JP5882685B2 - Oil and slip resistant sole - Google Patents
Oil and slip resistant sole Download PDFInfo
- Publication number
- JP5882685B2 JP5882685B2 JP2011246966A JP2011246966A JP5882685B2 JP 5882685 B2 JP5882685 B2 JP 5882685B2 JP 2011246966 A JP2011246966 A JP 2011246966A JP 2011246966 A JP2011246966 A JP 2011246966A JP 5882685 B2 JP5882685 B2 JP 5882685B2
- Authority
- JP
- Japan
- Prior art keywords
- slip
- oil
- parts
- coefficient
- resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、耐油耐滑靴底に関するものである。さらに、詳しくは、履き心地が良く、耐油性に優れ、耐滑性を有する作業靴、安全靴の靴底を提供する。 The present invention relates to an oil resistant and slip resistant sole. More specifically, the present invention provides work shoes and safety shoe soles that are comfortable to wear, have excellent oil resistance, and have slip resistance.
作業靴、安全靴の底として使用される材料にはゴム、ポリウレタン、ポリ塩化ビニル、熱可塑性エラストマー、エチレンビニルアセテート(EVA)などがあげられ、なかでも油などが存在して、特に耐滑性が要求される環境で使用されることが多い作業靴、安全靴の底材料は合成ゴム、ポリウレタンが主流である。
また、合成ゴムのうちとくにアクリロニトリルブタジエンゴム(NBR)を用いた例もある(特許文献1、特許文献2、特許文献3参照)が、充分に履き心地が良く、かつ、耐油性に優れ、かつ耐滑性を有するものではなかった。
Materials used as the soles of work shoes and safety shoes include rubber, polyurethane, polyvinyl chloride, thermoplastic elastomer, ethylene vinyl acetate (EVA), etc. Among them, oil etc. are present, especially slip resistance. Synthetic rubber and polyurethane are the mainstream materials for work shoes and safety shoes that are often used in the required environment.
In addition, there is an example using acrylonitrile butadiene rubber (NBR) among synthetic rubbers (see Patent Document 1, Patent Document 2, and Patent Document 3), which are sufficiently comfortable to wear and excellent in oil resistance. It was not slip resistant.
耐滑性の要求される作業環境下としては、飲食店、総菜工場、スーパーマーケットのバックヤードをはじめ、市場、ガソリンスタンドなど多岐にわたっている。
このような場所で十分な耐油性を持たない材料を使用すると、油を吸収して膨潤したりする現象により、十分な耐滑性を得られないばかりか使用不能となるおそれがある。
There are various working environments that require slip resistance, including restaurants, side dishes factories, supermarket backyards, markets, and gas stations.
If a material that does not have sufficient oil resistance is used in such a place, sufficient slip resistance may not be obtained due to a phenomenon that oil swells and swells, and it may become unusable.
滑りの現象は摩擦力として数値化され評価される。摩擦は静摩擦と動摩擦に大別されるが、欧州では耐滑性評価に動摩擦係数が長い間用いられており、その多くにおいて0.4以上の動摩擦係数の値が必要とされているが、米国における多くの規格では、耐滑性の評価に静摩擦係数を用いることを推奨しており、またその多くが0.5以上の静摩擦係数が必要であるとしている。 The phenomenon of slip is quantified and evaluated as frictional force. Friction is roughly classified into static friction and dynamic friction. In Europe, the coefficient of dynamic friction has been used for a long time for evaluation of slip resistance, and many of them require a value of 0.4 or more. The standard recommends the use of a coefficient of static friction for evaluation of slip resistance, and most of them require a coefficient of static friction of 0.5 or more.
以上のように靴底の耐滑性評価において、静摩擦係数と動摩擦係数のどちらを用いれば良いのか議論の分かれているところではあるが、すべり発生の防止及びすべりに起因する転倒の防止の観点からいえば、静摩擦係数と動摩擦係数がともに高い値を示すような靴底が求められているのは当然であるといえる。
日本においての規格はJIS規格(JIS T 8101:2006)に動摩擦係数が0.2以上と定められており、これは不十分な規格であると言わざるを得ない。
また、履き心地が良く、十分な耐油性に優れ、かつ、十分な耐滑性に優れたニトリルゴム系の作業靴、安全靴の靴底は、十分研究されていなかった。
As described above, there is a debate about whether to use the coefficient of static friction or the coefficient of dynamic friction in the evaluation of slip resistance of shoe soles, but it can be said from the viewpoint of preventing slipping and falling due to slipping. For example, it can be said that there is a need for a shoe sole in which both the static friction coefficient and the dynamic friction coefficient are high.
In Japan, the JIS standard (JIS T 8101: 2006) has a coefficient of dynamic friction of 0.2 or more, which must be said to be insufficient.
In addition, nitrile rubber work shoes and safety shoe soles that are comfortable to wear, excellent in oil resistance, and excellent in slip resistance have not been sufficiently studied.
本発明では、耐油性のあるニトリルゴム(NBR)を用いて、動摩擦係数(JIS T 8101 安全靴 耐滑試験方法)0.4以上であり、かつ、静摩擦係数(トリニティラボ製スリップメーター Type:TL501)0.5以上の耐油耐滑用靴底及びそれを用いた作業靴若しくは安全靴を提供する。 In the present invention, oil-resistant nitrile rubber (NBR) is used, the coefficient of dynamic friction (JIS T 8101 safety shoes slip resistance test method) is 0.4 or more, and the coefficient of static friction (Slip meter Type: TL501 manufactured by Trinity Lab) Provided is an oil-resistant and slip-resistant shoe sole of 0.5 or more, and work shoes or safety shoes using the same.
本発明者は、上記課題を解決すべく鋭意研究を続けた結果、本発明に到達するにいたった。
即ち、本発明は、中高ニトリルゴム(アクリロニトリル量が31〜35%)と、可塑剤、加硫剤、加硫促進剤、充填剤を含む100%中高ニトリルゴム組成物を用いて、一体成型後の靴底の硬度が、40〜50(デュロメーターA 20℃)の硬度を有し、中高ニトリルゴムが100重量部に対し、可塑剤が8〜14重量部であることを特徴とする耐油耐滑用靴底である。
また、本発明は、上記のゴム組成物を一体成型した耐油耐滑靴底であって、各々が独立したブロック意匠が集合して靴底全体を構成している耐滑靴底において、靴底接地部が40〜50(デュロメーターA 20℃)の硬度を有し、さらに該ブロックの接地部面は平滑で、ブロック側面が接地面と略直角となり、動摩擦係数(JIS T 8101 安全靴 耐滑試験方法)0.4以上であり、かつ、静摩擦係数(トリニティラボ製スリップメーターType:TL501)0.5以上であることを特徴とした耐油耐滑用靴底である。
さらに、本発明は、このような耐油耐滑性靴底を有する作業靴若しくは安全靴である。
As a result of continual research to solve the above problems, the present inventor has reached the present invention.
That is, the present invention includes a moderate high-nitrile rubber (acrylonitrile content is 31 to 35%), with a plasticizer, vulcanizing agent, vulcanization accelerator, a 100% moderate high-nitrile rubber composition comprising a filler, after integral molding hardness of the sole of 40-50 have a hardness (durometer a 20 ° C.), to moderate high-nitrile rubber 100 parts by weight, for oil anti-slip, characterized in that the plasticizer is 8 to 14 parts by weight It is a shoe sole.
Further, the present invention is an oil-resistant and slip-resistant shoe sole integrally molded with the above rubber composition, and each of the independent shoe designs gathers to constitute the entire shoe sole. Has a hardness of 40 to 50 (durometer A 20 ° C.), and the grounding surface of the block is smooth, the side surface of the block is substantially perpendicular to the grounding surface, and the coefficient of dynamic friction (JIS T 8101 safety shoes slip resistance test method) is 0. 4. An oil-resistant, slip-resistant shoe sole having a coefficient of static friction (Slipmeter Type: TL501, manufactured by Trinity Lab) of 0.5 or more.
Furthermore, the present invention is a work shoe or safety shoe having such an oil-resistant and slip-resistant shoe sole.
本発明の耐油耐滑用靴底及びこれを用いた作業靴若しくは安全靴は、靴底接地部が40〜50(デュロメーターA 20℃)の硬度であるため、柔軟で履き心地が良く、JIS T 8101
安全靴 浸漬試験による(2.2.4−トリメチルペンタン 20時間)耐油試験で体積変化率12%以下の特性を有するばかりか、動摩擦係数(JIS T 8101 安全靴 耐滑試験方法)0.4以上であり、かつ、静摩擦係数(トリニティラボ製スリップメーターType:TL501)0.5以上であることがわかった。
The oil resistant and slip resistant shoe sole of the present invention and the work shoe or safety shoe using the same are flexible and comfortable to wear because the sole contact portion has a hardness of 40 to 50 (durometer A 20 ° C.). JIS T 8101
Safety shoes Immersion test (2.2.4-trimethylpentane 20 hours) Oil resistance test not only has a volume change rate of 12% or less, but also has a coefficient of dynamic friction (JIS T 8101 safety shoes slip resistance test method) of 0.4 or more. And the coefficient of static friction (Slip meter Type: TL501 made by Trinity Lab) was found to be 0.5 or more.
本発明において用いるニトリルゴムとしては、ニトリルゴム(NBR)、水素添加ニトリルゴム(HNBR)、また、ニトリルゴムの変成体を挙げることが出来る。
他のゴム成分としては、天然ゴム、ブタジエンゴム、スチレンブタジエンゴムなどのジエン系ゴムを併用することが出来る。
耐油が求められる靴底用材料としては、極性が高いアクリロニトリル基を有するアクリロニトリルブタジエンゴム(以下ニトリルゴム)が一般に知られている。
ニトリルゴムはその優れた耐油性のゆえにパッキンなどに使用され、その種類も多い。
ニトリルゴムは一般的にアクリロニトリル含有量によって、特徴と物性が変わるため次のように分けられる。
低ニトリル(アクリロニトリル量が24%以下)
中ニトリル(アクリロニトリル量が25〜30%)
中高ニトリル(アクリロニトリル量が31〜35%)
高ニトリル(アクリロニトリル量が36〜42%)
極高ニトリル(アクリロニトリル量が43%以上)
Examples of the nitrile rubber used in the present invention include nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), and modified nitrile rubber.
As other rubber components, diene rubbers such as natural rubber, butadiene rubber and styrene butadiene rubber can be used in combination.
As a material for shoe soles requiring oil resistance, acrylonitrile butadiene rubber (hereinafter referred to as nitrile rubber) having an acrylonitrile group having high polarity is generally known.
Nitrile rubber is used for packing because of its excellent oil resistance, and there are many types.
Nitrile rubber is generally classified as follows because its characteristics and physical properties change depending on the acrylonitrile content.
Low nitrile (acrylonitrile content is less than 24%)
Medium nitrile (acrylonitrile content is 25-30%)
Medium-high nitrile (acrylonitrile content is 31-35%)
High nitrile (acrylonitrile content 36-42%)
Extremely high nitrile (43% acrylonitrile content)
アクリロニトリル量が増加すれば耐油性も良くなる傾向にあるが、加工性が悪くなるため、中高ニトリルの使用が一般的である。しかし、低ニトリルでも人間の作業環境程度においては、耐油性は十分満足できるものである。
実施例では、中高ニトリル(アクリロニトリル量が31〜35%)の場合しか示さなかったが、低ニトリル(アクリロニトリル量が24%以下)、中ニトリル(アクリロニトリル量が25〜30%)、高ニトリル(アクリロニトリル量が36〜42%)、極高ニトリル(アクリロニトリル量が43%以上)であっても、当業者であれば、同様に使用することができる。
さらに本発明で用いることが出来るニトリル系ゴムは、二重結合の一部を水素化した水素化ニトリルゴム(HNBR)また、ニトリルゴムには、ブタジエンとアクリロニトリル以外の第3モノマーの導入が容易なため、ニトリル系ゴムは各種の変成体が開発されており、例としてはメタクリル酸を導入したカルボキシル化NBR(XNBR)やブタジエンの一部をイソプレンに置き換えたNBIR、ブタジエンの全部をイソプレンに置き換えたNIRなどがある。これらはいずれも優れた耐油性を有しており、本発明で用いることができるニトリル系ゴム材料としては十分使用に耐えるものであり、当業者であれば、同様に使用することができる。
If the amount of acrylonitrile is increased, the oil resistance tends to be improved, but the workability is deteriorated, so that a medium-high nitrile is generally used. However, even in low nitriles, the oil resistance is sufficiently satisfactory in the human working environment.
In the examples, only medium nitrile (acrylonitrile content 31-35%) was shown, but low nitrile (acrylonitrile content 24% or less), medium nitrile (acrylonitrile content 25-30%), high nitrile (acrylonitrile content). Even if it is a very high nitrile (the amount of acrylonitrile is 43% or more), those skilled in the art can use it similarly.
Furthermore, the nitrile rubber that can be used in the present invention is a hydrogenated nitrile rubber (HNBR) in which a part of a double bond is hydrogenated, and a third monomer other than butadiene and acrylonitrile can be easily introduced into the nitrile rubber. Therefore, various modified nitrile rubbers have been developed. For example, carboxylated NBR (XNBR) introduced with methacrylic acid, NBR with a part of butadiene replaced with isoprene, and all of butadiene replaced with isoprene. NIR etc. All of these have excellent oil resistance, and can sufficiently be used as a nitrile rubber material that can be used in the present invention, and those skilled in the art can similarly use them.
靴底の耐油性についてはJIS T 8101(安全靴)の総ゴム製表底の耐油性の規格があり、2.2.4-トリメチルペンタン(イソオクタン)に20時間浸せき後の体積変化が12%以下であることとなっている。
これを満足するためには、中高ニトリル(アクリロニトリル量が31〜35%)の場合では、配合中のゴムに占めるニトリルゴム、水素化ニトリルゴムまたは変性ニトリルゴム量を85〜100%必要である。
油の存在下で耐滑性を得るためには、意匠接地面と滑りの対象面の間に油膜の介在を排除することが必要であり、その方法としては意匠部が柔軟性を持ち、上からの加重によって油膜を排除する程度に変形することで達成される。
変形が大きすぎると、加重が均一にかからず十分に油膜が取りきれず、変形が少ないと加重による油膜の押し出し効果が得られない。
The oil resistance of the sole is JIS T 8101 (safety shoes), which has the oil resistance standard for the entire rubber outer surface. The volume change after immersion in 2.2.4 trimethylpentane (isooctane) for 20 hours is 12% or less. It is supposed to be.
In order to satisfy this, in the case of a medium-high nitrile (acrylonitrile amount is 31 to 35%), the amount of nitrile rubber, hydrogenated nitrile rubber or modified nitrile rubber occupying the rubber during compounding is required to be 85 to 100%.
In order to obtain slip resistance in the presence of oil, it is necessary to eliminate the presence of an oil film between the design ground plane and the surface to be slipped. This is achieved by deforming the oil film to such an extent that it eliminates the oil film.
If the deformation is too large, the load is not uniformly applied and the oil film cannot be removed sufficiently. If the deformation is small, the oil film cannot be pushed out by the load.
本発明において用いる可塑剤、加硫剤、加硫促進剤、充填剤としては、ニトリルゴム(NBR)系のゴム組成物に用いられている従来のものを使用することができる。
例えば、可塑剤としては、ジブチルフタレート(DBP)、ジ-2-エチルヘキシルフタレート(DEHP)、ジ-n-オクチルフタレート(n-DOP)、ジイソデシルフタレート(DIDP)、ジイソノニルフラレート(DINP)等フタル酸誘導体、ジ-2-エチルヘキシルテトラヒドロフタレート等のテトラヒドロフタル酸誘導体、ジブチルアジペート(DBA)、ジメチルアジペート(DMA)、ジ-2-エチルヘキシルアジペート(DOA)等のアジピン酸誘導体、その他ポリエステル系可塑剤、エポキシ誘導体、パラフィン誘導体などを挙げることができる。
また、加硫促進剤としては、ジフェニル・グアニジン(D)、ジ・オルトリル・グアニジン(DT)等のグアニジン系、2-メルカプトベンゾチアゾール(M)、ジベンゾチアジル・ジスルファイド(DM)等のチアゾール系、N-シクロヘキシル-2-ベンゾチアゾリル・スルフェンアミド(CZ)、N-オキシジエチレン-2-ベンゾチアゾリル・スルフェンアミド(MSA)等のスルフェンアミド系、テトラメチルチウラム・モノスルファイド(TS)、テトラメチルチウラム・ジスルファイド(TT)等のチウラム系などを挙げることができる。
さらに、充填剤としては、カーボンブラック、炭酸マグネシウム、炭酸カルシウム、ケイ酸アルミニウム、硫酸バリウムなどを挙げることができる。
さらにまた、加硫剤としては、硫黄、硫黄化合物(塩化硫黄、モノホリン・ジスルファイド)、酸化マグネシウム、過酸化物(ジクミルパーオキサイド等)、酸化亜鉛などを挙げることができる。
As the plasticizer, vulcanizing agent, vulcanization accelerator, and filler used in the present invention, those conventionally used in nitrile rubber (NBR) rubber compositions can be used.
For example, as a plasticizer, phthalic acid such as dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (n-DOP), diisodecyl phthalate (DIDP), diisononyl fullerate (DINP) Derivatives, tetrahydrophthalic acid derivatives such as di-2-ethylhexyl tetrahydrophthalate, adipic acid derivatives such as dibutyl adipate (DBA), dimethyl adipate (DMA), di-2-ethylhexyl adipate (DOA), other polyester plasticizers, epoxy Derivatives, paraffin derivatives and the like.
Moreover, as vulcanization accelerators, guanidines such as diphenyl guanidine (D), diortholyl guanidine (DT), and thiazoles such as 2-mercaptobenzothiazole (M) and dibenzothiazyl disulfide (DM) Sulfenamides such as N-cyclohexyl-2-benzothiazolyl sulfenamide (CZ) and N-oxydiethylene-2-benzothiazolyl sulfenamide (MSA), tetramethylthiuram monosulfide (TS), tetra Mention may be made of thiurams such as methylthiuram disulfide (TT).
Furthermore, examples of the filler include carbon black, magnesium carbonate, calcium carbonate, aluminum silicate, and barium sulfate.
Furthermore, examples of the vulcanizing agent include sulfur, sulfur compounds (sulfur chloride, monophorin disulfide), magnesium oxide, peroxides (dicumyl peroxide, etc.), zinc oxide and the like.
実施例に先立って、本件発明で用いるニトリルゴム(NBR)の品質について、JIS T 8101安全靴 浸漬試験による(2.2.4−トリメチルペンタン 20時間)耐油試験で体積変化率12%以下の特性を保証すべく、表1に示す実験を行った。
先ず、耐油性確認(JIS T 8101規格クリア)のため表1に示す配合1−11を作成し、JIS T 8101安全靴 浸漬試験による(2.2.4−トリメチルペンタン 20時間)耐油試験を行った。ゴム100質量部中の中高ニトリルゴムと天然ゴムの質量割合を変更したもので、その他加硫剤(硫黄)、加硫促進剤、充填剤(SiO2、石油系樹脂)そして可塑剤(ジイソノニルフタレート<DINP>)は同量とした。
表1の実験結果より次のことがわかる。
ニトリルゴム(NBR)として、中高ニトリル(アクリロニトリル量が31〜35%)を用いた場合、JIS T 8101安全靴の浸せき試験における体積変化率12%以下に適合するのはニトリルゴム量が使用するゴム量の85%以上必要である。
Prior to the Examples, the quality of the nitrile rubber (NBR) used in the present invention was characterized by a volume change rate of 12% or less in the oil resistance test by the JIS T 8101 safety shoe immersion test (2.2.4-trimethylpentane, 20 hours). In order to guarantee the above, the experiment shown in Table 1 was conducted.
First, in order to confirm oil resistance (JIS T 8101 standard clear), Formulation 1-11 shown in Table 1 was prepared, and an oil resistance test was conducted by a JIS T 8101 safety shoe immersion test (2.2.4-trimethylpentane 20 hours). It was. The mass ratio of medium to high nitrile rubber and natural rubber in 100 parts by mass of rubber is changed. Other vulcanizing agents (sulfur), vulcanization accelerators, fillers (SiO2, petroleum resins) and plasticizers (diisononyl phthalate <DINP>) was the same amount.
The following can be seen from the experimental results in Table 1.
When nitrile rubber (NBR) is a medium-high nitrile (acrylonitrile content is 31-35%), the nitrile rubber amount is used to meet the volume change rate of 12% or less in the immersion test of JIS T 8101 safety shoes. More than 85% of the amount is necessary.
ニトリルゴム(NBR)として、中高ニトリル(アクリロニトリル量31〜35%)を100質量部用いた。加硫剤(硫黄)、加硫促進剤(MIX-2(混合促進剤))を7質量部、充填剤(SiO2、石油系樹脂)を30質量部、そして可塑剤(ジイソノニルフタレート<DINP>)14質量部を配合し、ロールで練り合わせた。ゴム組成物を型にセットして加熱し加硫を行い、試験片を得た。
得られた試験片の硬度は、硬度(デュロメーターA 20℃)40であった。また、動摩擦係数(JIS T 8101 安全靴 耐滑試験方法)0.6であり、かつ、静摩擦係数(トリニティラボ製スリップメーターType:TL501)0.5であることがわかった。
As nitrile rubber (NBR), 100 parts by mass of medium-high nitrile (acrylonitrile amount 31-35%) was used. 7 parts by mass of vulcanizing agent (sulfur), vulcanization accelerator (MIX-2 (mixing accelerator)), 30 parts by mass of filler (SiO2, petroleum resin), and plasticizer (diisononyl phthalate <DINP>) 14 parts by mass was blended and kneaded with a roll. The rubber composition was set in a mold, heated and vulcanized to obtain a test piece.
The hardness of the obtained test piece was 40 (durometer A 20 ° C.). It was also found that the coefficient of dynamic friction (JIS T 8101 safety shoes slip resistance test method) was 0.6 and the coefficient of static friction (Slip meter Type: TL501 made by Trinity Lab) was 0.5.
ニトリルゴム(NBR)として、中高ニトリル(アクリロニトリル量31〜35%)を100質量部用いた。加硫剤(硫黄)、加硫促進剤(MIX-2(混合促進剤))を7質量部、充填剤(SiO2、石油系樹脂)を30質量部、そして可塑剤(ジイソノニルフタレート<DINP>)10質量部を配合し、ロールで練り合わせた。ゴム組成物を型にセットして加熱し加硫を行い、試験片を得た。
得られた試験片の硬度は、硬度(デュロメーターA 20℃)45であった。また、動摩擦係数(JIS T 8101 安全靴 耐滑試験方法)0.6であり、かつ、静摩擦係数(トリニティラボ製スリップメーターType:TL501)0.52であることがわかった。
As nitrile rubber (NBR), 100 parts by mass of medium-high nitrile (acrylonitrile amount 31-35%) was used. 7 parts by mass of vulcanizing agent (sulfur), vulcanization accelerator (MIX-2 (mixing accelerator)), 30 parts by mass of filler (SiO2, petroleum resin), and plasticizer (diisononyl phthalate <DINP>) 10 parts by mass was blended and kneaded with a roll. The rubber composition was set in a mold, heated and vulcanized to obtain a test piece.
The hardness of the obtained test piece was 45 (durometer A 20 ° C.). It was also found that the dynamic friction coefficient (JIS T 8101 safety shoes slip resistance test method) was 0.6 and the static friction coefficient (Slip meter Type: TL501 manufactured by Trinity Lab) was 0.52.
ニトリルゴム(NBR)として、中高ニトリル(アクリロニトリル量31〜35%)を100質量部用いた。加硫剤(硫黄)、加硫促進剤(MIX-2(混合促進剤))を7質量部、充填剤(SiO2、石油系樹脂)を30質量部、そして可塑剤(ジイソノニルフタレート<DINP>)8質量部を配合し、ロールで練り合わせた。ゴム組成物を型にセットして加熱し加硫を行い、試験片を得た。
得られた試験片の硬度は、硬度(デュロメーターA 20℃)50であった。また、動摩擦係数(JIS T 8101 安全靴 耐滑試験方法)0.56であり、かつ、静摩擦係数(トリニティラボ製スリップメーターType:TL501)0.52であることがわかった。
As nitrile rubber (NBR), 100 parts by mass of medium-high nitrile (acrylonitrile amount 31-35%) was used. 7 parts by mass of vulcanizing agent (sulfur), vulcanization accelerator (MIX-2 (mixing accelerator)), 30 parts by mass of filler (SiO2, petroleum resin), and plasticizer (diisononyl phthalate <DINP>) 8 parts by mass was blended and kneaded with a roll. The rubber composition was set in a mold, heated and vulcanized to obtain a test piece.
The hardness of the obtained test piece was 50 (durometer A 20 ° C.). It was also found that the dynamic friction coefficient (JIS T 8101 safety shoes slip resistance test method) was 0.56 and the static friction coefficient (Slip meter Type: TL501 manufactured by Trinity Lab) was 0.52.
(参考例1)
ニトリルゴム(NBR)として、中高ニトリル(アクリロニトリル量31〜35%)を100質量部用いた。加硫剤(硫黄)、加硫促進剤を7質量部、充填剤(SiO2、石油系樹脂)を30質量部、そして可塑剤(ジイソノニルフタレート<DINP>)20質量部を配合し、ロールで練り合わせた。ゴム組成物を型にセットして加熱し加硫を行い、試験片を得た。
得られた試験片の硬度は、硬度(デュロメーターA 20℃)30であった。また、動摩擦係数(JIS T 8101 安全靴 耐滑試験方法)0.3であり、かつ、静摩擦係数(トリニティラボ製スリップメーターType:TL501)0.45であることがわかった。
(参考例2)
ニトリルゴム(NBR)として、中高ニトリル(アクリロニトリル量31〜35%)を100質量部用いた。加硫剤(硫黄)、加硫促進剤を7質量部、充填剤(SiO2、石油系樹脂)を30質量部、そして可塑剤(ジイソノニルフタレート<DINP>)18質量部を配合し、ロールで練り合わせた。ゴム組成物を型にセットして加熱し加硫を行い、試験片を得た。
得られた試験片の硬度は、硬度(デュロメーターA 20℃)35であった。また、動摩擦係数(JIS T 8101 安全靴 耐滑試験方法)0.37であり、かつ、静摩擦係数(トリニティラボ製スリップメーターType:TL501)0.45であることがわかった。
参考例3、参考例4、参考例5についても、表2に示す通りの配合で、表2に示す硬度、動摩擦係数、静摩擦係数が得られた。表2を示す。
(Reference Example 1)
As nitrile rubber (NBR), 100 parts by mass of medium-high nitrile (acrylonitrile amount 31-35%) was used. Blend 7 parts by mass of vulcanizing agent (sulfur), vulcanization accelerator, 30 parts by mass of filler (SiO2, petroleum-based resin), and 20 parts by mass of plasticizer (diisononyl phthalate <DINP>), and knead with a roll. It was. The rubber composition was set in a mold, heated and vulcanized to obtain a test piece.
The hardness of the obtained test piece was 30 (durometer A 20 ° C.). Further, it was found that the dynamic friction coefficient (JIS T 8101 safety shoes slip resistance test method) was 0.3 and the static friction coefficient (Slip meter Type: TL501 manufactured by Trinity Lab) was 0.45.
(Reference Example 2)
As nitrile rubber (NBR), 100 parts by mass of medium-high nitrile (acrylonitrile amount 31-35%) was used. Blend 7 parts by weight of vulcanizing agent (sulfur), 30 parts by weight of filler (SiO2, petroleum resin), and 18 parts by weight of plasticizer (diisononyl phthalate <DINP>), and knead with a roll. It was. The rubber composition was set in a mold, heated and vulcanized to obtain a test piece.
The hardness of the obtained test piece was 35 (durometer A 20 ° C.). It was also found that the dynamic friction coefficient (JIS T 8101 safety shoes slip resistance test method) was 0.37 and the static friction coefficient (Slip meter Type: TL501 manufactured by Trinity Lab) was 0.45.
For Reference Example 3, Reference Example 4, and Reference Example 5, the hardness, dynamic friction coefficient, and static friction coefficient shown in Table 2 were obtained with the formulation shown in Table 2. Table 2 is shown.
表2の結果より次のことがわかる。
静摩擦係数が0.4以上、動摩擦係数が0.5以上となる硬度範囲はデュロメーター硬度で40〜50の範囲である。
From the results in Table 2, the following can be understood.
The hardness range where the static friction coefficient is 0.4 or more and the dynamic friction coefficient is 0.5 or more is a durometer hardness of 40-50.
ニトリルゴム(NBR)として、中高ニトリル(アクリルニトリル量31〜35%)50、水素化ニトリルゴム(HNBR)50質量部を用いた。加硫剤(硫黄)、加硫促進剤(MIX2(混合促進剤))を7質量部、充填剤(SiO2、石油樹脂)を30質量部配そして可塑剤(ジイソノニルフタレート〈DINP〉)8質量部を配合し、ロールで練り合わせた。ゴム組成物を型にセットして加熱加硫を行い試験片を得た。
得られた試験片の硬度(デュロメーターA 20℃)50であった。また、動摩擦係数(JIS T 8101 安全靴 耐滑試験方法)0.55であり、かつ静摩擦係数(トリニティラボ スリップメーターType:TL501)0.53であることがわかった。
As the nitrile rubber (NBR), medium-high nitrile (acrylonitrile amount 31 to 35%) 50 and hydrogenated nitrile rubber (HNBR) 50 parts by mass were used. 7 parts by mass of vulcanizing agent (sulfur), vulcanization accelerator (MIX2 (mixing accelerator)), 30 parts by mass of filler (SiO2, petroleum resin) and 8 parts by mass of plasticizer (diisononyl phthalate <DINP>) And kneaded with a roll. The rubber composition was set in a mold and heat vulcanized to obtain a test piece.
The hardness of the obtained test piece was 50 (durometer A 20 ° C.). Further, it was found that the coefficient of dynamic friction (JIS T 8101 safety shoes anti-slip test method) was 0.55 and the coefficient of static friction (Trinity Lab slip meter Type: TL501) was 0.53.
水素化ニトリルゴム(HNBR)100質量部を用いた。加硫剤(硫黄)、加硫促進剤(MIX2(混合促進剤))を7質量部、充填剤(SiO2、石油樹脂)を30質量部配そして可塑剤(ジイソノニルフタレート〈DINP〉)8質量部を配合し、ロールで練り合わせた。ゴム組成物を型にセットして加熱加硫を行い試験片を得た。
得られた試験片の硬度(デュロメーターA 20℃)48であった。また、動摩擦係数(JIS T 8101 安全靴 耐滑試験方法)0.56であり、かつ静摩擦係数(トリニティラボ スリップメーターType:TL501)0.52であることがわかった。
100 parts by mass of hydrogenated nitrile rubber (HNBR) was used. 7 parts by mass of vulcanizing agent (sulfur), vulcanization accelerator (MIX2 (mixing accelerator)), 30 parts by mass of filler (SiO2, petroleum resin) and 8 parts by mass of plasticizer (diisononyl phthalate <DINP>) And kneaded with a roll. The rubber composition was set in a mold and heat vulcanized to obtain a test piece.
The hardness of the obtained test piece (durometer A 20 ° C.) was 48. Further, it was found that the coefficient of dynamic friction (JIS T 8101 safety shoes anti-slip test method) was 0.56 and the coefficient of static friction (Trinity Lab slip meter Type: TL501) was 0.52.
ニトリルゴム(NBR)として、中高ニトリル(アクリルニトリル量31〜35%)50、カルボキシル化ニトリルゴム(XNBR)50質量部を用いた。加硫剤(硫黄)、加硫促進剤(MIX2(混合促進剤))を7質量部、充填剤(SiO2、石油樹脂)を30質量部配そして可塑剤(ジイソノニルフタレート〈DINP〉)10質量部を配合し、ロールで練り合わせた。ゴム組成物を型にセットして加熱加硫を行い試験片を得た。
得られた試験片の硬度(デュロメーターA 20℃)49であった。また、動摩擦係数(JIS T 8101 安全靴 耐滑試験方法)0.55であり、かつ静摩擦係数(トリニティラボ スリップメーターType:TL501)0.54であることがわかった。
As nitrile rubber (NBR), medium-high nitrile (acrylonitrile content 31-35%) 50 and carboxylated nitrile rubber (XNBR) 50 parts by mass were used. 7 parts by mass of vulcanizing agent (sulfur), vulcanization accelerator (MIX2 (mixing accelerator)), 30 parts by mass of filler (SiO2, petroleum resin) and 10 parts by mass of plasticizer (diisononyl phthalate <DINP>) And kneaded with a roll. The rubber composition was set in a mold and heat vulcanized to obtain a test piece.
The hardness of the obtained test piece was 49 (durometer A 20 ° C.). Further, it was found that the coefficient of dynamic friction (JIS T 8101 safety shoes anti-slip test method) was 0.55 and the coefficient of static friction (Trinity Lab slip meter Type: TL501) was 0.54.
カルボキシル化ニトリルゴム(XNBR)100質量部を用いた。加硫剤(硫黄)、加硫促進剤(MIX2(混合促進剤))を7質量部、充填剤(SiO2、石油樹脂)を30質量部配そして可塑剤(ジイソノニルフタレート〈DINP〉)13質量部を配合し、ロールで練り合わせた。ゴム組成物を型にセットして加熱加硫を行い試験片を得た。
得られた試験片の硬度(デュロメーターA 20℃)50であった。また、動摩擦係数(JIS T 8101 安全靴 耐滑試験方法)0.53であり、かつ静摩擦係数(トリニティラボ スリップメーターType:TL501)0.50であることがわかった。
実施例4−7の配合と得られた特性を表3にまとめて示す。
100 parts by weight of carboxylated nitrile rubber (XNBR) was used. 7 parts by mass of vulcanizing agent (sulfur), vulcanization accelerator (MIX2 (mixing accelerator)), 30 parts by mass of filler (SiO2, petroleum resin) and 13 parts by mass of plasticizer (diisononyl phthalate <DINP>) And kneaded with a roll. The rubber composition was set in a mold and heat vulcanized to obtain a test piece.
The hardness of the obtained test piece was 50 (durometer A 20 ° C.). Further, it was found that the dynamic friction coefficient (JIS T 8101 safety shoes slip resistance test method) was 0.53 and the static friction coefficient (Trinity Lab slip meter Type: TL501) was 0.50.
Table 3 summarizes the formulation of Example 4-7 and the properties obtained.
本発明の耐油耐滑用靴底及びこれを用いた作業靴若しくは安全靴は、靴製造産業のみならず、その他のゴム製品にも転用できるので、産業上利用価値が高いものである。 The oil resistant and slip resistant shoe sole of the present invention and work shoes or safety shoes using the same can be diverted not only to the shoe manufacturing industry but also to other rubber products, and thus have high industrial utility value.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011246966A JP5882685B2 (en) | 2011-11-10 | 2011-11-10 | Oil and slip resistant sole |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011246966A JP5882685B2 (en) | 2011-11-10 | 2011-11-10 | Oil and slip resistant sole |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013102829A JP2013102829A (en) | 2013-05-30 |
JP5882685B2 true JP5882685B2 (en) | 2016-03-09 |
Family
ID=48622863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011246966A Active JP5882685B2 (en) | 2011-11-10 | 2011-11-10 | Oil and slip resistant sole |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5882685B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103772763A (en) * | 2013-12-25 | 2014-05-07 | 泉州鑫泰鞋材有限公司 | Rubber composite and preparation process thereof |
JP2016093365A (en) * | 2014-11-14 | 2016-05-26 | 弘進ゴム株式会社 | Anti-slip resistant sole and shoes having the same |
CN104448418B (en) * | 2014-11-28 | 2016-08-24 | 刘中华 | A kind of ferrum head footwear footwear glue, ferrum head footwear and preparation method thereof |
CN105670052A (en) * | 2016-04-18 | 2016-06-15 | 晋江新绮达鞋材有限责任公司 | Novel high-resilience foamable rubber shoe sole material and preparation method thereof |
CN105820383B (en) * | 2016-05-24 | 2018-01-02 | 宁波市中迪鞋业有限公司 | A kind of composite-material abrasive sole |
JP7009734B2 (en) * | 2016-07-26 | 2022-01-26 | 株式会社丸五 | Anti-slip footwear sole and its manufacturing method |
CN109810320A (en) * | 2017-11-18 | 2019-05-28 | 骆红斌 | A kind of fitting method is not easy the oil resistant antistatic boots vamp rubber of incipient scorch |
CN109810316A (en) * | 2017-11-18 | 2019-05-28 | 骆红斌 | A kind of fitting method oil resistant anti-static shoes foxing glue |
CN109810314A (en) * | 2017-11-18 | 2019-05-28 | 骆红斌 | A kind of fitting method can prevent the oil resistant anti-static shoes foxing glue of incipient scorch |
CN109810317A (en) * | 2017-11-18 | 2019-05-28 | 骆红斌 | A kind of fitting method can prevent the oil resistant antistatic boots vamp rubber of incipient scorch |
CN109810321A (en) * | 2017-11-18 | 2019-05-28 | 骆红斌 | A kind of fitting method oil resistant antistatic boots vamp rubber |
CN109810318A (en) * | 2017-11-18 | 2019-05-28 | 骆红斌 | A kind of fitting method is not easy the oil resistant anti-static shoes foxing glue of incipient scorch |
CN108192162B (en) * | 2017-12-28 | 2019-11-01 | 安踏(中国)有限公司 | A kind of Sports shoe sole abrasive rubber and preparation method thereof |
CN111073071B (en) * | 2019-11-28 | 2022-05-03 | 河北畅步防滑鞋科技有限公司 | Anti-slip bottom sheet and production and preparation mechanism thereof |
CN115304833B (en) * | 2021-08-09 | 2024-03-22 | 温州市优联新材料有限公司 | Foaming sole material and preparation method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62143952A (en) * | 1985-12-18 | 1987-06-27 | Japan Synthetic Rubber Co Ltd | Thermoplastic elastomer composition for footgear |
JP3391771B2 (en) * | 2000-07-27 | 2003-03-31 | 株式会社アシックス | Lightweight shoe sole foam |
JP4462396B2 (en) * | 2000-08-09 | 2010-05-12 | 青木安全靴製造株式会社 | Rubber composition for shoe sole, shoe sole using the rubber composition, and shoe |
JP2002238610A (en) * | 2001-02-22 | 2002-08-27 | Sumitomo Rubber Ind Ltd | Outsole and shoes having it |
JP2003033202A (en) * | 2001-07-25 | 2003-02-04 | Sumitomo Rubber Ind Ltd | Outsole and shoe equipped therewith |
JP2004337484A (en) * | 2003-05-19 | 2004-12-02 | Moon Star Co | Manufacturing method of polyurethane shoes |
JP2005323690A (en) * | 2004-05-12 | 2005-11-24 | Sumitomo Rubber Ind Ltd | Outsole and shoes |
EP2862464B1 (en) * | 2004-07-01 | 2016-02-24 | Nisshin Rubber Co., Ltd. | Slip-resistant shoe sole |
JP2006175141A (en) * | 2004-12-24 | 2006-07-06 | Sri Sports Ltd | Outsole and shoes having thereof |
JP5466928B2 (en) * | 2009-11-24 | 2014-04-09 | ダイセル・エボニック株式会社 | Shoe sole sheet and shoe sole using the sheet |
-
2011
- 2011-11-10 JP JP2011246966A patent/JP5882685B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013102829A (en) | 2013-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5882685B2 (en) | Oil and slip resistant sole | |
JP5399018B2 (en) | Rubber composition and sealing material | |
JP4458186B2 (en) | Rubber composition | |
JP6196290B2 (en) | Blend rubber, blend rubber composition and vulcanizate | |
JP5655511B2 (en) | Nitrile rubber composition | |
JP2009263456A (en) | Rubber composition for tire | |
US9179735B2 (en) | Climbing shoes outsole having good adhesive and non-slip properties and method for manufacturing thereof | |
JP5761470B2 (en) | Nitrile rubber composition | |
KR20150139275A (en) | Nonslip functional rubber composite and nonslip outsole of shoes using the same and manufacturing method of the same | |
JP2013147581A (en) | Rubber composition and tire using the same | |
JP5991855B2 (en) | Rubber composition | |
KR101165052B1 (en) | A composition of non-slip shoe outsole | |
JP7192401B2 (en) | rubber composition | |
JP2014105273A (en) | Tread rubber composition for high-performance tire | |
KR101486047B1 (en) | Rubber composition for safety shoes | |
JP2004329518A (en) | Sole and shoe | |
KR20140145749A (en) | Rubber composition for outsole | |
JP6870367B2 (en) | Rubber compositions, compounds, vulcanized products and rubber rolls | |
JP3887895B2 (en) | Chloroprene rubber composition excellent in heat aging resistance and compression set | |
JP2008239832A (en) | Rubber composition, crosslinked rubber and molded product | |
JP2001161404A (en) | Shoe sole | |
JP4113878B2 (en) | Rubber composition and pneumatic tire comprising the same | |
JP5906060B2 (en) | Pneumatic tire | |
JP5885128B2 (en) | Elastic composition and molded article using the same | |
JP2005279237A (en) | Outsole and shoe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5882685 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |