[go: up one dir, main page]

JP5876811B2 - Method for preventing reverse current of ion exchange membrane electrolytic cell - Google Patents

Method for preventing reverse current of ion exchange membrane electrolytic cell Download PDF

Info

Publication number
JP5876811B2
JP5876811B2 JP2012241093A JP2012241093A JP5876811B2 JP 5876811 B2 JP5876811 B2 JP 5876811B2 JP 2012241093 A JP2012241093 A JP 2012241093A JP 2012241093 A JP2012241093 A JP 2012241093A JP 5876811 B2 JP5876811 B2 JP 5876811B2
Authority
JP
Japan
Prior art keywords
catholyte
anolyte
electrolytic cell
ion exchange
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012241093A
Other languages
Japanese (ja)
Other versions
JP2014091838A (en
Inventor
和行 新井
和行 新井
義成 竹
義成 竹
てるみ 橋本
てるみ 橋本
高明 松尾
高明 松尾
俊統 林田
俊統 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Uhde Chlorine Engineers Japan Ltd filed Critical ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Priority to JP2012241093A priority Critical patent/JP5876811B2/en
Publication of JP2014091838A publication Critical patent/JP2014091838A/en
Application granted granted Critical
Publication of JP5876811B2 publication Critical patent/JP5876811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、イオン交換膜電解槽(以下、単に「電解槽」とも称する)の逆電流防止方法に関し、詳しくは、イオン交換膜電解槽の運転停止後に生じる逆電流を防止することができるイオン交換膜電解槽の逆電流防止方法に関する。   The present invention relates to a method for preventing reverse current of an ion exchange membrane electrolytic cell (hereinafter also simply referred to as “electrolytic cell”), and more specifically, ion exchange capable of preventing reverse current generated after the operation of the ion exchange membrane electrolytic cell is stopped. The present invention relates to a method for preventing reverse current of a membrane electrolytic cell.

今日、イオン交換膜電解槽として、片面に陽極を持つ陽極室と片面に陰極を持つ陰極室とを一体化したバイポーラエレメントを、イオン交換膜を挟んで配置する複極式のイオン交換膜電解槽が知られている。このタイプの電解槽は、イオン交換膜を挟んで数10個のバイポーラエレメントが直列に配置されて電解槽を構成し、この電解槽の複数個が電気的に接続されて運転されている。   Today, as an ion exchange membrane electrolytic cell, a bipolar ion exchange membrane electrolytic cell in which a bipolar element in which an anode chamber having an anode on one side and a cathode chamber having a cathode on one side is integrated is arranged with an ion exchange membrane interposed therebetween. It has been known. In this type of electrolytic cell, several tens of bipolar elements are arranged in series across an ion exchange membrane to constitute an electrolytic cell, and a plurality of electrolytic cells are electrically connected to operate.

電解槽の運転中において、陽・陰極液供給管や陽・陰極液排出管を通じて電解液が循環していると、各バイポーラエレメントの配管を通して漏洩電流が流れる。例えば、食塩水の電解において、電解槽の運転を停止すると、陽極室の陽極液中の活性物質である塩素(Cl)と、陰極室の陰極液中の活性物質である水素(H)によって、イオン交換膜を介してユニットセルでは起電力を生じ、停止中も運転中と同様に配管を経由して漏洩電流が流れる。そのために、電解槽の内部に正電解方向とは逆方向の電流(逆電流)が流れてしまう。これらの逆電流は、陰極の劣化等の電解槽の性能劣化につながるため、逆電流の低減を目的とし、種々の措置が取られている。 When the electrolytic solution is circulated through the positive / catholyte supply pipe and the positive / catholyte discharge pipe during the operation of the electrolytic cell, a leakage current flows through the piping of each bipolar element. For example, in the electrolysis of salt water, when the operation of the electrolytic cell is stopped, chlorine (Cl 2 ) that is an active substance in the anolyte in the anode chamber and hydrogen (H 2 ) that is an active substance in the catholyte in the cathode chamber As a result, an electromotive force is generated in the unit cell via the ion exchange membrane, and a leakage current flows through the piping even during the stop as in the case of operation. Therefore, a current (reverse current) in the direction opposite to the normal electrolysis direction flows inside the electrolytic cell. Since these reverse currents lead to electrolytic cell performance deterioration such as cathode deterioration, various measures have been taken for the purpose of reducing the reverse current.

逆電流を防止する一般的な手法として、例えば、特許文献1では、食塩水電解槽の運転停止後に陽極室に食塩水を注入し、陽極室内に存在する活性物質である塩素(Cl)を除去する技術が提案されている。この操作によれば、電解液中の活性物質の濃度が低下するため、逆電流の起電力を低減させることができる。さらに、逆電流の起電力が高くなる原因として、電解液の温度も関係している。電解液の温度が低くなれば、具体的には電解液の温度が室温に近くなれば逆電流の起電力が低下するため、電解槽の温度は低いほうが好ましく、陽極室への食塩水の注入は、電解液の温度を低下させる役割も果たしている。また、特許文献2では、水電解セルの残留電圧除去方法として、陽極室および陰極室の双方に電解液である純水を供給し続けて、陽極室に残留する酸素(O)、陰極室に残留する水素(H)を電解セルから除去する技術が提案されている。 As a general technique for preventing a reverse current, for example, in Patent Document 1, a saline solution is injected into the anode chamber after the operation of the saline electrolyzer is stopped, and chlorine (Cl 2 ) which is an active substance existing in the anode chamber is used. Techniques for removal have been proposed. According to this operation, since the concentration of the active substance in the electrolytic solution is lowered, the electromotive force of the reverse current can be reduced. Furthermore, the temperature of the electrolytic solution is also related as a cause of increasing the electromotive force of the reverse current. If the temperature of the electrolytic solution is lowered, specifically, if the temperature of the electrolytic solution is close to room temperature, the electromotive force of the reverse current is reduced. Therefore, the temperature of the electrolytic cell is preferably low, and the saline solution is injected into the anode chamber. Also plays the role of lowering the temperature of the electrolyte. Further, in Patent Document 2, as a method for removing a residual voltage of a water electrolysis cell, oxygen (O 2 ) remaining in the anode chamber, the cathode chamber is continuously supplied with pure water as an electrolytic solution to both the anode chamber and the cathode chamber. A technique for removing hydrogen (H 2 ) remaining in the electrolytic cell from the electrolytic cell has been proposed.

電解槽の逆電流の低減を目的とした他の技術として、特許文献3には、電解槽の運転を停止した後に、陽極と陰極との間に直流電圧を印加して、陽極から陰極へ微小電流(防食電流)を流すことにより逆電流の発生を防止する技術が提案されている。また、逆電流の影響を受けにくい電極の開発も行われている。例えば、特許文献4には、ニッケル表面を有する導電性基材表面に、金属ニッケル、ニッケル酸化物、炭素原子を含む混在層を形成し、この混在層上に、白金族の金属または白金族の金属化合物を含有する電極触媒層を設けた水溶液電気分解用陰極が提案されている。さらに、特許文献5では、陰極液出口と陰極液回収管とを接続するホースの長さや折れ曲がり位置を好適化する逆電流の低減方法が提案されている。   As another technique for reducing the reverse current of the electrolytic cell, Patent Document 3 discloses that after the operation of the electrolytic cell is stopped, a direct current voltage is applied between the anode and the cathode so that a minute amount is generated from the anode to the cathode. There has been proposed a technique for preventing the generation of a reverse current by passing a current (anticorrosive current). In addition, the development of electrodes that are less susceptible to the influence of reverse current is also underway. For example, in Patent Document 4, a mixed layer containing metallic nickel, nickel oxide, and carbon atoms is formed on the surface of a conductive substrate having a nickel surface, and a platinum group metal or platinum group metal is formed on the mixed layer. An aqueous electrolysis cathode provided with an electrode catalyst layer containing a metal compound has been proposed. Furthermore, Patent Document 5 proposes a method for reducing the reverse current that optimizes the length and the bent position of the hose connecting the catholyte outlet and the catholyte recovery tube.

特開昭55−58383号公報JP-A-55-58383 特開平8−144079号公報JP-A-8-144079 特開昭62−13589号公報Japanese Patent Laid-Open No. 62-13589 特開2011−190534号公報(特許第5006456号公報)JP2011-190534A (Patent No. 5006456) 特開2012−158775号公報JP 2012-158775 A

特許文献1や特許文献2で提案されている技術は、電解槽の停止時に生じる逆電流に対する対策として、一定の効果は得られるものの、必ずしも満足のいくものではなく、さらなる改良の余地が残されている。また、電解槽を構成するエレメントの数が多い場合、エレメントは逆電流の重畳により、完全短絡よりも大きい逆電流が流れる場合がある。この場合、陰極電位は酸素(O)の発生領域に達するおそれがある。このような状況において、特許文献3に記載の技術を適用して、陽極から陰極へ防食電流を流すと、陰極室から水素(H)がイオン交換膜を通って陽極室へ拡散し、水素(H)−酸素(O)の爆発が生じるおそれがある。一方、水素(H)−酸素(O)の爆鳴気にならないよう、大電流の防食電流を流すと塩素(Cl)が発生してしまうという問題を有している。 Although the techniques proposed in Patent Document 1 and Patent Document 2 provide a certain effect as a countermeasure against the reverse current generated when the electrolytic cell is stopped, they are not always satisfactory and leave room for further improvement. ing. Moreover, when there are many elements which comprise an electrolytic cell, the reverse current larger than a perfect short circuit may flow through an element by superposition | conversion of a reverse current. In this case, the cathode potential may reach an oxygen (O 2 ) generation region. In such a situation, when a technique described in Patent Document 3 is applied and an anticorrosion current is passed from the anode to the cathode, hydrogen (H 2 ) diffuses from the cathode chamber through the ion exchange membrane to the anode chamber, An explosion of (H 2 ) -oxygen (O 2 ) may occur. On the other hand, there is a problem that chlorine (Cl 2 ) is generated when a high-current anticorrosive current is applied so as not to cause hydrogen (H 2 ) -oxygen (O 2 ).

また、特許文献4に記載の水溶液電気分解用陰極は、発生してしまった逆電流に対する対策としては優れているが、逆電流の発生を防止するという効果は得られない。さらに、特許文献5のように、陰極液出口と陰極液回収管とを接続するホースの長さや折れ曲がり位置を好適化したとしても、十分に逆電流を防止することはできないというのが現状である。   Further, the aqueous solution electrolysis cathode described in Patent Document 4 is excellent as a countermeasure against the reverse current that has been generated, but the effect of preventing the generation of the reverse current cannot be obtained. Furthermore, as in Patent Document 5, even if the length and the bent position of the hose connecting the catholyte outlet and the catholyte recovery tube are optimized, the reverse current cannot be sufficiently prevented. .

そこで、本発明の目的は、イオン交換膜電解槽の運転停止後に生じる逆電流を防止することができるイオン交換膜電解槽の逆電流防止方法を提供することにある。   Therefore, an object of the present invention is to provide a reverse current prevention method for an ion exchange membrane electrolytic cell that can prevent a reverse current generated after the operation of the ion exchange membrane electrolytic cell is stopped.

本発明者は、上記課題を解消するために鋭意検討した結果、以下の着想を得るに至った。すなわち、特許文献1および2は、電解槽の運転停止後においても、陽極室および陰極室に電解液を供給し続けて陽極室内および陰極室内の活性物質を除去して、逆電流の起電力を低減させようというものである。しかしながら、逆電流の起電力を低減させること以外にも、配管内の液の電気抵抗を大きくすることで、逆電流を防止することが可能である。かかる着想のもと、本発明者はさらに鋭意検討した結果、電解槽の運転を停止する際、下記の手順に従うことで、上記課題を解消することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has obtained the following idea. That is, Patent Documents 1 and 2 disclose that an electromotive force of a reverse current is obtained by continuously supplying an electrolytic solution to the anode chamber and the cathode chamber to remove the active substance in the anode chamber and the cathode chamber even after the operation of the electrolytic cell is stopped. It is to reduce. However, in addition to reducing the electromotive force of the reverse current, it is possible to prevent the reverse current by increasing the electrical resistance of the liquid in the pipe. Based on such an idea, the present inventor has further intensively studied. As a result, when the operation of the electrolytic cell is stopped, it has been found that the above-mentioned problems can be solved by following the following procedure, and the present invention has been completed. It was.

すなわち、本発明のイオン交換膜電解槽の逆電流防止方法は、陽極を収容する陽極室と、陰極を収容する陰極室と、前記陽極室に陽極液を供給する陽極液供給用マニホールドと、前記陰極室に陰極液を供給する陰極液供給用マニホールドと、を有するイオン交換膜電解槽の逆電流防止方法において、
前記イオン交換膜電解槽の運転停止後に、陽極液タンクから前記陽極液供給用マニホールドに陽極液を供給する陽極液供給管、および、陰極液タンクから前記陰極液供給用マニホールドに陰極液を供給する陰極液供給管のうち少なくとも陽極液供給管に、前記陽極液よりも電気伝導率の低い低導電性物質を注入することを特徴とするものである。
That is, the reverse current prevention method for an ion exchange membrane electrolytic cell according to the present invention includes an anode chamber for housing an anode, a cathode chamber for housing a cathode, an anolyte supply manifold for supplying an anolyte to the anode chamber, In a method for preventing reverse current of an ion exchange membrane electrolytic cell having a catholyte supply manifold for supplying catholyte to a cathode chamber,
After the operation of the ion exchange membrane electrolytic cell is stopped, an anolyte supply pipe for supplying anolyte from the anolyte tank to the anolyte supply manifold, and a catholyte from the catholyte tank to the catholyte supply manifold A low-conductivity substance having a lower electrical conductivity than the anolyte is injected into at least the anolyte supply pipe among the catholyte supply pipes.

本発明のイオン交換膜電解槽の逆電流防止方法においては、前記低導電性物質は、水または不活性ガスであることが好ましい。また、本発明のイオン交換膜電解槽の逆電流防止方法においては、前記イオン交換膜電解槽の運転停止後に、前記陰極液の循環を停止することが好ましい。さらにまた、本発明のイオン交換膜電解槽の逆電流防止方法においては、前記イオン交換膜電解槽が、陰極液排出用マニホールドと陰極液供給用マニホールドとを有する陰極液循環経路を少なくとも2経路有する場合、前記イオン交換膜電解槽の運転を停止した後、少なくとも1つの前記陰極液循環経路を他の陰極液循環経路から電気的に切断することが好ましい。   In the reverse current prevention method for an ion exchange membrane electrolytic cell of the present invention, the low-conductivity substance is preferably water or an inert gas. Moreover, in the reverse current prevention method of the ion exchange membrane electrolytic cell of this invention, it is preferable to stop the circulation of the catholyte after the operation of the ion exchange membrane electrolytic cell is stopped. Furthermore, in the reverse current prevention method for an ion exchange membrane electrolytic cell according to the present invention, the ion exchange membrane electrolytic cell has at least two catholyte circulation paths each having a catholyte discharge manifold and a catholyte supply manifold. In this case, it is preferable that after the operation of the ion exchange membrane electrolytic cell is stopped, at least one of the catholyte circulation paths is electrically disconnected from other catholyte circulation paths.

本発明によれば、イオン交換膜電解槽の運転停止後に生じる逆電流を防止することができるイオン交換膜電解槽の逆電流防止方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the reverse current prevention method of the ion exchange membrane electrolytic cell which can prevent the reverse current which arises after the operation stop of an ion exchange membrane electrolytic cell can be provided.

2槽の複極式イオン交換膜電解槽を電気的に接続したイオン交換膜電解槽の一例の概略構成図である。It is a schematic block diagram of an example of the ion exchange membrane electrolyzer which electrically connected two bipolar ion exchange membrane electrolyzers. バイポーラエレメントの一例の概略構成図である。It is a schematic block diagram of an example of a bipolar element. 2槽の単極式イオン交換膜電解槽を電気的に接続したイオン交換膜電解槽の一例の概略構成図である。It is a schematic block diagram of an example of the ion exchange membrane electrolytic cell which electrically connected the 2 single electrode type ion exchange membrane electrolytic cell. (a)はアノードエレメントの一例の概略構成図であり、(b)はカソードエレメントの一例の概略構成図である。(A) is a schematic block diagram of an example of an anode element, (b) is a schematic block diagram of an example of a cathode element. 電流測定装置の概略構成図である。It is a schematic block diagram of an electric current measurement apparatus.

以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。
図1は、2槽の複極式イオン交換膜電解槽を電気的に接続したイオン交換膜電解槽の一例の概略構成図であり、図2は、バイポーラエレメントの一例の概略構成図である。以下、本発明の電解槽の逆電流の防止方法を、食塩の電解を例に説明する。図1に示すイオン交換膜電解槽100は、点線で囲まれた電解槽Aと電解槽Bとが、電気的に接続されることにより構成されている。図示する各電解槽A、Bは、複数のバイポーラエレメント101がイオン交換膜102を介して積層されてなり、直列に配置された複数のバイポーラエレメント101の両端にはエンドアノードエレメント103およびエンドカソードエレメント104がそれぞれ配置されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an example of an ion exchange membrane electrolytic cell in which two bipolar ion exchange membrane electrolytic cells are electrically connected, and FIG. 2 is a schematic configuration diagram of an example of a bipolar element. Hereinafter, the method for preventing reverse current in the electrolytic cell of the present invention will be described by taking electrolysis of salt as an example. An ion exchange membrane electrolytic cell 100 shown in FIG. 1 is configured by electrically connecting an electrolytic cell A and an electrolytic cell B surrounded by a dotted line. In each illustrated electrolytic cell A, B, a plurality of bipolar elements 101 are laminated via an ion exchange membrane 102, and an end anode element 103 and an end cathode element are arranged at both ends of the plurality of bipolar elements 101 arranged in series. 104 are arranged.

図2に示すように、バイポーラエレメント101は、陽極105が陽極隔壁106から間隔をあけて配置された陽極室107と、陰極108が陰極隔壁109から間隔をあけて配置された陰極室110と、が一体的に形成されてなり、陽極105および陰極108は、それぞれ陽極隔壁106に設けられた陽極リブ111および陰極隔壁109に設けられた陰極リブ112に保持されている。また、陽極室107および陰極室110の上部には、それぞれ陽極室側気液分離手段113および陰極室側気液分離手段114が設けられている。図示例においては、陽極室107の下部に、陽極液供給部115が設けられており、陽極室側気液分離手段113には、濃度が低下した陽極液(塩水)を排出する陽極液排出部116が設けられている。また、陰極室110の下部には、陰極液供給部117が設けられており、陰極室側気液分離手段114には、濃度が増大した陰極液(水酸化ナトリウム水溶液)を排出する陰極液排出部118が設けられている。   As shown in FIG. 2, the bipolar element 101 includes an anode chamber 107 in which an anode 105 is spaced from an anode partition wall 106, and a cathode chamber 110 in which a cathode 108 is spaced from a cathode partition wall 109, Are integrally formed, and the anode 105 and the cathode 108 are held by the anode rib 111 provided on the anode partition wall 106 and the cathode rib 112 provided on the cathode partition wall 109, respectively. In addition, an anode chamber side gas-liquid separation means 113 and a cathode chamber side gas-liquid separation means 114 are provided above the anode chamber 107 and the cathode chamber 110, respectively. In the illustrated example, an anolyte supply unit 115 is provided in the lower part of the anode chamber 107, and the anode chamber side gas-liquid separation means 113 discharges anolyte (salt water) having a reduced concentration to the anolyte discharge unit. 116 is provided. Further, a catholyte supply unit 117 is provided below the cathode chamber 110, and the cathode chamber side gas-liquid separation means 114 discharges the catholyte (sodium hydroxide aqueous solution) having an increased concentration to the cathode chamber. A portion 118 is provided.

図1に示す例によれば、複数個のバイポーラエレメント101の陽極液排出部116、および陰極液排出部118は、それぞれ陽極液排出用マニホールド119および陰極液排出用マニホールド120に接続されている。また、陽極室107に陽極液を供給する陽極液供給用マニホールド121は、陽極液供給バルブ122を介して、陽極液供給タンクである供給塩水タンク123と接続されており、陰極室110に陰極液を供給する陰極液供給用マニホールド124は、陰極液供給バルブ125を介して、陰極液タンクである循環苛性タンク126に接続されている。なお、陽極液排出用マニホールド119で回収された陽極液は、溶存している塩素ガス(Cl)が脱塩素塔で除去され、塩濃度の調整等を経て、供給塩水タンク123に送られる。また、陰極液排出用マニホールド120で回収された陰極液は、循環苛性タンク126に送られ、一部は電解槽に循環し、一部の苛性ソーダ(NaOH)は製品として取出される。 According to the example shown in FIG. 1, the anolyte discharge portion 116 and the catholyte discharge portion 118 of the plurality of bipolar elements 101 are connected to the anolyte discharge manifold 119 and the catholyte discharge manifold 120, respectively. An anolyte supply manifold 121 for supplying anolyte to the anolyte chamber 107 is connected to a supply salt water tank 123, which is an anolyte supply tank, via an anolyte supply valve 122. The catholyte supply manifold 124 is connected to a circulating caustic tank 126 that is a catholyte tank via a catholyte supply valve 125. Note that the anolyte recovered in the anolyte discharge manifold 119 is removed from the dissolved chlorine gas (Cl 2 ) by a dechlorination tower, sent to the supply salt water tank 123 through adjustment of the salt concentration and the like. Further, the catholyte collected by the catholyte discharge manifold 120 is sent to the circulation caustic tank 126, a part is circulated to the electrolytic cell, and a part of the caustic soda (NaOH) is taken out as a product.

図1に示すような2槽の複極式イオン交換膜電解槽を電気的に接続した構成を有するイオン交換膜電解槽100を用いて食塩水を電気分解する場合、電解槽100の運転を停止すると、上述の通り、陽極室107中の溶存塩素と陰極室110中の水素とが駆動力となって、バイポーラエレメント101および各マニホールド等の配管に逆電流が生じる。そこで、本発明の逆電流防止方法においては、電解槽100の運転停止後、供給塩水タンク123から陽極液供給用マニホールド121に陽極液を供給する陽極液供給管127、および、循環苛性タンク126から陰極液供給用マニホールド124に陰極液を供給する陰極液供給管128のうち少なくとも一方に、陽極液または陰極液よりも電気伝導率の低い低導電性物質を注入する。   When the saline solution is electrolyzed using the ion exchange membrane electrolytic cell 100 having a configuration in which two bipolar ion exchange membrane electrolytic cells as shown in FIG. 1 are electrically connected, the operation of the electrolytic cell 100 is stopped. Then, as described above, the dissolved chlorine in the anode chamber 107 and the hydrogen in the cathode chamber 110 serve as a driving force, and a reverse current is generated in the piping of the bipolar element 101 and each manifold. Therefore, in the reverse current prevention method of the present invention, after the operation of the electrolytic cell 100 is stopped, the anolyte supply pipe 127 that supplies the anolyte from the supply saltwater tank 123 to the anolyte supply manifold 121 and the circulation caustic tank 126 are used. An anolyte or a low-conductivity substance having a lower electrical conductivity than the catholyte is injected into at least one of the catholyte supply pipes 128 that supply the catholyte to the catholyte supply manifold 124.

陽極液供給管127や陰極液供給管128に陽極液または陰極液よりも電気伝導率の低い低導電性物質を注入することで、配管内の液の電気抵抗が大きくなる。これにより、電解槽100の運転停止後に、内部起電力を持った各バイポーラエレメント101とマニホールド等の配管との間で形成される電気回路を流れる逆電流を低減することができる。なお、逆電流は、電解槽100の運転停止後の液温度が高く、電解液中の活性物質濃度が高い間は起電力が高くて顕著であるため、陽極液供給管127や陰極液供給管128への低導電性物質の注入は、運転停止後速やかに行うことが望ましい。   By injecting the anolyte supply pipe 127 or the catholyte supply pipe 128 into the anolyte or the low conductivity material having a lower electrical conductivity than the catholyte, the electric resistance of the liquid in the pipe is increased. Thereby, after the operation of the electrolytic cell 100 is stopped, the reverse current flowing in the electric circuit formed between each bipolar element 101 having internal electromotive force and piping such as a manifold can be reduced. Note that the reverse current is conspicuous because the electromotive force is high and high while the liquid temperature after the operation of the electrolytic cell 100 is high and the active substance concentration in the electrolytic solution is high. It is desirable that the low-conductivity substance is injected into 128 immediately after the operation is stopped.

上述のとおり、従来、食塩水の電解槽の逆電流の防止技術においては、電解液中の活性物質の除去を主目的として、電解槽100の運転停止後に、陽極室107および陰極室110に電解液を注入してきた。これに対して、本発明の逆電流防止方法においては、陽極液または陰極液よりも電気伝導率の低い低導電性物質を、陽極液供給管127および陰極液供給管128のうち少なくとも一方に注入し、配管内の電解液の電気抵抗を増大させて逆電流を低減させている。また、低導電性物質を注入することは、活性物質(Cl、H)を除去することにもつながり、さらに、低導電性物質を注入することで、電解槽温度を下げることができる点でも優れている。 As described above, conventionally, in the technique for preventing reverse current in the electrolytic bath of saline solution, the anode chamber 107 and the cathode chamber 110 are electrolyzed after the operation of the electrolytic bath 100 is stopped mainly for the purpose of removing the active substance in the electrolytic solution. The liquid has been injected. On the other hand, in the reverse current prevention method of the present invention, a low-conductivity substance having lower electrical conductivity than the anolyte or catholyte is injected into at least one of the anolyte supply tube 127 and the catholyte supply tube 128. In addition, the electrical resistance of the electrolyte in the pipe is increased to reduce the reverse current. Moreover, injecting a low-conductivity substance leads to removal of the active substance (Cl 2 , H 2 ), and furthermore, by injecting a low-conductivity substance, the electrolytic cell temperature can be lowered. But it ’s excellent.

本発明の逆電流防止方法においては、低導電性物質としては、陽極液または陰極液よりも電気伝導率が小さく、逆電流を防止できるものであれば特に制限はなく、例えば、水を好適に用いることができる。低導電性物質として水を用いる場合、電気伝導率が10−5Ω−1cm−1以下のものが特に好適であり、純水、イオン交換水、ボイラー蒸気ドレン、苛性・塩水蒸発設備からの凝縮水等を好適に用いることができる。また、低導電性物質として不活性ガスを用いる場合は、窒素ガス(N)、ヘリウムガス(He)、アルゴン(Ar)等を好適に用いることができる。図1に示す例においては、純水タンク129a、129bが配置され、それぞれ、陽極液供給管127、陰極液供給管128に純水を注入している。 In the reverse current prevention method of the present invention, the low-conductivity substance is not particularly limited as long as it has a lower electrical conductivity than anolyte or catholyte and can prevent reverse current. For example, water is preferably used. Can be used. When water is used as the low-conductivity substance, one having an electrical conductivity of 10 −5 Ω −1 cm −1 or less is particularly suitable, and it is from pure water, ion exchange water, boiler steam drain, caustic / salt water evaporation equipment. Condensed water or the like can be suitably used. In addition, when an inert gas is used as the low-conductivity substance, nitrogen gas (N 2 ), helium gas (He), argon (Ar), or the like can be preferably used. In the example shown in FIG. 1, pure water tanks 129a and 129b are arranged, and pure water is injected into the anolyte supply pipe 127 and the catholyte supply pipe 128, respectively.

本発明の逆電流防止方法においては、陽極液供給管127や陰極液供給管128の両方に低導電性物質を注入するのが好ましいが、いずれか一方に低導電性物質を注入すればよい。例えば、陰極液供給管128のみに低導電性物質を注入して、陽極液供給管127は従来どおり陽極液(塩水)を供給して活性物質(Cl)を除去してもよい。また、陽極液供給管127に、活性物質(Cl)に対して2倍〜20倍のモル量の亜硫酸ソーダを陽極液に供給し、酸化還元反応により活性物質(Cl)を除去することも有効である。 In the reverse current prevention method of the present invention, it is preferable to inject a low-conductivity substance into both the anolyte supply pipe 127 and the catholyte supply pipe 128, but a low-conductivity substance may be injected into either one. For example, the low conductivity material may be injected only into the catholyte supply tube 128, and the anolyte supply tube 127 may supply the anolyte (salt water) as before to remove the active material (Cl 2 ). Further, sodium sulfite having a molar amount of 2 to 20 times that of the active substance (Cl 2 ) is supplied to the anolyte to the anolyte supply pipe 127 to remove the active substance (Cl 2 ) by oxidation-reduction reaction. Is also effective.

また、本発明の逆電流防止方法においては、電解槽100の運転停止後に、陰極液の循環を停止することが好ましい。電解槽100の運転時は、陽極液は陽極液排出部116から、陰極液は陰極液排出部118からオーバーフローしている。このオーバーフローした陽極液は塩濃度調整等のため系外に除かれることになるが、陰極液の大部分は循環苛性タンク126に回収され、陰極液供給用マニホールド124を通り、陰極室110へ循環して利用される。そのため、各バイポーラエレメント101と各々のマニホールド等の配管との間で電気回路が形成されて漏洩電流が流れる。これが、電解槽100が運転を停止した場合に逆電流の原因となる。したがって、電解槽100の運転停止後に、陰極液の循環を停止させることで、各エレメント101と陰極液排出用マニホールド120との間に形成された電気回路を切断し、漏洩電流に起因する逆電流を防止する。   In the reverse current prevention method of the present invention, it is preferable to stop the circulation of the catholyte after the operation of the electrolytic cell 100 is stopped. During operation of the electrolytic cell 100, the anolyte overflows from the anolyte discharge part 116 and the catholyte overflows from the catholyte discharge part 118. The overflowed anolyte is removed from the system to adjust the salt concentration, etc., but most of the catholyte is collected in the circulation caustic tank 126 and circulates through the catholyte supply manifold 124 to the cathode chamber 110. And used. Therefore, an electric circuit is formed between each bipolar element 101 and each manifold pipe, and a leakage current flows. This causes a reverse current when the electrolytic cell 100 stops operating. Therefore, by stopping the circulation of the catholyte after the operation of the electrolytic cell 100 is stopped, the electric circuit formed between each element 101 and the catholyte discharge manifold 120 is disconnected, and the reverse current caused by the leakage current To prevent.

さらに、本発明の逆電流防止方法においては、電解槽100の運転停止後に、供給塩水タンク123から陽極液供給用マニホールド121に陽極液を供給する陽極液供給管127、および循環苛性タンク126から陰極液供給用マニホールド124に陰極液を供給する陰極液供給管128のうち少なくとも一方を、Nガス等の不活性ガスで置換することも好ましい。陽極液供給管127や陰極液供給管128を不活性ガスで置換することにより、各バイポーラエレメント101と各マニホールド等の配管との間に形成された電気的回路を切断して、漏洩電流に起因する逆電流を防止することができる。 Furthermore, in the reverse current prevention method of the present invention, after the operation of the electrolytic cell 100 is stopped, the anolyte supply pipe 127 that supplies the anolyte from the supply saltwater tank 123 to the anolyte supply manifold 121 and the cathode from the circulation caustic tank 126 are provided. It is also preferable to replace at least one of the catholyte supply pipes 128 that supply the catholyte to the liquid supply manifold 124 with an inert gas such as N 2 gas. By replacing the anolyte supply pipe 127 and the catholyte supply pipe 128 with an inert gas, the electrical circuit formed between each bipolar element 101 and the piping of each manifold, etc. is disconnected, resulting in leakage current. The reverse current can be prevented.

さらにまた、本発明の逆電流防止方法においては、複数の電解槽(図1に示す例においては電解槽A、Bの2槽)が一つの電気回路に組み込まれている場合、電解槽100が運転を停止した後、少なくとも1つの電解槽の陰極液循環経路を他の電解槽の陰極液循環経路から電気的に切断することが好ましい。具体的には、例えば、図1に示す陰極液供給用マニホールド124aと124bの間を、外部の循環苛性タンク126から陰極液を供給するラインの陰極液供給バルブ125a、125bを閉じることで、電解槽Aの陰極液循環経路と電解槽Bの陰極液循環経路の電気的接続を切断する。これは、特に、電解槽100を構成するエレメント101の数が多い場合に有効であり、図示例においては、電解槽A、Bおよび各マニホールド等の配管との間で形成される電位差が、電解槽Aとマニホールド等の配管との電位差と、電解槽Bとマニホールド等の配管との電位差とに分割されるため、逆電流を約1/2に低減させることができる。   Furthermore, in the reverse current prevention method of the present invention, when a plurality of electrolytic cells (two electrolytic cells A and B in the example shown in FIG. 1) are incorporated in one electric circuit, the electrolytic cell 100 is After the operation is stopped, it is preferable to electrically disconnect the catholyte circulation path of at least one electrolytic cell from the catholyte circulation path of another electrolytic cell. Specifically, for example, the catholyte supply valves 125a and 125b of the line for supplying the catholyte from the external circulating caustic tank 126 are closed between the catholyte supply manifolds 124a and 124b shown in FIG. The electrical connection between the catholyte circulation path of the tank A and the catholyte circulation path of the electrolytic tank B is disconnected. This is particularly effective when the number of elements 101 constituting the electrolytic cell 100 is large. In the illustrated example, the potential difference formed between the electrolytic cells A and B and pipes such as the manifolds is electrolysis. Since the potential difference between the tank A and piping such as the manifold is divided into the potential difference between the electrolytic tank B and piping such as the manifold, the reverse current can be reduced to about ½.

図3は、2槽の単極式イオン交換膜電解槽を電気的に接続したイオン交換膜電解槽の一例の概略構成図であり、図4は、(a)はアノードエレメントの一例の概略構成図であり、(b)はカソードエレメントの一例の概略構成図である。図3に示すイオン交換膜電解槽200は、図中、点線で囲まれた電解槽Cと電解槽Dとが、電気的に接続されることにより構成されている。図示する各電解槽C、Dは、アノードエレメン201と、カソードエレメント202と、がイオン交換膜203を挟んで交互に配置され、両端に、ハーフカソードエレメント204が配置されている。   FIG. 3 is a schematic configuration diagram of an example of an ion exchange membrane electrolytic cell in which two monopolar ion exchange membrane electrolytic cells are electrically connected. FIG. 4A is a schematic configuration of an example of an anode element. It is a figure, (b) is a schematic block diagram of an example of a cathode element. The ion exchange membrane electrolytic cell 200 shown in FIG. 3 is configured by electrically connecting an electrolytic cell C and an electrolytic cell D surrounded by a dotted line in the drawing. In each illustrated electrolytic cell C, D, anode elements 201 and cathode elements 202 are alternately arranged with an ion exchange membrane 203 interposed therebetween, and half cathode elements 204 are arranged at both ends.

図4に示すように、アノードエレメント201は、両面に陽極205を有し、カソードエレメント202は、両面に陰極206を有し、それぞれが図3に示す電解槽C、Dの陽極室207および陰極室208を形成している。また、陽極室207および陰極室208の上部には、それぞれ陽極室側気液分離手段209および陰極室側気液分離手段210が設けられている。また、図示例においては、陽極室207の下部に、陽極液供給部211が設けられており、陽極室側気液分離手段209には、濃度が低下した陽極液(塩水)を排出する陽極液排出部212が設けられている。陰極室208には、陰極液供給部213が設けられており、陰極室側気液分離手段210には、濃度が増大した陰極液(水酸化ナトリウム水溶液)を排出する陰極液排出部214が設けられている。   As shown in FIG. 4, the anode element 201 has anodes 205 on both sides, and the cathode element 202 has cathodes 206 on both sides, each of the anode chambers 207 and cathodes of the electrolytic cells C and D shown in FIG. 3. A chamber 208 is formed. In addition, an anode chamber side gas / liquid separation means 209 and a cathode chamber side gas / liquid separation means 210 are provided above the anode chamber 207 and the cathode chamber 208, respectively. In the illustrated example, an anolyte supply unit 211 is provided below the anode chamber 207, and the anode chamber side gas-liquid separation means 209 discharges anolyte (salt water) having a reduced concentration to the anode chamber side gas-liquid separation means 209. A discharge unit 212 is provided. The cathode chamber 208 is provided with a catholyte supply unit 213, and the cathode chamber side gas-liquid separation means 210 is provided with a catholyte discharge unit 214 that discharges the concentrated catholyte (sodium hydroxide aqueous solution). It has been.

また、図3に示す例によれば、アノードエレメント201の陽極液排出部212、およびカソードエレメント202の陰極液排出部214は、それぞれ陽極液排出用マニホールド215および陰極液排出用マニホールド216に接続されている。さらに、陽極室207に陽極液を供給する陽極液供給用マニホールド217は、陽極液供給バルブ218を介して供給塩水タンク219と接続されており、陰極室208に陰極液を供給する陰極液供給用マニホールド220は、陰極液供給バルブ221を介して循環苛性タンク222に接続されている。なお、陽極液排出用マニホールド215で回収された陽極液は、溶存している塩素ガス(Cl)が脱塩素塔で除去され、塩濃度の調整等を経て、供給塩水タンク219に送られる。また、陰極液排出用マニホールド216で回収された陰極液は、循環苛性タンク222に送られ、一部は電解槽に循環し、一部の苛性ソーダ(NaOH)は製品として取出される。 Further, according to the example shown in FIG. 3, the anolyte discharge part 212 of the anode element 201 and the catholyte discharge part 214 of the cathode element 202 are connected to the anolyte discharge manifold 215 and the catholyte discharge manifold 216, respectively. ing. Further, the anolyte supply manifold 217 for supplying the anolyte to the anolyte chamber 207 is connected to the supply salt water tank 219 via the anolyte supply valve 218, and for supplying the catholyte to the cathode chamber 208. The manifold 220 is connected to the circulating caustic tank 222 via the catholyte supply valve 221. Note that the anolyte recovered in the anolyte discharge manifold 215 is removed from the dissolved chlorine gas (Cl 2 ) by a dechlorination tower, and sent to the supply salt water tank 219 after adjusting the salt concentration or the like. Further, the catholyte collected by the catholyte discharge manifold 216 is sent to the circulating caustic tank 222, a part is circulated to the electrolytic cell, and a part of the caustic soda (NaOH) is taken out as a product.

図3に示すような2槽の単極式イオン交換膜電解槽を電気的に接続した構成を有するイオン交換膜電解槽200を用いて食塩水を電気分解する場合、やはり、複極式イオン交換膜電解槽と同様に、陽極室207中の溶存塩素(Cl)と陰極室208中の水素(H)とが駆動力となって、アノードエレメント201、カソードエレメント202およびマニホールド等の各配管に逆電流が生じる。そこで、本発明の逆電流防止方法においては、電解槽200の運転停止後、供給塩水タンク219から陽極液供給用マニホールド217に陽極液を供給する陽極液供給管223、および、循環苛性タンク222から陰極液供給用マニホールド220に陰極液を供給する陰極液供給管224のうち少なくとも一方に、陽極液または陰極液よりも電気伝導率の低い低導電性物質を注入する。 When the saline is electrolyzed using an ion exchange membrane electrolytic cell 200 having a configuration in which two monopolar ion exchange membrane electrolytic cells are electrically connected as shown in FIG. Similarly to the membrane electrolytic cell, dissolved chlorine (Cl 2 ) in the anode chamber 207 and hydrogen (H 2 ) in the cathode chamber 208 serve as driving forces, and each piping of the anode element 201, the cathode element 202, the manifold, and the like. A reverse current is generated. Therefore, in the reverse current prevention method of the present invention, after the operation of the electrolytic cell 200 is stopped, the anolyte supply pipe 223 for supplying the anolyte from the supply saltwater tank 219 to the anolyte supply manifold 217 and the circulation caustic tank 222 are used. An anolyte or a low-conductivity substance having a lower electrical conductivity than the catholyte is injected into at least one of the catholyte supply pipes 224 that supply the catholyte to the catholyte supply manifold 220.

陽極液供給管223や陰極液供給管224に、陽極液または陰極液よりも電気伝導率の低い低導電性物質を注入することで、配管内の液の電気抵抗が大きくなり、逆電流を低減することができる。なお、逆電流の発生は、電解槽200の運転停止後の液温度が高く、電解液中の活性物質濃度が高い間は起電力が高くて顕著であるため、本実施の形態においても、陽極液供給管223や陰極液供給管224への低導電性物質の注入は、運転停止後速やかに行うことが望ましい。また、本実施の形態においても、低導電性物質を注入することは、活性物質(Cl、H)を除去することにもつながり、さらに、低導電性物質を注入することで、電解槽温度を下げることができる。 By injecting into the anolyte supply pipe 223 or the catholyte supply pipe 224, a low-conductivity substance having a lower electrical conductivity than the anolyte or the catholyte, the electric resistance of the liquid in the pipe is increased and the reverse current is reduced. can do. Note that the generation of the reverse current is significant because the electromotive force is high and high while the liquid temperature after the operation of the electrolytic cell 200 is high and the active substance concentration in the electrolytic solution is high. It is desirable to inject the low-conductivity substance into the liquid supply pipe 223 and the catholyte supply pipe 224 immediately after the operation is stopped. Also in this embodiment, injecting a low-conductivity substance also leads to removal of the active substance (Cl 2 , H 2 ), and by injecting a low-conductivity substance, the electrolytic cell The temperature can be lowered.

本実施の形態においても、低導電性物質としては、陽極液または陰極液よりも電気伝導率が小さく、逆電流を防止できるものであれば特に制限はなく、例えば、水を好適に用いることができる。低導電性物質として水を用いる場合、電気伝導率が10−5Ω−1cm−1以下のものが好適であり、純水、イオン交換水、ボイラー蒸気ドレン、苛性・塩水蒸発設備からの凝縮水等を好適に用いることができる。また、低導電性物質として不活性ガスを用いる場合は、窒素ガス(N)、ヘリウムガス(He)、アルゴン(Ar)等を好適に用いることができる。図3に示す例においても、純水タンク225a、225bが配置され、それぞれ、陽極液供給管223、陰極液供給管224に純水を供給している。 Also in this embodiment, the low-conductivity substance is not particularly limited as long as it has a lower electrical conductivity than anolyte or catholyte and can prevent reverse current. For example, water is preferably used. it can. When water is used as the low-conductivity substance, it is preferable that the electrical conductivity is 10 −5 Ω −1 cm −1 or less, and it is condensed from pure water, ion exchange water, boiler steam drain, caustic / salt water evaporation equipment. Water or the like can be suitably used. In addition, when an inert gas is used as the low-conductivity substance, nitrogen gas (N 2 ), helium gas (He), argon (Ar), or the like can be preferably used. In the example shown in FIG. 3 as well, pure water tanks 225a and 225b are disposed, and pure water is supplied to the anolyte supply pipe 223 and the catholyte supply pipe 224, respectively.

本実施の形態においても、陽極液供給管223や陰極液供給管224の両方に低導電性物質を注入するのが好ましいが、いずれか一方に低導電性物質を注入すればよい。例えば、陰極液供給管224のみに低導電性物質を注入して、陽極液供給管223は陽極液(塩水)を供給して活性物質(Cl)を除去してもよい。また、活性物質(Cl)に対して2倍〜20倍のモル量の亜硫酸ソーダを陽極液に供給し、酸化還元反応により活性物質(Cl)を除去することも有効である。 Also in this embodiment, it is preferable to inject a low conductivity material into both the anolyte supply tube 223 and the catholyte supply tube 224, but a low conductivity material may be injected into either one. For example, the low conductivity material may be injected only into the catholyte supply tube 224, and the anolyte supply tube 223 may supply the anolyte (salt water) to remove the active material (Cl 2 ). It is also effective to supply sodium sulfite in an amount of 2 to 20 times the molar amount of the active substance (Cl 2 ) to the anolyte and remove the active substance (Cl 2 ) by oxidation-reduction reaction.

また、本実施の形態においても、電解槽200の運転停止後に、陰極液の循環を停止することが好ましい。電解槽200の運転時は、陽極液が陽極液排出部212から、陰極液が陰極液排出部214からオーバーフローしている。このオーバーフローした陽極液は塩濃度調整等のため系外に排出されることになるが、陰極液の大部分は循環苛性タンク222に回収され、陰極液供給用マニホールド220を通り、陰極室208へ循環して利用される。そのため、カソードエレメント202および各々のマニホールド等の配管との間で電気回路が形成されて漏洩電流が流れる。これが、電解槽200が運転を停止した場合に逆電流の原因となる。したがって、電解槽200の運転停止後に、陰極液の循環を停止させることで、各カソードエレメント202と陰極液排出用マニホールド216との間に形成された電気回路を切断し、漏洩電流に起因する逆電流を防止する。   Also in the present embodiment, it is preferable to stop the circulation of the catholyte after the operation of the electrolytic cell 200 is stopped. During the operation of the electrolytic cell 200, the anolyte overflows from the anolyte discharge part 212 and the catholyte overflows from the catholyte discharge part 214. The overflowed anolyte is discharged out of the system for adjusting the salt concentration, etc., but most of the catholyte is collected in the circulating caustic tank 222 and passes through the catholyte supply manifold 220 to the cathode chamber 208. Used in circulation. Therefore, an electric circuit is formed between the cathode element 202 and each manifold and other piping, and a leakage current flows. This causes a reverse current when the electrolytic cell 200 stops operating. Therefore, by stopping the circulation of the catholyte after the operation of the electrolytic cell 200 is stopped, the electric circuit formed between each cathode element 202 and the catholyte discharge manifold 216 is disconnected, and the reverse caused by the leakage current Prevent current.

さらに、本実施の形態においても、電解槽200の運転停止後に、供給塩水タンク219から陽極液供給用マニホールド217に陽極液を供給する陽極液供給管223、および循環苛性タンク222から陰極液供給用マニホールド220に陰極液を供給する陰極液供給管224のうち少なくとも一方を、Nガス等の不活性ガスで置換してもよい。陽極液供給管223や陰極液供給管224を不活性ガスで置換することにより、アノードエレメント201、カソードエレメント202および各マニホールド等の配管の間に形成された電気的回路を切断して、漏洩電流に起因する逆電流を防止することができる。 Further, also in the present embodiment, after the operation of the electrolytic cell 200 is stopped, the anolyte supply pipe 223 for supplying the anolyte from the supply salt water tank 219 to the anolyte supply manifold 217 and the catholyte supply from the circulating caustic tank 222 are performed. At least one of the catholyte supply pipes 224 that supply the catholyte to the manifold 220 may be replaced with an inert gas such as N 2 gas. By replacing the anolyte supply pipe 223 and the catholyte supply pipe 224 with an inert gas, the electric circuit formed between the pipes of the anode element 201, the cathode element 202, each manifold, and the like is disconnected, and the leakage current It is possible to prevent the reverse current caused by.

さらにまた、本実施の形態においても、複数の電解槽(図3に示す例においては電解槽C、Dの2槽)が一つの電気回路に組み込まれている場合、少なくとも1つの電解槽の陰極液循環経路を他の電解槽の陰極液循環経路から電気的に切断することが好ましい。具体的には、例えば、図3に示す陰極液供給用マニホールド220a、220bの間を、外部の循環苛性タンク222から陰極液を供給するラインの陰極液供給バルブ221a、221bを閉じることで、電解槽Cの陰極液循環経路と電解槽Dの陰極液循環経路の電気的接続を切断する。これは、特に、電解槽200を構成する各エレメント201、202の数が多い場合に有効であり、電解槽C、Dと各マニホールド等の配管との間で形成される電位差が、電解槽Cとマニホールドとの電位差と、電解槽Dとマニホールドとの電位差とに分割されるため、逆電流を約1/2に低減させることができる。   Furthermore, also in this embodiment, when a plurality of electrolytic cells (in the example shown in FIG. 3, two electrolytic cells C and D) are incorporated in one electric circuit, the cathode of at least one electrolytic cell. It is preferable to electrically disconnect the liquid circulation path from the catholyte circulation path of another electrolytic cell. Specifically, for example, the catholyte supply valves 221a and 221b of the line for supplying the catholyte from the external circulating caustic tank 222 are closed between the catholyte supply manifolds 220a and 220b shown in FIG. The electrical connection between the catholyte circulation path of the tank C and the catholyte circulation path of the electrolytic cell D is disconnected. This is particularly effective when the number of the elements 201 and 202 constituting the electrolytic cell 200 is large, and the potential difference formed between the electrolytic cells C and D and piping such as the manifolds is the electrolytic cell C. Therefore, the reverse current can be reduced to about ½.

ここまで、本発明の逆電流防止方法について、2槽の複極式イオン交換膜電解槽を電気的に接続した電解槽100と、2槽の単極式イオン交換膜電解槽を電気的に接続した電解槽200とに分けて詳細に説明してきたが、本発明の逆電流防止方法においては、イオン交換膜電解槽の運転停止後に、陽極室および陰極室のうち少なくとも一方の内部に低導電性物質を注入することのみが重要であり、それ以外の構成については特に制限はない。例えば、陽極および陰極は、従来から用いられている既知の電極を採用することができる。また、電解槽の運転条件についても、特に制限はなく、通常行われている一般的な条件を適用することができる。   Up to this point, in the reverse current prevention method of the present invention, the electrolytic cell 100 electrically connected to the two bipolar ion exchange membrane electrolytic cells and the two monopolar ion exchange membrane electrolytic cells are electrically connected. However, in the reverse current prevention method of the present invention, after the operation of the ion exchange membrane electrolytic cell is stopped, at least one of the anode chamber and the cathode chamber has low conductivity. It is only important to inject a substance, and there are no particular restrictions on other configurations. For example, as the anode and the cathode, known electrodes that are conventionally used can be adopted. Moreover, there is no restriction | limiting in particular also about the operating condition of an electrolytic cell, The general condition currently performed can be applied.

なお、本発明の逆電流防止方法において、低導電性物質として純水を陽極室107、207や陰極室110、208に注入すると、イオン交換膜102、203が膨潤してしまい、これにより、イオン交換膜102、203にシワが生じ、機械的にダメージを与えてしまうという懸念がある。しかしながら、現行のイオン交換膜型食塩電解等で一般に使用されているカルボン酸やスルフォン酸、または両者複合の酸をイオン交換基とするパーフルオロ陽イオン交換膜の耐久性は日々向上し、最近では懸念も払拭され、問題なく使用することができる。例えば、旭硝子(株)社製のF8020、F8020SPおよびF8080や、デュポン(株)社製のN2010、N2030およびN2040、旭化成(株)社製のF4401、F4403およびF6801を好適に用いることができる。さらには、運転停止後、陰極室に400−600mmHOの圧力を与えることにより膜を陽極室側に押さえ、膜のしわを防止することも有効である。 In the reverse current prevention method of the present invention, when pure water is injected into the anode chambers 107 and 207 and the cathode chambers 110 and 208 as a low-conductivity substance, the ion exchange membranes 102 and 203 are swollen. There is a concern that the exchange membranes 102 and 203 are wrinkled and mechanically damaged. However, the durability of perfluoro cation exchange membranes that use carboxylic acid or sulfonic acid, which is generally used in current ion exchange membrane type salt electrolysis, etc., or an acid that is a combination of both, has improved day by day. Concerns are also eliminated and it can be used without problems. For example, F8020, F8020SP and F8080 manufactured by Asahi Glass Co., Ltd., N2010, N2030 and N2040 manufactured by DuPont Co., Ltd., and F4401, F4403 and F6801 manufactured by Asahi Kasei Co., Ltd. can be suitably used. Furthermore, after the operation is stopped, it is also effective to press the membrane against the anode chamber by applying a pressure of 400-600 mmH 2 O to the cathode chamber to prevent wrinkling of the membrane.

また、本発明の逆電流防止方法を用いて電解槽の運転を停止した場合、低導電性物質を陽極室107、207や陰極室110、208に注入するのは、逆電流の影響が大きい時間のみでよい。これは、再度、電解槽を立ち上げる際に、陽極液や陰極液の濃度調整が困難になる場合があるからである。したがって、電解槽を保管する場合は、電解槽の運転停止後、上記本発明の逆電流防止方法を適用し、逆電流の影響がなくなったら、再度、陽極液および陰極液でそれぞれ陽極室および陰極室を置換して、保存するのが好ましい。   Further, when the operation of the electrolytic cell is stopped using the reverse current prevention method of the present invention, the low conductive material is injected into the anode chambers 107 and 207 and the cathode chambers 110 and 208 for a time when the influence of the reverse current is large. Only need. This is because it may be difficult to adjust the concentration of the anolyte or catholyte when the electrolytic cell is started up again. Therefore, when storing the electrolytic cell, after the operation of the electrolytic cell is stopped, the reverse current prevention method of the present invention is applied. The chamber is preferably replaced and stored.

以下、本発明のイオン交換膜電解槽の逆電流防止方法を、実施例を用いてより詳細に説明する。
従来例および実施例のそれぞれの場合において、各マニホールドの電圧と逆電流値を測定した。図1に示すタイプの構成の電解槽として、n−BiTAC896(クロリンエンジニアズ(株)社製)を2槽直列に配置した電解槽を用いた。
Hereafter, the reverse current prevention method of the ion exchange membrane electrolytic cell of this invention is demonstrated in detail using an Example.
In each case of the conventional example and the example, the voltage and the reverse current value of each manifold were measured. As an electrolytic cell having a configuration of the type shown in FIG. 1, an electrolytic cell in which n-BiTAC 896 (manufactured by Chlorine Engineers Co., Ltd.) is arranged in series was used.

逆電流は、図5に示す構成の電流測定装置300を、陽極液排出用マニホールド119、陰極液排出用マニホールド120、陽極液供給用マニホールド121および陰極液供給用マニホールド124に組み込むことにより測定した。電解槽100内の各エレメント101から排出された陽極液および陰極液が、それぞれ陽極液排出用マニホールド119および陰極液排出用マニホールド120で合流した後、および、陽極液および陰極液が、それぞれ陽極液供給用マニホールド121および陰極液供給用マニホールド124で分散される前に、陽極液および陰極液が通過する場所にメッシュ状の2枚の白金電極301を設置し、これらの電極に電流計302を繋ぐことで電流値を測定した。白金電極301の間の配管303は絶縁のためにPVC製のものを用いた。なお、電流測定装置301の両側の配管304は、陽極測定用はチタン製、陰極測定用はニッケル製とした。また、図中の矢印は、陽極液および陰極液の流れを示す。   The reverse current was measured by incorporating the current measuring apparatus 300 having the configuration shown in FIG. 5 into the anolyte discharge manifold 119, the catholyte discharge manifold 120, the anolyte supply manifold 121, and the catholyte supply manifold 124. After the anolyte and catholyte discharged from each element 101 in the electrolytic cell 100 merge in the anolyte discharge manifold 119 and the catholyte discharge manifold 120, respectively, and the anolyte and catholyte are respectively anolyte. Before being dispersed in the supply manifold 121 and the catholyte supply manifold 124, two mesh-shaped platinum electrodes 301 are installed where the anolyte and the catholyte pass, and an ammeter 302 is connected to these electrodes. The current value was measured. The piping 303 between the platinum electrodes 301 was made of PVC for insulation. The pipes 304 on both sides of the current measuring device 301 were made of titanium for anode measurement and made of nickel for cathode measurement. Moreover, the arrow in a figure shows the flow of an anolyte and a catholyte.

<従来例>
電解槽100の運転を停止した後の処理として、温度60℃、濃度300g/Lの塩水を、0.25m/h/エレメントの流量で陽極液供給用マニホールド121通して陽極室107へ供給した。また、温度85℃、濃度30質量%の水酸化ナトリウム(NaOH)水溶液を、0.25m/h/エレメントの流量で陰極液供給用マニホールド124を通して陰極室110へ供給した。
<Conventional example>
As a treatment after the operation of the electrolytic cell 100 was stopped, salt water having a temperature of 60 ° C. and a concentration of 300 g / L was supplied to the anode chamber 107 through the anolyte supply manifold 121 at a flow rate of 0.25 m 3 / h / element. . A sodium hydroxide (NaOH) aqueous solution having a temperature of 85 ° C. and a concentration of 30% by mass was supplied to the cathode chamber 110 through the catholyte supply manifold 124 at a flow rate of 0.25 m 3 / h / element.

運転停止3時間後と6時間後に、陽極液供給用マニホールド121、陽極液排出用マニホールド119、陰極液供給用マニホールド124および陰極液排出用マニホールド120における電位と逆電流を測定した。得られた結果を、電解槽100の運転停止後の条件とともに表1に示す。ここで、逆電流の値は各マニホールドで測定した電流の合算値であり、その最大値を示している。なお、運転停止3時間後のセル電圧は1.6V、陽極室107から排出されている陽極液は、温度65℃、濃度300g/Lの塩水であり、陰極室110から排出されている陰極液は、温度65℃、濃度28質量%の水酸化ナトリウム水溶液であった。さらに、運転停止6時間後のセル電圧は1.6V、陽極室107から排出されている陽極液は、温度40℃、濃度300g/Lの塩水であり、陰極室110から排出されている陰極液は、温度40℃、濃度28質量%の水酸化ナトリウム水溶液であった。   3 hours and 6 hours after the operation was stopped, the potential and reverse current in the anolyte supply manifold 121, the anolyte discharge manifold 119, the catholyte supply manifold 124, and the catholyte discharge manifold 120 were measured. The obtained results are shown in Table 1 together with the conditions after the operation of the electrolytic cell 100 was stopped. Here, the value of the reverse current is the sum of the currents measured in each manifold, and indicates the maximum value. The cell voltage after 3 hours of shutdown is 1.6 V, the anolyte discharged from the anode chamber 107 is salt water having a temperature of 65 ° C. and a concentration of 300 g / L, and the catholyte discharged from the cathode chamber 110. Was a sodium hydroxide aqueous solution having a temperature of 65 ° C. and a concentration of 28% by mass. Further, the cell voltage after 6 hours of shutdown is 1.6 V, the anolyte discharged from the anode chamber 107 is salt water having a temperature of 40 ° C. and a concentration of 300 g / L, and the catholyte discharged from the cathode chamber 110. Was a sodium hydroxide aqueous solution having a temperature of 40 ° C. and a concentration of 28% by mass.

<実施例>
電解槽100の運転を停止した後の処理として、温度25℃の純水(電気伝導率:10−5Ω−1cm−1以下)を0.25m/h/エレメントの流量で、陽極液供給管127から陽極液供給用マニホールド121を通して陽極室107に注入した。また、温度25℃の純水(電気伝導率:10−5Ω−1cm−1以下)を0.25m/h/エレメントの流量で、陰極液供給管128から陰極液供給用マニホールド124に注入した。なお、陰極液供給用マニホールド124への純水の供給については、陰極液供給用マニホールド124が純水に置換された後に停止した。
<Example>
As a treatment after the operation of the electrolytic cell 100 is stopped, pure water (electric conductivity: 10 −5 Ω −1 cm −1 or less) at a temperature of 25 ° C. is used at a flow rate of 0.25 m 3 / h / element. The solution was injected from the supply pipe 127 into the anode chamber 107 through the anolyte supply manifold 121. Also, pure water (electric conductivity: 10 −5 Ω −1 cm −1 or less) at a temperature of 25 ° C. is supplied from the catholyte supply pipe 128 to the catholyte supply manifold 124 at a flow rate of 0.25 m 3 / h / element. Injected. The supply of pure water to the catholyte supply manifold 124 was stopped after the catholyte supply manifold 124 was replaced with pure water.

従来例と同様に、運転停止3時間後と6時間後に、陽極液供給用マニホールド121、陽極液排出用マニホールド119、陰極液供給用マニホールド124および陰極液排出用マニホールド120における電位および逆電流を測定した。得られた結果を、電解槽100の運転停止後の条件とともに表1に示す。なお、運転停止3時間後のセル電圧は1.3V、陽極室107から排出されている陽極液は、温度40℃、濃度14g/Lの塩水であり、陰極室110からはほとんど陰極液が排出されていない状態であった。さらに、運転停止6時間後のセル電圧は1.3V、陽極室107から排出されている陽極液は、温度30℃、濃度1g/Lの塩水であり、陰極室110からはほとんど陰極液が排出されていない状態であった。ここで、陽極液供給用マニホールドと陰極液供給用マニホールドには純水を供給していること、陰極液排出用マニホールドにはほとんど液が流れていなかったことから、これらのマニホールド電位は測定できなかった。   Similar to the conventional example, the potential and reverse current in the anolyte supply manifold 121, the anolyte discharge manifold 119, the catholyte supply manifold 124, and the catholyte discharge manifold 120 are measured 3 hours and 6 hours after the shutdown. did. The obtained results are shown in Table 1 together with the conditions after the operation of the electrolytic cell 100 was stopped. The cell voltage after 3 hours of shutdown is 1.3 V, the anolyte discharged from the anode chamber 107 is salt water having a temperature of 40 ° C. and a concentration of 14 g / L, and almost no catholyte is discharged from the cathode chamber 110. It was not being done. Furthermore, the cell voltage after 6 hours of shutdown is 1.3 V, the anolyte discharged from the anode chamber 107 is salt water having a temperature of 30 ° C. and a concentration of 1 g / L, and the catholyte is almost discharged from the cathode chamber 110. It was not being done. Here, since the pure water was supplied to the anolyte supply manifold and the catholyte supply manifold, and almost no liquid was flowing to the catholyte discharge manifold, these manifold potentials could not be measured. It was.

Figure 0005876811
Figure 0005876811

表1より、本発明の逆電流防止方法によれば、電解槽の運転停止後における逆電流が大幅に低減できることがわかる。   From Table 1, it can be seen that according to the reverse current prevention method of the present invention, the reverse current after the electrolytic cell is stopped can be greatly reduced.

100 複極式イオン交換膜電解槽
101 バイポーラエレメント
102 イオン交換膜
103 エンドアノードエレメント
104 エンドカソードエレメント
105 陽極
106 陽極隔壁
107 陽極室
108 陰極
109 陰極隔壁
110 陰極室
111 陽極リブ
112 陰極リブ
113 陽極室側気液分離手段
114 陰極室側気液分離手段
115 陽極液供給部
116 陽極液排出部
117 陰極液供給部
118 陰極液排出部
119 陽極液排出用マニホールド
120 陰極液排出用マニホールド
121 陽極液供給用マニホールド
122 陽極液供給バルブ
123 供給塩水タンク
124 陰極液供給用マニホールド
125 陰極液供給バルブ
126 循環苛性タンク
127 陽極液供給管
128 陰極液供給管
129 純水タンク
200 単極式イオン交換膜電解槽
201 アノードエレメント
202 カソードエレメント
203 イオン交換膜
204 ハーフカソードエレメント
205 陽極
206 陰極
207 陽極室
208 陰極室
209 陽極室側気液分離手段
210 陰極室側気液分離手段
211 陽極液供給部
212 陽極液排出部
213 陰極液供給部
214 陰極液排出部
215 陽極液排出用マニホールド
216 陰極液排出用マニホールド
217 陽極液供給用マニホールド
218 陽極液供給バルブ
219 供給塩水タンク
220 陰極液供給用マニホールド
221 陰極液供給バルブ
222 循環苛性タンク
223 陽極液供給管
224 陰極液供給管
225 純水タンク
300 電流測定装置
301 白金電極
302 電流計
303、304 配管
DESCRIPTION OF SYMBOLS 100 Bipolar ion exchange membrane electrolytic cell 101 Bipolar element 102 Ion exchange membrane 103 End anode element 104 End cathode element 105 Anode 106 Anode partition 107 Anode chamber 108 Cathode 109 Cathode partition 110 Cathode chamber 111 Anode rib 112 Cathode rib 113 Anode chamber side Gas-liquid separation means 114 Cathode chamber side gas-liquid separation means 115 Anolyte supply part 116 Anolyte discharge part 117 Catholyte supply part 118 Catholyte discharge part 119 Anolyte discharge manifold 120 Catholyte discharge manifold 121 Anolyte supply manifold 122 Anolyte Supply Valve 123 Supply Salt Water Tank 124 Catholyte Supply Manifold 125 Catholyte Supply Valve 126 Circulating Caustic Tank 127 Anolyte Supply Pipe 128 Catholyte Supply Pipe 129 Pure Water Tank 200 Monopolar Type Ion exchange membrane electrolytic cell 201 Anode element 202 Cathode element 203 Ion exchange membrane 204 Half cathode element 205 Anode 206 Cathode 207 Anode chamber 208 Cathode chamber 209 Anode chamber side gas-liquid separation means 210 Cathode chamber side gas-liquid separation means 211 Anode solution supply section 212 Anolyte Discharge Portion 213 Catholyte Supply Portion 214 Catholyte Discharge Portion 215 Anolyte Discharge Manifold 216 Catholyte Discharge Manifold 217 Anolyte Supply Manifold 218 Anolyte Supply Valve 219 Supply Salt Water Tank 220 Catholyte Supply Manifold 221 Cathode Liquid supply valve 222 Circulating caustic tank 223 Anolyte supply pipe 224 Catholyte supply pipe 225 Pure water tank 300 Current measuring device 301 Platinum electrode 302 Ammeter 303, 304 Piping

Claims (5)

陽極を収容する陽極室と、陰極を収容する陰極室と、前記陽極室に陽極液を供給する陽極液供給用マニホールドと、前記陰極室に陰極液を供給する陰極液供給用マニホールドと、を有するイオン交換膜電解槽の逆電流防止方法において、
前記イオン交換膜電解槽の運転停止後に、陽極液タンクから前記陽極液供給用マニホールドに陽極液を供給する陽極液供給管、および、陰極液タンクから前記陰極液供給用マニホールドに陰極液を供給する陰極液供給管のうち少なくとも陽極液供給管に、前記陽極液よりも電気伝導率の低い低導電性物質を注入することを特徴とするイオン交換膜電解槽の逆電流防止方法。
An anode chamber accommodating an anode, and a cathode chamber for accommodating the negative electrode, and the anolyte supply manifold for supplying anolyte into the anode compartment, and a catholyte supply manifold supplying a catholyte to the cathode chamber In the reverse current prevention method of the ion exchange membrane electrolytic cell having,
After the operation of the ion exchange membrane electrolytic cell is stopped, an anolyte supply pipe for supplying anolyte from the anolyte tank to the anolyte supply manifold, and a catholyte from the catholyte tank to the catholyte supply manifold At least the anolyte feed pipe, the reverse current prevention method of the ion exchange membrane electrolyzer, characterized in that injecting the anolyte by remote low conductivity material having low electrical conductivity of the catholyte supply tube.
前記低導電性物質が純水である請求項1記載のイオン交換膜電解槽の逆電流防止方法。   The method for preventing reverse current of an ion exchange membrane electrolytic cell according to claim 1, wherein the low-conductivity substance is pure water. 前記低導電性物質が不活性ガスである請求項1記載のイオン交換膜電解槽の逆電流防止方法。   The method for preventing reverse current in an ion exchange membrane electrolytic cell according to claim 1, wherein the low-conductivity substance is an inert gas. 前記イオン交換膜電解槽の運転停止後に、前記陰極液の循環を停止する請求項1〜3のうちいずれか一項記載のイオン交換膜電解槽の逆電流防止方法。   The reverse current prevention method of the ion exchange membrane electrolytic cell as described in any one of Claims 1-3 which stops the circulation of the said catholyte after the operation stop of the said ion exchange membrane electrolytic cell. 前記イオン交換膜電解槽が、陰極液排出用マニホールドと陰極液供給用マニホールドとを有する陰極液循環経路を少なくとも2経路有し、前記イオン交換膜電解槽の運転を停止した後、少なくとも1つの前記陰極液循環経路を他の陰極液循環経路から電気的に切断する請求項1〜4のうちいずれか一項記載のイオン交換膜電解槽の逆電流防止方法。   The ion exchange membrane electrolyzer has at least two catholyte circulation paths having a catholyte discharge manifold and a catholyte supply manifold, and after stopping the operation of the ion exchange membrane electrolyzer, at least one of the above The method for preventing reverse current of an ion exchange membrane electrolytic cell according to any one of claims 1 to 4, wherein the catholyte circulation path is electrically disconnected from other catholyte circulation paths.
JP2012241093A 2012-10-31 2012-10-31 Method for preventing reverse current of ion exchange membrane electrolytic cell Active JP5876811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012241093A JP5876811B2 (en) 2012-10-31 2012-10-31 Method for preventing reverse current of ion exchange membrane electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012241093A JP5876811B2 (en) 2012-10-31 2012-10-31 Method for preventing reverse current of ion exchange membrane electrolytic cell

Publications (2)

Publication Number Publication Date
JP2014091838A JP2014091838A (en) 2014-05-19
JP5876811B2 true JP5876811B2 (en) 2016-03-02

Family

ID=50936160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012241093A Active JP5876811B2 (en) 2012-10-31 2012-10-31 Method for preventing reverse current of ion exchange membrane electrolytic cell

Country Status (1)

Country Link
JP (1) JP5876811B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3872234A1 (en) 2020-02-28 2021-09-01 Korea Institute of Energy Research Hydrogen-generating electrode responsive to load fluctuation and method of manufacturing the same
EP4183896A1 (en) 2021-11-18 2023-05-24 Industrie De Nora S.P.A. Electrolysis unit for obtaining gaseous products

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438741B2 (en) * 2014-11-07 2018-12-19 旭化成株式会社 Electrical insulation method for electrolysis system
US10472723B2 (en) 2015-01-06 2019-11-12 Thyssenkrupp Uhde Chlorine Engineers (Japan) Ltd. Method of preventing reverse current flow through an ion exchange membrane electrolyzer
JP6865436B2 (en) * 2017-07-18 2021-04-28 Eneos株式会社 Electrochemical device
KR102776320B1 (en) * 2019-07-05 2025-03-07 주식회사 엘지화학 Method and System for Preventing Reverse Current
JP7381008B2 (en) * 2019-09-20 2023-11-15 Eneos株式会社 Hydrogen generation system control method and hydrogen generation system
JP7372797B2 (en) * 2019-09-20 2023-11-01 Eneos株式会社 Organic hydride generation system and method for controlling the organic hydride generation system
JPWO2022210578A1 (en) * 2021-03-30 2022-10-06
JP2023031711A (en) * 2021-08-25 2023-03-09 株式会社東芝 Water electrolysis device and method for controlling water electrolysis cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923888A (en) * 1982-07-29 1984-02-07 Mitsubishi Heavy Ind Ltd Method for producing chlorine or hypochlorite from sea water
JPS60221595A (en) * 1984-04-18 1985-11-06 Japan Storage Battery Co Ltd Method for operating alkali chloride electrolytic cell provided with air electrode as cathode
IT1233430B (en) * 1987-12-18 1992-03-31 Permelec S P A Milano METHOD FOR IDENTIFYING DEFECTIVE ION EXCHANGE MEMBRANES IN MONOPOLAR AND BIPOLAR MEMBRANE ELECTROLIZERS
JPH1099861A (en) * 1996-08-06 1998-04-21 Permelec Electrode Ltd Water electrolyzing method
JP2001020089A (en) * 1999-07-07 2001-01-23 Toagosei Co Ltd Protective method of alkali chloride electrolytic cell and protective device therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3872234A1 (en) 2020-02-28 2021-09-01 Korea Institute of Energy Research Hydrogen-generating electrode responsive to load fluctuation and method of manufacturing the same
KR20210109926A (en) 2020-02-28 2021-09-07 한국에너지기술연구원 Robust hydrogen generating electrode under dynamic operation and methode for manufacturing thereof
KR20220027129A (en) 2020-02-28 2022-03-07 한국에너지기술연구원 Robust hydrogen generating electrode under dynamic operation
EP4183896A1 (en) 2021-11-18 2023-05-24 Industrie De Nora S.P.A. Electrolysis unit for obtaining gaseous products
WO2023089024A1 (en) 2021-11-18 2023-05-25 Industrie De Nora S.P.A. Electrolysis unit for obtaining gaseous products

Also Published As

Publication number Publication date
JP2014091838A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5876811B2 (en) Method for preventing reverse current of ion exchange membrane electrolytic cell
US10472723B2 (en) Method of preventing reverse current flow through an ion exchange membrane electrolyzer
JP6450636B2 (en) Electrolysis method
JP2017119895A (en) Alkaline water electrolysis method
JPWO2010119918A1 (en) Electrolysis method using a two-chamber ion exchange membrane salt electrolyzer with a gas diffusion electrode
AU2019385031B2 (en) Hydrogen production method
CN114402095B (en) Cross-flow water electrolysis
CA2143100C (en) Target electrode for preventing corrosion in electrochemical cells
US11739433B2 (en) Method for removing non-proton cationic impurities from an electrochemical cell and an electrochemical cell
TWI431166B (en) Large - scale electrolyzer and electrolysis stop method
JP5376152B2 (en) Sulfuric acid electrolysis method
JP6587061B2 (en) Hydrogen water production equipment
JP5628834B2 (en) Membrane repair
JPS6240438B2 (en)
JP3750802B2 (en) Water electrolyzer and its operation method
JP3408462B2 (en) Method for protecting gas diffusion cathode in alkaline chloride electrolytic cell
JP2004256911A (en) Water electrolysis device and its operation method
JP2003183867A (en) Electrolysis method for alkali chloride solution
JP4771467B2 (en) Method for producing high purity alkali metal hydroxide
JPH031481Y2 (en)
JP2007059196A (en) Power generating system
JP2005254101A (en) Electrolytic method and device
CN115522218A (en) A device for suppressing anode effect of electrolytic cell for fluorine production
JPS59170280A (en) Method for preventing corrosion of alkali chloride electrolytic cell
JPS6067685A (en) Electrolytic cell for aqueous alkali chloride solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160122

R150 Certificate of patent or registration of utility model

Ref document number: 5876811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250