JP5875133B2 - Tempered glass substrate - Google Patents
Tempered glass substrate Download PDFInfo
- Publication number
- JP5875133B2 JP5875133B2 JP2007262908A JP2007262908A JP5875133B2 JP 5875133 B2 JP5875133 B2 JP 5875133B2 JP 2007262908 A JP2007262908 A JP 2007262908A JP 2007262908 A JP2007262908 A JP 2007262908A JP 5875133 B2 JP5875133 B2 JP 5875133B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- glass substrate
- tempered glass
- less
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims description 150
- 239000005341 toughened glass Substances 0.000 title claims description 62
- 239000011521 glass Substances 0.000 claims description 242
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 31
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 28
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 10
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 238000005342 ion exchange Methods 0.000 description 39
- 238000000034 method Methods 0.000 description 25
- 239000010410 layer Substances 0.000 description 23
- 238000004031 devitrification Methods 0.000 description 22
- 238000007500 overflow downdraw method Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 13
- 238000000465 moulding Methods 0.000 description 12
- 239000007791 liquid phase Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 238000003426 chemical strengthening reaction Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000007373 indentation Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000006060 molten glass Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229920001690 polydopamine Polymers 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 3
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 239000006059 cover glass Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000007088 Archimedes method Methods 0.000 description 2
- 238000006124 Pilkington process Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000009774 resonance method Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000006063 cullet Substances 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007372 rollout process Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
Description
本発明は、強化ガラス基板に関するものであり、特に、携帯電話、デジタルカメラ、PDA(携帯端末)、あるいはタッチパネルディスプレイに好適な強化ガラス基板に関するものである。 The present invention relates to a tempered glass substrate, and more particularly to a tempered glass substrate suitable for a mobile phone, a digital camera, a PDA (portable terminal), or a touch panel display.
携帯電話、デジタルカメラ、PDA、あるいはタッチパネルディスプレイといったデバイスは、ますます普及する傾向にある。 Devices such as mobile phones, digital cameras, PDAs, or touch panel displays are becoming increasingly popular.
これらの用途に用いられるガラス基板には、高い機械的強度が求められる。これらの用途には、イオン交換等で強化したガラス基板(所謂、強化ガラス基板)が用いられている(特許文献1、非特許文献1参照)。
非特許文献1によると、ガラス組成中のAl2O3含有量を増加させていくと、ガラスのイオン交換性能が向上し、ガラス基板の機械的強度を向上できることが記載されている。 According to Non-Patent Document 1, it is described that when the Al 2 O 3 content in the glass composition is increased, the ion exchange performance of the glass is improved and the mechanical strength of the glass substrate can be improved.
しかし、ガラス組成中のAl2O3含有量を増加させていくと、ガラスの耐失透性が悪化し、成形中にガラスが失透しやすくなり、ガラス基板の製造効率、品位等が悪化する。特に、ガラスの耐失透性が悪いと、オーバーフローダウンドロー法等の成形方法を採用することができず、ガラス基板の表面精度を高めることができない。それ故、フロート法等の成形方法を採用しなければならず、ガラス基板の成形後、別途研磨工程を付加しなければならない。ガラス基板を研磨すると、ガラス基板の表面に微小な欠陥が発生しやすくなり、ガラス基板の機械的強度を維持し難くなる。 However, if the Al 2 O 3 content in the glass composition is increased, the devitrification resistance of the glass deteriorates, and the glass tends to devitrify during molding, so that the production efficiency and quality of the glass substrate deteriorate. To do. In particular, when the devitrification resistance of the glass is poor, a molding method such as an overflow down draw method cannot be adopted, and the surface accuracy of the glass substrate cannot be increased. Therefore, a molding method such as a float method must be employed, and a separate polishing process must be added after the glass substrate is molded. When the glass substrate is polished, minute defects are likely to occur on the surface of the glass substrate, and it becomes difficult to maintain the mechanical strength of the glass substrate.
このような事情から、ガラスのイオン交換性能と耐失透性を両立することが困難であり、ガラス基板の機械的強度を顕著に向上させることが困難となっていた。 Under such circumstances, it has been difficult to achieve both ion exchange performance and devitrification resistance of glass, and it has been difficult to significantly improve the mechanical strength of the glass substrate.
また、デバイスの軽量化を図るため、タッチパネルディスプレイ等のデバイスに用いられるガラス基板は、年々薄肉化されてきている。薄板のガラス基板は破損しやすいことから、ガラス基板の機械的強度を向上させる技術は益々重要となってきている。 In addition, in order to reduce the weight of devices, glass substrates used in devices such as touch panel displays are becoming thinner year by year. Since a thin glass substrate is easily damaged, a technique for improving the mechanical strength of the glass substrate has become increasingly important.
そこで、本発明は、ガラスのイオン交換性能と耐失透性を両立させ、従来よりも機械的強度が高いガラス基板を得ることを技術的課題とする。 Then, this invention makes it the technical subject to make compatible the ion exchange performance and devitrification resistance of glass, and to obtain a glass substrate whose mechanical strength is higher than before.
本発明者は、種々の検討を行った結果、ガラス組成にZnOを含有させることで高いイオン交換性能が発現することを見出した。また、ZnOを含有するガラス組成系において、Al2O3の適正含有量を定めた上で、Al2O3とアルカリ金属酸化物の質量比(質量分率)を最適化し、且つLi2Oとアルカリ金属酸化物の比を最適化することで、ガラスのイオン交換性能を損なうことなく、ガラスの耐失透性を改善できることを見出し、本発明を提案するに至った。すなわち、本発明の強化ガラス基板は、表面に圧縮応力層を有する強化ガラス基板であって、ガラス組成として、質量%でSiO2 45〜80%、Al2O3 12〜21%、ZnO 0.01〜2.6%、B2O3 0〜5%、Li 2 O 0〜1.9%、SrO 0〜3%、BaO 0〜0.2%、希土類酸化物 0〜0.5%を含有し、且つ質量分率で、(Li2O+Na2O+K2O)/Al2O3の値が0.7〜2、Li2O/(Li2O+Na2O+K2O)の値が0〜0.3であることを特徴とする。 As a result of various studies, the present inventor has found that high ion exchange performance is exhibited by including ZnO in the glass composition. Further, in the glass composition system containing ZnO, in terms of defining the proper content of Al 2 O 3, to optimize the mass ratio of Al 2 O 3 and alkali metal oxides (mass fraction), and Li 2 O By optimizing the ratio between the alkali metal oxide and the alkali metal oxide, it was found that the devitrification resistance of the glass can be improved without impairing the ion exchange performance of the glass, and the present invention has been proposed. That is, the tempered glass substrate of the present invention is a tempered glass substrate having a compressive stress layer on the surface, and the glass composition is SiO 2 45 to 80% by mass, Al 2 O 3 12 to 21%, ZnO 0. 01~ 2.6%, B 2 O 3 0~ 5%, Li 2 O 0~1.9%, SrO 0~3%, BaO 0~0.2%, the 0 to 0.5% rare earth oxides contained, and a mass fraction, (Li 2 O + Na 2 O + K 2 O) / Al 2 value of O 3 is 0.7 ~2, Li 2 O / ( Li 2 O + Na 2 O + K 2 O) values of 0 It is characterized by 0.3 .
本発明の強化ガラス基板は、Li2O/(Li2O+Na2O+K2O)の値が0.01以上であることが好ましい。 The tempered glass substrate of the present invention preferably has a value of Li 2 O / (Li 2 O + Na 2 O + K 2 O) of 0.01 or more.
本発明の強化ガラス基板は、表面の圧縮応力が100MPa以上、且つ圧縮応力層の厚みが1μm以上であることが好ましい。ここで、「表面の圧縮応力」および「圧縮応力層の厚み」は、表面応力計(株式会社東芝製FSM−60)を用いて試料を観察した際に、観察される干渉縞の本数とその間隔等から算出される値を指す。なお、算出の際、屈折率は1.52、光弾性定数は28[(nm/cm)/MPa]として計算を行った(以下、同様)。 The tempered glass substrate of the present invention, compressive stress of the surface is more than 100 MPa, and the thickness of the compression stress layer is preferably 1μm or more. Here, “surface compressive stress” and “compressive stress layer thickness” are the number of interference fringes observed when a sample is observed using a surface stress meter (FSM-60 manufactured by Toshiba Corporation) and A value calculated from an interval or the like. In the calculation, the refractive index was 1.52, and the photoelastic constant was 28 [(nm / cm) / MPa] (hereinafter the same).
本発明の強化ガラス基板は、未研磨の表面を有することが好ましい。 The tempered glass substrate of the present invention preferably has an unpolished surface.
本発明の強化ガラス基板は、オーバーフローダウンドロー法で成形されていることが好ましい。 The tempered glass substrate of the present invention is preferably formed by an overflow down draw method.
本発明の強化ガラス基板は、液相温度が1100℃以下であることが好ましい。ここで、「液相温度」は、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持した後、結晶が析出する温度を指す。 The tempered glass substrate of the present invention preferably has a liquidus temperature of 1100 ° C. or lower. Here, “liquid phase temperature” refers to a temperature gradient furnace in which glass is crushed, passed through a standard sieve 30 mesh (a sieve opening of 500 μm), and glass powder remaining in a 50 mesh (a sieve opening of 300 μm) is placed in a platinum boat. The temperature at which crystals are precipitated after being held for 24 hours.
本発明の強化ガラス基板は、液相粘度が104.0dPa・s以上であることが好ましい。ここで、「液相粘度」は、液相温度におけるガラスの粘度を指す。なお、液相粘度が高く、液相温度が低い程、ガラスの耐失透性に優れるとともに、ガラス基板の成形性に優れている。 The tempered glass substrate of the present invention preferably has a liquidus viscosity of 10 4.0 dPa · s or more. Here, “liquidus viscosity” refers to the viscosity of the glass at the liquidus temperature. In addition, it is excellent in the moldability of a glass substrate while being excellent in the devitrification resistance of glass, so that liquid phase viscosity is high and liquid phase temperature is low.
本発明の強化ガラス基板は、密度が2.8g/cm3以下であることが好ましい。ここで、「密度」は、周知のアルキメデス法で測定した値を指す。 The tempered glass substrate of the present invention preferably has a density of 2.8 g / cm 3 or less. Here, “density” refers to a value measured by the well-known Archimedes method.
本発明の強化ガラス基板は、ヤング率が70GPa以上であることが好ましい。ここで、「ヤング率」は、共振法により測定した値を指す。 The tempered glass substrate of the present invention preferably has a Young's modulus of 70 GPa or more. Here, “Young's modulus” refers to a value measured by a resonance method.
本発明の強化ガラス基板は、30〜380℃における熱膨張係数が70〜95×10−7/℃であることが好ましい。ここで、「熱膨張係数」は、ディラトメーターを用いて、30〜380℃における平均熱膨張係数を測定した値を指す。 The tempered glass substrate of the present invention preferably has a thermal expansion coefficient at 30 to 380 ° C. is 70~95 × 10 -7 / ℃. Here, “thermal expansion coefficient” refers to a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. using a dilatometer.
本発明の強化ガラス基板は、クラック発生率が70%以下であることが好ましい。ここで、「クラック発生率」は、次のようにして測定した値を指す。まず湿度30%、温度25℃に保持された恒温恒湿槽内において、荷重500gに設定したビッカース圧子をガラス表面(光学研磨面)に15秒間打ち込み、その15秒後に圧痕の4隅から発生するクラックの数をカウント(1つの圧痕につき最大4とする)する。このようにして圧子を20回打ち込み、総クラック発生数を求めた後、(総クラック発生数/80)×100の式により求める。 The tempered glass substrate of the present invention preferably has a crack occurrence rate of 70% or less. Here, the “crack occurrence rate” indicates a value measured as follows. First, in a constant temperature and humidity chamber maintained at a humidity of 30% and a temperature of 25 ° C., a Vickers indenter set to a load of 500 g is driven into the glass surface (optical polishing surface) for 15 seconds, and 15 seconds later, it is generated from the four corners of the indentation. Count the number of cracks (maximum 4 per indentation). Thus, after indenting the indenter 20 times and determining the total number of cracks generated, the total number of cracks generated is calculated by the formula (total number of cracks generated / 80) × 100.
本発明の強化ガラス基板は、タッチパネルディスプレイに用いることが好ましい。 The tempered glass substrate of the present invention is preferably used for a touch panel display.
本発明のガラスは、ガラス組成として、質量%で、SiO2 45〜80%、Al2O3 12〜21%、ZnO 0.01〜2.6%、B2O3 0〜5%、Li 2 O 0〜1.9%、SrO 0〜3%、BaO 0〜0.2%、希土類酸化物 0〜0.5%を含有し、且つ質量分率で、(Li2O+Na2O+K2O)/Al2O3の値が0.7〜2、Li2O/(Li2O+Na2O+K2O)の値が0〜0.3であることに特徴付けられる。 The glass of the present invention, as a glass composition, in mass%, SiO 2 45~80%, Al 2 O 3 12~21%, ZnO 0.01~ 2.6%, B 2 O 3 0~ 5%, Li 2 O 0 to 1.9%, SrO 0 to 3%, BaO 0 to 0.2 %, rare earth oxide 0 to 0.5%, and by mass fraction, (Li 2 O + Na 2 O + K 2 O ) / Al 2 O 3 value from 0.7 to 2, the value of Li 2 O / (Li 2 O + Na 2 O + K 2 O) is characterized in that 0 to 0.3.
本発明のガラスは、Li2O/(Li2O+Na2O+K2O)の値が0.01以上であることが好ましい。 The glass of the present invention preferably has a value of Li 2 O / (Li 2 O + Na 2 O + K 2 O) of 0.01 or more.
本発明のガラスは、430℃のKNO3溶融塩中で4時間イオン交換したとき、表面の圧縮応力が300MPa以上、且つ圧縮応力層の厚みが3μm以上になることが好ましい。ここで、「表面の圧縮応力」および「圧縮応力層の厚み」は、表面応力計(株式会社東芝製FSM−60)を用いて試料を観察した際に、観察される干渉縞の本数とその間隔等から算出される値を指す。 When the glass of the present invention is subjected to ion exchange in KNO 3 molten salt at 430 ° C. for 4 hours, the surface compressive stress is preferably 300 MPa or more and the thickness of the compressive stress layer is preferably 3 μm or more. Here, “surface compressive stress” and “compressive stress layer thickness” are the number of interference fringes observed when a sample is observed using a surface stress meter (FSM-60 manufactured by Toshiba Corporation) and A value calculated from an interval or the like.
本発明の強化ガラス基板は、その表面に圧縮応力層を有する。ガラス基板の表面に圧縮応力層を形成する方法には、物理強化法と化学強化法がある。本発明の強化ガラス基板は、化学強化法で圧縮応力層を形成することが好ましい。化学強化法は、ガラスの歪点以下の温度でイオン交換によりガラス基板の表面にイオン半径の大きいアルカリイオンを導入する方法である。化学強化法で圧縮応力層を形成すれば、ガラス基板の板厚が薄くても、良好に強化処理を施すことができ、所望の機械的強度を得ることができる。さらに、化学強化法で圧縮応力層を形成すれば、風冷強化法等の物理強化法の場合と異なり、ガラス基板に圧縮応力層を形成した後に、ガラス基板を切断しても、ガラス基板が破壊し難い。 The tempered glass substrate of the present invention has a compressive stress layer on its surface. Methods for forming a compressive stress layer on the surface of a glass substrate include a physical strengthening method and a chemical strengthening method. The tempered glass substrate of the present invention preferably forms a compressive stress layer by a chemical tempering method. The chemical strengthening method is a method of introducing alkali ions having a large ion radius into the surface of a glass substrate by ion exchange at a temperature below the strain point of the glass. If the compressive stress layer is formed by the chemical strengthening method, even if the plate thickness of the glass substrate is thin, the strengthening treatment can be performed satisfactorily and a desired mechanical strength can be obtained. Furthermore, if the compressive stress layer is formed by the chemical strengthening method, unlike the case of the physical strengthening method such as the air cooling strengthening method, the glass substrate is not cut even if the glass substrate is cut after forming the compressive stress layer on the glass substrate. Hard to destroy.
イオン交換の条件は、特に限定されず、ガラスの粘度特性等を考慮して決定すればよい。特に、KNO3溶融塩中のK2Oをガラス基板中のLi2O、Na2Oとイオン交換すると、ガラス基板の表面に圧縮応力層を効率良く形成することができる。 The ion exchange conditions are not particularly limited, and may be determined in consideration of the viscosity characteristics of the glass. In particular, when K 2 O in KNO 3 molten salt is ion-exchanged with Li 2 O and Na 2 O in a glass substrate, a compressive stress layer can be efficiently formed on the surface of the glass substrate.
本発明の強化ガラス基板において、ガラス組成を上記範囲に限定した理由を以下に説明する。なお、以下の%表示は、特に断りがある場合を除き、質量%を指す。 The reason for limiting the glass composition to the above range in the tempered glass substrate of the present invention will be described below. In addition, the following% display points out the mass% except the case where there is particular notice.
SiO2は、ガラスのネットワークを形成する成分であり、その含有量は45〜80%、好ましくは50〜75%、より好ましくは55〜70%である。SiO2の含有量が80%より多くなると、ガラスの溶融、成形が難しくなったり、熱膨張係数が小さくなり過ぎて、周辺材料と熱膨張係数が整合し難くなる。一方、SiO2の含有量が45%より少ないと、ガラスの熱膨張係数が大きくなり過ぎて、ガラスの耐熱衝撃性が低下しやすくなる。 SiO 2 is a component forming a glass network, the content 45 to 80%, preferably 50% to 75%, more preferably 55 to 70%. When the content of SiO 2 exceeds 80%, it becomes difficult to melt and mold the glass, or the thermal expansion coefficient becomes too small, and it becomes difficult to match the thermal expansion coefficient with the surrounding materials. On the other hand, if the content of SiO 2 is less than 45%, the thermal expansion coefficient of the glass becomes too large, and the thermal shock resistance of the glass tends to decrease.
Al2O3は、ガラスの耐熱性、イオン交換性能およびヤング率を高くする効果がある成分であり、その含有量は12〜21%である。Al2O3の含有量が21%より多くなると、ガラスに失透結晶が析出しやすくなったり、ガラスの熱膨張係数が小さくなり過ぎて、周辺材料と熱膨張係数が整合し難くなる。また、ガラスの高温粘性が高くなり、溶融し難くなる。Al2O3の含有量が12%より少ないと、十分なイオン交換性能を発揮できないおそれが生じる。上記観点から、Al2O3の好適な範囲は、上限が18%以下、17%以下、特に16.5%以下である。 Al 2 O 3 is a component having an effect of increasing the heat resistance, ion exchange performance and Young's modulus of glass, and its content is 12 to 21%. When the content of Al 2 O 3 is more than 21%, devitrified crystals are likely to precipitate on the glass, or the thermal expansion coefficient of the glass becomes too small to make it difficult to match the thermal expansion coefficient with the surrounding materials. Moreover, the high temperature viscosity of glass becomes high and it becomes difficult to melt | dissolve. When the content of Al 2 O 3 is less than 12 %, there is a possibility that sufficient ion exchange performance cannot be exhibited. In view of the above, the preferred range of Al 2 O 3, and the upper limit is 18% or less, 17% or less, Ru der especially 16.5% or less.
ZnOは、本発明に係るガラス系に適量添加すれば、イオン交換性能を顕著に向上させる効果があり、必須成分である。また、ZnOは、ガラスの高温粘度を低下させたり、ヤング率を向上させる効果がある成分である。ZnOの含有量は0.01〜2.6%、好ましくは0.5〜2.6%、更に好ましくは1〜2.6%である。ZnOの含有量が多くなると、ガラスの熱膨張係数が大きくなり過ぎることに加えて、ガラスの耐失透性が悪化したり、クラック発生率が高くなる傾向にある。一方、ZnOの含有量が0.01%より少なくなると、ガラスのイオン交換性能を向上させることが困難になる。 If an appropriate amount of ZnO is added to the glass system according to the present invention, it has an effect of remarkably improving the ion exchange performance and is an essential component. ZnO is a component that has the effect of reducing the high temperature viscosity of the glass or improving the Young's modulus. The content of ZnO is 0.01 to 2.6%, preferably from 0.5 to 2.6%, the more preferably from 1 to 2.6%. And the content of ZnO is multi Kunar, in addition to the thermal expansion coefficient of the glass becomes too large, deteriorates resistance to devitrification of the glass tends to crack generation ratio increases. On the other hand, when the ZnO content is less than 0.01%, it is difficult to improve the ion exchange performance of the glass.
B2O3は、ガラスの液相温度、高温粘度および密度を低下させる効果がある成分であるとともに、ガラスのヤング率やイオン交換性能を高める効果がある成分であり、その含有量は0〜5%である。一方、B2O3の含有量が多いと、イオン交換によって表面にヤケが発生したり、ガラスの耐水性が悪化したり、液相粘度が低下するおそれがある。 B 2 O 3 is a component that has the effect of reducing the liquidus temperature, high-temperature viscosity, and density of the glass, and is a component that has the effect of increasing the Young's modulus and ion exchange performance of the glass, and its content is 0 to 5%. On the other hand, B 2 O 3 content is polytene, or scorch is generated on the surface by ion exchange, or worse water resistance of the glass, the liquidus viscosity may be lowered.
Li2Oは、イオン交換成分であるとともに、ガラスの高温粘度を低下させて溶融性や成形性を向上させる成分である。さらに、Li2Oは、ガラスのヤング率を向上させる効果を有するとともに、クラック発生率を低減させる効果がある成分である。Li2Oの含有量は0〜1.9%、好ましくは0.01〜1.9%、より好ましくは0.1〜1.9%、特に好ましくは1〜1.9%である。Li2Oの含有量が1.9%より多くなると、ガラスが失透しやすくなり、液相粘度が低下することに加えて、ガラスの熱膨張係数が大きくなり過ぎて、ガラスの耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。 Li 2 O is an ion exchange component and a component that lowers the high temperature viscosity of the glass and improves meltability and moldability. Furthermore, Li 2 O is a component that has the effect of improving the Young's modulus of glass and the effect of reducing the crack generation rate. Li 2 O content of from 0 to 1.9% and preferably 0.01 to 1.9%, more preferably from 0.1 to 1.9%, preferably from 1 to 1.9% especially. If the Li 2 O content exceeds 1.9 %, the glass tends to devitrify, the liquid phase viscosity decreases, and the thermal expansion coefficient of the glass becomes too large, resulting in the thermal shock resistance of the glass. It becomes difficult to match the thermal expansion coefficient with the surrounding material.
Na2Oは、イオン交換成分であるとともに、ガラスの高温粘度を低下させて溶融性や成形性を向上させたり、クラック発生率を低減させたりする効果がある成分である。また、Na2Oは、ガラスの耐失透性を改善する成分でもある。Na2Oの含有量は0〜18%、好ましくは0〜15%、より好ましくは1〜13%、更に好ましくは3〜13%、特に好ましくは5〜11%、最も好ましくは5〜9%である。Na2Oの含有量が15%より多くなると、ガラスの熱膨張係数が大きくなり過ぎて、ガラスの耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。また、Na2Oの含有量が多過ぎると、ガラス組成のバランスを欠き、かえってガラスの耐失透性が悪化する傾向がある。 Na 2 O is an ion exchange component and is a component that has the effect of reducing the high temperature viscosity of the glass to improve the meltability and formability, and to reduce the crack generation rate. Na 2 O is also a component that improves the devitrification resistance of the glass. The content of Na 2 O is 0 to 18%, preferably 0 to 15%, more preferably 1 to 13%, still more preferably 3 to 13%, particularly preferably 5 to 11%, and most preferably 5 to 9%. It is. When the content of Na 2 O is more than 15%, the thermal expansion coefficient of the glass becomes too large, and the thermal shock resistance of the glass is lowered, or it is difficult to match the thermal expansion coefficient with the surrounding materials. Further, when the content of Na 2 O is too large, they lack the balance of the glass composition, rather tends to devitrification property of the glass deteriorates.
K2Oは、イオン交換を促進する効果があるだけでなく、ガラスの高温粘度を低下させて溶融性や成形性を高めたり、クラック発生率を低減させたりする効果がある成分である。また、K2Oは、耐失透性を改善する成分でもある。K2Oの含有量は、好ましくは0〜10%、より好ましくは0.5〜9%、更に好ましくは1〜9%、特に好ましくは2〜8%である。K2Oの含有量が10%より多くなると、ガラスの熱膨張係数が大きくなり過ぎて、ガラスの耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。また、K2Oの含有量が多過ぎると、ガラス組成のバランスを欠き、かえってガラスの耐失透性が悪化する傾向がある。 K 2 O is a component that not only has an effect of promoting ion exchange, but also has an effect of reducing the high temperature viscosity of the glass to improve the meltability and formability, and to reduce the crack generation rate. K 2 O is also a component that improves devitrification resistance. The content of K 2 O is preferably 0 to 10%, more preferably 0.5 to 9%, still more preferably 1 to 9%, and particularly preferably 2 to 8%. When the content of K 2 O is more than 10%, the thermal expansion coefficient of the glass becomes too large, and the thermal shock resistance of the glass is lowered, or it is difficult to match the thermal expansion coefficient with the surrounding materials. If the content of K 2 O is too large, they lack the balance of the glass composition, rather tends to devitrification property of the glass deteriorates.
アルカリ金属成分R2O(RはLi、Na、Kから選ばれる1種以上)の合量が多くなり過ぎると、ガラスが失透しやすくなることに加えて、ガラスの熱膨張係数が大きくなり過ぎて、ガラスの耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。また、アルカリ金属成分R2Oの合量が多くなり過ぎると、ガラスの歪点が低下し過ぎる場合がある。それ故、R2Oの合量は、30%以下、22%以下、特に20%以下であることが望ましい。一方、R2Oの合量が少な過ぎると、ガラスのイオン交換性能や溶融性が悪化したり、クラック発生率が高くなる場合がある。それ故、R2Oの合量は、1.5%以上、6%以上、11%以上、特に13%以上であることが望ましい。 If the total amount of the alkali metal component R 2 O (R is one or more selected from Li, Na, and K) becomes too large, the glass tends to devitrify and the coefficient of thermal expansion of the glass increases. Thus, the thermal shock resistance of the glass is lowered, and it is difficult to match the thermal expansion coefficient with the surrounding material. Moreover, when the total amount of the alkali metal component R 2 O is too large, the strain point of the glass may be excessively lowered. Therefore, the total amount of R 2 O is desirably 30% or less, 22% or less, and particularly 20% or less. On the other hand, when the total amount of R 2 O is too small, the ion exchange performance and meltability of the glass may be deteriorated or the crack generation rate may be increased. Therefore, the total amount of R 2 O is desirably 1.5% or more, 6% or more, 11% or more, particularly 13% or more.
本発明者の鋭意努力の結果、質量分率R2O/Al2O3およびLi2O/R2Oを厳密に規制することより、オーバーフローダウンドロー法を可能にする液相粘度と、高いイオン交換性能を両立できることが明らかになった。 As a result of the inventor's diligent efforts, by strictly regulating the mass fractions R 2 O / Al 2 O 3 and Li 2 O / R 2 O, the liquid phase viscosity enabling an overflow downdraw method and high It became clear that ion exchange performance can be achieved.
本発明において、質量分率でR2O/Al2O3の値は0.7〜2、好ましくは0.7〜1.5、より好ましくは0.7〜1.4、更に好ましくは0.8〜1.3である。R2O/Al2O3の値を0.7以上とすれば、ガラスの耐失透性や溶融性を改善することができる。一方、R2O/Al2O3の値が2より大きいと、ガラス組成のバランスを欠き、かえってガラスの耐失透性が悪化したり、歪点が低下し過ぎて、ガラスの耐熱性が低下したり、ガラスの粘性が下がり過ぎて、高い液相粘度を維持するのが困難になる。また、R2O/Al2O3の値が2より大きいと、イオン交換性能が低下する傾向がある。一方、R2O/Al2O3の値が0.7より小さいと、ガラスの耐失透性や溶融性が悪化する。 In the present invention, the value of R 2 O / Al 2 O 3 in terms of mass fraction is 0.7 to 2, preferably 0.7 to 1.5, more preferably 0.7 to 1.4, and still more preferably 0. .8 to 1.3. If the value of R 2 O / Al 2 O 3 is 0.7 or more, the devitrification resistance and meltability of the glass can be improved. On the other hand, if the value of R 2 O / Al 2 O 3 is greater than 2, the balance of the glass composition is lacking, and the devitrification resistance of the glass is deteriorated or the strain point is excessively lowered. It becomes difficult to maintain a high liquid phase viscosity because the glass viscosity decreases or the glass viscosity decreases too much. Moreover, when the value of R 2 O / Al 2 O 3 is larger than 2, the ion exchange performance tends to decrease. On the other hand, when the value of R 2 O / Al 2 O 3 is smaller than 0.7 , the devitrification resistance and meltability of the glass deteriorate.
上記範囲内にR2O/Al2O3の値を調節した上で、Li2O/(Li2O+Na2O+K2O)、つまりLi2O/R2Oの値を適正化すれば、液相粘度をより一層上昇させつつ、イオン交換性能を向上させることができる。Li2O/R2Oの値は、質量分率で0〜0.3、好ましくは0.01〜0.3、更に好ましくは0.05〜0.3である。Li2O/R2Oの値を上記範囲(望ましくはLi2O/R2Oの値を0.01以上)に規制すれば、高いイオン交換性能が発現し、同時にガラスの高ヤング率化、クラック発生率の低減および溶融温度の低減等を図ることができる。しかし、Li2O/R2Oの値が0.3より大きくなると、液相粘度を高めることが困難になる。 After adjusting the value of R 2 O / Al 2 O 3 within the above range, if Li 2 O / (Li 2 O + Na 2 O + K 2 O), that is, the value of Li 2 O / R 2 O is optimized, The ion exchange performance can be improved while further increasing the liquid phase viscosity. The value of Li 2 O / R 2 O is from 0 to 0.3, and good Mashiku mass fraction 0.01 to 0.3, more preferably from 0.05 to 0.3. If regulating the value of Li 2 O / R 2 O in the range (preferably 0.01 or more values of Li 2 O / R 2 O) , expressed a high ion exchange performance, at the same time a high Young's modulus of the glass In addition, it is possible to reduce the crack generation rate and the melting temperature. However, when the value of Li 2 O / R 2 O is greater than 0.3 , it is difficult to increase the liquid phase viscosity.
本発明の強化ガラス基板において、ガラス組成として、上記成分に加えてMgO、CaO、SrO、BaO、TiO2、P2O5、ZrO2等の成分が添加可能である。なお、MgO、CaO、SrO、BaO、TiO2、P2O5、ZrO2等の成分は任意成分である。 In the tempered glass substrate of the present invention, components such as MgO, CaO, SrO, BaO, TiO 2 , P 2 O 5 and ZrO 2 can be added as a glass composition in addition to the above components. Components such as MgO, CaO, SrO, BaO, TiO 2 , P 2 O 5 and ZrO 2 are optional components.
アルカリ土類金属成分R’O(R’はCa、Sr、Baから選ばれる1種以上)は、種々の目的で添加可能な成分である。しかし、アルカリ土類金属成分R’Oが多くなると、ガラスの密度や熱膨張係数が高くなったり、耐失透性が悪化したりすることに加えて、クラック発生率が高くなったり、イオン交換性能が悪化する傾向がある。それ故、アルカリ土類金属成分R’Oは、好ましくは0〜10%、より好ましくは0〜8%、更に好ましくは0〜5%、特に好ましくは0〜3%である。 The alkaline earth metal component R′O (R ′ is one or more selected from Ca, Sr, and Ba) is a component that can be added for various purposes. However, when the alkaline earth metal component R′O is increased, the density and thermal expansion coefficient of the glass are increased and the devitrification resistance is deteriorated. In addition, the crack generation rate is increased and the ion exchange is increased. There is a tendency for performance to deteriorate. Therefore, the alkaline earth metal component R′O is preferably 0 to 10%, more preferably 0 to 8%, still more preferably 0 to 5%, and particularly preferably 0 to 3%.
MgOは、ガラスの高温粘度を低下させて溶融性や成形性を高めたり、歪点やヤング率を高めたりする成分である。また、MgOは、アルカリ土類金属酸化物の中ではイオン交換性能を向上させる効果が比較的高いため、その含有量を0〜10%とすることができる。しかし、MgOの含有量が多くなると、ガラスの密度、熱膨張係数およびクラック発生率が高くなったり、ガラスが失透しやすくなったりする傾向がある。したがって、その含有量は、8%以下、5%以下、特に3%以下であることが望ましい。 MgO is a component that lowers the high-temperature viscosity of glass to improve meltability and formability, and increase the strain point and Young's modulus. Further, MgO has a relatively high effect of improving the ion exchange performance among alkaline earth metal oxides, so its content can be set to 0 to 10%. However, when the content of MgO increases, the density, thermal expansion coefficient and crack generation rate of the glass tend to increase, or the glass tends to devitrify. Therefore, the content is desirably 8% or less, 5% or less, particularly 3% or less.
CaOは、ガラスの高温粘度を低下させて溶融性や成形性を高めたり、歪点やヤング率を高めたりする成分であり、その含有量を0〜10%とすることができる。しかし、CaOの含有量が多くなると、ガラスの密度、熱膨張係数およびクラック発生率が高くなったり、ガラスが失透しやすくなったり、更にはイオン交換性能が悪化する傾向がある。したがって、その含有量は、8%以下、5%以下、3%以下、1%以下、0.8%以下、特に0.5%以下が望ましく、理想的には実質的に含有しないことが望ましい。ここで、「CaOを実質的に含有しない」とは、ガラス組成中のCaOの含有量が0.2%以下の場合を指す。 CaO is a component that lowers the high-temperature viscosity of the glass to increase the meltability and formability, and increases the strain point and Young's modulus, and its content can be 0 to 10%. However, when the content of CaO increases, the density, thermal expansion coefficient and crack generation rate of the glass increase, the glass tends to devitrify, and the ion exchange performance tends to deteriorate. Therefore, the content is desirably 8% or less, 5% or less, 3% or less, 1% or less, 0.8% or less, particularly 0.5% or less, and ideally not substantially contained. . Here, “substantially free of CaO” refers to a case where the content of CaO in the glass composition is 0.2% or less.
SrOは、ガラスの高温粘度を低下させて溶融性や成形性を向上させたり、歪点やヤング率を高めたりする成分である。SrOの含有量を0〜3%である。しかし、SrOの含有量が多くなると、ガラスの密度、熱膨張係数およびクラック発生率が高くなったり、ガラスが失透しやすくなったり、更にはイオン交換性能が悪化する傾向がある。したがって、その含有量は3%以下であり、1%以下、0.8%以下、特に0.5%以下が望ましく、理想的には実質的に含有しないことが望ましい。ここで、「SrOを実質的に含有しない」とは、ガラス組成中のSrOの含有量が0.2%以下の場合を指す。 SrO may or enhance the meltability and the formability lowers the high temperature viscosity of the glass, Ru component der of or to enhance the strain point and the Young's modulus. The content of SrO is from 0 3%. However, when the SrO content increases, the density, thermal expansion coefficient and crack generation rate of the glass increase, the glass tends to devitrify, and the ion exchange performance tends to deteriorate. Accordingly, the content thereof is less than 3%, less than 1%, 0.8% or less, particularly preferably 0.5% or less, it is desirable that ideally substantially free. Here, “substantially does not contain SrO” refers to a case where the content of SrO in the glass composition is 0.2% or less.
BaOは、ガラスの高温粘度を低下させて溶融性や成形性を向上させたり、歪点やヤング率を高めたりする成分であり、その含有量を0〜0.2%とする。しかし、BaOの含有量が多くなると、ガラスの密度、熱膨張係数およびクラック発生率が高くなったり、ガラスが失透しやすくなったり、更にはイオン交換性能が悪化する傾向がある。 BaO is or enhance the meltability and the formability lowers the high temperature viscosity of the glass is a component or to enhance the strain point and the Young's modulus, you content thereof from 0 to 0.2%. But when it comes many content BaO, density of the glass, or high coefficient of thermal expansion and crack generation ratio, or easily glass devitrified, more Ru tend to the ion exchange performance deteriorates.
ZrO2は、ガラスの歪点やヤング率を向上させ、イオン交換性能を向上させる成分であり、その含有量を0〜5%とすることができる。しかし、ZrO2の含有量が多くなると、ガラスの耐失透性が悪化する。特に、オーバーフローダウンドロー成形する場合には、成形体との界面にZrO2に起因する結晶が析出し、長期に亘る操業中にガラス基板の生産性を低下させるおそれが生じる。ZrO2の好適な範囲は、0〜5%(望ましくは0〜3%、0〜1.5%、0〜1%、0〜0.8%、0〜0.5%、特に0〜0.1%)である。 ZrO 2 is a component that improves the strain point and Young's modulus of glass and improves the ion exchange performance, and its content can be 0 to 5%. However, when the content of ZrO 2 increases, the devitrification resistance of the glass deteriorates. In particular, in the case of overflow down draw molding, crystals due to ZrO 2 are precipitated at the interface with the molded body, which may reduce the productivity of the glass substrate during long-term operation. The preferred range of ZrO 2 is 0-5% (desirably 0-3%, 0-1.5%, 0-1%, 0-0.8%, 0-0.5%, especially 0-0 .1%).
TiO2は、ガラスのイオン交換性能を高める成分であり、その含有量を0〜8%とすることができる。しかし、TiO2の含有量が多くなると、ガラスが着色したり、耐失透性が悪化したりするため、その含有量は5%以下、4%以下であることが好ましい。 TiO 2 is a component that enhances the ion exchange performance of glass, and its content can be 0 to 8%. However, when the content of TiO 2 is increased, the glass is colored or the devitrification resistance is deteriorated. Therefore, the content is preferably 5% or less and 4% or less.
P2O5は、ガラスのイオン交換性能を高める成分であり、特に、圧縮応力厚みを厚くする効果が大きいため、その含有量を0〜8%とすることができる。しかし、P2O5の含有量が多くなると、ガラスが分相したり、耐水性が悪化したりするため、その含有量は5%以下、4%以下、特に3%以下であることが好ましい。 P 2 O 5 is a component that enhances the ion exchange performance of the glass. Particularly, since P 2 O 5 has a large effect of increasing the thickness of the compressive stress, its content can be set to 0 to 8%. However, when the content of P 2 O 5 is increased, the glass is phase-separated or the water resistance is deteriorated. Therefore, the content is preferably 5% or less, 4% or less, particularly 3% or less. .
R’Oの合量をR2Oの合量で除した値が大きくなると、クラック発生率が高くなるとともに、ガラスの耐失透性が悪化する傾向が現れる。それ故、質量分率でR’O/R2Oの値を0.5以下、0.4以下、0.3以下、0.1以下に規制することが望ましい。 When the value obtained by dividing the total amount of R′O by the total amount of R 2 O is increased, the crack generation rate is increased, and the devitrification resistance of the glass tends to be deteriorated. Therefore, it is desirable to regulate the value of R′O / R 2 O to 0.5 or less, 0.4 or less, 0.3 or less, or 0.1 or less by mass fraction.
さらに、ガラスの特性を大きく損なわない範囲で他の成分を添加することができる。例えば清澄剤としてSO3、Sb2O3およびSnO2の群から選択された一種または二種以上を0〜3%(望ましくは0.01〜1%)含有させてもよい。また、As2O3等は、環境面への配慮から、実質的に含有しないことが好ましい。ここで、「As2O3を実質的に含有しない」とは、ガラス組成中のAs2O3の含有量が0.1%以下の場合を指す。 Furthermore, other components can be added as long as the properties of the glass are not significantly impaired. For example, 0 to 3% (preferably 0.01 to 1%) of one or more selected from the group of SO 3 , Sb 2 O 3 and SnO 2 may be contained as a fining agent. Further, As 2 O 3 or the like is preferably not substantially contained in consideration of environmental considerations. Here, “substantially not containing As 2 O 3 ” refers to a case where the content of As 2 O 3 in the glass composition is 0.1% or less.
Nb2O5やLa2O3等の希土類酸化物は、ガラスのヤング率を高める成分である。しかし、原料自体のコストが高く、また多量に含有させると耐失透性が悪化する。それ故、それらの含有量は0.5%以下であり、理想的には実質的に含有しないことが望ましい。ここで、「希土類酸化物を実質的に含有しない」とは、ガラス組成中の希土類酸化物の含有量が0.1%以下の場合を指す。 Rare earth oxides such as Nb 2 O 5 and La 2 O 3 are components that increase the Young's modulus of glass. However, the cost of the raw material itself is high, and if it is contained in a large amount, the devitrification resistance deteriorates. Therefore, their content is 0 . It is preferably 5% or less , and ideally not substantially contained. Here, “substantially no rare earth oxide” refers to the case where the content of the rare earth oxide in the glass composition is 0.1% or less.
なお、本発明において、Co、Ni等のガラスを強く着色するような遷移金属元素は、ガラス基板の透過率を低下させるため好ましくない。特に、タッチパネルディスプレイ用途に用いる場合、遷移金属元素の含有量が多いと、タッチパネルディスプレイの視認性が損なわれる。具体的には0.5%以下、0.1%以下、特に0.05%以下となるよう、原料あるいはカレットの使用量を調整することが望ましい。また、PbOやBi2O3等は、環境面への配慮から、実質的に含有しないことが好ましい。ここで、「PbOを実質的に含有しない」とは、ガラス組成中のPbOの含有量が0.1%以下の場合を指す。「Bi2O3を実質的に含有しない」とは、ガラス組成中のBi2O3の含有量が0.1%以下の場合を指す。 In the present invention, transition metal elements such as Co and Ni that strongly color the glass are not preferable because they reduce the transmittance of the glass substrate. In particular, when used in touch panel display applications, if the content of transition metal elements is large, the visibility of the touch panel display is impaired. Specifically, it is desirable to adjust the amount of raw material or cullet used so that it is 0.5% or less, 0.1% or less, and particularly 0.05% or less. Further, it is preferable that PbO, Bi 2 O 3 and the like are not substantially contained in consideration of environmental aspects. Here, “substantially no PbO” refers to a case where the content of PbO in the glass composition is 0.1% or less. “Substantially no Bi 2 O 3 ” refers to the case where the content of Bi 2 O 3 in the glass composition is 0.1% or less.
各成分の好適な含有範囲を適宜選択し、好ましいガラス組成範囲とすることができる。その中でも、より好ましいガラス組成範囲として、
(1)質量%でSiO2 45〜80%、Al2O3 12〜16.5%、ZnO 0.01〜2.6%、Li 2 O 0〜1.9%、B2O3 0〜5%、SrO 0〜3%、BaO 0〜0.2%、希土類酸化物 0〜0.5%を含有し、且つ質量分率でLi2O/R2Oの値が0〜0.3、R2O/Al2O3の値が0.7〜2、
(2)質量%でSiO2 55〜70%、Al2O3 12〜18%、ZnO 0.01〜2.6%、Li2O 0.01〜1.9%、Na2O 0〜15%、K2O 0〜10%、B2O3 0〜5%、MgO 0〜10%、CaO 0〜10%、SrO 0〜3%、BaO 0〜0.2%、希土類酸化物 0〜0.5%を含有し、且つ質量分率でLi2O/R2Oの値が0.01〜0.3、R2O/Al2O3の値が0.7〜1.5、
(3)質量%でSiO2 55〜70%、Al2O3 12〜17%、ZnO 1〜2.6%、Li2O 1〜1.9%、Na2O 5〜11%、K2O 2〜8%、B2O3 0〜5%、MgO 0〜5%、CaO 0〜5%、SrO 0〜3%、BaO 0〜0.2%、希土類酸化物 0〜0.5%を含有し、且つ質量分率でLi2O/R2Oの値が0.05〜0.25、R2O/Al2O3の値が0.8〜1.3等のガラスが挙げられる。
A suitable content range of each component can be appropriately selected to obtain a preferable glass composition range. Among these, as a more preferable glass composition range,
(1) SiO 2 45~80% by mass%, Al 2 O 3 12~16.5% , ZnO 0.01~ 2.6%, Li 2 O 0~1.9%, B 2 O 3 0~ 5%, SrO 0~3%, BaO 0~ 0.2%, contains 0 to 0.5% rare earth oxide, and a mass fraction of the value of the Li 2 O / R 2 O is 0 to 0.3 , the value of R 2 O / Al 2 O 3 is 0.7 to 2,
(2) SiO 2 55~70% by mass%, Al 2 O 3 12~18% , ZnO 0.01~ 2.6%, Li 2 O 0.01~ 1.9%, Na 2 O 0~15 %, K 2 O 0~10%, B 2 O 3 0~ 5%, 0~10% MgO, CaO 0~10%, SrO 0~3%, BaO 0~ 0.2%, rare earth oxide 0 Containing 0.5%, and by mass fraction, the value of Li 2 O / R 2 O is 0.01 to 0.3, the value of R 2 O / Al 2 O 3 is 0.7 to 1.5,
(3) SiO 2 55~70% by mass%, Al 2 O 3 12~17% , ZnO 1~ 2.6%, Li 2 O 1~ 1.9%, Na 2 O 5~11%, K 2 O 2~8%, B 2 O 3 0~5%, 0~5% MgO, CaO 0~5%, SrO 0~3%, BaO 0~ 0.2%, rare earth oxide 0 to 0.5% And glass having a mass fraction of Li 2 O / R 2 O of 0.05 to 0.25, R 2 O / Al 2 O 3 of 0.8 to 1.3, etc. It is done.
ガラス組成を上記範囲内に規制すれば、ガラスの耐失透性を大幅に改善できるとともに、オーバーフローダウンドロー法による成形に必要な粘度特性を的確に確保でき、且つイオン交換性能を顕著に向上させることができる。 If the glass composition is regulated within the above range, the devitrification resistance of the glass can be greatly improved, the viscosity characteristics necessary for molding by the overflow down draw method can be ensured accurately, and the ion exchange performance is remarkably improved. be able to.
本発明の強化ガラス基板は、上記ガラス組成を有するとともに、ガラス表面に圧縮応力層を有している。圧縮応力層の圧縮応力は、100MPa以上が好ましく、300MPa以上がより好ましく、400MPa以上が更に好ましく、500MPa以上が更に好ましく、600MPa以上が特に好ましく、700MPa以上が最も好ましい。圧縮応力が大きくなるにつれて、ガラス基板の機械的強度が高くなる。一方、ガラス基板表面に極端に大きな圧縮応力が形成されると、基板表面にマイクロクラックが発生し、かえってガラスの強度が低下するおそれがあるため、圧縮応力層の圧縮応力の大きさは、2000MPa以下とするのが好ましい。 The tempered glass substrate of the present invention has the above glass composition and a compressive stress layer on the glass surface. The compressive stress of the compressive stress layer is preferably 100 MPa or more, more preferably 300 MPa or more, still more preferably 400 MPa or more, still more preferably 500 MPa or more, particularly preferably 600 MPa or more, and most preferably 700 MPa or more. As the compressive stress increases, the mechanical strength of the glass substrate increases. On the other hand, if an extremely large compressive stress is formed on the surface of the glass substrate, microcracks may be generated on the surface of the substrate, which may reduce the strength of the glass. Therefore, the magnitude of the compressive stress in the compressive stress layer is 2000 MPa. The following is preferable.
圧縮応力層の厚みは、1μm以上が好ましく、3μm以上がより好ましく、5μm以上が更に好ましく、10μm以上が特に好ましく、15μm以上が最も好ましい。圧縮応力層の厚みが大きい程、ガラス基板に深い傷がついても、ガラス基板が割れにくくなる。一方、ガラス基板表面に極端に大きな圧縮応力層が形成されると、ガラス基板を切断しにくくなるため、圧縮応力層の厚みは、500μm以下とするのが好ましい。 The thickness of the compressive stress layer is preferably 1 μm or more, more preferably 3 μm or more, further preferably 5 μm or more, particularly preferably 10 μm or more, and most preferably 15 μm or more. The greater the thickness of the compressive stress layer, the more difficult it is to break even if the glass substrate is deeply scratched. On the other hand, when an extremely large compressive stress layer is formed on the surface of the glass substrate, it becomes difficult to cut the glass substrate. Therefore, the thickness of the compressive stress layer is preferably 500 μm or less.
本発明の強化ガラス基板は、板厚が1.5mm以下、0.7mm以下、0.5mm以下、特に0.3mm以下であることが好ましい。ガラス基板の板厚が薄い程、ガラス基板を軽量化することできる。また、本発明の強化ガラス基板は、板厚を薄くしても、ガラス基板が破壊しにくい利点を有している。 The tempered glass substrate of the present invention preferably has a plate thickness of 1.5 mm or less, 0.7 mm or less, 0.5 mm or less, particularly 0.3 mm or less. The thinner the glass substrate, the lighter the glass substrate. Further, the tempered glass substrate of the present invention has an advantage that the glass substrate is not easily broken even if the plate thickness is reduced.
本発明の強化ガラス基板は、未研磨の表面を有することが好ましい。ガラスの理論強度は本来非常に高いのであるが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これは、ガラス基板の表面にグリフィスフローと呼ばれる小さな欠陥がガラスの成形後の工程、例えば研磨工程等で生じるからである。それ故、強化ガラス基板の表面を未研磨とすれば、本来のガラス基板の機械的強度を損ない難くなり、ガラス基板が破壊し難くなる。また、ガラス基板の表面を未研磨とすれば、ガラス基板の製造工程で研磨工程を省略できるため、ガラス基板の製造コストを下げることができる。本発明の強化ガラス基板において、ガラス基板の両面全体を未研磨とすれば、ガラス基板が更に破壊し難くなる。また、本発明の強化ガラス基板において、ガラス基板の切断面から破壊に至る事態を防止するため、ガラス基板の切断面に面取り加工等を施してもよい。 The tempered glass substrate of the present invention preferably has an unpolished surface. The theoretical strength of glass is inherently very high, but breakage often occurs even at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow is generated on the surface of the glass substrate in a step after glass molding, for example, a polishing step. Therefore, if the surface of the tempered glass substrate is unpolished, the mechanical strength of the original glass substrate is hardly impaired, and the glass substrate is hardly broken. Further, if the surface of the glass substrate is unpolished, the polishing process can be omitted in the glass substrate manufacturing process, so that the manufacturing cost of the glass substrate can be reduced. In the tempered glass substrate of the present invention, if both surfaces of the glass substrate are unpolished, the glass substrate becomes more difficult to break. Moreover, in the tempered glass substrate of this invention, in order to prevent the situation which breaks from the cut surface of a glass substrate, you may give a chamfering process etc. to the cut surface of a glass substrate.
本発明に係るガラス基板は、所望のガラス組成となるように調合したガラス原料を連続溶融炉に投入し、ガラス原料を1500〜1600℃で加熱溶融し、清澄した後、成形装置に供給した上で溶融ガラスを板状に成形し、徐冷することにより製造することができる。 In the glass substrate according to the present invention, a glass raw material prepared to have a desired glass composition is charged into a continuous melting furnace, the glass raw material is heated and melted at 1500 to 1600 ° C., clarified, and then supplied to a molding apparatus. The molten glass can be produced by forming it into a plate shape and slowly cooling it.
本発明に係るガラス基板は、オーバーフローダウンドロー法で成形されてなることが好ましい。オーバーフローダウンドロー法でガラス基板を成形すれば、未研磨で表面品位が良好なガラス基板を製造することができる。その理由は、オーバーフローダウンドロー法の場合、ガラス基板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形されることにより、無研磨で表面品位が良好なガラス基板を成形できるからである。ここで、オーバーフローダウンドロー法は、溶融状態のガラスを耐熱性の樋状構造物の両側から溢れさせて、溢れた溶融ガラスを樋状構造物の下端で合流させながら、下方に延伸成形してガラス基板を製造する方法である。樋状構造物の構造や材質は、ガラス基板の寸法や表面精度を所望の状態とし、ガラス基板に使用できる品位を実現できるものであれば、特に限定されない。また、下方への延伸成形を行うためにガラス基板に対してどのような方法で力を印加するものであってもよい。例えば、充分に大きい幅を有する耐熱性ロールをガラス基板に接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラス基板の端面近傍のみに接触させて延伸する方法を採用してもよい。本発明のガラスは、耐失透性に優れるとともに、成形に適した粘度特性を有しているため、オーバーフローダウンドロー法による成形を精度よく実行することができる。なお、液相温度が1100℃以下、液相粘度が104.0dPa・s以上であれば、オーバーフローダウンドロー法でガラス基板を製造することができる。 The glass substrate according to the present invention is preferably formed by an overflow downdraw method. If the glass substrate is formed by the overflow down draw method, a glass substrate that is unpolished and has good surface quality can be produced. The reason for this is that, in the case of the overflow down draw method, the surface to be the surface of the glass substrate does not come into contact with the bowl-like refractory, and is molded in a free surface state. This is because it can be molded. Here, the overflow down draw method is to melt the molten glass from both sides of the heat-resistant bowl-like structure and draw the overflowed molten glass downward while joining at the lower end of the bowl-like structure. This is a method for producing a glass substrate. The structure and material of the bowl-shaped structure are not particularly limited as long as the dimensions and surface accuracy of the glass substrate can be set to a desired state and the quality usable for the glass substrate can be realized. Moreover, in order to perform the downward extending | stretching shaping | molding, you may apply force with what kind of method with respect to a glass substrate. For example, a method may be employed in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the glass substrate, or a plurality of pairs of heat-resistant rolls are only near the end face of the glass substrate. You may employ | adopt the method of making it contact and extending | stretching. The glass of the present invention is excellent in devitrification resistance and has a viscosity characteristic suitable for molding, so that molding by the overflow down draw method can be performed with high accuracy. If the liquidus temperature is 1100 ° C. or less and the liquidus viscosity is 10 4.0 dPa · s or more, the glass substrate can be produced by the overflow downdraw method.
本発明の強化ガラス基板の成形方法として、オーバーフローダウンドロー法以外にも、種々の方法を採用することができる。例えば、フロート法、スロットダウン法、リドロー法、ロールアウト法、プレス法等の様々な成形方法を採用することができる。特に、プレス法でガラスを成形すれば、小型で未研磨のガラス基板を効率良く製造することができる。 In addition to the overflow down draw method, various methods can be adopted as the method for forming the tempered glass substrate of the present invention. For example, various forming methods such as a float method, a slot-down method, a redraw method, a roll-out method, and a press method can be employed. In particular, if glass is formed by a pressing method, a small and unpolished glass substrate can be efficiently produced.
本発明の強化ガラス基板の製造方法として、強化処理を施した後、ガラス基板を所望の基板サイズに切断することが好ましい。このようにすれば、安価に強化ガラス基板を得ることができる。 As a method for producing a tempered glass substrate of the present invention, it is preferable to cut the glass substrate into a desired substrate size after the tempering treatment. Thus, a tempered glass substrate can be obtained at a low cost.
本発明の強化ガラス基板は、下記の特性を満足することが好ましい。 The tempered glass substrate of the present invention preferably satisfies the following characteristics.
本発明の強化ガラス基板において、ガラスの液相温度は、1100℃以下が好ましく、1050℃以下がより好ましく、1000℃以下が更に好ましく、950℃以下が特に好ましい。強化ガラス基板の液相温度が低い程、オーバーフローダウンドロー法等による成形中にガラスが失透しにくくなる。 In the tempered glass substrate of the present invention, the liquidus temperature of the glass is preferably 1100 ° C. or lower, more preferably 1050 ° C. or lower, still more preferably 1000 ° C. or lower, and particularly preferably 950 ° C. or lower. The lower the liquidus temperature of the tempered glass substrate, the more difficult it is to devitrify the glass during molding by the overflow down draw method or the like.
本発明の強化ガラス基板において、ガラスの液相粘度は、104.0dPa・s以上が好ましく、104.3dPa・s以上がより好ましく、104.5dPa・s以上が更に好ましく、105.0dPa・s以上が特に好ましく、105.5dPa・s以上が最も好ましい。ガラスの液相粘度が高い程、オーバーフローダウンドロー法等による成形中にガラスが失透しにくくなる。 In the tempered glass substrate of the present invention, the liquid phase viscosity of the glass is preferably 10 4.0 dPa · s or more, more preferably 10 4.3 dPa · s or more, still more preferably 10 4.5 dPa · s or more, and 10 5.0 dPa · s or more. Is particularly preferable, and 10 5.5 dPa · s or more is most preferable. The higher the liquidus viscosity of the glass, the more difficult it is to devitrify during molding by the overflow downdraw method or the like.
本発明の強化ガラス基板において、ガラスの密度は、2.8g/cm3以下が好ましく、2.7g/cm3以下がより好ましく、2.6g/cm3以下が更に好ましく、2.55g/cm3以下が最も好ましい。ガラスの密度が小さい程、ガラス基板の軽量化を図ることができる。 In the tempered glass substrate of the present invention, the glass density is preferably 2.8 g / cm 3 or less, more preferably 2.7 g / cm 3 or less, still more preferably 2.6 g / cm 3 or less, and 2.55 g / cm. Most preferred is 3 or less. As the glass density is smaller, the glass substrate can be made lighter.
本発明の強化ガラス基板において、30〜380℃におけるガラスの熱膨張係数は、70〜95×10-7/℃であることが好ましく、75〜95×10-7/℃であることがより好ましく、75〜90×10-7/℃であることが更に好ましく、77〜88×10-7/℃であることが特に好ましく、80〜88×10-7/℃であることが最も好ましい。ガラスの熱膨張係数を上記範囲とすれば、金属、有機系接着剤等の部材と熱膨張係数が整合しやすくなり、金属、有機系接着剤等の部材の剥離を防止することができる。 In the tempered glass substrate of the present invention, the thermal expansion coefficient of the glass at 30 to 380 ° C. is preferably 70~95 × 10 -7 / ℃, more preferably from 75~95 × 10 -7 / ℃ , more preferably from 75 to 90 × 10 -7 / ° C., particularly preferably from 77~88 × 10 -7 / ℃, and most preferably 80~88 × 10 -7 / ℃. If the thermal expansion coefficient of the glass is in the above range, it becomes easy to match the thermal expansion coefficient with a member such as a metal or an organic adhesive, and peeling of the member such as a metal or an organic adhesive can be prevented.
本発明の強化ガラス基板において、ガラスの高温粘度102.5dPa・sにおける温度は、1600℃以下が好ましく、1550℃以下がより好ましく、1530℃以下が更に好ましい。ガラスの高温粘度102.5dPa・sにおける温度が低い程、溶融窯等のガラスの製造設備への負担が小さいとともに、ガラス基板の泡品位を向上させることができる。つまり、ガラスの高温粘度102.5dPa・sにおける温度が低い程、ガラス基板を安価に製造することができる。なお、ガラスの高温粘度102.5dPa・sにおける温度は、ガラスの溶融温度に相当しており、ガラスの高温粘度102.5dPa・sにおける温度が低い程、低温でガラスを溶融することができる。 In the tempered glass substrate of the present invention, the temperature at a high temperature viscosity of 10 2.5 dPa · s of the glass is preferably 1600 ° C. or less, more preferably 1550 ° C. or less, and further preferably 1530 ° C. or less. The lower the temperature at a glass high-temperature viscosity of 10 2.5 dPa · s, the smaller the burden on glass manufacturing equipment such as a melting furnace, and the higher the bubble quality of the glass substrate. That is, the glass substrate can be manufactured at a lower cost as the temperature at a high temperature viscosity of 10 2.5 dPa · s is lower. The temperature at a high temperature viscosity of 10 2.5 dPa · s of the glass corresponds to the melting temperature of the glass. The lower the temperature at the high temperature viscosity of 10 2.5 dPa · s of the glass, the lower the glass can be melted.
本発明の強化ガラス基板において、ガラスのヤング率は、70GPa以上が好ましく、71GPa以上がより好ましく、73GPa以上が更に好ましい。ガラスのヤング率が高い程、ガラス基板がたわみにくくなり、その結果、タッチパネルディスプレイ等のデバイスにおいて、ペン等でディスプレイを押した際に、デバイス内部の液晶素子等を圧迫しにくくなり、ディスプレイの表示不良が発生しにくくなる。 In the tempered glass substrate of the present invention, the Young's modulus of the glass is preferably 70 GPa or more, more preferably 71 GPa or more, and further preferably 73 GPa or more. The higher the Young's modulus of the glass, the more difficult it is to bend the glass substrate. As a result, in devices such as touch panel displays, when the display is pressed with a pen or the like, the liquid crystal elements inside the device are less likely to be pressed and the display Defects are less likely to occur.
本発明の強化ガラス基板において、ガラスの比ヤング率は、27GPa/(g/cm3)以上が好ましく、28GPa/(g/cm3)以上がより好ましく、29GPa/(g/cm3)以上が更に好ましく、30GPa/(g/cm3)以上が特に好ましい。ガラスの比ヤング率が高い程、自重によるガラス基板のたわみが低減される。その結果、製造工程においてガラス基板をカセット等に収納する際、ガラス基板同士のクリアランスを狭くして収納することが可能になるため、ガラス基板、携帯電話等の生産性が向上する。 In the tempered glass substrate of the present invention, specific Young's modulus of the glass is preferably 27GPa / (g / cm 3) or more, 28GPa / (g / cm 3 ) or more is more preferable, 29GPa / (g / cm 3 ) or higher More preferred is 30 GPa / (g / cm 3 ) or more. As the specific Young's modulus of the glass is higher, the deflection of the glass substrate due to its own weight is reduced. As a result, when a glass substrate is stored in a cassette or the like in the manufacturing process, the clearance between the glass substrates can be narrowed and stored, so that the productivity of the glass substrate, mobile phone, etc. is improved.
本発明の強化ガラス基板において、ガラスのクラック発生率は、70%以下であることが好ましく、50%以下であることがより好ましく、40%以下であることが更に好ましく、30%以下であることが特に好ましく、20%以下であることが最も好ましい。ガラスのクラック発生率が小さい程、ガラス基板にクラックが発生しにくくなる。 In the tempered glass substrate of the present invention, the crack occurrence rate of the glass is preferably 70% or less, more preferably 50% or less, further preferably 40% or less, and 30% or less. Is particularly preferable, and is most preferably 20% or less. The smaller the glass crack generation rate, the harder it is to generate cracks in the glass substrate.
本発明のガラスは、ガラス組成として、質量%で、SiO2 45〜80%、Al2O3 12〜21%、ZnO 0.01〜2.6%、B2O3 0〜5%、Li 2 O 0〜1.9%、SrO 0〜3%、BaO 0〜0.2%、希土類酸化物 0〜0.5%を含有し、且つ質量分率で、(Li2O+Na2O+K2O)/Al2O3の値が0.7〜2、Li2O/(Li2O+Na2O+K2O)の値が0〜0.3である。本発明のガラスにおいて、ガラス組成を上記範囲に限定した理由および好ましい範囲は、既述の強化ガラス基板と同様であるため、ここではその記載を省略する。さらに、本発明のガラスは、当然のことながら、既述の強化ガラス基板の特性、効果を併有することができる。 The glass of the present invention, as a glass composition, in mass%, SiO 2 45~80%, Al 2 O 3 12~21%, ZnO 0.01~ 2.6%, B 2 O 3 0~ 5%, Li 2 O 0 to 1.9%, SrO 0 to 3%, BaO 0 to 0.2 %, rare earth oxide 0 to 0.5%, and by mass fraction, (Li 2 O + Na 2 O + K 2 O ) / Al 2 O 3 has a value of 0.7 to 2, and Li 2 O / (Li 2 O + Na 2 O + K 2 O) has a value of 0 to 0.3. In the glass of the present invention, the reason why the glass composition is limited to the above range and the preferable range are the same as those of the tempered glass substrate described above, and thus the description thereof is omitted here. Furthermore, the glass of the present invention can naturally have both the characteristics and effects of the tempered glass substrate described above.
本発明のガラスは、430℃のKNO3溶融塩中で4時間イオン交換したとき、表面の圧縮応力が300MPa以上、且つ圧縮応力層の厚みが3μm以上になることが好ましい。本発明のガラスは、ガラス組成を上記範囲に規制しているため、イオン交換性能が良好であり、容易に表面の圧縮応力を300MPa以上、且つ圧縮応力層の厚みを3μm以上とすることができる。 When the glass of the present invention is ion-exchanged in KNO 3 molten salt at 430 ° C. for 4 hours, the surface compressive stress is preferably 300 MPa or more and the thickness of the compressive stress layer is preferably 3 μm or more. Since the glass composition of the present invention regulates the glass composition within the above range, the ion exchange performance is good, the surface compressive stress can be easily set to 300 MPa or more, and the thickness of the compressive stress layer can be set to 3 μm or more. .
タッチパネルディスプレイは、携帯電話、デジタルカメラ、PDA等に搭載されている。モバイル用途のタッチパネルディスプレイでは、軽量化、薄型化、高強度化の要請が高く、薄型で機械的強度が高いガラス基板が要求されている。その点、本発明の強化ガラス基板は、板厚を薄くしても、実用上、十分な機械的強度を有するため、本用途に好適に使用可能である。 The touch panel display is mounted on a mobile phone, a digital camera, a PDA or the like. In the touch panel display for mobile use, there is a high demand for weight reduction, thinning, and high strength, and a thin and high mechanical strength glass substrate is required. In that respect, the tempered glass substrate of the present invention can be suitably used for this application because it has sufficient mechanical strength for practical use even if the plate thickness is reduced.
以下、本発明を実施例に基づいて説明する。表1〜5は、試料No.1〜24を示している。 Hereinafter, the present invention will be described based on examples. Table 1-5, specimen No. 1 that shows the 24.
各試料は次のようにして作製した。まず、表1〜5のガラス組成となるように、ガラス原料を調合し、白金ポットを用いて1600℃で8時間溶融した。その後、溶融ガラスをカーボン板の上に流し出して板状に成形した。得られたガラス基板について、種々の特性を評価した。 Each sample was produced as follows. First, the glass raw material was prepared so that it might become the glass composition of Tables 1-5, and it melted at 1600 degreeC for 8 hours using the platinum pot. Thereafter, the molten glass was poured onto a carbon plate and formed into a plate shape. Various characteristics were evaluated about the obtained glass substrate.
密度は、周知のアルキメデス法によって測定した。 The density was measured by the well-known Archimedes method.
歪点Ps、徐冷点Taは、ASTM C336の方法に基づいて測定した。 The strain point Ps and the annealing point Ta were measured based on the method of ASTM C336.
軟化点Tsは ASTM C338の方法に基づいて測定を行った。 The softening point Ts was measured based on the method of ASTM C338.
ガラスの粘度104.0dPa・s、103.0dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した。 The glass viscosity of 10 4.0 dPa · s, 10 3.0 dPa · s, and 10 2.5 dPa · s were measured by the platinum ball pulling method.
熱膨張係数は、ディラトメーターを用いて、30〜380℃における平均熱膨張係数を測定したものである。 The thermal expansion coefficient is obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. using a dilatometer.
液相温度は、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定したものである。 The liquid phase temperature is obtained by crushing glass, passing through a standard sieve 30 mesh (a sieve opening of 500 μm), putting the glass powder remaining at 50 mesh (a sieve opening of 300 μm) in a platinum boat, and keeping it in a temperature gradient furnace for 24 hours. Then, the temperature at which the crystals are deposited is measured.
クラック発生率は、次のようにして測定した。まず湿度30%、温度25℃に保持された恒温恒湿槽内において、荷重500gに設定したビッカース圧子をガラス表面(光学研磨面)に15秒間打ち込み、その15秒後に圧痕の4隅から発生するクラックの数をカウント(1つの圧痕につき最大4とする)する。このようにして圧子を20回打ち込み、総クラック発生数を求めた後、(総クラック発生数/80)×100の式により求めた。 The crack occurrence rate was measured as follows. First, in a constant temperature and humidity chamber maintained at a humidity of 30% and a temperature of 25 ° C., a Vickers indenter set to a load of 500 g is driven into the glass surface (optical polishing surface) for 15 seconds, and 15 seconds later, it is generated from four corners of the indentation. Count the number of cracks (maximum 4 per indentation). Thus, after indenting 20 times and calculating | requiring the total number of crack generation, it calculated | required by the formula of (total number of crack generation / 80) x100.
ヤング率は共振法により測定した。 Young's modulus was measured by the resonance method.
その結果、No.1〜20のガラス基板は、密度が2.55g/cm3以下、熱膨張係数が76〜91×10-7/℃、クラック発生率が30%以下、ヤング率が70GPa以上であり、強化ガラス素材として好適であった。また、No.1〜20のガラス基板は、液相粘度が105.0dPa・s以上と高くオーバーフローダウンドロー成形が可能であり、しかも102.5dPa・sにおける温度が1600℃以下と低いので、生産性が高く安価に大量のガラス基板を供給できるものと考えられる。なお、未強化ガラス基板と強化ガラス基板は、ガラス基板の表層において微視的にガラス組成が異なっているものの、ガラス基板全体としてガラス組成が実質的に相違していない。したがって、密度、粘度、ヤング率等の特性値は、未強化ガラス基板と強化ガラス基板で実質的に相違していない。なお、クラック発生率は、ガラス表層の組成の影響を受けるため、未強化ガラス基板と強化ガラス基板で特性値が異なる場合があるが、強化ガラス基板ではクラック発生率がより低くなる傾向があるため、強度を低下させる因子とはならない。 As a result, no. The glass substrate of 1 to 20 has a density of 2.55 g / cm 3 or less, a thermal expansion coefficient of 76 to 91 × 10 −7 / ° C., a crack generation rate of 30% or less, a Young's modulus of 70 GPa or more, tempered glass It was suitable as a material. No. The glass substrate of 1 to 20 has a liquid phase viscosity as high as 10 5.0 dPa · s or more and can be overflow downdraw molded, and the temperature at 10 2.5 dPa · s is as low as 1600 ° C. It is considered that a large amount of glass substrate can be supplied. In addition, although the glass composition differs microscopically in the surface layer of a glass substrate, the glass composition is not substantially different as the whole glass substrate. Therefore, characteristic values such as density, viscosity, Young's modulus and the like are not substantially different between the untempered glass substrate and the tempered glass substrate. In addition, since the crack occurrence rate is affected by the composition of the glass surface layer, the characteristic value may differ between the untempered glass substrate and the tempered glass substrate, but the crack occurrence rate tends to be lower in the tempered glass substrate. It is not a factor that decreases the strength.
一方、No.21のガラス基板は、液相温度が1280℃と高く、液相粘度が低いため、オーバーフローダウンドロー法による成形が困難である。また、No.23のガラス基板は、クラック発生率が高い。そのため、ガラスにクラックが発生しやすく、イオン強化を施したとしても高い強度を得ることが困難である。さらに、No.24のガラス基板は、液相温度が1350℃以上と高く、液相粘度が低いことから、オーバーフローダウンドロー法による成形が困難である。また、高温粘性も1647℃と高いため、ガラスの溶融が困難である。 On the other hand, no. Since the glass substrate No. 21 has a high liquidus temperature of 1280 ° C. and a low liquidus viscosity, it is difficult to form by the overflow downdraw method. No. The glass substrate of 23 has a high crack generation rate. Therefore, cracks are likely to occur in the glass, and it is difficult to obtain high strength even if ion strengthening is performed. Furthermore, no. The glass substrate No. 24 has a high liquidus temperature of 1350 ° C. or higher and a low liquidus viscosity, so that it is difficult to form by the overflow downdraw method. Moreover, since the high temperature viscosity is as high as 1647 ° C., it is difficult to melt the glass.
続いて各ガラス基板の両表面に光学研磨を施した後、イオン交換処理を行った。イオン交換は、430℃のKNO3溶融塩中に各試料を4時間浸漬することで行った。処理を終えた各試料は表面を洗浄した後、表面応力計(株式会社東芝製FSM−60)を用いて観察される干渉縞の本数とその間隔等から表面の圧縮応力値と圧縮応力層の厚みを算出した。 Subsequently, after both surfaces of each glass substrate were optically polished, ion exchange treatment was performed. Ion exchange was performed by immersing each sample in KNO 3 molten salt at 430 ° C. for 4 hours. After the surface of each sample that has been processed is cleaned, the surface compressive stress value and the compressive stress layer are determined based on the number of interference fringes observed using a surface stress meter (FSM-60 manufactured by Toshiba Corporation) and the distance between the interference fringes. The thickness was calculated.
その結果、本発明の実施例であるNo.1〜20の各ガラス基板は、その表面に519MPa以上の圧縮応力が発生しており、且つその厚みは15μm以上と深かった。 As a result, No. 1 as an example of the present invention. Each of the glass substrates 1 to 20 had a compressive stress of 519 MPa or more on its surface, and its thickness was as deep as 15 μm or more.
一方、No.22およびNo.24のガラス基板は、イオン交換処理後も圧縮応力層が認められなかった。以上のように、比較例No.21〜24のガラス基板は、耐失透性とイオン交換性能を高い次元で両立しておらず、且つクラック発生率が低い。 On the other hand, no. 22 and no. In the 24 glass substrate, no compressive stress layer was observed even after the ion exchange treatment. As described above, Comparative Example No. The glass substrates 21 to 24 do not have both high devitrification resistance and ion exchange performance at a high level and have a low crack generation rate.
なお、上記実施例は、本発明の説明の便宜上、ガラスの溶融し、流し出しによる成形を行った後、イオン交換処理前に光学研磨を行った。工業的規模で実施する場合には、オーバーフローダウンドロー法等でガラス基板を成形し、ガラス基板の両表面が未研磨の状態でイオン交換処理することが望ましい。 In the above examples, for convenience of explanation of the present invention, glass was melted and cast by casting, and then optically polished before ion exchange treatment. When implemented on an industrial scale, it is desirable to form a glass substrate by an overflow down draw method or the like, and to perform ion exchange treatment in a state where both surfaces of the glass substrate are unpolished.
本発明の強化ガラス基板は、携帯電話、デジタルカメラ、PDA等のカバーガラス、あるいはタッチパネルディスプレイ等のガラス基板として好適である。また、本発明の強化ガラス基板は、これらの用途以外にも、高い機械的強度が要求される用途、例えば窓ガラス、磁気ディスク用基板、フラットパネルディスプレイ用基板、太陽電池用カバーガラス、固体撮像素子用カバーガラス、食器への応用が期待できる。 The tempered glass substrate of the present invention is suitable as a glass substrate for a mobile phone, a digital camera, a cover glass such as a PDA, or a touch panel display. In addition to these uses, the tempered glass substrate of the present invention is used for applications requiring high mechanical strength, such as window glass, magnetic disk substrates, flat panel display substrates, solar cell cover glasses, solid-state imaging. Application to cover glass for elements and tableware can be expected.
Claims (11)
ガラス組成として、質量%でSiO2 45〜80%、Al2O3 12〜21%、ZnO 0.01〜2.6%、B2O3 0〜5%、Li 2 O 0〜1.9%、SrO 0〜3%、BaO 0〜0.2%、希土類酸化物 0〜0.5%を含有し、且つ質量分率で、(Li2O+Na2O+K2O)/Al2O3の値が0.7〜2、Li2O/(Li2O+Na2O+K2O)の値が0〜0.3であることを特徴とする強化ガラス基板。 A tempered glass substrate having a compressive stress layer on its surface,
A glass composition, SiO 2 45 to 80% by mass%, Al 2 O 3 12~21% , ZnO 0.01~ 2.6%, B 2 O 3 0~ 5%, Li 2 O 0~1.9 %, SrO 0-3%, BaO 0-0.2%, rare earth oxide 0-0.5%, and by mass fraction, (Li 2 O + Na 2 O + K 2 O) / Al 2 O 3 A tempered glass substrate having a value of 0.7 to 2 and a value of Li 2 O / (Li 2 O + Na 2 O + K 2 O) of 0 to 0.3 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007262908A JP5875133B2 (en) | 2006-10-10 | 2007-10-09 | Tempered glass substrate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006276511 | 2006-10-10 | ||
JP2006276511 | 2006-10-10 | ||
JP2007262908A JP5875133B2 (en) | 2006-10-10 | 2007-10-09 | Tempered glass substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008115071A JP2008115071A (en) | 2008-05-22 |
JP5875133B2 true JP5875133B2 (en) | 2016-03-02 |
Family
ID=39501324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007262908A Active JP5875133B2 (en) | 2006-10-10 | 2007-10-09 | Tempered glass substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5875133B2 (en) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5467490B2 (en) * | 2007-08-03 | 2014-04-09 | 日本電気硝子株式会社 | Method for producing tempered glass substrate and tempered glass substrate |
KR102325305B1 (en) | 2008-08-08 | 2021-11-12 | 코닝 인코포레이티드 | Strengthened glass articles and methods of making |
JP5489051B2 (en) * | 2008-08-18 | 2014-05-14 | 日本電気硝子株式会社 | Manufacturing method of glass for touch panel |
JP5610563B2 (en) * | 2008-11-13 | 2014-10-22 | 日本電気硝子株式会社 | Glass substrate for solar cell |
JP5622069B2 (en) * | 2009-01-21 | 2014-11-12 | 日本電気硝子株式会社 | Tempered glass, tempered glass and method for producing tempered glass |
JP4559523B2 (en) | 2009-02-24 | 2010-10-06 | 株式会社オハラ | Glass substrate for information recording medium and manufacturing method thereof |
US20100215862A1 (en) * | 2009-02-26 | 2010-08-26 | Sinue Gomez | Method for forming an opal glass |
US8778820B2 (en) * | 2010-05-27 | 2014-07-15 | Corning Incorporated | Glasses having low softening temperatures and high toughness |
JP2012020921A (en) | 2010-06-18 | 2012-02-02 | Asahi Glass Co Ltd | Glass for display device and glass plate |
JP2012036074A (en) * | 2010-07-12 | 2012-02-23 | Nippon Electric Glass Co Ltd | Glass plate |
JP5909937B2 (en) | 2010-09-09 | 2016-04-27 | 日本電気硝子株式会社 | Cover glass for semiconductor package and manufacturing method thereof |
US9434644B2 (en) | 2010-09-30 | 2016-09-06 | Avanstrate Inc. | Cover glass and method for producing cover glass |
JP2012214356A (en) | 2010-12-29 | 2012-11-08 | Avanstrate Inc | Cover glass and method for producing the same |
JP5293908B1 (en) * | 2011-12-16 | 2013-09-18 | 旭硝子株式会社 | Cover glass for display and method of manufacturing cover glass for display |
US9359251B2 (en) | 2012-02-29 | 2016-06-07 | Corning Incorporated | Ion exchanged glasses via non-error function compressive stress profiles |
US9156725B2 (en) | 2012-05-30 | 2015-10-13 | Corning Incorporated | Down-drawable chemically strengthened glass for information storage devices |
US9139469B2 (en) | 2012-07-17 | 2015-09-22 | Corning Incorporated | Ion exchangeable Li-containing glass compositions for 3-D forming |
JP5664939B2 (en) * | 2013-04-04 | 2015-02-04 | 日本電気硝子株式会社 | Method for producing tempered glass |
US11079309B2 (en) | 2013-07-26 | 2021-08-03 | Corning Incorporated | Strengthened glass articles having improved survivability |
WO2015031427A2 (en) | 2013-08-30 | 2015-03-05 | Corning Incorporated | Ion exchangeable glass, glass-ceramics and methods for making the same |
KR101738599B1 (en) * | 2013-10-04 | 2017-05-22 | 주식회사 엘지화학 | Aluminosilicate glass and method for manufacturing the same |
US10118858B2 (en) | 2014-02-24 | 2018-11-06 | Corning Incorporated | Strengthened glass with deep depth of compression |
TWI852054B (en) | 2014-06-19 | 2024-08-11 | 美商康寧公司 | Glasses having non-frangible stress profiles |
KR20200126017A (en) * | 2014-10-08 | 2020-11-05 | 코닝 인코포레이티드 | Glasses and glass ceramics including a metal oxide concentration gradient |
US10150698B2 (en) | 2014-10-31 | 2018-12-11 | Corning Incorporated | Strengthened glass with ultra deep depth of compression |
US10239784B2 (en) | 2014-11-04 | 2019-03-26 | Corning Incorporated | Deep non-frangible stress profiles and methods of making |
JP6627779B2 (en) * | 2014-12-10 | 2020-01-08 | 日本電気硝子株式会社 | Glass for pharmaceutical containers and glass tubes for pharmaceutical containers |
US10407339B2 (en) | 2015-02-26 | 2019-09-10 | Corning Incorporated | Ion exchangeable soft glasses for three-dimensional shapes |
EP3313795B1 (en) | 2015-06-26 | 2019-04-03 | Corning Incorporated | Glass with high surface strength |
US9701569B2 (en) | 2015-07-21 | 2017-07-11 | Corning Incorporated | Glass articles exhibiting improved fracture performance |
US11613103B2 (en) | 2015-07-21 | 2023-03-28 | Corning Incorporated | Glass articles exhibiting improved fracture performance |
JP6949014B2 (en) | 2015-10-22 | 2021-10-13 | コーニング インコーポレイテッド | High transmittance glass |
DE202016008722U1 (en) | 2015-12-11 | 2019-03-21 | Corning Incorporated | Fusion-formable glass-based articles with a metal oxide concentration gradient |
DE202017007024U1 (en) | 2016-04-08 | 2019-03-25 | Corning Incorporated | Glass-based articles including a stress profile covering two areas |
US10017417B2 (en) | 2016-04-08 | 2018-07-10 | Corning Incorporated | Glass-based articles including a metal oxide concentration gradient |
JP2018095514A (en) * | 2016-12-14 | 2018-06-21 | 日本電気硝子株式会社 | Glass support substrate and laminate using same |
CN109279787A (en) * | 2018-11-22 | 2019-01-29 | 科立视材料科技有限公司 | A kind of high alumina glass with fast ion exchange |
JP2022512405A (en) | 2018-12-12 | 2022-02-03 | コーニング インコーポレイテッド | Ion-exchangeable lithium-containing aluminosilicate glass |
US11951713B2 (en) | 2020-12-10 | 2024-04-09 | Corning Incorporated | Glass with unique fracture behavior for vehicle windshield |
US12122714B2 (en) | 2020-12-10 | 2024-10-22 | Corning Incorporated | Glass with unique fracture behavior for vehicle windshield |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5009A (en) * | 1847-03-13 | Ratchet-wrench | ||
JPH01239036A (en) * | 1988-03-16 | 1989-09-25 | F G K:Kk | High-strength glass |
JP3897209B2 (en) * | 1998-06-23 | 2007-03-22 | 日本電気硝子株式会社 | Glass for exhaust pipe |
JP2000268349A (en) * | 1999-03-19 | 2000-09-29 | Asahi Techno Glass Corp | Glass substrate for magnetic disk and production thereof |
JP2001348248A (en) * | 2000-06-02 | 2001-12-18 | Hoya Corp | Glass for cathode ray tube, method for manufacturing the same and glass panel for cathode ray tube |
JP2002167230A (en) * | 2000-11-28 | 2002-06-11 | Nippon Electric Glass Co Ltd | Glass for press molding and glass substrate for information recording medium |
JP2002265233A (en) * | 2001-03-05 | 2002-09-18 | Nippon Sheet Glass Co Ltd | Glass preform for laser beam machining and glass for laser beam machining |
JP2004131314A (en) * | 2002-10-09 | 2004-04-30 | Asahi Glass Co Ltd | Chemically tempered glass substrate with transparent conductive film and method for producing the same |
JP2005104773A (en) * | 2003-09-30 | 2005-04-21 | Toyo Glass Co Ltd | Glass material for information recording glass substrate, information recording glass substrate, information recording disk, and hard disk drive |
JP2006062929A (en) * | 2004-08-30 | 2006-03-09 | Nippon Electric Glass Co Ltd | Crystallized glass article and method for manufacturing the same |
JP2006083045A (en) * | 2004-09-17 | 2006-03-30 | Hitachi Ltd | Glass member |
JP4716245B2 (en) * | 2004-11-11 | 2011-07-06 | 日本電気硝子株式会社 | Glass substrate and manufacturing method thereof |
JP4790300B2 (en) * | 2005-04-14 | 2011-10-12 | 株式会社日立製作所 | Glass |
-
2007
- 2007-10-09 JP JP2007262908A patent/JP5875133B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008115071A (en) | 2008-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5875133B2 (en) | Tempered glass substrate | |
JP5589252B2 (en) | Tempered glass substrate | |
JP5365974B2 (en) | Tempered glass substrate and manufacturing method thereof | |
JP5867574B2 (en) | Tempered glass substrate and manufacturing method thereof | |
JP5904426B2 (en) | Tempered glass and method for producing the same | |
JP5743125B2 (en) | Tempered glass and tempered glass substrate | |
JP5825703B2 (en) | Chemically tempered glass | |
JP2014062041A (en) | Reinforced glass and method of manufacturing the same | |
JP2009084075A (en) | Reinforced glass substrate and glass, and method for manufacturing reinforced glass substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131227 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140804 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140825 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20141006 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20141205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5875133 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |