JP5854430B2 - FRP manufacturing apparatus and FRP manufacturing method - Google Patents
FRP manufacturing apparatus and FRP manufacturing method Download PDFInfo
- Publication number
- JP5854430B2 JP5854430B2 JP2012076589A JP2012076589A JP5854430B2 JP 5854430 B2 JP5854430 B2 JP 5854430B2 JP 2012076589 A JP2012076589 A JP 2012076589A JP 2012076589 A JP2012076589 A JP 2012076589A JP 5854430 B2 JP5854430 B2 JP 5854430B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- cavity
- pressure
- bag
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Description
本発明は、RTM(Resin Transfer Molding)成形方法を用いた繊維強化プラスチック(FRP:Fiber Reinforced Plastics)の製造装置に関し、特に、長さが数m〜数十mもの大型構造部材を製造可能な繊維強化プラスチックの製造装置に関する。 The present invention relates to a fiber reinforced plastic (FRP) manufacturing apparatus using a RTM (Resin Transfer Molding) molding method, and in particular, a fiber capable of manufacturing a large structural member having a length of several meters to several tens of meters. The present invention relates to a reinforced plastic manufacturing apparatus.
FRPは軽量で高い機械特性を発揮できる材料であり、各種分野に使用されている。FRPの代表的な製造方法として、プリプレグ法、RTM法などが知られている。 FRP is a lightweight material that can exhibit high mechanical properties, and is used in various fields. As typical methods for producing FRP, a prepreg method, an RTM method, and the like are known.
プレプレグ法は、プリプレグと称される予め強化繊維に半硬化の樹脂を含浸させたシートを、オートクレーブと呼ばれる圧力釜の中で加熱・加圧して成形する方法である。この場合、大型の成形品を得ようとすると、成形品よりさらに大きな圧力釜を用いる必要がある。圧力釜などの圧力容器においては、内容量が増える、また開閉部が大きくなるほど、蓋や開閉部を強固な構造とせねばならない。そのため装置の設置、メンテナンスなどに多大な投資が必要となる成形法である。 The prepreg method is a method in which a sheet obtained by impregnating a reinforced fiber with a semi-cured resin in advance called a prepreg is heated and pressed in a pressure cooker called an autoclave. In this case, in order to obtain a large molded product, it is necessary to use a pressure cooker larger than the molded product. In a pressure vessel such as a pressure cooker, the lid and the opening / closing part must have a stronger structure as the content increases and the opening / closing part increases. Therefore, it is a molding method that requires a great investment for installation and maintenance of the apparatus.
一方、RTM法は、両面金型のキャビティ内に強化繊維を配置し、当該キャビティ内に樹脂を加圧注入して強化繊維に樹脂を注入する成形法である。両面金型を用いることで、成形品の表面品位や寸法精度を良くすることができる、という利点を有する。しかし、特に樹脂を加圧注入する場合において、必要以上に樹脂の加圧力を大きくし過ぎると、成形中に両面型の相対位置が開いて金型間から樹脂が漏れ出てしまい、所望する成形品が得られなくなる。このような不具合を防ぐために、金型同士を多数のねじ等の締結治具で強固に固定するか、外部からの手段により加圧保持し型開きを防止する必要がある。 On the other hand, the RTM method is a molding method in which reinforcing fibers are arranged in a cavity of a double-sided mold, and a resin is injected into the cavity by pressurizing and injecting the resin into the reinforcing fibers. By using a double-sided mold, the surface quality and dimensional accuracy of the molded product can be improved. However, especially when the resin is injected under pressure, if the pressure of the resin is increased more than necessary, the relative position of the double-sided mold opens during molding and the resin leaks between the molds, and the desired molding. The product cannot be obtained. In order to prevent such problems, it is necessary to firmly fix the molds together with a large number of fastening jigs such as screws, or to hold the pressure by means from the outside to prevent mold opening.
締結治具を用いて固定する場合、簡易な金型構造を採ることも可能ではあるが、反面、大型構造部材の成形をするには金型も大型化する必要があり、これに伴って固定箇所が増加し、作業の面からみても現実的ではない。 When fixing using a fastening jig, it is possible to adopt a simple mold structure, but on the other hand, it is necessary to enlarge the mold in order to form a large structural member. The number of locations increases, which is not realistic from the viewpoint of work.
一方、外部からの手段により加圧保持する方法としては、油圧プレス装置が一般的に用いられる。特に、大型構造部材に適用する場合、同等サイズの油圧プレス装置を用意することは現実的でないことから、必然的に金型表面積に対して狭い部分に集中して加圧することとなり、加圧する外力に対して金型形状が変形しないだけの高い剛性が必要とされる。加圧時に金型が変形すると、シール部分に均等な加圧力が発生せず、樹脂漏れや、空気の流入が生じ、成形品に樹脂が含浸しない未含浸部を生じさせる原因となる。さらに、金型やプレス装置が大型になると、装置の設置やメンテナンスなどに多大な投資が必要となる。 On the other hand, a hydraulic press apparatus is generally used as a method of holding pressure by means from the outside. In particular, when applied to large structural members, it is not practical to prepare a hydraulic press device of the same size. On the other hand, high rigidity that does not deform the mold shape is required. If the mold is deformed at the time of pressurization, a uniform applied pressure is not generated at the seal portion, causing resin leakage and air inflow, which may cause a non-impregnated portion in which the resin is not impregnated in the molded product. Furthermore, when the mold and the press device become large, a great investment is required for installation and maintenance of the device.
上記問題を解決する手段の一つとして、空気圧を用いてチューブを膨張させ、その膨張圧力を型開き防止に用いる方法が特許文献1に開示されている。片開きを防止する手段としてチューブの膨張力を利用することで、従来のシリンダ・ピストン構造にて用いられる加工精度を必要とする部品やシール部品等が不要となり、従来構造のプレス機に比べ安価な型開き防止機構とすることが可能になる。本発明はRTM法にも適用可能であり、型開き防止機構を簡易化することが可能になる。しかし単純に置き換えた場合では、金型には、従来の油圧プレスを用いた方法と同様に加圧する外力に対して金型形状が変形しないだけの高い剛性が求められることには変わりがない。
As one of means for solving the above problem,
そこで本発明の課題は、両面型内に樹脂を加圧注入するFRP製造装置において、チューブ状の袋状加圧体を用いて、空気圧による型締め機構をFRP製造装置に適用することで、プレス機等の加圧源を簡易化するとともに、高い剛性を必要としない金型を使用しても、大型の成形品であっても厚みなどの寸法精度を低下させることなく、またメンテナンスなどの必要な労力を低減できるFRP製造装置を提供することにある。 Therefore, an object of the present invention is to apply a pneumatic clamping mechanism to an FRP manufacturing apparatus using a tube-shaped bag-like pressurizing unit in a FRP manufacturing apparatus that pressurizes and injects resin into a double-sided mold. The pressurization source of the machine is simplified, and even if a mold that does not require high rigidity is used, even if it is a large molded product, dimensional accuracy such as thickness is not reduced, and maintenance is required An object of the present invention is to provide an FRP manufacturing apparatus that can reduce labor.
上記課題を解決する方法として、本発明は以下の手段を用いる。すなわち、成形後の製品形状を有するキャビティを備えた第1の型とキャビティ部を覆う第2の型からなり、キャビティに連接する少なくとも一つのキャビティ内部の空気を排出するための吸引口および少なくとも一つのキャビティ内へ樹脂を注入するための注入口を備え、前記キャビティに収納された強化繊維基材に樹脂を含浸させる両面型を用いたFRP製造装置であって、前記第1の型および前記第2の型の周囲を囲む支持体を備え、前記支持体と前記第1の型および/または前記支持体と前記第2の型との間に、前記第1の型と前記第2の型とを密着させる複数の袋状加圧体を備えた成形装置の構成とする。また、袋状加圧体は、少なくともキャビティが設けられた範囲を加圧する少なくとも1つの第1の袋状加圧体と、キャビティの周縁部に設けられたシール部材を覆うように加圧する少なくとも1つの第2の袋状加圧体とを備え、第1の袋状加圧体と第2の袋状加圧体とが、加圧力を個別に調整可能としたFRP製造装置である。 As a method for solving the above problems, the present invention uses the following means. That is, a suction port for discharging air inside at least one cavity connected to the cavity, and a first mold having a cavity having a molded product shape and a second mold covering the cavity, and at least one An FRP manufacturing apparatus using a double-sided mold comprising an injection port for injecting resin into one cavity and impregnating the reinforcing fiber base housed in the cavity with the resin, wherein the first mold and the first mold A support body surrounding the periphery of the two molds, and the first mold and the second mold between the support and the first mold and / or the support and the second mold. It is set as the structure of the shaping | molding apparatus provided with the some bag-shaped pressurization body which sticks. The bag-like pressurizing body is at least one pressurizing so as to cover at least one first bag-like pressurizing body that pressurizes at least a range in which the cavity is provided and a seal member provided on the peripheral edge of the cavity. The FRP manufacturing apparatus includes two second bag-shaped pressurizing bodies, and the first bag-shaped pressurizing body and the second bag-shaped pressurizing body can individually adjust the pressurizing force.
さらに、第1の袋状加圧体内の圧力を、型内に注入される樹脂の注入圧力以上にするとともに、第2の袋状加圧体内の圧力体は第1の袋状加圧体よりも高い圧力で加圧することが望ましい。 Further, the pressure in the first bag-shaped pressurized body is set to be equal to or higher than the injection pressure of the resin injected into the mold, and the pressure body in the second bag-shaped pressurized body is more than the first bag-shaped pressurized body. It is desirable to pressurize at a high pressure.
また本装置の特徴の一つとして、第2の型の厚みが、5mm以上100mm以下であることが望ましい。 Further, as one of the features of this apparatus, it is desirable that the thickness of the second mold is 5 mm or more and 100 mm or less.
さらに本装置には、キャビティに設けられた吸引口に接続され、キャビティを真空吸引する吸引装置や、キャビティに設けられた注入口に接続され、キャビティへ加圧した樹脂を注入するための樹脂加圧装置を備えた構成とすることが望ましい。 Furthermore, this device is connected to a suction port provided in the cavity and vacuum suction is applied to the cavity, and is connected to an injection port provided in the cavity to add a resin for injecting pressurized resin into the cavity. It is desirable to have a configuration including a pressure device.
またさらに本装置には、第1、第2の型および、加圧力支持体の何れかを支持し、第1の型と第2の型の相対位置を変更するための移送機構を有することが望ましい。本移送機構は、型同士の相対位置を変更するために用いられ、第1の型と第2の型をあわせた後の型締めの際に、型開き防止めのための押圧力を発生させない構造とすることができる。またこの際、型締めを行う前の第1の型と第2の型の離間距離が、キャビティ内に納められた強化繊維基材がキャビティから突出した最大高さよりも離れていることが望ましい。 Furthermore, this apparatus has a transfer mechanism for supporting any one of the first and second molds and the pressure support and changing the relative positions of the first mold and the second mold. desirable. This transfer mechanism is used to change the relative position of the molds, and does not generate a pressing force for preventing mold opening when clamping the mold after combining the first mold and the second mold. It can be a structure. At this time, it is desirable that the separation distance between the first mold and the second mold before the mold clamping is larger than the maximum height at which the reinforcing fiber base housed in the cavity protrudes from the cavity.
本発明を用いると、両面型内に樹脂を加圧注入するFRP製造装置において、チューブ状の袋状加圧体を用いて、空気圧による型締め機構をFRP製造装置に適用することで、プレス機等の加圧源を簡易化するとともに、高い剛性を必要としない金型を使用しても、大型の成形品であっても厚みなどの寸法精度を低下させることなく、またメンテナンスなどの必要な労力を低減できるFRP製造装置を提供することができる。 By using the present invention, in a FRP manufacturing apparatus that pressurizes and injects resin into a double-sided mold, by using a tubular bag-shaped pressurizing body and applying a pneumatic clamping mechanism to the FRP manufacturing apparatus, a press machine Simplify the pressure source, etc., and use a mold that does not require high rigidity, even for large molded products, without reducing the dimensional accuracy such as thickness, and maintenance An FRP manufacturing apparatus capable of reducing labor can be provided.
以下、本発明について、図を用いて説明する。なお、本発明は、提示した図に制限されるものではない。 The present invention will be described below with reference to the drawings. In addition, this invention is not restrict | limited to the shown figure.
図1、図2は本発明に用いるFRP製造装置の斜視図である。また図3は本発明に用いるFRP製造装置の断面を模式的に表した横断面図である。 1 and 2 are perspective views of an FRP manufacturing apparatus used in the present invention. FIG. 3 is a cross-sectional view schematically showing a cross section of the FRP manufacturing apparatus used in the present invention.
本発明に用いるFRP製造装置は、図2に示すように、強化繊維基材を配置するためのキャビティ(7)およびその周縁部に設けられたシール部材(6)を備えた第1の型(1)、キャビティ(7)を覆う第2の型(2)、第1の型を支える第1の型支持体(11),第2の型を支える第2の型支持体(12)をそれぞれ備えており、支持体同士は蝶番(16)によって連結されている。蝶番(16)により第1の型支持体(11)、第2の型支持体(12)が連結された構成とした場合、油圧、空気圧シリンダーや各種モータにより駆動するジャッキ等(図示せず)を用いて第2の型支持体(12)を蝶番(16)の軸を中心に回転させることで、実質的に第1の型(1)と第2の型(2)の相対位置を変化させることができる。 As shown in FIG. 2, the FRP manufacturing apparatus used in the present invention is a first mold (1) provided with a cavity (7) for arranging a reinforcing fiber base and a seal member (6) provided on the peripheral edge thereof. 1) a second mold (2) covering the cavity (7), a first mold support (11) supporting the first mold, and a second mold support (12) supporting the second mold, respectively. And the supports are connected by a hinge (16). When the first mold support (11) and the second mold support (12) are connected by a hinge (16), a jack or the like driven by a hydraulic or pneumatic cylinder or various motors (not shown) The relative position of the first mold (1) and the second mold (2) is substantially changed by rotating the second mold support (12) around the axis of the hinge (16) using Can be made.
また、図3に示すように、第2の型(2)と第2の型を支える第2の型支持体(12)の間には、第1の型のキャビティ(7)を含む範囲を加圧する第1の袋状加圧体(3)とシール部材(6)を加圧する第2の袋状加圧体(4)を備えている。 Further, as shown in FIG. 3, a range including the cavity (7) of the first mold is provided between the second mold (2) and the second mold support (12) supporting the second mold. A first bag-shaped pressurizing body (3) for pressurization and a second bag-shaped pressurizing body (4) for pressurizing the seal member (6) are provided.
第2の型(2)と第2の型を支える第2の型支持体(12)はガイドレール(31)によって連結されている。ガイドレール(31)と第2の型(2)とは固定されておらず、第2の型(2)はガイドレール(31)に沿って上下に移動することができる構造となっている。これにより、第2の型支持体(12)を開いた際には、第2の型(2)が追従して持ち上がるようにするとともに、一方で型を閉める際には第1の型(1)上に第2の型(2)が正しく配置されるのを助け、また袋状加圧体を膨らませた際に第2の型(2)が横方向へずれるのを防いでいる。 The 2nd type | mold (2) and the 2nd type | mold support body (12) which supports a 2nd type | mold are connected by the guide rail (31). The guide rail (31) and the second die (2) are not fixed, and the second die (2) has a structure that can move up and down along the guide rail (31). Thus, when the second mold support (12) is opened, the second mold (2) follows and lifts, while when the mold is closed, the first mold (1 ) Helps to properly arrange the second mold (2) and prevents the second mold (2) from shifting laterally when the bag-like pressurizing body is inflated.
また、第1の型(1)にキャビティ(7)内を真空引きするための吸引口(22)、および加圧した樹脂をキャビティ(7)内に注入するための注入口(21)が設けられている。吸引口(22)および注入口(21)の配置箇所および設置数は、用いる強化繊維基材の大きさや樹脂の含浸の程度により決定することができる。 The first mold (1) is provided with a suction port (22) for evacuating the cavity (7) and an injection port (21) for injecting pressurized resin into the cavity (7). It has been. The arrangement location and the number of installation of the suction port (22) and the injection port (21) can be determined by the size of the reinforcing fiber base to be used and the degree of impregnation of the resin.
第1の型支持体(11)および第2の型支持体(12)は、その一辺が蝶番(16)にて締結されていることが好ましい。また、蝶番(16)が設けられた辺に対向する辺にはピンを取り付ける貫通孔(13)(14)を備えていることが好ましい。型を閉じた際には、第1の型支持体の貫通孔(13)と第2の型支持体の貫通孔(14)とを合わせ、ピン(15)を挿入する。こうすることで、キャビティ(7)内に加圧注入する樹脂の圧力により、第1の型支持体(11)と第2の型支持体(12)との距離が、樹脂注入中に変化しないように固定することができる。 The first mold support (11) and the second mold support (12) are preferably fastened at one side by a hinge (16). Moreover, it is preferable to provide the through-hole (13) (14) which attaches a pin in the edge | side facing the edge | side in which the hinge (16) was provided. When the mold is closed, the through hole (13) of the first mold support and the through hole (14) of the second mold support are aligned, and the pin (15) is inserted. By doing so, the distance between the first mold support (11) and the second mold support (12) does not change during the resin injection due to the pressure of the resin to be injected under pressure into the cavity (7). Can be fixed.
ここで、第1、第2の袋状加圧体(3)(4)は、それぞれに異なる圧力で加圧された圧縮空気を送り込めるようにポンプ(図示せず)に接続されていることが好ましい。この際、異なるポンプに接続したり、ひとつのポンプから枝分かれさせた圧縮空気を別々のレギュレータにより調節してから接続したりするなど、袋状加圧体内の圧力を個別に調整可能であればその接続方法は限定しない。 Here, the first and second bag-shaped pressurizing bodies (3) and (4) are connected to a pump (not shown) so that compressed air pressurized at different pressures can be sent to each. Is preferred. At this time, if the pressure in the bag-like pressurized body can be adjusted individually, such as connecting to different pumps, or connecting after adjusting the compressed air branched from one pump with a separate regulator The connection method is not limited.
第2の袋状加圧体(4)をシール部材(6)上に配置することで、シール部のみを均等に加圧し、効率よく型締めが行える。そのため型間からの樹脂の漏れや、空気の流入を防ぐことが容易になる。一方、第1の袋状加圧体(3)はキャビティ部の変形を抑制する働きをする。第1の袋状加圧体(3)の加圧力を注入する樹脂の圧力以上にすれば、注入完了し樹脂がキャビティ(7)を満たした際には、キャビティ(7)の壁面にかかる圧力は内外で少なくともつりあうか、第2の型(2)が樹脂注入圧力によって第1の型(1)から離間することはない。そのため、第2の型(2)を薄肉化しても、厚く、高剛性な型を用いた場合と同様の寸法精度の成形品を得ることが可能になる。 By arrange | positioning a 2nd bag-shaped pressurization body (4) on a sealing member (6), only a seal part can be pressurized equally and a mold clamping can be performed efficiently. Therefore, it becomes easy to prevent leakage of resin from between molds and inflow of air. On the other hand, the first bag-like pressure body (3) functions to suppress deformation of the cavity portion. If the applied pressure of the first bag-shaped pressurizing body (3) is set to be equal to or higher than the pressure of the resin to be injected, the pressure applied to the wall surface of the cavity (7) when the injection is completed and the resin fills the cavity (7). The second mold (2) is not separated from the first mold (1) by the resin injection pressure. Therefore, even if the thickness of the second mold (2) is reduced, it is possible to obtain a molded product having the same dimensional accuracy as when a thick and highly rigid mold is used.
ここで、第1の型(1)および第2の型(2)は、アルミニウムや鉄といった金属製であることが好ましい。特に、軽量かつ剛性、強度が発揮できるアルミニウムを適用することが更に好ましい。金属製以外であっても、軽量かつ高剛性という点でGFRP、CFRPといったFRP製の型を用いることも可能である。 Here, the first mold (1) and the second mold (2) are preferably made of metal such as aluminum or iron. In particular, it is more preferable to apply aluminum that is lightweight and can exhibit rigidity and strength. Even if it is not made of metal, FRP molds such as GFRP and CFRP can be used in terms of light weight and high rigidity.
また第2の型(2)の厚みは5mm以上で100mm以下であることが好ましい。注入口(21)や吸引口(22)へは加圧樹脂ラインや真空吸引ラインを治具により固定し、第1の型または第2の型の外側面と、ラインや治具の間から樹脂や空気が漏れる事を防ぐ必要がある。ここで、第2の型厚みが5mm未満の場合は、治具をネジで固定する方法を採った場合に、第2の型側に十分な深さのネジ孔を設けることが難しく、また、ネジ孔を設けた部分周辺が脆弱となり、繰り返し使用により破損する恐れがあるため、第2の型に注入口(21)や吸引口(22)を設けることは好ましくない。また、第2の型(2)と第2の型支持体(12)との間に第1および第2の袋状加圧体(3)(4)を配置する構成とした場合、第2の型(2)はガイドレール(31)にのみ支えられているため、型厚みが5mm未満とすると、第2の型(2)を持ち上げた際に撓みや歪みを生じやすくなり好ましくない。 The thickness of the second mold (2) is preferably 5 mm or more and 100 mm or less. A pressure resin line and a vacuum suction line are fixed to the inlet (21) and the suction port (22) with a jig, and resin is inserted between the outer surface of the first mold or the second mold and the line or jig. It is necessary to prevent air leaks. Here, when the second mold thickness is less than 5 mm, it is difficult to provide a screw hole having a sufficient depth on the second mold side when a method of fixing the jig with a screw is employed, It is not preferable to provide the injection port (21) or the suction port (22) in the second mold because the periphery of the portion where the screw hole is provided becomes brittle and may be damaged by repeated use. Moreover, when it is set as the structure which arrange | positions a 1st and 2nd bag-shaped pressurization body (3) (4) between a 2nd type | mold (2) and a 2nd type | mold support body (12), Since the mold (2) is supported only by the guide rail (31), if the mold thickness is less than 5 mm, bending and distortion are likely to occur when the second mold (2) is lifted, which is not preferable.
一方、第2の型の厚みが増えると重量が増加するため、第2の型支持体(12)を含む第2の型(2)全体を開くための装置に、より大きな容量が求められ、十分に装置構成を簡易化することができない。そのため第2の型の厚みは100mm以下が好ましく、50mm以下とすることがより好ましい。 On the other hand, since the weight increases as the thickness of the second mold increases, a larger capacity is required for a device for opening the entire second mold (2) including the second mold support (12), The apparatus configuration cannot be simplified sufficiently. Therefore, the thickness of the second mold is preferably 100 mm or less, and more preferably 50 mm or less.
ここで、吸引口(22)には、真空吸引装置(図示せず)を接続することもできる。真空吸引装置を接続すると、キャビティ(7)内部に配置した強化繊維基材への樹脂の含浸を助けることができるため好ましい。樹脂注入中にも真空吸引し続けると、樹脂の未含浸部が発生しにくくなるため、さらに好ましい態様である。ここで真空状態とは、絶対圧真空計にて測定した場合、10kPa以下であることが好ましく、1kPa以下であることがより好ましい。さらに、この際真空引きを中断した後のキャビティ内の圧力の上昇分が、5分間で1kPa以下であると樹脂注入後に型内部への空気の流入が少なく、表面に泡等の欠陥が残りにくく、より好ましい。 Here, a vacuum suction device (not shown) can be connected to the suction port (22). Connecting a vacuum suction device is preferable because it can help impregnation of the resin into the reinforcing fiber base disposed inside the cavity (7). If vacuum suction is continued during resin injection, an unimpregnated portion of the resin is less likely to occur, which is a more preferable embodiment. Here, the vacuum state is preferably 10 kPa or less, more preferably 1 kPa or less, when measured with an absolute pressure vacuum gauge. Furthermore, if the increase in pressure in the cavity after evacuation is interrupted at this time is 1 kPa or less in 5 minutes, there is little inflow of air into the mold after resin injection, and defects such as bubbles hardly remain on the surface. More preferable.
また注入口(21)には樹脂加圧装置(図示せず)を接続することができる。樹脂加圧装置の形態としては、加圧容器、自動樹脂混合・注入装置等を用いることができる。加圧容器を用いることで、様々な樹脂を用いた成形検討を簡便に進めることが可能になるが、使用する樹脂量が増加すると加圧容器を大型化したり、複数用意したりする必要があり、樹脂注入の作業の際に取扱いが煩雑になる。一方、自動樹脂混合・注入装置を用いれば、多量の樹脂を安全かつ容易に取り扱うことが可能になるが、設備投資がより必要になる。 A resin pressurizing device (not shown) can be connected to the injection port (21). As a form of the resin pressurizing apparatus, a pressurized container, an automatic resin mixing / injecting apparatus, or the like can be used. By using pressurized containers, it is possible to easily proceed with molding studies using various resins, but if the amount of resin used increases, it is necessary to increase the size of the pressurized container or to prepare multiple containers. The handling becomes complicated during the resin injection operation. On the other hand, if an automatic resin mixing / injecting device is used, a large amount of resin can be handled safely and easily, but more capital investment is required.
また、第1の型支持体(11)および第2の型支持体(12)は、特に限定されるものではないが、鉄製であることが剛性の点で好ましい。 The first mold support (11) and the second mold support (12) are not particularly limited, but are preferably made of iron in terms of rigidity.
また、第1の型支持体(11)および第2の型支持体(12)は、図2で示した蝶番(16)で締結されている以外にも、図7に示すように、ピン(15)で固定する貫通孔(13)(14)を、第1の型支持体(11)および第2の型支持体(12)の複数の辺に設け、第2の型支持体(12)が第1の型支持体(11)に対して垂直に移動する形態をとることもできる。ここで、ピン(15)は、特に限定されるものではないが鉄製であることが剛性および強度の点で好ましい。 In addition, the first mold support (11) and the second mold support (12) are fastened by the hinge (16) shown in FIG. 2, as shown in FIG. Through holes (13) and (14) to be fixed at 15) are provided on a plurality of sides of the first mold support (11) and the second mold support (12), and the second mold support (12). Can move vertically to the first mold support (11). Here, the pin (15) is not particularly limited, but is preferably made of iron in terms of rigidity and strength.
またこの場合、図8のように、第2の型支持体(12)にキャスター等の移動手段が設けられていると、成形作業場所とは別の場所で炭素繊維基材を準備したり、成形後に移動させてFRPを取り出しやすくしたりできる。このように第1の型(1)と第2の型(2)の相対位置を変化させるための移送機構を有することにより、作業スペースを確保し、キャビティ内部への基材の配置を行いやすくすることができる。その他の移送の方法として、片方の型がレールに沿って移動し横方向にずれる、ロボットアームにより片方の型が運ばれる、などの方法を採ることも可能であり、またこれらの方法に限るものではない。 In this case, as shown in FIG. 8, when the second mold support (12) is provided with moving means such as casters, a carbon fiber base material is prepared at a place different from the molding work place, It can be moved after molding to facilitate removal of the FRP. Thus, by having a transfer mechanism for changing the relative position of the first mold (1) and the second mold (2), it is possible to secure a working space and easily arrange the base material inside the cavity. can do. As other transfer methods, it is also possible to adopt a method in which one mold moves along the rail and shifts in the lateral direction, or one mold is carried by the robot arm. is not.
第1の袋状加圧体(3)および第2の袋状加圧体(4)の材質は、加圧流体を密封可能であれば特に限定されるものでは無い。その際、ガラス繊維やアラミド繊維等の強化繊維を樹脂でコーティングして製作される材料を用いると、高強度かつ伸びが小さく、加圧流体を封入した際に型支持体と型の隙間(43)から周方向に伸びず、型への押圧力が十分に発揮され、適している。また、加圧空気封入時の横方向への伸びが大きいとガイドレール(31)等に干渉し、接触部分から袋状加圧体が破損する恐れがあるため、この点からも伸びの少ない材質が好ましい。 The material of the first bag-like pressure body (3) and the second bag-like pressure body (4) is not particularly limited as long as the pressurized fluid can be sealed. At that time, if a material produced by coating a reinforcing fiber such as glass fiber or aramid fiber with a resin is used, the strength and elongation are small, and when a pressurized fluid is sealed, the gap between the mold support and the mold (43 ) Is not stretched in the circumferential direction, and the pressing force to the mold is sufficiently exerted, which is suitable. In addition, if the lateral extension when filled with pressurized air is large, it may interfere with the guide rail (31) and the like, and the bag-like pressurized body may be damaged from the contact portion. Is preferred.
本発明に係わる強化繊維基材に用いられる繊維としては、炭素繊維、ガラス繊維、アラミド繊維等を用いることができる。また基材の態様としては、平織り、綾織等の織物基材、一方向に並べられた強化繊維が強化繊維よりもはるかに小目付けの横糸で止められた所謂一方向基材等を用いることができるがこれに限定されるものではない。このうち、繊維強化による剛性や強度を効率よく高めることができ、軽量化も達成できる炭素繊維の織物基材を用いることが好ましい。 As the fiber used for the reinforcing fiber base according to the present invention, carbon fiber, glass fiber, aramid fiber or the like can be used. Further, as the base material, it is possible to use a woven base material such as plain weave and twill, a so-called unidirectional base material in which reinforcing fibers arranged in one direction are stopped by wefts having a much smaller weight than reinforcing fibers. Yes, but not limited to this. Among them, it is preferable to use a carbon fiber woven base material that can efficiently increase the rigidity and strength by fiber reinforcement and can achieve weight reduction.
また、キャビティ(7)には、強化繊維基材を複数枚積層した積層体を充填することが好ましい。この際、第2の型(2)が第1の型(1)を覆った状態において、第1の型(1)と第2の型(2)との離間距離が、キャビティ(7)から突出した強化繊維基材(積層体)の最大高さよりも大きいことが好ましい。このような配置を可能にすると、型の相対位置変更の際に、型と強化繊維基材の積層体(5)が干渉して、強化繊維基材の積層体(5)の形状が崩れることを防ぐことができる。型の相対位置変更の際に、強化繊維基材の積層体(5)の形状が崩れてしまうと、成形品内の強化繊維基材の位置や向きが所定の配置と異なってしまい、力学特性や表面品位の低下につながる。また、キャビティ(7)以外の部分に崩れた強化繊維基材が挟まれると、型が閉まりきらずに、樹脂漏れや空気の流入が生じ、成形品に樹脂が含浸しない未含浸部を生じる原因となるため、好ましくない態様となる。 The cavity (7) is preferably filled with a laminate in which a plurality of reinforcing fiber substrates are laminated. At this time, in the state where the second mold (2) covers the first mold (1), the separation distance between the first mold (1) and the second mold (2) is from the cavity (7). It is preferably larger than the maximum height of the protruding reinforcing fiber base (laminated body). When such an arrangement is made possible, when the relative position of the mold is changed, the laminate of the mold and the reinforcing fiber substrate (5) interferes, and the shape of the laminate of the reinforcing fiber substrate (5) is destroyed. Can be prevented. When the relative position of the mold is changed, if the shape of the laminate (5) of the reinforcing fiber base is broken, the position and orientation of the reinforcing fiber base in the molded product is different from the predetermined arrangement, and the mechanical characteristics And surface quality. In addition, if the reinforced fiber base material collapsed in a portion other than the cavity (7) is sandwiched, the mold does not completely close, causing resin leakage and air inflow, and causing the molded product to have an unimpregnated portion that is not impregnated with resin. Therefore, it becomes an unpreferable aspect.
本発明に用いる樹脂としては、エポキシ樹脂、ビニルエステル樹脂などの通常のFRPのRTM成形に用いられる樹脂を用いることができる。 As the resin used in the present invention, a resin used for normal FRP RTM molding, such as an epoxy resin or a vinyl ester resin, can be used.
本発明に用いるシール部材(6)としては、材質、断面形状に特に限定は無いが、シリコーンゴム等の樹脂との離型性を有する部材を用いると、成形後にシール部材(6)と注入した樹脂が一体化せず繰り返し使用することができるため好ましい。 The seal member (6) used in the present invention is not particularly limited in material and cross-sectional shape, but when a member having releasability from a resin such as silicone rubber is used, the seal member (6) is injected after molding. The resin is preferable because it can be used repeatedly without being integrated.
(実施例)
前述したFRP製造装置を用いて繊維強化プラスチック成形品を製造する方法について説明する。なお、本発明は、この実施例によって何ら制限されるものではない。
(Example)
A method for manufacturing a fiber-reinforced plastic molded product using the above-described FRP manufacturing apparatus will be described. In addition, this invention is not restrict | limited at all by this Example.
まず、図3に示すように、東レ(株)製炭素繊維基材(品番:CN1411CL、T-620S、600g/m2、一方向基材)を90枚、キャビティ(7)の寸法に合わせて切り出し、キャビティ(7)内に配置した。このとき炭素繊維基材の積層体(5)は第1の型(1)のシール部材(6)が配されている面(17)より約1cm飛び出していた。 First, as shown in FIG. 3, 90 carbon fiber base materials (product number: CN1411CL, T-620S, 600 g / m 2 , one-way base material) manufactured by Toray Industries, Inc. are matched to the dimensions of the cavity (7). Cut out and placed in the cavity (7). At this time, the laminate (5) of the carbon fiber base material protruded about 1 cm from the surface (17) on which the sealing member (6) of the first mold (1) was arranged.
本実施例では第1、第2の型(1)、(2)ともにアルミニウム製とした。第1の型(1)には、深さ50mmのキャビティ(7)と熱媒流路(図示せず)を設け加熱可能な構成としたため、総厚みは300mmとなった。一方、第2の型(2)は前述のように必要最低限の剛性でよいことから、厚み10mmとした。 In this embodiment, both the first and second molds (1) and (2) are made of aluminum. Since the first mold (1) is provided with a cavity (7) having a depth of 50 mm and a heat medium flow path (not shown) and can be heated, the total thickness is 300 mm. On the other hand, the thickness of the second mold (2) is set to 10 mm because the necessary minimum rigidity is sufficient as described above.
続いて図4に示すように、第2の型の支持体(12)および第2の型(2)を閉じて、第1の型(1)を第2の型(2)が覆った状態として、ピン(15)を用いて第1の支持体(11)と第2の支持体(12)を固定した。このとき、第2の型(2)は第1の型(1)より約3cm浮いた状態となった。 Subsequently, as shown in FIG. 4, the second mold support (12) and the second mold (2) are closed, and the first mold (1) is covered by the second mold (2). As described above, the first support (11) and the second support (12) were fixed using a pin (15). At this time, the second mold (2) floated about 3 cm from the first mold (1).
続いて、シール部材(6)上の第2の袋状加圧体(4)に0.65MPaの圧縮空気を封入し型同士を密着させ、吸引口(22)に接続した真空ポンプを用いて、キャビティ(7)内の排気を行った。このとき、注入口(21)側に絶対圧真空計を接続しキャビティ(7)内の圧力を計測したところ、1.0kPaであり、さらに真空引きを中断して圧力を測定したところ、内圧の上昇分は、5分間で1.0kPa以下であった。 Subsequently, 0.65 MPa of compressed air is sealed in the second bag-like pressure body (4) on the seal member (6), the molds are brought into close contact with each other, and a vacuum pump connected to the suction port (22) is used. Then, the cavity (7) was evacuated. At this time, when an absolute pressure vacuum gauge was connected to the inlet (21) side and the pressure in the cavity (7) was measured, it was 1.0 kPa. The increase was 1.0 kPa or less in 5 minutes.
続いて、キャビティ(7)内の真空度を保ったまま、絶対圧真空計の代わりに樹脂加圧装置に設けられた樹脂を送り出すための経路を注入口(21)に接続したのち、あらかじめ脱泡しておいたマトリックス樹脂(主剤:RIMR135、硬化剤:RIMH137、Momentive社製)の主剤と硬化剤を100:30の割合で混合し、内部の樹脂の加圧力を調節する機構が備わった樹脂加圧装置内に配置し、樹脂加圧装置のふたを固定した。なお、この時点では樹脂の注入経路は閉じていた。 Subsequently, while maintaining the degree of vacuum in the cavity (7), a route for feeding the resin provided in the resin pressurizing apparatus instead of the absolute pressure gauge is connected to the injection port (21), and then removed in advance. Resin with a mechanism that adjusts the internal resin pressure by mixing foamed matrix resin (main agent: RIMR135, curing agent: RIMH137, manufactured by Momentive) at a ratio of 100: 30. It placed in a pressurizing device and the lid of the resin pressurizing device was fixed. At this time, the resin injection path was closed.
以上の準備が完了した後に、まず、樹脂加圧装置内の樹脂圧力を0.5MPaまで昇圧させた。 After completing the above preparation, first, the resin pressure in the resin pressurizing apparatus was increased to 0.5 MPa.
続いて、注入経路を開放し、キャビティ(7)内への樹脂注入を開始するとともに、キャビティ(7)上の第1の袋状加圧体(3)内の空気を0.5MPaまで昇圧し所定の時間静置した。 Subsequently, the injection path is opened, resin injection into the cavity (7) is started, and the air in the first bag-shaped pressurizing body (3) on the cavity (7) is increased to 0.5 MPa. It was allowed to stand for a predetermined time.
吸引口(22)に連接する真空引きの経路より樹脂が排出され始めたことを確認後、真空引きの経路を樹脂の流出を防ぐために閉止した。 After confirming that the resin began to be discharged from the vacuum path connected to the suction port (22), the vacuum path was closed to prevent the resin from flowing out.
樹脂加圧装置内の樹脂量が規定量分だけキャビティ(7)内に移動したことを確認した後、樹脂の注入経路も閉止した。このとき樹脂加圧装置内の加圧もあわせて中止した。 After confirming that the amount of the resin in the resin pressurizing apparatus was moved into the cavity (7) by a specified amount, the resin injection path was also closed. At this time, pressurization in the resin pressurizer was also stopped.
その後、樹脂を硬化させるために第1の袋状加圧体(3)および第2の袋状加圧体(4)内の空気圧を保持したまま、室温で24時間静置した。 Thereafter, the resin was allowed to stand at room temperature for 24 hours while maintaining the air pressure in the first bag-like pressure body (3) and the second bag-like pressure body (4) in order to cure the resin.
キャビティ(7)内の樹脂が硬化後、第1と第2の袋状加圧体(3)、(4)の加圧を止め、ピン(15)を外し、第2の支持体(12)を持ち上げ第2の型(2)を開いた。成形品をキャビティ(7)から取り出したところ、キャビティ形状のCFRPが得られた。 After the resin in the cavity (7) is cured, the first and second bag-like pressure bodies (3) and (4) are depressurized, the pin (15) is removed, and the second support body (12). Was lifted to open the second mold (2). When the molded product was taken out from the cavity (7), a cavity-shaped CFRP was obtained.
得られた成形品の断面を切断し肉眼およびデジタルマイクロスコープ(キーエンス社製)にて500倍の倍率で観察したところ、ボイド、未含浸は見られなかった。また図2に示すキャビティ(7)の長手方向に渡り、200mm間隔で成形品の厚みを測定したところ、成形品厚みは50±0.3mmであり、また成形品表面は型面が転写されているために滑らかで、寸法・外観品位において良好な成形品が得られた。 When a cross section of the obtained molded product was cut and observed with the naked eye and a digital microscope (manufactured by Keyence Corporation) at a magnification of 500 times, no voids and no impregnation were observed. Further, when the thickness of the molded product was measured at intervals of 200 mm over the longitudinal direction of the cavity (7) shown in FIG. 2, the thickness of the molded product was 50 ± 0.3 mm, and the mold surface was transferred to the surface of the molded product. As a result, it was smooth and a good molded product was obtained in terms of dimensions and appearance.
(比較例)
比較例においては、実施例と同様の装置構成において、図6に示すように袋状加圧体がキャビティ周縁部のシール部材(6)からキャビティ(7)上部までを覆う一体物として配置されている。
(Comparative example)
In the comparative example, in the same apparatus configuration as that of the example, as shown in FIG. 6, the bag-like pressurizing body is arranged as an integral part covering the cavity peripheral edge from the sealing member (6) to the upper part of the cavity (7). Yes.
続いて、実施例と同様に東レ(株)製炭素繊維基材(品番:CN1411CL、T-620S、600g/m2、一方向基材))を90枚、キャビティ(7)の形状に合わせて切り出し、型内に配置した。 Subsequently, 90 carbon fiber base materials (product number: CN1411CL, T-620S, 600 g / m 2 , unidirectional base material)) manufactured by Toray Industries, Inc. were matched to the shape of the cavity (7) in the same manner as in the examples. Cut out and placed in a mold.
第2の型の支持体(12)および第2の型(2)を閉じて、第1の型(1)を第2の型(2)が覆った状態として、ピン(15)を用いて第1の型支持体(11)と第2型支持体(12)を固定した。その後、第2の型(2)上部の一体物の袋状加圧体(51)に0.65MPaの圧縮空気を注入し、第1の型(1)と第2の型(2)を密着させるとともに、吸引口(22)に接続した真空ポンプを起動させ、キャビティ(7)内の排気を行った。このとき、型内の真空度は絶対圧真空計を用いて計測したところ、1.0kPaであり、真空引きを中断して圧力測定したところ、内圧の上昇分を分は、5分間で2.0kPa以上であった。 Using the pin (15) with the second mold support (12) and the second mold (2) closed and the first mold (1) covered by the second mold (2) The first mold support (11) and the second mold support (12) were fixed. Thereafter, 0.65 MPa of compressed air is injected into the integrated bag-like pressurizing body (51) on the second mold (2), and the first mold (1) and the second mold (2) are brought into close contact with each other. At the same time, the vacuum pump connected to the suction port (22) was activated to evacuate the cavity (7). At this time, the degree of vacuum in the mold was 1.0 kPa when measured using an absolute pressure gauge, and when the pressure was measured while evacuation was interrupted, the amount of increase in internal pressure was 2. It was 0 kPa or more.
続いて、実施例と同様にあらかじめ脱泡しておいた同様のマトリックス樹脂を前述の割合で混合し、前述の樹脂加圧装置内に配置し、樹脂加圧装置のふたを固定した。 Subsequently, the same matrix resin that had been degassed in the same manner as in the example was mixed in the above-described ratio, placed in the above-described resin pressurizing apparatus, and the lid of the resin pressurizing apparatus was fixed.
以上の準備が完了した後に、まず、樹脂加圧装置の樹脂圧力を0.5MPaまで昇圧させた。 After the above preparation was completed, first, the resin pressure of the resin pressurizing apparatus was increased to 0.5 MPa.
続いて、注入経路を開放して樹脂を型内に注入を開始した。 Subsequently, the injection path was opened and injection of resin into the mold was started.
真空引きの経路より樹脂が排出され始めたことを確認後、真空引きの経路は樹脂の流出を防ぐために閉止した。 After confirming that the resin began to be discharged from the evacuation path, the evacuation path was closed to prevent the resin from flowing out.
ここで、樹脂加圧装置内の樹脂量は規定量分だけ型内に移動する前に、シール部分から樹脂が漏れ出したため作業を中断した。 Here, before the resin amount in the resin pressurizing apparatus moved into the mold by a specified amount, the operation was interrupted because the resin leaked from the seal portion.
本構成では、シール性能を十分に発揮させようと袋状加圧体の圧力を上げると、キャビティ(7)上も同圧力で加圧されるものの、キャビティ(7)上では内部に樹脂が満たされるまで第2の型(2)を支える反力が小さいため、第2の型(2)がキャビティ(7)に向かって反ってしまった結果、シール部材(6)上の第2の型(2)が相対的に持ち上がり、シール効果が低下したと考えられる。 In this configuration, when the pressure of the bag-like pressurizing body is increased so that the sealing performance can be sufficiently exerted, the cavity (7) is pressurized with the same pressure, but the cavity (7) is filled with resin. Since the reaction force that supports the second mold (2) is small until the second mold (2) is warped toward the cavity (7), the second mold (6) on the seal member (6) ( 2) is lifted relatively, and it is considered that the sealing effect is lowered.
本発明は、RTM成形方法を用いた繊維強化プラスチックの製造装置に関し、特に、長さが数m〜数十mもの大型構造部材を製造可能な繊維強化プラスチックの製造装置として用いる事ができる。対象となる大型構造部材としては、風車翼や航空機翼の桁材、建築物の柱等の大型、長大かつ厚肉な一次構造部材があげられるが、適用範囲はこれらに限るものではない。 The present invention relates to a fiber reinforced plastic manufacturing apparatus using an RTM molding method, and in particular, can be used as a fiber reinforced plastic manufacturing apparatus capable of manufacturing a large structural member having a length of several meters to several tens of meters. Examples of large structural members that can be used include large, long, and thick primary structural members such as windmill wings, aircraft wing girders, and building columns, but the scope of application is not limited thereto.
1 第1の型
2 第2の型
3 第1の袋状加圧体
4 第2の袋状加圧体
5 強化繊維基材
6 シール部材
7 キャビティ
11 第1の型支持体
12 第2の型支持体
13 挿入孔
14 挿入孔
15 ピン
16 蝶番
17 第1の型のシール部材が配されている面
21 注入口
22 吸引口
31 ガイドレール
41 第1の型を第2の型が覆った状態において、第2の型と第1の型のシール部材が配されている面との距離
42 強化繊維基材の積層体が第1の型のシール部材が配されている面から飛び出している距離
43 第1の型支持体と第1の型との隙間
51 一体物の袋状加圧体
DESCRIPTION OF
Claims (12)
前記第1の型および前記第2の型の周囲を囲む支持体を備え、前記支持体と前記第1の型および/または前記支持体と前記第2の型との間に、前記第1の型と前記第2の型とを密着させる複数の袋状加圧体を備え、前記袋状加圧体は、第1の型の前記キャビティを形成する面または第2の型の前記キャビティに接する面と反対側の面に、前記キャビティを含む範囲を加圧する少なくとも1つの第1の袋状加圧体と、前記キャビティの周縁部に設けられたシール部材を加圧する少なくとも1つの第2の袋状加圧体とを少なくとも備え、
前記キャビティ内に強化繊維基材を配置した後、前記第2の型で覆い、該第2の型を、それぞれ加圧力を個別に調整可能な前記第1の袋状加圧体と前記第2の袋状加圧体とで加圧し、樹脂注入口から樹脂を強化繊維基材に含浸させ、樹脂を硬化した後、前記キャビティから繊維強化複合材料成形品を取り出すことを特徴とするFRP製造方法。 An FRP manufacturing apparatus comprising a first mold having a cavity for disposing a reinforcing fiber base and a second mold covering the cavity, and having at least one suction port and a resin injection port connected to the cavity is used. FRP manufacturing method
A support body surrounding the first mold and the second mold, and the first mold and / or the first mold and / or the second mold between the first mold and the first mold; A plurality of bag-shaped pressurizing bodies that closely contact the mold and the second mold are provided, and the bag-shaped pressurizing bodies are in contact with a surface forming the cavity of the first mold or the cavity of the second mold. At least one first bag-like pressurizing body that pressurizes a range including the cavity on a surface opposite to the surface, and at least one second bag that pressurizes a seal member provided at a peripheral edge of the cavity A pressure member,
After disposing the reinforcing fiber substrate in the cavity, the second mold is covered with the second mold, and the second mold is capable of individually adjusting the pressurizing force, and the first bag-like pressure body and the second FRP manufacturing method characterized in that after pressurizing with a bag-shaped pressurizing body, impregnating resin into a reinforcing fiber base from a resin inlet, curing the resin, and then taking out a fiber-reinforced composite material molded product from the cavity .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012076589A JP5854430B2 (en) | 2012-03-29 | 2012-03-29 | FRP manufacturing apparatus and FRP manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012076589A JP5854430B2 (en) | 2012-03-29 | 2012-03-29 | FRP manufacturing apparatus and FRP manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013203005A JP2013203005A (en) | 2013-10-07 |
JP5854430B2 true JP5854430B2 (en) | 2016-02-09 |
Family
ID=49522623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012076589A Expired - Fee Related JP5854430B2 (en) | 2012-03-29 | 2012-03-29 | FRP manufacturing apparatus and FRP manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5854430B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6152038B2 (en) * | 2013-10-24 | 2017-06-21 | 川崎重工業株式会社 | Fiber reinforced plastic molding tool and molding method |
US10035300B2 (en) * | 2015-06-23 | 2018-07-31 | The Boeing Company | System and method for manufacturing a stiffened composite structure |
US10889073B2 (en) * | 2017-03-13 | 2021-01-12 | The Boeing Company | Controllable multi-celled bladders for composites |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS627520A (en) * | 1985-07-05 | 1987-01-14 | Mitsubishi Heavy Ind Ltd | Pressurizing pressing device |
JPS6262740A (en) * | 1985-09-14 | 1987-03-19 | Meiki Co Ltd | Hot press apparatus |
JPH0729304B2 (en) * | 1992-02-26 | 1995-04-05 | 川崎重工業株式会社 | Composite material molding method and molding apparatus |
JP3674727B2 (en) * | 1996-04-19 | 2005-07-20 | 日立化成工業株式会社 | Casting artificial marble bathtub manufacturing equipment |
JP2002292653A (en) * | 2001-03-29 | 2002-10-09 | Takagi Kogyo Kk | Multistage type casting mold assembly |
JP4292971B2 (en) * | 2003-12-10 | 2009-07-08 | 東レ株式会社 | FRP manufacturing method and manufacturing apparatus |
JP2008246690A (en) * | 2007-03-29 | 2008-10-16 | Toho Tenax Co Ltd | Resin transfer molding method |
JPWO2011043253A1 (en) * | 2009-10-09 | 2013-03-04 | 東レ株式会社 | Method and apparatus for manufacturing fiber reinforced plastic |
-
2012
- 2012-03-29 JP JP2012076589A patent/JP5854430B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013203005A (en) | 2013-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101811366B (en) | The device and method for manufacturing composite product | |
JP5670381B2 (en) | Controlled atmospheric pressure resin injection process | |
JP6557972B2 (en) | Manufacturing method and manufacturing apparatus for fiber reinforced plastic | |
JP6140679B2 (en) | Resin injection molding process using vacuum with reusable resin distribution line | |
KR20100017350A (en) | Device and method for processing a fibre compound structure | |
WO2011043253A1 (en) | Process and apparatus for producing fiber-reinforced plastic | |
WO2013071422A1 (en) | Ultrasonic resin infusion for moulding composite articles | |
EP3517281A1 (en) | Assisted semi-automatic film compression forming process | |
JP5854430B2 (en) | FRP manufacturing apparatus and FRP manufacturing method | |
CA2752260C (en) | Method for creating a vacuum setup for producing a fiber composite part, and plunger suited therefore | |
CA2795861A1 (en) | Method and device for producing a composite moulded part from fibre-reinforced plastic | |
JP6154670B2 (en) | Method and apparatus for molding fiber reinforced plastic member | |
WO2012136222A1 (en) | Method and apparatus for preparing a fibre reinforced composite component | |
US20150014898A1 (en) | Device and method for producing a moulded part from a composite material | |
JP4292971B2 (en) | FRP manufacturing method and manufacturing apparatus | |
KR20150062195A (en) | Pressurized Molding Machine For CFRP Product and Pressurized Molding Method Of CFRP Product | |
CN110494274B (en) | Tool for producing composite components | |
JP2009045927A (en) | Method of manufacturing fiber reinforced plastic | |
JP4826176B2 (en) | Reinforcing fiber preform and RTM molding method | |
EP1775109B1 (en) | Composite moulding method and apparatus with a vacuum bag | |
JP2005262560A (en) | Method and apparatus for producing fiber-reinforced composite material | |
JP2006159420A (en) | Manufacturing method of frp molded product | |
CN114536803A (en) | Apparatus and method for processing composite structures | |
JPH08336890A (en) | Manufacture of fiber-reinforced resin molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150313 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151202 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5854430 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |