137A1 (en) * 2011-08-22 2013-02-28 Marwood Metal Fabrication Limited Hot forming press
JP5545414B2 (en) 2012-01-13 2014-07-09 新日鐵住金株式会社 Cold rolled steel sheet and method for producing cold rolled steel sheet
ES2666968T3 (en) 2012-01-13 2018-05-08 Nippon Steel & Sumitomo Metal Corporation Hot stamping molded article and method for producing a hot stamping molded article
JP5890710B2 (en) 2012-03-15 2016-03-22 株式会社神戸製鋼所 Hot press-formed product and method for producing the same
US9359663B2 (en) * 2013-01-18 2016-06-07 Kobe Steel, Ltd. Manufacturing method for hot press formed steel member
US10544475B2 (en) * 2013-04-02 2020-01-28 Nippon Steel Corporation Hot-stamped steel, cold-rolled steel sheet and method for producing hot-stamped steel
JP6003837B2 (en) * 2013-07-25 2016-10-05 Jfeスチール株式会社 Manufacturing method of high strength pressed parts
CN105518170A (en) * 2013-09-10 2016-04-20 株式会社神户制钢所 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
WO2015037061A1 (en) * 2013-09-10 2015-03-19 株式会社神戸製鋼所 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
JP5728108B2 (en) * 2013-09-27 2015-06-03 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and low-temperature toughness, and method for producing the same
KR101568549B1 (en) 2013-12-25 2015-11-11 주식회사 포스코 Steel sheet for hot press formed product having high bendability and ultra high strength, hot press formed product using the same and method for manufacturing the same
WO2016067625A1 (en) * 2014-10-30 2016-05-06 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
WO2018092817A1 (en) 2016-11-16 2018-05-24 Jfeスチール株式会社 High-strength steel sheet and method for producing same
WO2018096387A1 (en) * 2016-11-24 2018-05-31 Arcelormittal Hot-rolled and coated steel sheet for hot-stamping, hot-stamped coated steel part and methods for manufacturing the same
EP3327152B1 (en) * 2016-11-29 2023-10-11 Tata Steel UK Limited Method for hot-forming a steel blank
CN110139941B (en) * 2017-01-30 2021-11-12 日本制铁株式会社 Steel plate
JP7214973B2 (en) * 2018-03-30 2023-01-31 マツダ株式会社 HOT PRESSING METHOD AND PROCESSING APPARATUS
JP7443635B2 (en) * 2020-01-31 2024-03-06 株式会社神戸製鋼所 Galvanized steel sheet for hot stamping, hot stamping parts, and method for manufacturing hot stamping parts
CN113584391A (en) * 2021-08-03 2021-11-02 武汉科技大学 1700 MPa-grade hydrogen-induced delayed cracking resistant hot forming steel and preparation method thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531839A (en) * 1993-10-05 1996-07-02 Nkk Corporation Continously annealed cold-rolled steel sheet excellent in balance between deep drawability and resistance to secondary-work embrittlement and method for manufacturing same
JPH09143612A (en) * 1995-11-21 1997-06-03 Kobe Steel Ltd High strength hot rolled steel plate member low in yield ratio
JP3582511B2 (en) * 2001-10-23 2004-10-27 住友金属工業株式会社 Surface-treated steel for hot press forming and its manufacturing method
JP2005126733A (en) 2003-10-21 2005-05-19 Nippon Steel Corp Steel sheet for hot pressing and automotive parts with excellent high-temperature workability
JP4412727B2 (en) * 2004-01-09 2010-02-10 株式会社神戸製鋼所 Super high strength steel sheet with excellent hydrogen embrittlement resistance and method for producing the same
JP4673558B2 (en) * 2004-01-26 2011-04-20 新日本製鐵株式会社 Hot press molding method and automotive member excellent in productivity
JP4730070B2 (en) 2004-11-30 2011-07-20 Jfeスチール株式会社 Manufacturing method of thin steel sheet
JP2007016296A (en) * 2005-07-11 2007-01-25 Nippon Steel Corp Steel sheet for press forming excellent in ductility after forming, forming method thereof, and automotive member using press forming steel sheet
EP1767659A1 (en) * 2005-09-21 2007-03-28 ARCELOR France Method of manufacturing multi phase microstructured steel piece
DE112006003169B4 (en) 2005-12-01 2013-03-21 Posco Steel sheets for hot press forming with excellent heat treatment and impact properties, hot pressed parts produced therefrom and process for their production
CN100345639C (en) * 2005-12-21 2007-10-31 攀钢集团攀枝花钢铁研究院 Method for manufacturing hot rolled steel plate with ultra-fine grain thin specification and hot rolled steel plate manufactured thereby
JP4733522B2 (en) * 2006-01-06 2011-07-27 新日本製鐵株式会社 Method for producing high-strength quenched molded body with excellent corrosion resistance and fatigue resistance
JP4967360B2 (en) 2006-02-08 2012-07-04 住友金属工業株式会社 Plated steel sheet for hot pressing, method for manufacturing the same, and method for manufacturing hot press-formed members
DE102006053819A1 (en) 2006-11-14 2008-05-15 Thyssenkrupp Steel Ag Production of a steel component used in the chassis construction comprises heating a sheet metal part and hot press quenching the heated sheet metal part
JP5151246B2 (en) * 2007-05-24 2013-02-27 Jfeスチール株式会社 High-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP4894863B2 (en) * 2008-02-08 2012-03-14 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
KR101027285B1 (en) 2008-05-29 2011-04-06 주식회사 포스코 Ultra high strength hot forming steel sheet with excellent heat treatment property, heat treatment hardening member and manufacturing method thereof
JP5347392B2 (en) * 2008-09-12 2013-11-20 Jfeスチール株式会社 Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member
JP5418168B2 (en) * 2008-11-28 2014-02-19 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in formability, high-strength hot-dip galvanized steel sheet, and production method thereof
JP5609223B2 (en) 2010-04-09 2014-10-22 Jfeスチール株式会社 High-strength steel sheet with excellent warm workability and manufacturing method thereof
EP2627790B1 (en) 2010-10-12 2014-10-08 Tata Steel IJmuiden BV Method of hot forming a steel blank and the hot formed part

Also Published As

Publication number Publication date
EP2719787A4 (en) 2015-08-19
CN103597106B (en) 2016-03-02
ES2569190T3 (en) 2016-05-09
JP2013014841A (en) 2013-01-24
CN103597106A (en) 2014-02-19
EP2719787A1 (en) 2014-04-16
WO2012169639A1 (en) 2012-12-13
US20140056753A1 (en) 2014-02-27
EP2719787B1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5883350B2 (en) Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming
JP5873393B2 (en) Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming
JP5883351B2 (en) Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming
JP5873385B2 (en) Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming
JP5890710B2 (en) Hot press-formed product and method for producing the same
JP5890711B2 (en) Hot press-formed product and method for producing the same
JP6073154B2 (en) Manufacturing method of hot press-formed product
KR101716624B1 (en) Method for manufacturing press-molded article, and press-molded article
KR20140119811A (en) Process for producing press-formed product and press-formed product
JP2009173959A (en) High-strength steel sheet and manufacturing method thereof
JP5802155B2 (en) Manufacturing method of press-molded product and press-molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160205

R150 Certificate of patent or registration of utility model

Ref document number: 5883350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees