[go: up one dir, main page]

JP5871240B2 - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
JP5871240B2
JP5871240B2 JP2013045382A JP2013045382A JP5871240B2 JP 5871240 B2 JP5871240 B2 JP 5871240B2 JP 2013045382 A JP2013045382 A JP 2013045382A JP 2013045382 A JP2013045382 A JP 2013045382A JP 5871240 B2 JP5871240 B2 JP 5871240B2
Authority
JP
Japan
Prior art keywords
electrode
pull
cantilever
optical
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013045382A
Other languages
Japanese (ja)
Other versions
JP2014174261A (en
Inventor
福田 浩
浩 福田
山田 浩治
浩治 山田
靖彦 石川
靖彦 石川
一実 和田
一実 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
University of Tokyo NUC
NTT Inc
Original Assignee
Nippon Telegraph and Telephone Corp
University of Tokyo NUC
NTT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, University of Tokyo NUC, NTT Inc filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013045382A priority Critical patent/JP5871240B2/en
Publication of JP2014174261A publication Critical patent/JP2014174261A/en
Application granted granted Critical
Publication of JP5871240B2 publication Critical patent/JP5871240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光変調技術、光受光技術、光増幅技術、発光技術等の光機能技術に関し、特に応力の印加によりその作用光帯域を可変とする光機能素子を有する光素子に関する。   The present invention relates to an optical functional technique such as a light modulation technique, a light receiving technique, an optical amplification technique, and a light emitting technique, and more particularly to an optical element having an optical functional element that can change the working light band by applying stress.

現在、光通信の大容量化に伴い、基幹網に加え加入者網でも光通信装置の高速化が求められている。光通信装置を高速化するためには、光機能素子を高速化する必要があるが、現在は、速度面の要請から、化合物半導体の光機能素子が主流である。しかしながら、加入者網に導入するためには小型、低消費電力かつ低コストであることが必要であることから、より安価なシリコン系材料を用いた光機能素子の開発が進んでいる。   Currently, with the increase in capacity of optical communication, it is required to increase the speed of the optical communication apparatus in the subscriber network in addition to the backbone network. In order to increase the speed of the optical communication device, it is necessary to increase the speed of the optical functional element, but at present, the optical functional element of a compound semiconductor is mainly used due to the demand for speed. However, since it is necessary to have a small size, low power consumption, and low cost for introduction into a subscriber network, development of an optical functional element using a cheaper silicon-based material is progressing.

シリコン系材料を用いた光機能素子には、例えば、光変調器の場合は、キャリア注入による自由電子吸収を用いる構成(特許文献1参照)、マッハツェンダー干渉計を用いる構成(特許文献2参照)、ゲルマニウムの電界吸収効果を用いる構成(非特許文献1参照)などがある。これらのうちキャリア注入およびマッハツェンダー干渉計を用いる構成は、消費電力が大きく、低消費電力の要請に応えることが難しい。一方、電界吸収効果を用いる構成は低消費電力化が可能であるが、ゲルマニウムの光吸収が1600nm以上の長波長帯に限定されてしまうことから、光通信に用いることは困難と考えられてきた。   For an optical functional element using a silicon material, for example, in the case of an optical modulator, a configuration using free electron absorption by carrier injection (see Patent Document 1), a configuration using a Mach-Zehnder interferometer (see Patent Document 2). Further, there is a configuration using an electric field absorption effect of germanium (see Non-Patent Document 1). Among these, the configuration using the carrier injection and the Mach-Zehnder interferometer consumes a large amount of power, and it is difficult to meet the demand for low power consumption. On the other hand, the configuration using the electroabsorption effect can reduce power consumption, but germanium light absorption is limited to a long wavelength band of 1600 nm or more, and thus it has been considered difficult to use for optical communication. .

ところが近年、量子効果を用いることでゲルマニウムの光吸収を光通信波長帯にまで拡大する試みがなされている。これにより加入者網でも使用することが出来る低消費電力で高速動作する光変調器が実現される可能性が出てきた。しかしながら、1つの量子構造で変調できる光帯域は数nmと狭く、C帯およびL帯をカバーするためには、10種類以上の量子構造を作り分ける必要がある。   However, in recent years, attempts have been made to expand the light absorption of germanium to the optical communication wavelength band by using the quantum effect. This has led to the possibility of realizing an optical modulator that operates at a high speed with low power consumption that can be used in a subscriber network. However, the optical band that can be modulated by one quantum structure is as narrow as several nm, and in order to cover the C band and the L band, it is necessary to create 10 or more types of quantum structures.

これに対し、応力印加構造を用いることで、1つの量子構造でカバーできる光変調帯域を拡大する手法がある(特許文献3参照)。   On the other hand, there is a method of expanding a light modulation band that can be covered with one quantum structure by using a stress application structure (see Patent Document 3).

特許第3957187号公報Japanese Patent No. 3957187 特許第4429711号公報Japanese Patent No. 4429711 国際公開第2011/24968号パンフレットInternational Publication No. 2011/1/2968 pamphlet

Ning-Ning Feng, et al., ”30GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide,” Optics Express, Vol. 19, Issue 8, pp. 7062-7067 (2011)Ning-Ning Feng, et al., “30GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide,” Optics Express, Vol. 19, Issue 8, pp. 7062-7067 (2011)

しかしながら、この応力印加構造を光導波路上に形成するためには、チャネル型光導波路よりも光閉じ込めが弱いリブ型光導波路を用いる必要があり、最小曲げ半径が数百ミクロン程度と大きくなってしまう。その結果、応力印加に係る駆動電圧が100V以上と大きくなり、この駆動電圧を供給する定電圧源の消費電力が大きく、低消費電力化が出来ないという課題があった。   However, in order to form this stress application structure on the optical waveguide, it is necessary to use a rib-type optical waveguide whose optical confinement is weaker than that of the channel-type optical waveguide, and the minimum bending radius becomes as large as several hundred microns. . As a result, the driving voltage related to the stress application becomes as large as 100 V or more, the power consumption of the constant voltage source that supplies this driving voltage is large, and there is a problem that the power consumption cannot be reduced.

応力印加に係る駆動電圧の低電圧化の手法としては、応力印加にあたり、応力集中構造を導入する手法がある。しかしながら、単純な電極構造では、プルインと呼ばれる現象が発生する。この現象は、昇圧時にあるプルイン電圧になると急激に構造変形が進行し、その後プルイン電圧以下に降圧しても変形が容易には元に戻らない現象である。プルインにより、電圧の高低を繰り返し付与した際のヒステリシス動作が除去できず、結果として連続的に応力値を制御することが困難になるため、所望の応力を実現できない領域が生ずる。   As a technique for lowering the drive voltage related to stress application, there is a technique of introducing a stress concentration structure in applying stress. However, in a simple electrode structure, a phenomenon called pull-in occurs. This phenomenon is a phenomenon in which structural deformation abruptly progresses when a pull-in voltage is reached during boosting, and the deformation is not easily restored even if the voltage is lowered below the pull-in voltage. By pull-in, the hysteresis operation when the voltage level is repeatedly applied cannot be removed, and as a result, it becomes difficult to continuously control the stress value, resulting in a region where the desired stress cannot be realized.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、作用光帯域を広範囲で連続的に可変とする光機能素子を有する光素子を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide an optical element having an optical functional element that continuously varies the working light band over a wide range.

上記の課題を解決するために、請求項1に記載の発明は、光素子であって、第1の電極が形成された基板と、前記基板と離間して配置された、一端が固定されたくびれ部分を有する梁部と、前記梁部上に形成された光導波路と、前記くびれ部分に位置する前記光導波路上に形成された光機能素子と、前記梁部上に形成された複数の第2の電極であって、プルイン用電極、および、前記梁部の長手方向に対し連続的に幅が変化した応力制御用電極を含む複数の第2の電極と、を備え、前記プルイン用電極と前記第1の電極との間に所定の電位差が生じるよう前記プルイン用電極および前記第1の電極のそれぞれに電圧を印加して前記梁部にプルインを生じさせ、前記プルインを生じさせた後に、前記応力制御用電極と前記第1の電極のそれぞれに電圧を印加して前記光機能素子に印加される応力を制御することを特徴する。 In order to solve the above-mentioned problem, the invention according to claim 1 is an optical element, wherein the substrate on which the first electrode is formed, and one end fixed to be spaced apart from the substrate are fixed. A beam portion having a constricted portion; an optical waveguide formed on the beam portion; an optical functional element formed on the optical waveguide located on the constricted portion; and a plurality of second optical elements formed on the beam portion. A plurality of second electrodes including a pull-in electrode and a stress control electrode having a width continuously changed with respect to a longitudinal direction of the beam portion, and the pull-in electrode; After applying a voltage to each of the pull-in electrode and the first electrode so that a predetermined potential difference occurs between the first electrode and the first electrode, the beam portion is pulled in, and the pull-in is generated. Each of the stress control electrode and the first electrode Features to control the stress by applying a voltage is applied to the optical functional element.

請求項2に記載の発明は、請求項1に記載の光素子において、前記プルイン用電極は、前記梁部の長手方向に対し、前記応力制御用電極とは逆に連続的に幅が変化した電極であることを特徴とする。   According to a second aspect of the present invention, in the optical element according to the first aspect, the width of the pull-in electrode continuously changes in the longitudinal direction of the beam portion, contrary to the stress control electrode. It is an electrode.

請求項3に記載の発明は、請求項1に記載の光素子において、前記プルイン用電極は、前記応力制御用電極よりも前記梁部の開放端側に位置し、前記梁部の長手方向に対し幅が一定の電極であることを特徴とする。   According to a third aspect of the present invention, in the optical element according to the first aspect, the pull-in electrode is located closer to the open end of the beam portion than the stress control electrode, and extends in the longitudinal direction of the beam portion. On the other hand, it is an electrode having a constant width.

請求項4に記載の発明は、第1の電極が形成された基板と、前記基板と離間して配置された、一端が固定されたくびれ部分を有する梁部と、前記梁部上に形成された光導波路と、前記くびれ部分に位置する前記光導波路上に形成された光機能素子と、前記梁部上に形成された複数の第2の電極であって、プルイン用電極、および、前記梁部の長手方向に対し連続的に幅が変化した応力制御用電極を含む複数の第2の電極と、を備えた光素子を制御する光素子制御方法であって、前記プルイン用電極と前記第1の電極との間に所定の電位差が生じるよう前記プルイン用電極および前記第1の電極のそれぞれに電圧を印加して前記梁部にプルインを生じさせるステップと、前記プルインを生じさせた後に、前記応力制御用電極と前記第1の電極のそれぞれに電圧を印加して前記光機能素子に印加される応力を制御するステップと、を有することを特徴とする。 According to a fourth aspect of the present invention, there is provided a substrate on which the first electrode is formed, a beam portion that is spaced apart from the substrate and has a constricted portion that is fixed at one end, and is formed on the beam portion. An optical waveguide, an optical functional element formed on the optical waveguide located in the constricted portion, a plurality of second electrodes formed on the beam portion, the pull-in electrode, and the beam A plurality of second electrodes including a stress control electrode whose width is continuously changed with respect to the longitudinal direction of the part, and an optical element control method for controlling an optical element, the pull-in electrode and the first electrode Applying a voltage to each of the pull-in electrode and the first electrode to cause a pull-in in the beam portion so that a predetermined potential difference is generated between the first electrode and the first electrode; The stress control electrode and the first electrode; A step of applying a voltage to control the stress applied to the optical functional element respectively, and having a.

本発明によれば、作用光帯域を広範囲で連続的に可変とする光機能素子を有する光素子を実現することが出来る。   According to the present invention, it is possible to realize an optical element having an optical functional element that continuously varies the working light band over a wide range.

(a)は本発明の第1の実施形態に係る光素子の基本構造を示す図(斜視図)であり、(b)は、本発明の第1の実施形態に係る光素子の片持ち梁部分の平面図を示す図である。(A) is a figure (perspective view) which shows the basic structure of the optical element which concerns on the 1st Embodiment of this invention, (b) is the cantilever of the optical element which concerns on the 1st Embodiment of this invention It is a figure which shows the top view of a part. (a)は、各電極21〜24に電圧を印加した際の片持ち梁1のくびれ部分5、8から固定端25付近での最大主応力の計算結果を示す図であり、(b)は、この最大主応力の計算に用いた片持ち梁1および電極21〜23の構成ならびに電極21〜23の各々への印加電圧を示す図である。(A) is a figure which shows the calculation result of the maximum principal stress in the fixed end 25 vicinity from the constricted parts 5 and 8 of the cantilever 1 when a voltage is applied to each electrode 21-24, (b) It is a figure which shows the structure of the cantilever 1 and the electrodes 21-23 used for calculation of this largest principal stress, and the applied voltage to each of the electrodes 21-23. 片持ち梁部分の変形状態を示す図であり、(a)は、変形無しの状態を示す図、(b)は、プルイン状態を示す図、(c)は、大変形状態を示す図である。It is a figure which shows the deformation | transformation state of a cantilever part, (a) is a figure which shows a state without a deformation | transformation, (b) is a figure which shows a pull-in state, (c) is a figure which shows a large deformation state. . 光機能素子4、9に印加する引張応力と、ゲルマニウムを用いた光機能素子4、9のバンドギャップ変化量との関係を示す図である。It is a figure which shows the relationship between the tensile stress applied to the optical functional elements 4 and 9, and the band gap variation | change_quantity of the optical functional elements 4 and 9 using germanium. 本発明の第2の実施形態にかかる光素子の片持ち梁部分の平面図を示す図である。It is a figure which shows the top view of the cantilever part of the optical element concerning the 2nd Embodiment of this invention. 本発明の第3の実施形態にかかる光素子の片持ち梁部分の平面図を示す図である。It is a figure which shows the top view of the cantilever part of the optical element concerning the 3rd Embodiment of this invention.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(第1の実施形態)
図1(a)に、本発明の第1の実施形態に係る光素子の基本構造(斜視図)を示す。また、図1(b)に、本発明の第1の実施形態に係る光素子の片持ち梁部分の平面図を示す。本実施形態の光素子は、例えばSOI(Silicon on Insulator)基板を用いて形成される。光素子は、基板0と離間するように配置された片持ち梁1上に形成された光導波路3、7の一部に光機能素子4、9を形成したものである。光導波路3、7は光導波路6で接続されており、それら光導波路はリブ型光導波路構造である。光機能素子4、9は、片持ち梁1のくびれ部分5、8に位置する光導波路3、7上に形成されている。
(First embodiment)
FIG. 1A shows a basic structure (perspective view) of an optical element according to the first embodiment of the present invention. FIG. 1B is a plan view of a cantilever portion of the optical element according to the first embodiment of the present invention. The optical element of this embodiment is formed using, for example, an SOI (Silicon on Insulator) substrate. In the optical element, optical functional elements 4 and 9 are formed on a part of the optical waveguides 3 and 7 formed on the cantilever 1 arranged so as to be separated from the substrate 0. The optical waveguides 3 and 7 are connected by an optical waveguide 6, and these optical waveguides have a rib-type optical waveguide structure. The optical functional elements 4 and 9 are formed on the optical waveguides 3 and 7 located at the constricted portions 5 and 8 of the cantilever 1.

また、片持ち梁1の開放端26側には、光機能素子4、9の光学特性を連続的に変化可能にする、応力印加を制御する複数の電極21〜23からなる電極構造を具備している。この複数の電極21〜23は、片持ち梁1の長手方向に対し連続的にその幅が変化している。尚、図示していないが、片持ち梁1の外に電極パッドを用意し、電極パッドと電極21〜23が電気配線でつながっている形状が望ましい。   Further, the open end 26 side of the cantilever 1 is provided with an electrode structure including a plurality of electrodes 21 to 23 for controlling the stress application so that the optical characteristics of the optical functional elements 4 and 9 can be continuously changed. ing. The widths of the plurality of electrodes 21 to 23 continuously change in the longitudinal direction of the cantilever 1. Although not shown, it is desirable that electrode pads are prepared outside the cantilever 1 and the electrode pads and the electrodes 21 to 23 are connected by electric wiring.

複数の電極21〜23の一部にプルイン電圧を与え、残りの電極でプルイン後の片持ち梁1の変形を制御する。プルイン時にかかる応力は、片持ち梁1に形成されたくびれ部分5、8に集中するため、片持ち梁1のくびれ部分5、8に位置する光導波路3、7上に作製された光機能素子4、9には連続的な応力印加が可能となる。このような電極構造と電圧印加方法とにより、プルイン後も、各電極に印加する電圧の制御により連続可変制御可能な応力制御領域を拡大することができる。   A pull-in voltage is applied to some of the plurality of electrodes 21 to 23, and the deformation of the cantilever 1 after pull-in is controlled by the remaining electrodes. Since the stress applied at the time of pull-in is concentrated on the constricted portions 5 and 8 formed on the cantilever 1, the optical functional device fabricated on the optical waveguides 3 and 7 located on the constricted portions 5 and 8 of the cantilever 1. 4 and 9 can be continuously stressed. With such an electrode structure and voltage application method, it is possible to expand a stress control region that can be continuously variably controlled by controlling the voltage applied to each electrode even after pull-in.

片持ち梁1の上に形成された光導波路3(入射用光導波路)、光導波路7(出射用導波路)は、例えば、コア材料がシリコン、クラッド材料が空気であり、コアとなるリブ厚さが200nm、リブ幅(コア幅)が400nm、スラブ厚さが100nmのリブ型光導波路などである。リブ型光導波路の上下クラッドは、酸化シリコンなどのコア材料よりも屈折率が小さい材料で形成されていても良い。   In the optical waveguide 3 (incident optical waveguide) and the optical waveguide 7 (exit waveguide) formed on the cantilever 1, for example, the core material is silicon, the clad material is air, and the rib thickness is the core. A rib-type optical waveguide having a thickness of 200 nm, a rib width (core width) of 400 nm, and a slab thickness of 100 nm. The upper and lower clads of the rib type optical waveguide may be formed of a material having a refractive index smaller than that of a core material such as silicon oxide.

片持ち梁1のくびれ部分5、8に位置する光導波路3、7上に形成された量子井戸構造を持つ光機能素子4、9は、例えば、量子井戸の厚さが10nm以下程度のゲルマニウムであり、量子障壁の厚さが10nm以下程度のシリコンゲルマニウム混晶である。   The optical functional elements 4 and 9 having a quantum well structure formed on the optical waveguides 3 and 7 positioned in the constricted portions 5 and 8 of the cantilever 1 are, for example, germanium having a quantum well thickness of about 10 nm or less. There is a silicon germanium mixed crystal having a quantum barrier thickness of about 10 nm or less.

片持ち梁1の上に形成された電極21〜23および基板0上に形成された電極24は、例えば、金、銀、アルミニウムなどの金属でも良いし、高濃度に不純物をドープして導電率を大きくした半導体でも良い。   The electrodes 21 to 23 formed on the cantilever 1 and the electrode 24 formed on the substrate 0 may be, for example, a metal such as gold, silver, or aluminum, or may be doped with impurities at a high concentration. A semiconductor with a larger thickness may be used.

ここで本発明の光素子の動作について説明する。   Here, the operation of the optical element of the present invention will be described.

光素子への入射光2は、光導波路3(入射用光導波路)に入射する。光導波路3に入射した光は、片持ち梁1のくびれ部分5に位置する光導波路3上に形成された量子井戸構造を持つ光機能素子4により変調・受光・増幅等の作用を受ける。光機能素子4で変調・受光・増幅等の作用を受けた光は、光導波路3を通じて、光導波路6(折り返し光導波路)に入射する。   Incident light 2 to the optical element enters an optical waveguide 3 (incident optical waveguide). Light incident on the optical waveguide 3 is subjected to actions such as modulation, light reception, and amplification by the optical functional element 4 having a quantum well structure formed on the optical waveguide 3 located in the constricted portion 5 of the cantilever 1. Light that has been subjected to modulation, light reception, amplification, or the like in the optical functional element 4 enters the optical waveguide 6 (folded optical waveguide) through the optical waveguide 3.

折り返し光導波路6は片持ち梁1の上に形成されたリブ型光導波路などで、例えば、光導波路3、7と同様にコア材料がシリコン、クラッド材料が空気からなるリブ型光導波路である。折り返し光導波路6を通った光は、光導波路7(出射用光導波路)に入射する。   The folded optical waveguide 6 is a rib-type optical waveguide formed on the cantilever 1, and is, for example, a rib-type optical waveguide in which the core material is silicon and the clad material is air, like the optical waveguides 3 and 7. The light that has passed through the folded optical waveguide 6 enters the optical waveguide 7 (an output optical waveguide).

光導波路7に入射した光は、片持ち梁1のくびれ部分8に位置する光導波路7上に形成された量子井戸構造を持つ光機能素子9により変調・受光・増幅等の作用を受ける。   Light incident on the optical waveguide 7 is subjected to actions such as modulation, light reception, and amplification by an optical functional element 9 having a quantum well structure formed on the optical waveguide 7 located in the constricted portion 8 of the cantilever 1.

以上の過程を以って、入射光2は変調・受光・増幅等の作用を受けることとなる。   Through the above process, the incident light 2 is subjected to actions such as modulation, light reception and amplification.

光機能素子4、9の作用波長領域を決めるのは、光機能素子4、9の量子井戸構造(寸法と組成)ならびに光機能素子4、9にかかる応力である。応力の制御は、片持ち梁1上に形成された電極21〜23および基板0上に形成された電極24に印加する電圧を調整することで行う。例えば、電極21〜23に正の電圧を印加し、電極24に負の電圧を印加すると、電極21、電極22および電極23は正に帯電し、電極24は負に帯電するため、電極間に静電引力が発生する。そのため片持ち梁1は基板0に近づくことになり、片持ち梁1がくびれ部分5、8を中心に変形する。   What determines the working wavelength region of the optical functional elements 4 and 9 is the quantum well structure (size and composition) of the optical functional elements 4 and 9 and the stress applied to the optical functional elements 4 and 9. The stress is controlled by adjusting the voltage applied to the electrodes 21 to 23 formed on the cantilever 1 and the electrode 24 formed on the substrate 0. For example, when a positive voltage is applied to the electrodes 21 to 23 and a negative voltage is applied to the electrode 24, the electrodes 21, 22 and 23 are positively charged and the electrode 24 is negatively charged. Electrostatic attraction occurs. Therefore, the cantilever 1 approaches the substrate 0 and the cantilever 1 is deformed around the constricted portions 5 and 8.

このときの静電引力は、電極21〜23の各面積、電極24の面積、片持ち梁1と電極24の間隙、電極21と電極24の間の電位差、電極22と電極24の間の電位差および電極23と電極24の間の電位差に依存する。   The electrostatic attractive force at this time is the area of each of the electrodes 21 to 23, the area of the electrode 24, the gap between the cantilever 1 and the electrode 24, the potential difference between the electrode 21 and the electrode 24, and the potential difference between the electrode 22 and the electrode 24. And depends on the potential difference between the electrode 23 and the electrode 24.

電極21と電極24の間の電位差、電極22と電極24の間の電位差、および電極23と電極24の間の電位差を大きくしていくと、片持ち梁1の変形状態は、片持ち梁1の固定端25付近が変形する「小変形状態」、片持ち梁1の固定端25付近が変形して片持ち梁1の開放端26が電極24に接触する「プルイン状態」、片持ち梁1の開放端26付近が変形して片持ち梁1の開放端26付近が電極24に接触するプルイン後の「大変形状態」、と遷移する。   As the potential difference between the electrode 21 and the electrode 24, the potential difference between the electrode 22 and the electrode 24, and the potential difference between the electrode 23 and the electrode 24 are increased, the deformed state of the cantilever 1 “A small deformation state” in which the vicinity of the fixed end 25 is deformed, “a pull-in state” in which the vicinity of the fixed end 25 of the cantilever 1 is deformed and the open end 26 of the cantilever 1 is in contact with the electrode 24, and the cantilever 1 The vicinity of the open end 26 of the cantilever 1 is deformed, and a transition is made to the “large deformation state” after pull-in in which the vicinity of the open end 26 of the cantilever 1 is in contact with the electrode 24.

「小変形状態」、「プルイン状態」、「大変形状態」の各状態は固有の安定状態であり、これら状態間の遷移は不連続なものとなる。   Each of the “small deformation state”, “pull-in state”, and “large deformation state” is a unique stable state, and the transition between these states is discontinuous.

ここで、片持ち梁1にくびれ部分5、8が設けられていることで、「小変形状態」から「プルイン状態」までで発生する梁変形をくびれ部分5、8からの変形で吸収し、「プルイン状態」から「大変形状態」までで発生する梁変形を固定端25付近の変形で吸収するように、各電極21〜24に印加する電圧を設定することができる。これにより、片持ち梁1のくびれ部分5、8から固定端25付近に発生する応力の可変制御範囲を連続的かつ広範囲にわたって取ることが出来る。   Here, since the constricted portions 5 and 8 are provided in the cantilever 1, the beam deformation generated from the “small deformation state” to the “pull-in state” is absorbed by the deformation from the constricted portions 5 and 8. The voltage applied to each of the electrodes 21 to 24 can be set so that the beam deformation that occurs from the “pull-in state” to the “large deformation state” is absorbed by the deformation near the fixed end 25. Thereby, the variable control range of the stress generated in the vicinity of the fixed end 25 from the constricted portions 5 and 8 of the cantilever 1 can be taken continuously and over a wide range.

ここで、片持ち梁1のくびれ部分5、8から固定端25付近に発生する応力について、各電極21〜24に印加する電圧を具体的に設定した例を用いて説明する。図2(a)に、各電極21〜24に電圧を印加した際の片持ち梁1のくびれ部分5、8から固定端25付近での最大主応力の計算結果を示す。また、図2(b)に、この最大主応力の計算に用いた片持ち梁1および電極21〜23の構成ならびに電極21〜23の各々への印加電圧を示す。尚、この最大主応力の計算には、光導波路3、7、6ならびに光機能素子4、9等を設置していない図2(b)に示した片持ち梁の構成を用いた。   Here, the stress generated in the vicinity of the fixed end 25 from the constricted portions 5 and 8 of the cantilever 1 will be described using an example in which voltages to be applied to the electrodes 21 to 24 are specifically set. FIG. 2A shows a calculation result of the maximum principal stress in the vicinity of the fixed end 25 from the constricted portions 5 and 8 of the cantilever 1 when a voltage is applied to each of the electrodes 21 to 24. FIG. 2B shows the configurations of the cantilever 1 and the electrodes 21 to 23 used for the calculation of the maximum principal stress, and the voltages applied to the electrodes 21 to 23, respectively. For the calculation of the maximum principal stress, the configuration of the cantilever shown in FIG. 2B in which the optical waveguides 3, 7, 6 and the optical functional elements 4, 9 are not installed is used.

この最大主応力の計算においては、片持ち梁1の長手方向に対しその幅が減少する三角形電極を3つ備える片持ち梁1に対し、片持ち梁1上部に形成された両脇の電極21、22に初期電圧として40Vの電位を付与し、基板0上の電極24に0Vの電圧を付与し、片持ち梁1上部に形成された中央の電極23に印加する電圧を0V〜150Vの範囲で増減して基板0上の電極24との間の電位差を増減した時の、片持ち梁1のくびれ部分5、8から固定端25付近での最大主応力を計算した。その計算結果を示したのが図2(a)である。   In the calculation of the maximum principal stress, the electrodes 21 on both sides formed on the upper portion of the cantilever 1 with respect to the cantilever 1 having three triangular electrodes whose width decreases in the longitudinal direction of the cantilever 1. , 22 is applied with a potential of 40V as an initial voltage, a voltage of 0V is applied to the electrode 24 on the substrate 0, and a voltage applied to the central electrode 23 formed on the upper portion of the cantilever 1 is in the range of 0V to 150V. The maximum principal stress in the vicinity of the fixed end 25 from the constricted portions 5 and 8 of the cantilever 1 when the potential difference with the electrode 24 on the substrate 0 was increased or decreased was calculated. FIG. 2A shows the calculation result.

また、上記最大主応力の計算に用いた片持ち梁(図2(b))の各部および各電極のサイズ等は以下の通りである。片持ち梁1の幅は30μm、長さは20μm、厚さは0.2μm、材質はヤング率130GPaの誘電体である。片持ち梁1の固定端25から5μmの部分に、幅が5μmのくびれ部分5、8を2つ有している。2つのくびれ部分の中心間距離は15μmである。片持ち梁1上部に形成された両脇の電極21、22の最大幅は15μm、長さは20μm、厚さは0.2μmで完全導体である。片持ち梁1上部に形成された中央の電極23の最大幅は30μm、長さは20μm、厚さは0.2μmで完全導体である。また、片持ち梁1と基板0の間隙は3μmである。   Moreover, the size of each part of each cantilever (FIG. 2B) and each electrode used for the calculation of the maximum principal stress is as follows. The cantilever 1 has a width of 30 μm, a length of 20 μm, a thickness of 0.2 μm, and a material having a Young's modulus of 130 GPa. Two constricted portions 5 and 8 having a width of 5 μm are provided at a portion of 5 μm from the fixed end 25 of the cantilever 1. The distance between the centers of the two constricted portions is 15 μm. The electrodes 21 and 22 on both sides formed on the upper portion of the cantilever 1 have a maximum width of 15 μm, a length of 20 μm, and a thickness of 0.2 μm, which is a complete conductor. The central electrode 23 formed on the upper portion of the cantilever 1 has a maximum width of 30 μm, a length of 20 μm, and a thickness of 0.2 μm, which is a complete conductor. The gap between the cantilever 1 and the substrate 0 is 3 μm.

図2(a)からは、大変形状態を利用することで、広範囲にわたる応力変化を利用できることが分かる。また、図1に示したような静電引力を利用した素子は、電圧が変化する際に電力を消費するが、一定電圧を保持する際には大きな電力を消費しない。よって、予め何らかの方法によりプルイン状態とし、最小限の電圧変化で大変形状態に移行させ、大変形状態において応力を制御することが望ましい。例えば、応力制御用電極以外の複数の電極の一部に電圧を印加して予めプルイン状態とすることで、応力制御用電極への印加電圧を小さくすることができる。   From FIG. 2A, it can be seen that a wide range of stress changes can be used by using the large deformation state. In addition, an element using electrostatic attraction as shown in FIG. 1 consumes electric power when the voltage changes, but does not consume large electric power when holding a constant voltage. Therefore, it is desirable to set the pull-in state by some method in advance, shift to the large deformation state with a minimum voltage change, and control the stress in the large deformation state. For example, the voltage applied to the stress control electrode can be reduced by applying a voltage to a part of the plurality of electrodes other than the stress control electrode to obtain a pull-in state in advance.

また、片持ち梁1の長手方向に電極幅を変化させ、片持ち梁1に生ずるモーメントを変化させることで、同じ印加電圧であっても、広範囲な応力発生と精緻な応力制御のいずれか必要な制御方法を選択することができる。   In addition, by changing the electrode width in the longitudinal direction of the cantilever 1 and changing the moment generated in the cantilever 1, either a wide range of stress generation or precise stress control is required even with the same applied voltage. Various control methods can be selected.

ここで改めて、片持ち梁1の変形状態について説明する。図3(a)〜(c)に、変形無し、プルイン状態、大変形状態を模式的に示す。尚、ここでは、変形状態を模式的に示すために、図2(b)に示した片持ち梁1と同様の構成、すなわち光導波路3、7、6ならびに光機能素子4、9等を設置していない構成でシミュレートした変形状態を示した。基板0上の電極24に0Vの電圧を付与し、片持ち梁1上部に形成された両脇の電極21、22に40Vの電圧を印加すると、片持ち梁1はプルイン状態になる(図3(b))。このプルイン状態後、電極23に電圧を印加すると大変形状態(図3(c))に遷移する。   Here, the deformation state of the cantilever 1 will be described again. 3A to 3C schematically show no deformation, a pull-in state, and a large deformation state. Here, in order to schematically show the deformation state, the same configuration as the cantilever 1 shown in FIG. 2B, that is, the optical waveguides 3, 7, 6 and the optical functional elements 4, 9 are installed. The simulated deformation state is shown in the configuration that is not. When a voltage of 0 V is applied to the electrode 24 on the substrate 0 and a voltage of 40 V is applied to the electrodes 21 and 22 on both sides formed on the upper portion of the cantilever 1, the cantilever 1 is in a pull-in state (FIG. 3). (B)). After this pull-in state, when a voltage is applied to the electrode 23, a transition is made to a large deformation state (FIG. 3C).

図2(a)に示すように、片持ち梁1上部に形成された両脇の電極21、22に印加する初期電圧および各種電極の形状・寸法を適切に選択することで、電極23に付与する電圧値で片持ち梁1のくびれ部分5、8から固定端25付近に発生させる応力を、広範囲にわたり連続的に制御できることができる。   As shown in FIG. 2A, the initial voltage applied to the electrodes 21 and 22 on both sides formed on the upper portion of the cantilever 1 and the shape and dimensions of various electrodes are appropriately selected to be applied to the electrode 23. The stress generated in the vicinity of the fixed end 25 from the constricted portions 5 and 8 of the cantilever 1 can be controlled continuously over a wide range.

図4に、光機能素子4、9に印加する引張応力と、ゲルマニウムを用いた光機能素子4、9のバンドギャップ変化量との関係を示す。光機能素子4、9に対し700MPaの引張応力を印加することができれば、ゲルマニウムのバンドギャップを100nm可変することが出来るため、C帯およびL帯を1つの組成のゲルマニウムでカバーすることが可能となる。   FIG. 4 shows the relationship between the tensile stress applied to the optical functional elements 4 and 9 and the band gap change amount of the optical functional elements 4 and 9 using germanium. If a tensile stress of 700 MPa can be applied to the optical functional elements 4 and 9, the band gap of germanium can be varied by 100 nm, so that the C band and the L band can be covered with germanium of one composition. Become.

尚、図1(a)、(b)に示した本実施形態の光素子においては、電極21〜24は各々独立に電圧を設定することが出来るものとする。例えば、電極24を0Vに設定し、電極21、22に予め例えば40Vの電圧を印加して、予めプルイン状態とし、電極23に印加する電圧を電極21、22とは独立に制御することで、固定端25付近に発生させる応力を制御することが出来る。   In the optical element of this embodiment shown in FIGS. 1A and 1B, it is assumed that the electrodes 21 to 24 can set voltages independently. For example, by setting the electrode 24 to 0 V, applying a voltage of, for example, 40 V to the electrodes 21 and 22 in advance to make a pull-in state in advance, and controlling the voltage applied to the electrode 23 independently of the electrodes 21 and 22, The stress generated in the vicinity of the fixed end 25 can be controlled.

また、本実施形態では、図1に示したように電極21、電極22を片持ち梁1の開放端26に近づくにつれその幅が大きくなる三角形状とし、電極23を片持ち梁1の開放端26に近づくにつれその幅が小さくなる三角形状とした形態を説明したが、電極21、22は、片持ち梁1の開放端26に近づくにつれその幅が大きくなる構造であれば、三角形でなく、台形でも良いし、複数の変曲点を持つ多角形でも良いし、曲線から構成される図形でも良い。また、電極23は、片持ち梁1の開放端26に近づくにつれその幅が小さくなる構造であれば、三角形でなく、台形でも良いし、複数の変曲点を持つ多角形でも良いし、曲線から構成される図形でも良い。   In the present embodiment, as shown in FIG. 1, the electrodes 21 and 22 have a triangular shape whose width increases as they approach the open end 26 of the cantilever 1, and the electrode 23 has the open end of the cantilever 1. 26, the electrode 21 and 22 are not triangular if the width of the electrodes 21 and 22 increases as they approach the open end 26 of the cantilever 1. It may be a trapezoid, a polygon having a plurality of inflection points, or a figure composed of curves. Further, the electrode 23 may be not a triangle, a trapezoid, a polygon having a plurality of inflection points, or a curved line as long as the width of the electrode 23 decreases as it approaches the open end 26 of the cantilever 1. The figure which consists of may be sufficient.

本実施形態では、例えば、プルイン電極として電極21又は22を用い、応力制御用電極として電極23を用いる。電極21または電極22、あるいは電極21及び電極22の両方には予め必要な所定の定電圧を印加し、片持ち梁1をプルイン状態にしておく。電極23は、片持ち梁1の開放端26に近づくにつれてその幅が小さくなっているので、幅が一定の場合と比べ、電圧印加時のモーメント荷重が小さくなり、結果として大きな印加電圧で小さな応力変化を得ることができる。よって、精緻な応力制御、ひいては精緻なバンドギャップ制御を必要とする用途に適する。   In the present embodiment, for example, the electrode 21 or 22 is used as a pull-in electrode, and the electrode 23 is used as a stress control electrode. A predetermined constant voltage required in advance is applied to the electrode 21 or the electrode 22, or both the electrode 21 and the electrode 22, so that the cantilever 1 is in a pull-in state. Since the width of the electrode 23 becomes smaller as it approaches the open end 26 of the cantilever 1, the moment load at the time of voltage application becomes smaller than that when the width is constant, resulting in a small stress with a large applied voltage. Change can be obtained. Therefore, it is suitable for applications that require precise stress control, and thus precise band gap control.

(第2の実施形態)
図5に、本発明の第2の実施形態にかかる光素子の片持ち梁部分の平面図を示す。尚、片持ち梁部分以外の構成(基板0等)は、第1の実施形態と同様である。すなわち、本実施形態の光素子では、第1の実施形態と同様に電極24を有する基板0と離間して片持ち梁1が配置されている。本実施形態と第1の実施形態との差異は、下記のような電極21〜23の形状にある。
(Second Embodiment)
FIG. 5 shows a plan view of a cantilever portion of an optical element according to the second embodiment of the present invention. The configuration other than the cantilever portion (substrate 0 and the like) is the same as in the first embodiment. That is, in the optical element of this embodiment, the cantilever 1 is arranged apart from the substrate 0 having the electrode 24 as in the first embodiment. The difference between this embodiment and 1st Embodiment exists in the shape of the electrodes 21-23 as follows.

すなわち、第1の実施形態とは逆に、電極21、22が、片持ち梁1の開放端26に近づくにつれその幅が小さくなる三角形状をしていることを特徴とする。片持ち梁1の開放端26に近づくにつれその幅が小さくなる構造であれば、三角形でなく、台形でも良いし、複数の変曲点を持つ多角形でも良いし、曲線から構成される図形でも良い。   That is, contrary to the first embodiment, the electrodes 21 and 22 have a triangular shape whose width decreases as the open end 26 of the cantilever 1 is approached. As long as the width of the cantilever 1 decreases toward the open end 26, the shape may be a trapezoidal shape, a polygon having a plurality of inflection points, or a figure composed of a curve. good.

また、電極23は、片持ち梁1の開放端26に近づくにつれその幅が大きくなる三角形状をしていることを特徴とする。片持ち梁1の開放端26に近づくにつれその幅が大きくなる構造であれば、三角形でなく、台形でも良いし、複数の変曲点を持つ多角形でも良いし、曲線から構成される図形でも良い。   Further, the electrode 23 has a triangular shape whose width increases as it approaches the open end 26 of the cantilever 1. As long as the width of the cantilever 1 increases as it approaches the open end 26, it may be a trapezoid, a polygon having a plurality of inflection points, or a figure composed of curves. good.

本実施形態では、例えば、プルイン電極として電極21又は22を用い、応力制御用電極として電極23を用いる。電極21または電極22、あるいは電極21及び電極22の両方には予め必要な所定の定電圧を印加し、片持ち梁1をプルイン状態にしておく。電極23は、片持ち梁1の開放端26に近づくにつれてその幅が大きくなっているので、幅が一定の場合と比べ、電圧印加時のモーメント荷重が大きくなり、結果として小さな印加電圧で大きな応力変化を得ることができる。よって、大きな応力差、ひいては大きなバンドギャップ差を必要とする用途に適する。   In the present embodiment, for example, the electrode 21 or 22 is used as a pull-in electrode, and the electrode 23 is used as a stress control electrode. A predetermined constant voltage required in advance is applied to the electrode 21 or the electrode 22, or both the electrode 21 and the electrode 22, so that the cantilever 1 is in a pull-in state. Since the width of the electrode 23 increases as it approaches the open end 26 of the cantilever 1, the moment load at the time of voltage application increases as compared with the case where the width is constant, resulting in a large stress with a small applied voltage. Change can be obtained. Therefore, it is suitable for an application that requires a large stress difference and thus a large band gap difference.

(第3の実施形態)
図6に、本発明の第3の実施形態にかかる光素子の片持ち梁部分の平面図を示す。尚、片持ち梁部分以外の構成(基板0等)は、第1の実施形態と同様である。すなわち、本実施形態の光素子では、第1の実施形態と同様に電極24を有する基板0と離間して片持ち梁1が配置されている。本実施形態は、片持ち梁1上の開放端26近傍に長方形の電極32が配置され、電極32よりも固定端25側に片持ち梁1の開放端26に近づくにつれその幅が小さくなる三角形状をした電極31が配置されていることを特徴とする。電極31は、片持ち梁1の開放端26に近づくにつれその幅が変化する構造であれば、三角形でなく、台形でも良いし、複数の変曲点を持つ多角形でも良いし、曲線から構成される図形でも良い。
(Third embodiment)
FIG. 6 is a plan view of a cantilever portion of an optical element according to the third embodiment of the present invention. The configuration other than the cantilever portion (substrate 0 and the like) is the same as in the first embodiment. That is, in the optical element of this embodiment, the cantilever 1 is arranged apart from the substrate 0 having the electrode 24 as in the first embodiment. In the present embodiment, a rectangular electrode 32 is disposed in the vicinity of the open end 26 on the cantilever 1, and the width of the triangle becomes smaller as the open end 26 of the cantilever 1 is closer to the fixed end 25 than the electrode 32. An electrode 31 having a shape is arranged. The electrode 31 may be a trapezoid, a polygon having a plurality of inflection points, or a curved line as long as the width of the electrode 31 changes as it approaches the open end 26 of the cantilever 1. The figure to be made may be used.

本実施形態では、例えば、プルイン電極として電極32を用い、応力制御用電極として電極31を用いる。電極32には予め必要な所定の定電圧を印加し、片持ち梁1をプルイン状態にしておく。電極32は、片持ち梁1の開放端26近傍にあるので、第1又は第2の実施形態と比べ、より小さな電圧でプルイン状態にすることができる。よって、大電圧の供給が困難な場合の用途に適する。   In the present embodiment, for example, the electrode 32 is used as a pull-in electrode, and the electrode 31 is used as a stress control electrode. A predetermined constant voltage required in advance is applied to the electrode 32 to keep the cantilever 1 in a pull-in state. Since the electrode 32 is in the vicinity of the open end 26 of the cantilever 1, it can be brought into a pull-in state with a smaller voltage compared to the first or second embodiment. Therefore, it is suitable for applications where it is difficult to supply a large voltage.

以上の各実施形態では、片持ち梁1のくびれ部分5、8に位置する光導波路3、7の上に光機能素子4、9をそれぞれ備える構成例を示したが、くびれ部分5、8に位置する光導波路3、7のいずれか一方の上にのみ光機能素子を備える構成としても良い。   In each of the above-described embodiments, the configuration examples including the optical functional elements 4 and 9 on the optical waveguides 3 and 7 positioned in the constricted portions 5 and 8 of the cantilever 1 are shown. It is good also as a structure provided with an optical function element only on any one of the optical waveguides 3 and 7 located.

0 基板
1 片持ち梁
2 入射光
3、6、7 光導波路
4、9 光機能素子
5、8 くびれ部分
10 出射光
21〜24、31、32 電極
25 固定端
26 開放端
DESCRIPTION OF SYMBOLS 0 Board | substrate 1 Cantilever 2 Incident light 3, 6, 7 Optical waveguide 4, 9 Optical functional element 5, 8 Constricted part 10 Output light 21-24, 31, 32 Electrode 25 Fixed end 26 Open end

Claims (4)

第1の電極が形成された基板と、
前記基板と離間して配置された、一端が固定されたくびれ部分を有する梁部と、
前記梁部上に形成された光導波路と、
前記くびれ部分に位置する前記光導波路上に形成された光機能素子と、
前記梁部上に形成された複数の第2の電極であって、プルイン用電極、および、前記梁部の長手方向に対し連続的に幅が変化した応力制御用電極を含む複数の第2の電極と、
を備え、前記プルイン用電極と前記第1の電極との間に所定の電位差が生じるよう前記プルイン用電極および前記第1の電極のそれぞれに電圧を印加して前記梁部にプルインを生じさせ、前記プルインを生じさせた後に、前記応力制御用電極と前記第1の電極のそれぞれに電圧を印加して前記光機能素子に印加される応力を制御することを特徴する光素子。
A substrate on which a first electrode is formed;
A beam portion disposed at a distance from the substrate and having a constricted portion with one end fixed;
An optical waveguide formed on the beam portion;
An optical functional element formed on the optical waveguide located in the constricted portion;
A plurality of second electrodes formed on the beam portion, the plurality of second electrodes including a pull-in electrode and a stress control electrode whose width is continuously changed in the longitudinal direction of the beam portion. Electrodes,
A voltage is applied to each of the pull-in electrode and the first electrode so that a predetermined potential difference is generated between the pull-in electrode and the first electrode, and pull-in is generated in the beam portion, An optical element, wherein after applying the pull-in, a voltage is applied to each of the stress control electrode and the first electrode to control a stress applied to the optical functional element.
前記プルイン用電極は、前記梁部の長手方向に対し、前記応力制御用電極とは逆に連続的に幅が変化した電極であることを特徴とする請求項1に記載の光素子。   2. The optical element according to claim 1, wherein the pull-in electrode is an electrode whose width is continuously changed in the longitudinal direction of the beam portion, contrary to the stress control electrode. 前記プルイン用電極は、前記応力制御用電極よりも前記梁部の開放端側に位置し、前記梁部の長手方向に対し幅が一定の電極であることを特徴とする請求項1に記載の光素子。   The pull-in electrode is an electrode that is positioned closer to the open end of the beam portion than the stress control electrode and has a constant width in the longitudinal direction of the beam portion. Optical element. 第1の電極が形成された基板と、前記基板と離間して配置された、一端が固定されたくびれ部分を有する梁部と、前記梁部上に形成された光導波路と、前記くびれ部分に位置する前記光導波路上に形成された光機能素子と、前記梁部上に形成された複数の第2の電極であって、プルイン用電極、および、前記梁部の長手方向に対し連続的に幅が変化した応力制御用電極を含む複数の第2の電極と、を備えた光素子を制御する光素子制御方法であって、
前記プルイン用電極と前記第1の電極との間に所定の電位差が生じるよう前記プルイン用電極および前記第1の電極のそれぞれに電圧を印加して前記梁部にプルインを生じさせるステップと、
前記プルインを生じさせた後に、前記応力制御用電極と前記第1の電極のそれぞれに電圧を印加して前記光機能素子に印加される応力を制御するステップと、
を有することを特徴とする光素子制御方法。
A substrate on which the first electrode is formed; a beam portion disposed at a distance from the substrate and having a constricted portion with one end fixed; an optical waveguide formed on the beam portion; and the constricted portion An optical functional element formed on the optical waveguide, and a plurality of second electrodes formed on the beam, the pull-in electrode, and the longitudinal direction of the beam continuously A plurality of second electrodes including a stress control electrode whose width has changed, and an optical element control method for controlling an optical element comprising:
Applying a voltage to each of the pull-in electrode and the first electrode so as to generate a predetermined potential difference between the pull-in electrode and the first electrode, thereby generating a pull-in in the beam portion;
Controlling the stress applied to the optical functional element by applying a voltage to each of the stress control electrode and the first electrode after causing the pull-in;
An optical element control method comprising:
JP2013045382A 2013-03-07 2013-03-07 Optical element Active JP5871240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013045382A JP5871240B2 (en) 2013-03-07 2013-03-07 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013045382A JP5871240B2 (en) 2013-03-07 2013-03-07 Optical element

Publications (2)

Publication Number Publication Date
JP2014174261A JP2014174261A (en) 2014-09-22
JP5871240B2 true JP5871240B2 (en) 2016-03-01

Family

ID=51695550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013045382A Active JP5871240B2 (en) 2013-03-07 2013-03-07 Optical element

Country Status (1)

Country Link
JP (1) JP5871240B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183957B2 (en) * 2014-05-15 2017-08-23 日本電信電話株式会社 Light modulator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111131A (en) * 1999-10-08 2001-04-20 Sony Corp Element and apparatus for magnetic function
US8115577B2 (en) * 2007-06-14 2012-02-14 Panasonic Corporation Electromechanical switch, filter using the same, and communication apparatus
CN101482575B (en) * 2009-02-23 2011-02-09 东南大学 A Resonant Integrated Optical Waveguide Accelerometer with Cantilever Beam Structure
JP5586103B2 (en) * 2009-08-28 2014-09-10 国立大学法人 東京大学 Optical element
JP5858476B2 (en) * 2012-07-18 2016-02-10 日本電信電話株式会社 Optical element

Also Published As

Publication number Publication date
JP2014174261A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP6622228B2 (en) Optical modulator and manufacturing method thereof
CN101384931B (en) Optical waveguide
EP3058629B1 (en) Coupling-modulated optical resonator
US8620115B2 (en) Optical modulators with controllable chirp
JP5770719B2 (en) Silicon-type light modulator with improved efficiency and chirp control
Lipson Overcoming the limitations of microelectronics using Si nanophotonics: solving thecoupling, modulation and switching challenges
US7840099B2 (en) Ultrafast Ge/Si resonator-based modulators for optical data communications in silicon photonics
JP2004126582A (en) High-speed optical modulator
JP4878210B2 (en) Optical waveguide structure
JP6233300B2 (en) Optical phase modulation element, element setting method, optical functional circuit, and optical matrix circuit
CN105388638B (en) A kind of hot light adjustment structure of silicon waveguide
JP5858476B2 (en) Optical element
JP2009128718A (en) Light switch
CN102759775B (en) Photonic crystal groove waveguide structure capable of generating slow light of broadband
CN103267997A (en) Generating Broadband Tunable Slow Light in Polymer-Filled Photonic Crystal Trough Waveguides
JP5871240B2 (en) Optical element
Van Acoleyen et al. NEMS-based optical phase modulator fabricated on Silicon-On-Insulator
CN103926688A (en) Silicon substrate middle-infrared band light modulator based on MEMS
CN103033885B (en) Straight beam buckling electrostatic type micro mechanical optical switch
JP6139893B2 (en) Plasmon quantum interferometric modulator
Hirano et al. Slow light modulator with Bragg reflector waveguide
Ayoub et al. High performance silicon Mach-Zehnder interferometer based photonic modulator
Xiao et al. Electro-optic polymer assisted optical switch based on silicon slot structure
JP6183957B2 (en) Light modulator
Govdeli et al. Monolithically integrated visible-light MEMS switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160105

R150 Certificate of patent or registration of utility model

Ref document number: 5871240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250