[go: up one dir, main page]

JP5857537B2 - Air spindle - Google Patents

Air spindle Download PDF

Info

Publication number
JP5857537B2
JP5857537B2 JP2011187715A JP2011187715A JP5857537B2 JP 5857537 B2 JP5857537 B2 JP 5857537B2 JP 2011187715 A JP2011187715 A JP 2011187715A JP 2011187715 A JP2011187715 A JP 2011187715A JP 5857537 B2 JP5857537 B2 JP 5857537B2
Authority
JP
Japan
Prior art keywords
shaft
housing
bearing
static pressure
pressure gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011187715A
Other languages
Japanese (ja)
Other versions
JP2013050149A (en
Inventor
秀樹 金
秀樹 金
高橋 淳
淳 高橋
小林 直也
直也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011187715A priority Critical patent/JP5857537B2/en
Publication of JP2013050149A publication Critical patent/JP2013050149A/en
Application granted granted Critical
Publication of JP5857537B2 publication Critical patent/JP5857537B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turning (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

この発明は、エアスピンドル(軸と、ハウジングと、軸とハウジングとの間に配置されて、軸およびハウジングの一方である回転体を他方である固定体に対して回転可能に支持する静圧気体軸受と、を有する回転装置)に関する。   The present invention relates to an air spindle (static pressure gas which is disposed between a shaft, a housing, and a shaft and the housing and rotatably supports a rotating body which is one of the shaft and the housing with respect to a fixed body which is the other. And a rotating device having a bearing.

一般的なエアスピンドルにおいて、静圧気体軸受は固定体に固定され、回転体との間にアキシアル軸受面とラジアル軸受面を有する。すなわち、静圧気体軸受は軸方向に移動できない。そのため、エアスピンドルの温度上昇に伴って回転体が膨張して軸方向に伸びた場合、静圧気体軸受のアキシアル軸受面と回転体のアキシアル軸受面との隙間(アキシアル隙間)が広がって、良好な軸受性能が発揮できない場合がある。   In a general air spindle, a static pressure gas bearing is fixed to a fixed body, and has an axial bearing surface and a radial bearing surface between the rotating body. That is, the static pressure gas bearing cannot move in the axial direction. Therefore, when the rotating body expands and extends in the axial direction as the temperature of the air spindle rises, the gap (axial gap) between the axial bearing surface of the hydrostatic gas bearing and the axial bearing surface of the rotating body widens, which is good The bearing performance may not be achieved.

特許文献1には、エアスピンドルの回転体であるハウジングと非回転体である支持軸との間に温度差が生じた場合に、軸受隙間が無くなることを防止するために、支持軸がアルミニウム製の場合には、ラジアル静圧気体軸受をカーボングラファイト製とし、ハウジングをカーボン繊維とカーボンとの複合材製とすることが記載されている。また、特許文献1に記載されたエアスピンドルでは、回転体がラジアル方向への突出部(スラストランナ)を有し、軸方向でスラストランナを挟んだ両側にスラスト静圧気体軸受が配置されている。   In Patent Document 1, in order to prevent a bearing gap from being lost when a temperature difference occurs between a housing that is a rotating body of an air spindle and a support shaft that is a non-rotating body, the support shaft is made of aluminum. In this case, it is described that the radial static pressure gas bearing is made of carbon graphite and the housing is made of a composite material of carbon fiber and carbon. In the air spindle described in Patent Document 1, the rotating body has a projecting portion (thrust runner) in the radial direction, and thrust hydrostatic gas bearings are arranged on both sides of the thrust runner in the axial direction. .

特許文献2には、回転軸が受けた外力や振動、共振などを吸収するために、外力や振動が生じた際に回転軸と軸受部材(静圧気体軸受)が共に動くように構成された、回転霧化静電塗装装置が記載されている。また、特許文献2に記載された装置では、回転体(回転軸)がラジアル方向への突出部(フランジ部)を有し、軸方向でフランジ部を挟んだ両側に静圧気体軸受が配置されている。また、静圧気体軸受が固定体(合成樹脂製のハウジング)に対して、Oリング等の弾性支持部材を介して取り付けられている。   In Patent Document 2, in order to absorb external force, vibration, resonance, and the like received by the rotating shaft, the rotating shaft and the bearing member (hydrostatic gas bearing) move together when external force or vibration occurs. A rotary atomizing electrostatic coating device is described. In the device described in Patent Document 2, the rotating body (rotating shaft) has a projecting portion (flange portion) in the radial direction, and static pressure gas bearings are disposed on both sides of the flange portion in the axial direction. ing. A static pressure gas bearing is attached to a fixed body (synthetic resin housing) via an elastic support member such as an O-ring.

特開平9−158950号公報JP-A-9-158950 特開平9−294942号公報Japanese Patent Laid-Open No. 9-294942

この発明の課題は、温度上昇に伴って回転体が膨張して軸方向に伸びた場合でも、静圧気体軸受による良好な軸受性能が発揮できるエアスピンドルを提供することである。   An object of the present invention is to provide an air spindle capable of exhibiting good bearing performance by a static pressure gas bearing even when a rotating body expands and extends in the axial direction as the temperature rises.

上記課題を解決するために、この発明のエアスピンドルは、固定体である軸と、回転体であるハウジングと、前記軸を内挿し前記ハウジングの軸方向端部に固定された端部材と、前記軸と前記ハウジングとの間に配置されて、前記ハウジングを前記軸に対して回転可能に支持する静圧気体軸受と、を有し、前記はラジアル方向(軸に垂直な方向)への突出部を有し、前記静圧気体軸受は、前記軸の軸方向で前記突出部を挟んだ両側の部分に、軸方向で移動可能に取り付けられ、前記静圧気体軸受は、前記端部材と対向するアキシアル軸受面、前記ハウジングの内周面と対向するラジアル軸受面、および前記突出部の軸方向端面と対向するアキシアル方向端面を有し、前記静圧気体軸受は円筒体からなり、前記軸の内部に、軸方向に延びる給気路および排気路と、前記排気路から分岐して前記軸の径方向に延びて前記軸の外周面に至る回収穴が形成され、前記回収穴に連通する排気穴が、前記円筒体を径方向に貫通する貫通穴として形成され、前記円筒体の内周面の軸方向で前記排気穴を挟んだ両側となる位置に、気体導入用の周溝が形成され、前記軸の外周部の前記周溝の位置に、前記給気路から分岐して径方向に延びる給気穴が形成されていることを特徴とする。 In order to solve the above-described problems, an air spindle of the present invention includes a shaft that is a fixed body, a housing that is a rotating body, an end member that is inserted into the shaft and fixed to an end portion in the axial direction of the housing, is disposed between the shaft and said housing, said housing having a, a static gas bearing for rotatably supported with respect to said axis, the projection of the axis in the radial direction (direction perpendicular to the axis) has a section, the hydrostatic gas bearing, on opposite sides of a portion in the axial direction across said protruding portion of said shaft, mounted to be movable in the axial direction, the externally pressurized gas bearing, the end member and the opposite An axial bearing surface , a radial bearing surface facing the inner peripheral surface of the housing , and an axial end surface facing the axial end surface of the protruding portion , the hydrostatic gas bearing is formed of a cylindrical body, Internally extending in the axial direction A recovery hole that is branched from the exhaust path and extends in the radial direction of the shaft to reach the outer peripheral surface of the shaft, and the exhaust hole that communicates with the recovery hole radially connects the cylindrical body Gas introduction circumferential grooves are formed at positions on both sides of the exhaust hole in the axial direction of the inner circumferential surface of the cylindrical body, and the circumference of the outer peripheral portion of the shaft is formed as a through hole. the position of the groove, and wherein the air supply holes are formed Rukoto extending radially branched from the air supply passage.

この発明のエアスピンドルでは、静圧気体軸受が軸方向で移動可能に取り付けられているため、エアスピンドルの温度上昇に伴って回転体が膨張して軸方向に伸びた場合でも、静圧気体軸受のアキシアル方向端面と回転体および固定体のアキシアル方向端面との隙間(アキシアル隙間)が適切な隙間に保持される。
前記静圧気体軸受は、前記固定体に対して、例えば、弾性支持部材またはラビリンスシールを介して取り付けることで、軸方向で移動可能にできる。
In the air spindle of the present invention, since the static pressure gas bearing is mounted so as to be movable in the axial direction, even if the rotating body expands and extends in the axial direction as the temperature of the air spindle rises, the static pressure gas bearing A gap (axial gap) between the axial direction end face of the rotating body and the axial end face of the fixed body is held in an appropriate gap.
The static pressure gas bearing can be moved in the axial direction by being attached to the fixed body through, for example, an elastic support member or a labyrinth seal.

この発明のエアスピンドルによれば、温度上昇に伴って回転体が膨張して軸方向に伸びた場合でも、静圧気体軸受による良好な軸受性能が発揮できる。   According to the air spindle of the present invention, even when the rotating body expands and extends in the axial direction as the temperature rises, good bearing performance by the hydrostatic gas bearing can be exhibited.

第1実施形態のエアスピンドルを示す断面図である。It is sectional drawing which shows the air spindle of 1st Embodiment. 図1の部分拡大図である。It is the elements on larger scale of FIG. 第2実施形態のエアスピンドルを示す断面図である。It is sectional drawing which shows the air spindle of 2nd Embodiment. 第3実施形態のエアスピンドルを示す断面図である。It is sectional drawing which shows the air spindle of 3rd Embodiment. 第4実施形態のエアスピンドルを示す断面図である。It is sectional drawing which shows the air spindle of 4th Embodiment.

以下、この発明の実施形態について説明する。
[第1実施形態]
この実施形態のエアスピンドルは、軸が固定体でハウジングが回転体の例であり、図1および2に示すように、固定軸(固定体)1と、細長い円筒状のハウジング(回転体)2と、固定軸1とハウジング2との間に配置された1対の静圧気体軸受3と、1対の円環状の端部材(回転体)4と、Oリング(弾性支持部材)5とで構成されている。
固定軸1は、ハウジング2の軸方向中央部に配置される部分に、ラジアル方向への突出部1aを有する。1対の静圧気体軸受3は円筒体からなり、軸方向で固定軸1の突出部1aを挟んだ両側の部分(軸受部)1bに外嵌されている。
Embodiments of the present invention will be described below.
[First Embodiment]
The air spindle of this embodiment is an example in which the shaft is a fixed body and the housing is a rotating body. As shown in FIGS. 1 and 2, a fixed shaft (fixed body) 1 and an elongated cylindrical housing (rotating body) 2 are used. A pair of static pressure gas bearings 3 disposed between the fixed shaft 1 and the housing 2, a pair of annular end members (rotating bodies) 4, and an O-ring (elastic support member) 5. It is configured.
The fixed shaft 1 has a projecting portion 1 a in the radial direction at a portion arranged in the central portion of the housing 2 in the axial direction. The pair of static pressure gas bearings 3 is formed of a cylindrical body, and is externally fitted to both side portions (bearing portions) 1b sandwiching the protruding portion 1a of the fixed shaft 1 in the axial direction.

図2に示すように、固定軸1の軸受部1bの外周面には、各4本の周溝11が形成されている。そして、全ての周溝11にOリング5が配置されている。これらのOリング5により、1対の静圧気体軸受3が固定軸1に対して、軸方向で移動可能に取り付けられている。
静圧気体軸受3は、ハウジング2の内周面と対向するラジアル軸受面31と、端部材4および突出部1aの端面と対向するアキシアル方向端面32を有する。静圧気体軸受3の軸方向中央部に、径方向に貫通する排気穴35が形成されている。排気穴35は周方向の複数箇所に形成されている。静圧気体軸受3の内周面には、軸方向で排気穴35を挟んだ両側に、気体導入用の周溝36が形成されている。固定軸1の周溝11は、静圧気体軸受3の周溝36を挟んだ両側となる位置に形成されている。
As shown in FIG. 2, four circumferential grooves 11 are formed on the outer peripheral surface of the bearing portion 1 b of the fixed shaft 1. In addition, O-rings 5 are arranged in all the circumferential grooves 11. By these O-rings 5, a pair of static pressure gas bearings 3 are attached to the fixed shaft 1 so as to be movable in the axial direction.
The hydrostatic gas bearing 3 has a radial bearing surface 31 that faces the inner peripheral surface of the housing 2 and an axial end surface 32 that faces the end surfaces of the end member 4 and the protruding portion 1a. An exhaust hole 35 penetrating in the radial direction is formed in the axially central portion of the static pressure gas bearing 3. The exhaust holes 35 are formed at a plurality of locations in the circumferential direction. On the inner peripheral surface of the static pressure gas bearing 3, gas introduction peripheral grooves 36 are formed on both sides of the exhaust hole 35 in the axial direction. The circumferential groove 11 of the fixed shaft 1 is formed at positions on both sides of the circumferential groove 36 of the static pressure gas bearing 3.

固定軸1の内部に、軸方向に延びる給気路(気体供給経路)12と排気路(気体排出経路)13が形成されている。固定軸1の突出部1aの軸方向中央位置に、排気路13から分岐して径方向に延び、突出部1aの外周面に至る連通路(気体排出経路)14が形成されている。
固定軸1の内部には、また、静圧気体軸受3の排気穴35の位置に、排気路13から分岐して径方向に延び、固定軸1の外周面に至る回収穴(気体排出経路)15が形成されている。固定軸1の内部には、さらに、静圧気体軸受3の周溝36の位置に、給気路12から分岐して径方向に延びる給気穴(気体供給経路)12aが形成されている。
An air supply path (gas supply path) 12 and an exhaust path (gas discharge path) 13 extending in the axial direction are formed inside the fixed shaft 1. A communication path (gas discharge path) 14 that branches from the exhaust path 13 and extends in the radial direction and reaches the outer peripheral surface of the protrusion 1 a is formed at the axial center position of the protrusion 1 a of the fixed shaft 1.
Inside the fixed shaft 1 and at the position of the exhaust hole 35 of the hydrostatic gas bearing 3, a recovery hole (gas discharge path) branched from the exhaust passage 13 and extending in the radial direction to reach the outer peripheral surface of the fixed shaft 1. 15 is formed. Inside the fixed shaft 1, an air supply hole (gas supply path) 12 a that branches from the air supply path 12 and extends in the radial direction is further formed at the position of the circumferential groove 36 of the static pressure gas bearing 3.

端部材4は、図2に示すように、ハウジング2の軸方向端面との接触面を有する大径部41と、ハウジング2の軸方向端部内に挿入される中径部42および小径部43とからなる。端部材4には、軸方向に延びる排気穴44が形成されている。端部材4は固定軸1を内挿し、ハウジング2の軸方向両端に固定されている。端部材4の小径部43の端面と対向する面が、静圧気体軸受3のアキシアル軸受面32となっている。端部材4の小径部43の外周面とハウジング2の内周面との間に気体排出隙間6が存在する。 As shown in FIG. 2, the end member 4 includes a large diameter portion 41 having a contact surface with the axial end surface of the housing 2, a medium diameter portion 42 and a small diameter portion 43 inserted into the axial end portion of the housing 2. Consists of. The end member 4 has an exhaust hole 44 extending in the axial direction. The end member 4 has the fixed shaft 1 inserted therein and is fixed to both ends of the housing 2 in the axial direction. A surface facing the end surface of the small diameter portion 43 of the end member 4 is an axial bearing surface 32 a of the static pressure gas bearing 3. A gas discharge gap 6 exists between the outer peripheral surface of the small diameter portion 43 of the end member 4 and the inner peripheral surface of the housing 2.

この実施形態のエアスピンドルでは、外部から固定軸1の給気路12に導入された加圧気体が、給気穴12aから静圧気体軸受3の内周溝36に入り、静圧気体軸受3のラジアル軸受面31とアキシアル方向端面32に供給される。これにより、静圧気体軸受3が機能する。
ラジアル軸受面31とアキシアル方向端面32を通った気体は、排気穴35から回収穴15を介して排気路13に回収される。排気路13に回収された気体は外部に排出される。また、端部材4側のアキシアル方向端面32(アキシャル軸受面32a)を通った気体は、主に、気体排出隙間6から端部材4の排気穴44を介して外部に排出される。
In the air spindle of this embodiment, the pressurized gas introduced from the outside into the air supply path 12 of the fixed shaft 1 enters the inner peripheral groove 36 of the static pressure gas bearing 3 from the air supply hole 12a, and the static pressure gas bearing 3 Are supplied to the radial bearing surface 31 and the axial end surface 32. Thereby, the static pressure gas bearing 3 functions.
The gas that has passed through the radial bearing surface 31 and the axial end surface 32 is recovered from the exhaust hole 35 to the exhaust path 13 via the recovery hole 15. The gas collected in the exhaust passage 13 is discharged to the outside. Further, the gas that has passed through the axial end surface 32 ( axial bearing surface 32 a) on the end member 4 side is mainly discharged to the outside from the gas discharge gap 6 through the exhaust hole 44 of the end member 4.

この実施形態のエアスピンドルによれば、静圧気体軸受3が固定軸1の軸受部1bにOリング5により軸方向で移動可能に取り付けられているため、温度上昇に伴ってハウジング(回転体)2が膨張して軸方向に伸びた場合でも、静圧気体軸受3のアキシャル軸受面32aおよびアキシアル方向端面32と、端部材(回転体)4の小径部43の端面および固定軸(固定体)1の突出部1aの端面との隙間(アキシアル隙間)が、適切な隙間に保持される。よって、静圧気体軸受3による良好な軸受性能が発揮できる。 According to the air spindle of this embodiment, since the static pressure gas bearing 3 is attached to the bearing portion 1b of the fixed shaft 1 so as to be movable in the axial direction by the O-ring 5, the housing (rotating body) is increased as the temperature rises. Even when 2 expands and extends in the axial direction, the axial bearing surface 32 a and the axial end surface 32 of the static pressure gas bearing 3, the end surface of the small diameter portion 43 of the end member (rotating body) 4, and the fixed shaft (fixed body) ) A gap (axial gap) with the end face of one protruding portion 1a is held in an appropriate gap. Therefore, the favorable bearing performance by the static pressure gas bearing 3 can be exhibited.

[第2実施形態]
この実施形態のエアスピンドルは、軸が回転体でハウジングが固定体の例であり、図3に示すように、軸(回転体)7と、軸7に外嵌された円筒体(回転体)71と、1対の端部材(回転体)72と、ハウジング(固定体)8と、円筒体71と端部材72とハウジング8との間に配置された1対の静圧気体軸受9と、Oリング(弾性支持部材)5とで構成されている。
[Second Embodiment]
The air spindle of this embodiment is an example in which the shaft is a rotating body and the housing is a fixed body. As shown in FIG. 3, a shaft (rotating body) 7 and a cylindrical body (rotating body) externally fitted to the shaft 7 are used. 71, a pair of end members (rotating bodies) 72, a housing (fixed body) 8, a pair of static pressure gas bearings 9 disposed between the cylindrical body 71, the end members 72, and the housing 8, An O-ring (elastic support member) 5 is included.

ハウジング8は、円筒部81の軸方向中央部の内周面にラジアル方向への突出部82を有する形状である。ハウジング8の軸方向両端部の内周面(突出部82が形成されていない円筒部81の内周面)に、各2本の周溝84が形成されている。そして、全ての周溝84にOリング5が配置されている。これらのOリング5により、1対の静圧気体軸受9がハウジング8に対して、軸方向で移動可能に取り付けられている。
1対の静圧気体軸受9は穴開き円板状で、軸方向でハウジング8の突出部82を挟んだ両側に配置されている。静圧気体軸受9は、円筒体71の外周面と対向するラジアル軸受面91と、端部材72および突出部82の端面と対向するアキシアル方向端面92を有する。静圧気体軸受9の外周面に気体導入用の周溝96が形成されている。
The housing 8 has a shape having a radially projecting portion 82 on the inner peripheral surface of the central portion in the axial direction of the cylindrical portion 81. Two circumferential grooves 84 are formed on the inner peripheral surfaces (the inner peripheral surface of the cylindrical portion 81 where the protruding portions 82 are not formed) at both axial ends of the housing 8. The O-ring 5 is disposed in all the circumferential grooves 84. With these O-rings 5, a pair of static pressure gas bearings 9 are attached to the housing 8 so as to be movable in the axial direction.
The pair of static pressure gas bearings 9 is in the shape of a perforated disk and is disposed on both sides of the protruding portion 82 of the housing 8 in the axial direction. The static pressure gas bearing 9 has a radial bearing surface 91 that faces the outer peripheral surface of the cylindrical body 71, and an axial end surface 92 that faces the end surfaces of the end member 72 and the protruding portion 82. A gas introduction circumferential groove 96 is formed on the outer peripheral surface of the static pressure gas bearing 9.

ハウジング8には、円筒部81の軸方向に延びる第1の給気路(気体供給経路)81aと、第1の給気路81aと繋がり、円筒部81の径方向に延びて円筒部81の内周面に至る一対の第2の給気路(気体供給経路)81bと、排気路(気体排出経路)83が形成されている。1対の第2の給気路81bは、1対の静圧気体軸受9の周溝96の位置に配置されている。また、一方の第2の給気路81bは円筒部81の外周面で開口し、この開口部が、気体供給管を接続する雌ねじ穴81cとなっている。排気路83は、ハウジング8の軸方向中央(突出部82が形成されている位置)を径方向に沿って貫通している。   The housing 8 is connected to a first air supply path (gas supply path) 81 a extending in the axial direction of the cylindrical portion 81 and the first air supply path 81 a, and extends in the radial direction of the cylindrical portion 81 to A pair of second air supply paths (gas supply paths) 81b and exhaust paths (gas discharge paths) 83 reaching the inner peripheral surface are formed. The pair of second air supply passages 81 b are disposed at the positions of the circumferential grooves 96 of the pair of static pressure gas bearings 9. One second air supply path 81b opens at the outer peripheral surface of the cylindrical portion 81, and this opening serves as a female screw hole 81c for connecting the gas supply pipe. The exhaust passage 83 penetrates the axial center of the housing 8 (the position where the protruding portion 82 is formed) along the radial direction.

端部材72の外径は静圧気体軸受9の外径と同じであり、端部材72の内径は軸7の外径と同じである。端部材72はボルトで円筒体71の軸方向両端面に固定されている。
この実施形態のエアスピンドルでは、ハウジング8の雌ねじ穴81cに接続された気体供給管から導入された加圧気体が、第2の給気穴81bから静圧気体軸受9の外周溝96に入り、静圧気体軸受9のラジアル軸受面91とアキシアル方向端面92に供給される。これにより、静圧気体軸受9が機能する。ラジアル軸受面91およびアキシアル方向端面92を通った気体は、円筒体71とハウジング8との間を通って排気路83から外部に排出される。
The outer diameter of the end member 72 is the same as the outer diameter of the static pressure gas bearing 9, and the inner diameter of the end member 72 is the same as the outer diameter of the shaft 7. The end member 72 is fixed to both axial end surfaces of the cylindrical body 71 with bolts.
In the air spindle of this embodiment, the pressurized gas introduced from the gas supply pipe connected to the female screw hole 81c of the housing 8 enters the outer peripheral groove 96 of the static pressure gas bearing 9 from the second air supply hole 81b. It is supplied to the radial bearing surface 91 and the axial end surface 92 of the static pressure gas bearing 9. Thereby, the static pressure gas bearing 9 functions. The gas that has passed through the radial bearing surface 91 and the axial end surface 92 passes between the cylindrical body 71 and the housing 8 and is discharged from the exhaust path 83 to the outside.

この実施形態のエアスピンドルによれば、静圧気体軸受9がハウジング8の円筒部81に、Oリング5により軸方向で移動可能に取り付けられているため、温度上昇に伴って円筒体(回転体)71が膨張して軸方向に伸びた場合でも、静圧気体軸受9のアキシアル軸受面92aおよびアキシアル方向端面92と、端部材(回転体)72およびハウジング(固定体)8の突出部82の端面との隙間(アキシアル隙間)が、適切な隙間に保持される。よって、静圧気体軸受9による良好な軸受性能が発揮できる。 According to the air spindle of this embodiment, the static pressure gas bearing 9 is attached to the cylindrical portion 81 of the housing 8 so as to be movable in the axial direction by the O-ring 5. ) Even when 71 expands and extends in the axial direction, the axial bearing surface 92a and the axial end surface 92 of the static pressure gas bearing 9 and the projecting portion 82 of the end member (rotating body) 72 and the housing (fixed body) 8 are provided. A gap (axial gap) with the end face of the is maintained in an appropriate gap. Therefore, the favorable bearing performance by the static pressure gas bearing 9 can be exhibited.

[第3実施形態]
第1実施形態では、Oリング5により、1対の静圧気体軸受3が固定軸1に対して軸方向で移動可能に取り付けられているが、この実施形態では、Oリング5に代えてラビリンスシール50を使用している。これ以外の点は第1実施形態と同じである。
図4に示すように、この実施形態のエアスピンドルでは、固定軸1の軸受部1bの外周面の各4箇所にラビリンスシール50が形成されている。これらのラビリンスシール50により、1対の静圧気体軸受3が固定軸1に対して、軸方向で移動可能に取り付けられている。ラビリンスシール50は、静圧気体軸受3の周溝36を挟んだ両側となる位置に形成されている。
[Third Embodiment]
In the first embodiment, the pair of static pressure gas bearings 3 are attached to the fixed shaft 1 so as to be movable in the axial direction by the O-ring 5. In this embodiment, instead of the O-ring 5, the labyrinth A seal 50 is used. Other points are the same as in the first embodiment.
As shown in FIG. 4, in the air spindle of this embodiment, labyrinth seals 50 are formed at four locations on the outer peripheral surface of the bearing portion 1 b of the fixed shaft 1. With these labyrinth seals 50, a pair of static pressure gas bearings 3 are attached to the fixed shaft 1 so as to be movable in the axial direction. The labyrinth seal 50 is formed at positions on both sides of the circumferential groove 36 of the static pressure gas bearing 3.

この実施形態のエアスピンドルによれば、静圧気体軸受3が固定軸1の軸受部1bにラビリンスシール50により軸方向で移動可能に取り付けられているため、温度上昇に伴ってハウジング(回転体)2が膨張して軸方向に伸びた場合でも、静圧気体軸受3のアキシアル軸受面32aおよびアキシャル方向端面32と、端部材(回転体)4の小径部43の端面および固定軸(固定体)1の突出部1aの端面との隙間(アキシアル隙間)が、適切な隙間に保持される。よって、静圧気体軸受3による良好な軸受性能が発揮できる。 According to the air spindle of this embodiment, since the static pressure gas bearing 3 is attached to the bearing portion 1b of the fixed shaft 1 so as to be movable in the axial direction by the labyrinth seal 50, the housing (rotating body) is increased as the temperature rises. Even when 2 expands and extends in the axial direction, the axial bearing surface 32 a and the axial end surface 32 of the static pressure gas bearing 3, the end surface of the small diameter portion 43 of the end member (rotating body) 4, and the fixed shaft (fixed body) ) A gap (axial gap) with the end face of one protruding portion 1a is held in an appropriate gap. Therefore, the favorable bearing performance by the static pressure gas bearing 3 can be exhibited.

[第4実施形態]
第2実施形態では、Oリング5により、1対の静圧気体軸受9がハウジング8に対して軸方向で移動可能に取り付けられているが、この実施形態では、Oリング5に代えてラビリンスシール50を使用している。これ以外の点は第2実施形態と同じである。
図5に示すように、この実施形態のエアスピンドルでは、ハウジング8の軸方向両端部の内周面(突出部82が形成されていない円筒部81の内周面)の各2箇所に、ラビリンスシール50が形成されている。これらのラビリンスシール50により、1対の静圧気体軸受9がハウジング8に対して、軸方向で移動可能に取り付けられている。ラビリンスシール50は、静圧気体軸受9の周溝96を挟んだ両側となる位置に形成されている。
[Fourth Embodiment]
In the second embodiment, a pair of static pressure gas bearings 9 are attached to the housing 8 so as to be movable in the axial direction by the O-ring 5. In this embodiment, a labyrinth seal is used instead of the O-ring 5. 50 is used. The other points are the same as in the second embodiment.
As shown in FIG. 5, in the air spindle of this embodiment, the labyrinth is provided at each of two locations on the inner peripheral surface (the inner peripheral surface of the cylindrical portion 81 where the protruding portion 82 is not formed) at both axial ends of the housing 8. A seal 50 is formed. By these labyrinth seals 50, a pair of static pressure gas bearings 9 are attached to the housing 8 so as to be movable in the axial direction. The labyrinth seal 50 is formed at positions on both sides of the circumferential groove 96 of the static pressure gas bearing 9.

この実施形態のエアスピンドルによれば、静圧気体軸受9がハウジング8の円筒部81に、ラビリンスシール50により軸方向で移動可能に取り付けられているため、温度上昇に伴って円筒体(回転体)71が膨張して軸方向に伸びた場合でも、静圧気体軸受9のアキシアル軸受面92aおよびアキシャル方向端面92と、端部材(回転体)72およびハウジング(固定体)8の突出部82の端面との隙間(アキシアル隙間)が、適切な隙間に保持される。よって、静圧気体軸受9による良好な軸受性能が発揮できる。 According to the air spindle of this embodiment, the static pressure gas bearing 9 is attached to the cylindrical portion 81 of the housing 8 so as to be movable in the axial direction by the labyrinth seal 50. ) Even if 71 expands and extends in the axial direction, the axial bearing surface 92a and the axial end surface 92 of the static pressure gas bearing 9 and the projecting portion 82 of the end member (rotating body) 72 and the housing (fixed body) 8 are provided. A gap (axial gap) with the end face of the is maintained in an appropriate gap. Therefore, the favorable bearing performance by the static pressure gas bearing 9 can be exhibited.

1 固定軸(固定体)
1a 固定軸(固定体)の突出部
1b 固定軸の軸受部(固定体の突出部以外の部分)
11 周溝
12 給気路
12a 給気穴
13 排気路
14 連通路
15 回収穴
2 ハウジング(回転体)
3 静圧気体軸受
31 ラジアル軸受面
32 アキシャル方向端面
32 アキシアル軸受面
35 排気穴
36 周溝
4 端部材(回転体)
41 端部材の大径部
42 端部材の中径部
43 端部材の小径部
44 排気穴
5 Oリング(弾性支持部材)
50 ラビリンスシール
6 気体排出隙間
7 軸(回転体)
71 円筒体(回転体)
72 端部材(回転体)
8 ハウジング(固定体)
81 ハウジング(固定体)の円筒部
81a 給気路
81b 給気路
81c 雌ねじ穴
82 ハウジング(固定体)の突出部
83 排気路
84 周溝
9 静圧気体軸受
91 ラジアル軸受面
92 アキシャル方向端面
92 アキシアル軸受面
96 周溝
1 Fixed shaft (fixed body)
1a Protruding part of the fixed shaft (fixed body) 1b Bearing part of the fixed shaft (part other than the protruding part of the fixed body)
DESCRIPTION OF SYMBOLS 11 Circumferential groove 12 Air supply path 12a Air supply hole 13 Exhaust path 14 Communication path 15 Collection | recovery hole 2 Housing (rotating body)
3 Static pressure gas bearing 31 Radial bearing surface
32 Axial end face 32 a Axial bearing surface 35 Exhaust hole 36 Circumferential groove 4 End member (rotating body)
41 Large-diameter portion of end member 42 Medium-diameter portion of end member 43 Small-diameter portion of end member 44 Exhaust hole 5 O-ring (elastic support member)
50 Labyrinth seal 6 Gas exhaust gap 7 Shaft (Rotating body)
71 Cylindrical body (rotating body)
72 End member (rotating body)
8 Housing (fixed body)
81 Cylindrical portion of housing (fixed body) 81a Air supply path 81b Air supply path 81c Female screw hole 82 Projection of housing (fixed body) 83 Exhaust path 84 Circumferential groove 9 Hydrostatic gas bearing 91 Radial bearing surface
92 Axial end face 92 a Axial bearing face 96 Circumferential groove

Claims (3)

固定体である軸と、回転体であるハウジングと、前記軸を内挿し前記ハウジングの軸方向端部に固定された端部材と、
前記軸と前記ハウジングとの間に配置されて、前記ハウジングを前記軸に対して回転可能に支持する静圧気体軸受と、
を有し、
前記はラジアル方向への突出部を有し、
前記静圧気体軸受は、前記軸の軸方向で前記突出部を挟んだ両側の部分に、軸方向で移動可能に取り付けられ、
前記静圧気体軸受は、前記端部材と対向するアキシアル軸受面、前記ハウジングの内周面と対向するラジアル軸受面、および前記突出部の軸方向端面と対向するアキシアル方向端面を有し、
前記静圧気体軸受は円筒体からなり、
前記軸の内部に、軸方向に延びる給気路および排気路と、前記排気路から分岐して前記軸の径方向に延びて前記軸の外周面に至る回収穴が形成され、
前記回収穴に連通する排気穴が、前記円筒体を径方向に貫通する貫通穴として形成され、
前記円筒体の内周面の軸方向で前記排気穴を挟んだ両側となる位置に、気体導入用の周溝が形成され、
前記軸の外周部の前記周溝の位置に、前記給気路から分岐して径方向に延びる給気穴が形成されているエアスピンドル。
A shaft that is a fixed body, a housing that is a rotating body, an end member that is inserted into the shaft and fixed to an axial end of the housing, and
Is arranged between the shaft housing, and a hydrostatic gas bearing for rotatably supporting the housing relative to said axis,
Have
The shaft has a radial protrusion;
The hydrostatic gas bearing is on both sides of a portion in the axial direction across said protruding portion of said shaft, mounted to be movable in the axial direction,
The static pressure gas bearing has an axial bearing surface facing the end member, a radial bearing surface facing the inner peripheral surface of the housing , and an axial end surface facing the axial end surface of the protrusion ,
The static pressure gas bearing is a cylindrical body,
Inside the shaft, an air supply passage and an exhaust passage extending in the axial direction, and a recovery hole branched from the exhaust passage and extending in the radial direction of the shaft to reach the outer peripheral surface of the shaft,
An exhaust hole communicating with the recovery hole is formed as a through hole penetrating the cylindrical body in a radial direction,
A circumferential groove for introducing gas is formed at positions on both sides of the exhaust hole in the axial direction of the inner peripheral surface of the cylindrical body,
An air spindle in which an air supply hole branched from the air supply path and extending in the radial direction is formed at a position of the peripheral groove on the outer peripheral portion of the shaft .
前記静圧気体軸受は、前記固定体に対して弾性支持部材を介して取り付けられている請求項1記載のエアスピンドル。   The air spindle according to claim 1, wherein the static pressure gas bearing is attached to the fixed body via an elastic support member. 前記静圧気体軸受は、前記固定体に対してラビリンスシールを介して取り付けられている請求項1記載のエアスピンドル。   The air spindle according to claim 1, wherein the static pressure gas bearing is attached to the fixed body via a labyrinth seal.
JP2011187715A 2011-08-30 2011-08-30 Air spindle Expired - Fee Related JP5857537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011187715A JP5857537B2 (en) 2011-08-30 2011-08-30 Air spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011187715A JP5857537B2 (en) 2011-08-30 2011-08-30 Air spindle

Publications (2)

Publication Number Publication Date
JP2013050149A JP2013050149A (en) 2013-03-14
JP5857537B2 true JP5857537B2 (en) 2016-02-10

Family

ID=48012348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011187715A Expired - Fee Related JP5857537B2 (en) 2011-08-30 2011-08-30 Air spindle

Country Status (1)

Country Link
JP (1) JP5857537B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365404B2 (en) 2016-12-27 2022-06-21 Tl Genomics Inc. Method for obtaining nucleic acid derived from fetal cell
US11666915B2 (en) 2017-10-19 2023-06-06 Tl Genomics Inc. Cell classification chip

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105215384A (en) * 2015-07-31 2016-01-06 四川省兴旺达精密机电有限公司 A kind of ultrahigh speed air bearing motor for minute surface Digit Control Machine Tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594110Y2 (en) * 1992-06-30 1999-04-19 エヌティエヌ株式会社 Hydrostatic gas bearing spindle device
JPH06143092A (en) * 1992-11-06 1994-05-24 Seiko Seiki Co Ltd Dicing spindle device
JP3572737B2 (en) * 1995-06-26 2004-10-06 日本精工株式会社 Hydrostatic gas bearing device
JP2000104736A (en) * 1998-09-29 2000-04-11 Ntn Corp Static pressure air bearing supporting guide roller
JP2009068545A (en) * 2007-09-11 2009-04-02 Nsk Ltd Spindle device
JP5308280B2 (en) * 2009-08-30 2013-10-09 株式会社タンケンシールセーコウ Static pressure gas bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365404B2 (en) 2016-12-27 2022-06-21 Tl Genomics Inc. Method for obtaining nucleic acid derived from fetal cell
US11666915B2 (en) 2017-10-19 2023-06-06 Tl Genomics Inc. Cell classification chip

Also Published As

Publication number Publication date
JP2013050149A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
CN203743212U (en) Angular contact ball bearing and combined bearing
CN111577765B (en) A hydrostatic radial gas bearing structure
JP5857537B2 (en) Air spindle
JP5718327B2 (en) Rotary output unit for sealing and motor assembly for sealing
JP6941479B2 (en) Seal structure and mechanical seal
JP6452010B2 (en) Bearing device and rotating machine
WO2016076143A1 (en) Rolling bearing
CN203730561U (en) Aerostatic bearing
JP6456955B2 (en) mechanical seal
WO2020054133A1 (en) Damper bearing and damper
CA2806953C (en) Shaft with shoulder and groove
US20130223782A1 (en) Mechanical face seal assembly for bearings
JP6331062B2 (en) Rolling bearing device
JP5894045B2 (en) Sealing structure
JP2010084802A (en) Rotary seal
JP5434349B2 (en) Bearing device
JP5849535B2 (en) Air spindle
JP2009103244A (en) Brake device
US11655851B2 (en) Bearing device and rotating device
JP2008281028A (en) Shaft seal device
JP2007309351A (en) Rolling bearing
JP4445932B2 (en) Axial flow type non-contact seal
JP2015175484A (en) Hydrostatic fluid bearing
CN220358954U (en) Bearing isolator for large-channeling-amount shaft
JP6342829B2 (en) Rotating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5857537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees