[go: up one dir, main page]

JP5851015B2 - Analysis chip - Google Patents

Analysis chip Download PDF

Info

Publication number
JP5851015B2
JP5851015B2 JP2014249855A JP2014249855A JP5851015B2 JP 5851015 B2 JP5851015 B2 JP 5851015B2 JP 2014249855 A JP2014249855 A JP 2014249855A JP 2014249855 A JP2014249855 A JP 2014249855A JP 5851015 B2 JP5851015 B2 JP 5851015B2
Authority
JP
Japan
Prior art keywords
pot
analysis chip
flow path
chip according
primary reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014249855A
Other languages
Japanese (ja)
Other versions
JP2015045664A (en
Inventor
木村 俊仁
俊仁 木村
小松 明広
明広 小松
森 寿弘
寿弘 森
英行 唐木
英行 唐木
信彦 藤原
信彦 藤原
功太 加藤
功太 加藤
忠宏 松野
忠宏 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014249855A priority Critical patent/JP5851015B2/en
Publication of JP2015045664A publication Critical patent/JP2015045664A/en
Application granted granted Critical
Publication of JP5851015B2 publication Critical patent/JP5851015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、被検物質と結合した光応答性標識物質から生じる光を検出して被検物質の分析を行う光検出法に使用される分析チップ、特に血液などの被検物質に対する1次反応処理と検出用の2次反応処理を行う機能を兼ね備えた分析チップに関する。   The present invention relates to an analysis chip used in a photodetection method for analyzing a test substance by detecting light generated from a photoresponsive labeling substance bound to the test substance, particularly a primary reaction to a test substance such as blood. The present invention relates to an analysis chip having a function of performing processing and secondary reaction processing for detection.

従来からエバネッセント波を用いた表面プラズモン共鳴現象の原理を用いて試料中の物質を定量分析するプラズモンセンサーが知られている(たとえば特許文献1参照)。特許文献1には、プリズムとプリズムの一面に設けられた試料に接触する金属膜との界面に光ビームが全反射角で照射し、界面で全反射した光ビームの反射角を検出することにより試料中の物質を定量分析することが開示されている。さらに、特許文献1においては、サンプル内に収容された複数の試料の定量分析を行うために、光源と光検出部とが移動可能に設けられている。   2. Description of the Related Art Conventionally, a plasmon sensor that quantitatively analyzes a substance in a sample using the principle of a surface plasmon resonance phenomenon using an evanescent wave is known (see, for example, Patent Document 1). In Patent Document 1, a light beam is irradiated at a total reflection angle on an interface between a prism and a metal film that contacts a sample provided on one surface of the prism, and the reflection angle of the light beam totally reflected at the interface is detected. It is disclosed to quantitatively analyze substances in a sample. Furthermore, in patent document 1, in order to perform the quantitative analysis of the some sample accommodated in the sample, the light source and the photon detection part are provided so that a movement is possible.

また、上述したエバネッセント波を利用した蛍光検出装置も提案されている(たとえば特許文献2参照)。特許文献2には、サンプル容器内の蛍光標識化された被検物質等をエバネッセント波により励起したときの蛍光を検出することにより被検物質の定量分析を行うことが開示されている。   In addition, a fluorescence detection apparatus using the above-described evanescent wave has been proposed (see, for example, Patent Document 2). Patent Document 2 discloses that a quantitative analysis of a test substance is performed by detecting fluorescence when a fluorescently labeled test substance or the like in a sample container is excited by an evanescent wave.

特開平10−239233号公報Japanese Patent Laid-Open No. 10-239233 特開2009−128152号公報JP 2009-128152 A 特開2009−222479号公報JP 2009-222479 A

特許文献2に示すような蛍光検出装置において生化学分析を行う場合、一般的には予め検体溶液内の被検物質と蛍光標識とを結合させる1次反応処理を行った後、蛍光標識化された被検物質を化学的に結合補足させる2次反応処理を行う必要がある。   In the case of performing biochemical analysis in a fluorescence detection apparatus as shown in Patent Document 2, generally, a primary reaction process for binding a test substance in a sample solution and a fluorescent label is performed in advance, followed by fluorescent labeling. It is necessary to perform a secondary reaction process for chemically binding the test substance.

ここで、生体から採取する検体溶液量を少なくするためや検出速度を速くするために、特許文献3に示されているようなμTAS(Micro Total Analysis Systems)技術を採用することを考える。このとき、2次反応処理については所望の効果が得られるが、1次反応処理については不都合も生じる。すなわち、検体溶液内の被検物質と蛍光標識とは十分に結合されている必要があるが、流路内において十分な撹拌、溶解を行うことは困難であり、結果として、被検物質の検出精度が低下するという問題がある。   Here, in order to reduce the amount of the sample solution collected from the living body and to increase the detection speed, it is considered to employ μTAS (Micro Total Analysis Systems) technology as disclosed in Patent Document 3. At this time, a desired effect can be obtained for the secondary reaction treatment, but inconvenience occurs for the primary reaction treatment. In other words, the test substance in the sample solution and the fluorescent label need to be sufficiently bonded, but it is difficult to sufficiently stir and dissolve in the flow path, resulting in detection of the test substance. There is a problem that accuracy decreases.

このように1次反応処理と2次反応処理とでは好ましい処理方法が各々異なるため、従来の方法では効率的な測定を行うことが難しかった。   As described above, since preferred treatment methods are different between the primary reaction treatment and the secondary reaction treatment, it has been difficult to perform efficient measurement with the conventional method.

そこで、本発明は、単体で1次反応から2次反応までを効率よく行うことが可能な分析チップを提供することを目的とするものである。   Therefore, an object of the present invention is to provide an analysis chip capable of efficiently performing a primary reaction to a secondary reaction by itself.

本発明の分析チップは、被検物質と結合した光応答性標識物質から生じる光を検出して被検物質の分析を行う光検出法に使用される分析チップであって、検体溶液を貯留し、検体溶液に対して所定の処理を行うためのポットと、光応答性標識物質から生じる光を検出するための検出領域を有し、検体溶液が流下される流路と、流路の上流側に設けられ、流路に検体溶液を注入するための注入口と、流路の下流側に設けられ、注入口から注入された検体溶液を下流側から吸引するための吸引孔とを備えたことを特徴とするものである。   The analysis chip of the present invention is an analysis chip used in a photodetection method for analyzing a test substance by detecting light generated from a photoresponsive labeling substance bound to the test substance, and stores a sample solution. A pot for performing a predetermined treatment on the sample solution, a detection region for detecting light generated from the photoresponsive labeling substance, a flow path through which the sample solution flows, and an upstream side of the flow path Provided with an inlet for injecting the sample solution into the flow path, and a suction hole provided at the downstream side of the flow path for aspirating the sample solution injected from the inlet from the downstream side. It is characterized by.

ここで、検出領域は、エバネッセント波を生じさせるための励起光を入射させるための誘電体プレートと、誘電体プレートの検体溶液接触面側の所定領域に設けられた金属層とを備えているものとすることが好ましい。   Here, the detection region includes a dielectric plate for allowing excitation light for generating an evanescent wave to enter, and a metal layer provided in a predetermined region on the specimen solution contact surface side of the dielectric plate. It is preferable that

また、ポットは、検体溶液に対して所定の前処理を行うための前処理用ポットや、検体溶液中の被検物質と光応答性標識物質とを結合させるための1次反応処理用ポットを含むことが好ましい。   The pot includes a pretreatment pot for performing a predetermined pretreatment on the specimen solution, and a primary reaction treatment pot for binding the test substance and the photoresponsive labeling substance in the specimen solution. It is preferable to include.

なお、前処理用ポットおよび1次反応処理用ポットの少なくともいずれか一方の内面には、所定の乾燥試薬が固着されていることが好ましい。このとき、乾燥試薬の固着部には、乾燥試薬の剥離を防止するための凹凸が形成されていることが好ましい。   A predetermined dry reagent is preferably fixed to the inner surface of at least one of the pretreatment pot and the primary reaction treatment pot. At this time, it is preferable that unevenness for preventing peeling of the dry reagent is formed on the fixed portion of the dry reagent.

また、内面に乾燥試薬が固着されているポットの開口部は、封止されていることが好ましい。   Moreover, it is preferable that the opening part of the pot in which the dry reagent is adhered to the inner surface is sealed.

また、注入口、吸引孔およびポットは、直線状に配置されていることが好ましい。   Moreover, it is preferable that the inlet, the suction hole, and the pot are arranged linearly.

また、検出領域は、直線状に配置された複数の検出領域から構成されていることが好ましい。   Moreover, it is preferable that the detection area is composed of a plurality of detection areas arranged in a straight line.

また、下側部材と上側部材とからなり、下側部材と上側部材との間に流路が形成されるとともに、少なくとも検出領域に対する光の光路部分は透光性を有する流路部材と、ポットが形成され、流路部材の上側部材側から嵌合するカバー部材とから構成されたものとしてもよい。   Further, the lower member and the upper member are formed, and a flow path is formed between the lower member and the upper member, and at least a light path portion of the light with respect to the detection region is translucent, and a pot And a cover member fitted from the upper member side of the flow path member.

また、下側部材の下面および上側部材の上面の少なくともいずれか一方の面において、下側部材と上側部材とを超音波溶着するためのホーンの当接部分は平坦とすることが好ましい。   Moreover, it is preferable that the contact part of the horn for ultrasonically welding the lower member and the upper member is flat on at least one of the lower surface of the lower member and the upper surface of the upper member.

また、カバー部材は、光検出領域と対向する領域に開口が設けられたものとすることが好ましい。   The cover member is preferably provided with an opening in a region facing the light detection region.

また、流路部材およびカバー部材の少なくともいずれか一方の表面に、所定の情報を表すバーコードを表示してもよい。   Moreover, you may display the barcode showing predetermined information on the surface of at least any one of a flow-path member and a cover member.

ここで「バーコード」とは、1次元バーコードでもよいし2次元バーコードでもよい。   Here, the “bar code” may be a one-dimensional barcode or a two-dimensional barcode.

本発明の分析チップによれば、検体溶液を貯留し、検体溶液に対して所定の処理を行うためのポットと、光応答性標識物質から生じる光を検出するための検出領域を有し、検体溶液が流下される流路と、流路の上流側に設けられ、流路に検体溶液を注入するための注入口と、流路の下流側に設けられ、注入口から注入された検体溶液を下流側から吸引するための吸引孔とを単体の分析チップに備えたものとし、1次反応処理等をポットで行い、2次反応処理を流路で行えるようにしたので、単体の分析チップで1次反応から2次反応までを効率よく行うことが可能となる。   According to the analysis chip of the present invention, it has a pot for storing a sample solution and performing a predetermined process on the sample solution, and a detection region for detecting light generated from the photoresponsive labeling substance. A flow path through which the solution flows, an inlet provided on the upstream side of the flow path for injecting the sample solution into the flow path, and a sample solution provided on the downstream side of the flow path and injected from the inlet. Since a single analysis chip is provided with a suction hole for suctioning from the downstream side, primary reaction processing and the like can be performed in a pot, and secondary reaction processing can be performed in a flow path. It is possible to efficiently perform the primary reaction to the secondary reaction.

ここで、検出領域を、エバネッセント波を生じさせるための励起光を入射させるための誘電体プレートと、誘電体プレートの検体溶液接触面側の所定領域に設けられた金属層とを備えているものとすれば、エバネッセント波を利用した高感度の測定に用いることができるようになる。   Here, the detection region includes a dielectric plate for allowing excitation light for generating an evanescent wave to enter and a metal layer provided in a predetermined region on the specimen solution contact surface side of the dielectric plate. Then, it can be used for highly sensitive measurement using evanescent waves.

また、ポットを、検体溶液に対して所定の前処理を行うための前処理用ポットや、検体溶液中の被検物質と光応答性標識物質とを結合させるための1次反応処理用ポットを含むものとすれば、各処理毎に専用のポッドを用いて適切な処理を行うことができる。   In addition, a pretreatment pot for performing a predetermined pretreatment on the sample solution, and a primary reaction treatment pot for binding the test substance and the photoresponsive labeling substance in the sample solution. If included, appropriate processing can be performed using a dedicated pod for each processing.

ここで、前処理用ポットおよび1次反応処理用ポットの少なくともいずれか一方の内面に、所定の乾燥試薬を固着しておけば、各処理用の試薬をユーザーに別途用意させる必要がなくなり、効率的な測定を行わせることができる。   Here, if a predetermined dry reagent is fixed to the inner surface of at least one of the pretreatment pot and the primary reaction treatment pot, it is not necessary for the user to prepare a reagent for each treatment separately. Measurement can be performed.

このとき、乾燥試薬の固着部に、乾燥試薬の剥離を防止するための凹凸を形成しておけば、分析チップの移動時等に乾燥試薬が剥離して所定位置から移動するのを防止できるため、特に検出装置においてポッド内に検体溶液を自動的に分注して前処理や1次反応処理を行う場合に、安定した処理を行わせることができる。   At this time, if unevenness for preventing the separation of the dry reagent is formed in the fixed portion of the dry reagent, the dry reagent can be prevented from peeling off and moving from a predetermined position when the analysis chip is moved. In particular, when the sample solution is automatically dispensed into the pod and the pretreatment or the primary reaction treatment is performed in the detection apparatus, stable treatment can be performed.

また、内面に乾燥試薬が固着されているポットの開口部を封止することにより、乾燥試薬の吸湿や変質等を防止することができる。   Further, by sealing the opening of the pot where the dry reagent is fixed on the inner surface, moisture absorption or alteration of the dry reagent can be prevented.

また、注入口、吸引孔およびポットを直線状に配置すれば、検出装置において分注ユニットを移動させて1次反応処理から2次反応処理までを自動的に行わせる場合に、分注ユニットを直線状に移動させるだけでよくなるので、本発明の分析チップに対応した自動検出装置の実現が容易となる。   In addition, if the inlet, the suction hole, and the pot are arranged in a straight line, the dispensing unit is moved when the dispensing unit is moved in the detection device to automatically perform the primary reaction process to the secondary reaction process. Since it only needs to be moved in a straight line, an automatic detection device corresponding to the analysis chip of the present invention can be easily realized.

また、検出領域が複数ある場合、複数の検出領域を直線状に配置すれば、検出装置において測定ユニットを移動させて光検出処理を自動的に行わせる場合に、測定ユニットを直線状に移動させるだけでよくなるので、本発明の分析チップに対応した自動検出装置の実現が容易となる。   Further, when there are a plurality of detection areas, if the plurality of detection areas are arranged in a straight line, the measurement unit is moved in a straight line when the measurement unit is moved in the detection apparatus to automatically perform the light detection process. Therefore, it is easy to realize an automatic detection device corresponding to the analysis chip of the present invention.

また、下側部材と上側部材とからなり、下側部材と上側部材との間に流路が形成されるとともに、少なくとも検出領域に対する光の光路部分は透明とした流路部材と、ポットが形成され、流路部材の上側部材側から嵌合するカバー部材とから構成すれば、各部材の形状を簡素化することができるとともに、製作性も良好であるため、製作コストを下げることができる。   In addition, a lower member and an upper member are formed, and a flow path is formed between the lower member and the upper member, and at least a light path portion of light with respect to the detection region is transparent, and a pot is formed. If the cover member is configured to be fitted from the upper member side of the flow path member, the shape of each member can be simplified and the manufacturability is also good, so that the production cost can be reduced.

また、下側部材の下面および上側部材の上面の少なくともいずれか一方の面において、下側部材と上側部材とを超音波溶着するためのホーンの当接部分を平坦とすれば、下側部材と上側部材とを超音波溶着する場合の製造上の信頼性を向上させることができる。   Further, if at least one of the lower surface of the lower member and the upper surface of the upper member has a flat horn contact portion for ultrasonic welding of the lower member and the upper member, It is possible to improve manufacturing reliability when ultrasonic welding is performed on the upper member.

また、カバー部材について、流路部材の検出領域と対向する領域に開口を設け、この開口部分から光を検出するようにすれば、開口付近のカバー部材の厚さ分だけ流路部材の光検出部が低い位置となり、流路部材の光検出部が直接手で触れにくくなるため、指紋付着防止効果を得ることができる。   In addition, if an opening is provided in the area of the cover member that faces the detection area of the flow path member and light is detected from this opening, the light detection of the flow path member is performed by the thickness of the cover member near the opening. Since the portion is at a low position and the light detection portion of the flow path member is difficult to touch directly with the hand, an effect of preventing fingerprint adhesion can be obtained.

また、流路部材およびカバー部材の少なくともいずれか一方の表面に、分析チップの個体差や製造年月日等の所定の情報を表すバーコードを表示すれば、このような情報を用いて分析チップから取得された測定結果に対して分析チップの個体差に起因する誤差の補正処理や、品質管理等を行うことができるようになるので、分析チップの商品性を向上させることができる。   In addition, if a bar code representing predetermined information such as individual differences in the analysis chip or the manufacturing date is displayed on the surface of at least one of the flow path member and the cover member, the analysis chip can be used using such information. Since it becomes possible to perform correction processing of errors due to individual differences of analysis chips, quality control, and the like on the measurement results obtained from the above, the merchantability of the analysis chips can be improved.

本発明の分析チップの好ましい実施の形態を示す斜視図The perspective view which shows preferable embodiment of the analysis chip of this invention 上記分析チップの上面図Top view of the analysis chip 上記分析チップの下面図Bottom view of the analysis chip 上記分析チップの上方から見た分解斜視図Exploded perspective view from above of the analysis chip 上記分析チップの下方から見た分解斜視図The exploded perspective view seen from the lower part of the above-mentioned analysis chip 図2中のVI−VI線断面図Sectional view taken along line VI-VI in FIG. 上記分析チップを用いた蛍光検出装置の一例を示す模式図Schematic diagram showing an example of a fluorescence detection apparatus using the analysis chip 上記蛍光検出装置の測定部の概略構成図Schematic configuration diagram of the measurement unit of the fluorescence detection device 上記蛍光検出装置のブロック図Block diagram of the fluorescence detection device 上記分析チップの模式図Schematic diagram of the analysis chip 図9の検体処理手段によりノズルチップを用いて検体が検体容器から抽出される様子を示す模式図FIG. 9 is a schematic diagram showing how a sample is extracted from a sample container using a nozzle tip by the sample processing means of FIG. 図9の検体処理手段によりノズルチップ内の検体が試薬セルに注入・撹拌される様子を示す模式図FIG. 9 is a schematic diagram showing a state in which the sample in the nozzle tip is injected and stirred into the reagent cell by the sample processing means of FIG. 図9の光照射手段および蛍光検出手段の一例を示す模式図Schematic diagram showing an example of the light irradiation means and the fluorescence detection means of FIG. 図9のデータ分析手段においてレート法により定量的または定性的な分析が行われる様子を示すグラフFIG. 9 is a graph showing a state in which quantitative or qualitative analysis is performed by the rate method in the data analysis means of FIG.

以下、図面を参照して本発明の実施の形態を詳細に説明する。図1は本発明の分析チップの好ましい実施の形態を示す斜視図、図2は上記分析チップの上面図、図3は上記分析チップの下面図、図4は上記分析チップの上方から見た分解斜視図、図5は上記分析チップの下方から見た分解斜視図、図6は図2中のVI−VI線断面図、図10は上記分析チップの模式図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 is a perspective view showing a preferred embodiment of the analysis chip of the present invention, FIG. 2 is a top view of the analysis chip, FIG. 3 is a bottom view of the analysis chip, and FIG. 4 is an exploded view from above the analysis chip. FIG. 5 is an exploded perspective view seen from below the analysis chip, FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 2, and FIG. 10 is a schematic diagram of the analysis chip.

本実施の形態の分析チップ10は、透光性を有する下側部材11と上側部材12とからなり、下側部材11と上側部材12との間に流路15が形成される流路部材と、流路部材の上側部材12側から嵌合するカバー部材13とから構成される。   The analysis chip 10 according to the present embodiment includes a translucent lower member 11 and an upper member 12, and a flow path member in which a flow path 15 is formed between the lower member 11 and the upper member 12. The cover member 13 is fitted from the upper member 12 side of the flow path member.

図4に示すように下側部材11の上面側には流路15を形成するための凹部11aおよび11bが形成されており、図5に示すように上側部材12の下面側には流路15を形成するための凹部12cが形成されており、これにより下側部材11と上側部材12とを結合させた際に、両者間に流路15が形成されることになる。   As shown in FIG. 4, recesses 11a and 11b for forming the flow path 15 are formed on the upper surface side of the lower member 11, and the flow path 15 is formed on the lower surface side of the upper member 12 as shown in FIG. In this way, when the lower member 11 and the upper member 12 are joined together, a flow path 15 is formed between them.

下側部材11および上側部材12は透明樹脂等の誘電体材料から構成されるとともに、両者は超音波溶着により結合されるが、図4、5に示すように下側部材11の下面および上側部材12の上面の流路15と重なる領域は平坦に構成されており、これにより超音波溶着用ホーンを密着させられるため、超音波溶着の信頼性を向上させることができ、特に流路15からの液漏れが生じさせないようにすることができる。   The lower member 11 and the upper member 12 are made of a dielectric material such as a transparent resin, and both are joined by ultrasonic welding. However, as shown in FIGS. The area overlapping the flow path 15 on the upper surface of 12 is configured to be flat, whereby the ultrasonic welding horn can be brought into close contact, so that the reliability of ultrasonic welding can be improved. It is possible to prevent liquid leakage.

また、上側部材12の上面側には、流路15内と連通し、流路15内に検体溶液を注入するための注入口12aと、流路15内と連通し、注入口12aから注入された検体溶液を下流側から吸引するための吸引孔12bとが形成されている。   In addition, the upper surface of the upper member 12 communicates with the inside of the flow channel 15, communicates with the inside of the flow channel 15 with an inlet 12 a for injecting the sample solution into the channel 15, and is injected from the inlet 12 a. A suction hole 12b for sucking the sample solution from the downstream side is formed.

カバー部材13の上面側には、検体溶液に対して所定の前処理を行うための前処理用ポット13aと、検体溶液中の被検物質と光応答性標識物質とを結合させるための1次反応処理用ポット13bと、注入口12aを挿入する注入口挿入孔13cと、吸引孔12bを挿入する吸引孔挿入孔13dとが形成されている。   On the upper surface side of the cover member 13, a pretreatment pot 13 a for performing a predetermined pretreatment on the specimen solution, and a primary for binding the test substance and the photoresponsive labeling substance in the specimen solution. A reaction processing pot 13b, an inlet insertion hole 13c for inserting the inlet 12a, and a suction hole insertion hole 13d for inserting the suction hole 12b are formed.

前処理用ポット13aは、検体に対して下流の反応に適したpHに調整する等の前処理を行うための乾燥試薬を収容する容器であり、1次反応処理用ポット13bは、検体と結合する蛍光(第2抗体)乾燥試薬を収容する容器である。これらのポットは、いずれも流路15とは連通しない独立した容器である。   The pretreatment pot 13a is a container for storing a dry reagent for performing a pretreatment such as adjusting the pH to be suitable for downstream reaction with respect to the specimen, and the primary reaction treatment pot 13b is bound to the specimen. This is a container for storing a fluorescent (second antibody) dry reagent. These pots are independent containers that do not communicate with the flow path 15.

図12に示すように乾燥試薬DCの固着部には、乾燥試薬DCの剥離を防止するための凹凸13gが形成されており、これにより分析チップ10の移動時等に乾燥試薬DSが剥離して所定位置から移動するのを防止できるため、特に検出装置においてポッド内に検体溶液を自動的に分注して前処理や1次反応処理を行う場合に、安定した処理を行わせることができる。   As shown in FIG. 12, the fixed portion of the dry reagent DC is formed with uneven portions 13g for preventing the dry reagent DC from being peeled off. As a result, the dry reagent DS is peeled off when the analysis chip 10 is moved. Since movement from a predetermined position can be prevented, stable processing can be performed, particularly when the sample solution is automatically dispensed into the pod and subjected to pretreatment or primary reaction treatment.

また、前処理用ポット13aおよび1次反応処理用ポット13bの開口部はシール部材Sにより封止されており、検体に対して所定の処理を行う際にシール部材が穿孔されるようになっている。これにより、乾燥試薬の吸湿や変質等を防止することができる。   The openings of the pretreatment pot 13a and the primary reaction treatment pot 13b are sealed with a seal member S, and the seal member is pierced when a predetermined process is performed on the specimen. Yes. As a result, moisture absorption or alteration of the dry reagent can be prevented.

これらの前処理用ポット13a、1次反応処理用ポット13b、注入口挿入孔13c、および吸引孔挿入孔13dは互いに近接して直線状に配置されており、これにより検出装置において分注ユニットを移動させて1次反応処理から2次反応処理までを自動的に行わせる場合に、分注ユニットを直線状に短距離移動させるだけでよくなるので、本発明の分析チップに対応した自動検出装置の実現が容易となる。しかも、前処理用ポット13a、1次反応処理用ポット13b、2次反応処理用の流路15内への注入口12a(注入口挿入孔13c)の順に並んでいるため、各処理の段階が進む毎に分注ユニットを一方向に移動させるだけでよく、非常に効率的な測定を行うことができる。   The pretreatment pot 13a, the primary reaction treatment pot 13b, the inlet insertion hole 13c, and the suction hole insertion hole 13d are arranged in a straight line adjacent to each other. When moving from the primary reaction process to the secondary reaction process automatically, it is only necessary to move the dispensing unit in a short distance in a straight line. Therefore, the automatic detection device corresponding to the analysis chip of the present invention Realization is easy. Moreover, since the pretreatment pot 13a, the primary reaction treatment pot 13b, and the inlet 12a (inlet insertion hole 13c) into the flow path 15 for the secondary reaction treatment are arranged in this order, the stages of each treatment are It is only necessary to move the dispensing unit in one direction each time it travels, and a very efficient measurement can be performed.

なお、本実施の形態では前処理用ポット13aと1次反応処理用ポット13bの2つのポットを備えたものとしているが、必ずしもこのような態様に限定されるものではなく、前処理用ポット13aを設けないで、前処理については分析チップ10とは別の場所で行うようにしてもよい。   In the present embodiment, the two pots, that is, the pretreatment pot 13a and the primary reaction treatment pot 13b are provided. However, the present invention is not necessarily limited to such an embodiment, and the pretreatment pot 13a is not necessarily limited thereto. However, the pre-processing may be performed at a place different from the analysis chip 10.

図10に模式的に示すように、注入口12aは流路15を介して吸引孔12bに連通しており、吸引孔12bから負圧をかけることにより検体は注入口12aから注入されて流路15内に流れ吸引孔12bから排出される。   As schematically shown in FIG. 10, the injection port 12a communicates with the suction hole 12b through the flow channel 15, and the sample is injected from the injection port 12a by applying a negative pressure from the suction hole 12b. 15 is discharged from the suction hole 12b.

また、流路15内には検体内の被検物質を検出するためのテスト領域TRおよびテスト領域TRの下流側に設けられたコントロール領域CRが形成されている。このテスト領域TR上には第1抗体が固定されており、いわゆるサンドイッチ方式により標識化された抗体を捕捉する。また、コントロール領域CRには参照抗体が固定されており、コントロール領域CR上に検体溶液が流れることにより参照抗体が蛍光物質を捕捉する。なお、コントロール領域CRは2つ形成されており、非特異吸着を検出するためのいわゆるネガ型のコントロール領域CRと、検体差による反応性の違いを検出するためのいわゆるポジ型のコントロール領域CRとが形成されている。これらのテスト領域TRおよび2つのコントロール領域CRが、2次反応領域として機能する。   Further, a test region TR for detecting a test substance in the specimen and a control region CR provided on the downstream side of the test region TR are formed in the flow path 15. A first antibody is immobilized on the test region TR, and the labeled antibody is captured by a so-called sandwich method. In addition, a reference antibody is fixed to the control region CR, and the reference antibody captures the fluorescent substance when the sample solution flows on the control region CR. Two control regions CR are formed, a so-called negative control region CR for detecting non-specific adsorption, and a so-called positive control region CR for detecting a difference in reactivity due to a difference in specimen. Is formed. These test region TR and two control regions CR function as a secondary reaction region.

なお、テスト領域TRおよび2つのコントロール領域CRは直線状に配置されており、これにより検出装置において測定ユニットを移動させて光検出処理を自動的に行わせる場合に、測定ユニットを直線状に移動させるだけでよくなるので、本発明の分析チップに対応した自動検出装置の実現が容易となる。   Note that the test area TR and the two control areas CR are arranged in a straight line, so that when the measurement unit is moved in the detection apparatus to automatically perform the light detection process, the measurement unit is moved in a straight line. Therefore, it is easy to realize an automatic detection device corresponding to the analysis chip of the present invention.

また、流路15は、テスト領域TRおよび2つのコントロール領域CRを含む直線状の検出領域部と、検出領域部の上流端から注入口12aまでを結ぶ導入部と、検出領域部の下流端から吸引孔12bまでを結ぶ排出部とからなる略コ字形状となっており、また注入口12aと吸引孔12bとの間に、前処理用ポット13aおよび1次反応処理用ポット13bが配置されている。前処理用ポット13a、1次反応処理用ポット13b、注入口挿入孔13c、および吸引孔挿入孔13dの並び方向と、直線状の検出領域部とは、互いに平行となる。このような配置態様とすることにより、分析チップ10の大きさを最小限に抑えることができる。   The flow path 15 includes a linear detection region portion including the test region TR and two control regions CR, an introduction portion connecting the upstream end of the detection region portion to the injection port 12a, and a downstream end of the detection region portion. It has a substantially U-shape consisting of a discharge part connecting up to the suction hole 12b, and a pretreatment pot 13a and a primary reaction treatment pot 13b are arranged between the inlet 12a and the suction hole 12b. Yes. The arrangement direction of the pretreatment pot 13a, the primary reaction treatment pot 13b, the inlet insertion hole 13c, and the suction hole insertion hole 13d and the linear detection region portion are parallel to each other. By adopting such an arrangement mode, the size of the analysis chip 10 can be minimized.

図1に示すように、カバー部材13の検出領域部と重なる領域には4つの開口部13eが設けられている。この内の3つの開口部13eは上記のテスト領域TRおよび2つのコントロール領域CRに対応したものであり、これらの下流側にはさらに1つの開口部13eが設けられている。   As shown in FIG. 1, four openings 13 e are provided in a region overlapping the detection region of the cover member 13. Of these, the three openings 13e correspond to the test region TR and the two control regions CR, and further one opening 13e is provided on the downstream side thereof.

この、最下流の開口部13eは、検体溶液の先端が到達したかどうかをLEDの光透過によって見るためのものである。例えば、分析チップ10の下方から上方に向けてLEDによって光を照射し、上部でLEDの光量を検出すると、検体溶液が最下流の開口部13eの位置まで到達していない場合は、流路部材を構成する下側部材11と流路との境界および流路と上側部材12との境界で各々LED光の一部(約4%程度)が反射して最終的に約8%程度光量が低下し、検体溶液が最下流の開口部13eまで到達している場合は、検体溶液と透明樹脂の屈折率が近くLED光が反射しないため光量の低下をほとんど生じない。従って、検体溶液が最下流の開口部13eまで到達している場合には、到達していない場合と比較して、LEDの検出光量が約8%高くなる。このようにして、LEDの検出光量の変化により、検体溶液の先端が最下流の開口部13eまで到達したか(すなわち、検出領域部を全て通過したか)を知ることができる。   The most downstream opening 13e is used to see whether the tip of the sample solution has reached by light transmission of the LED. For example, when light is emitted by the LED from below to above the analysis chip 10 and the light amount of the LED is detected at the top, the sample solution does not reach the position of the most downstream opening 13e. A part (about 4%) of the LED light is reflected at the boundary between the lower member 11 and the flow channel and the boundary between the flow channel and the upper member 12 to finally reduce the light amount by about 8%. However, when the sample solution reaches the most downstream opening 13e, the refractive index of the sample solution and the transparent resin are close to each other, and the LED light is not reflected, so that the amount of light hardly decreases. Therefore, when the sample solution reaches the most downstream opening 13e, the detected light amount of the LED is about 8% higher than when the sample solution does not reach. In this way, it is possible to know whether the tip of the sample solution has reached the most downstream opening 13e (that is, whether all of the detection region has passed) by the change in the amount of light detected by the LED.

また、このようにテスト領域TRや2つのコントロール領域CRおよびLED光検出部に対応した開口部13eを設けた場合、開口部13e付近のカバー部材13の厚さ分だけ流路部材の光検出部が低い位置となり、流路部材の光検出部が直接手で触れにくくなるため、流路部材に対する指紋付着防止効果を得ることができる。   Further, when the opening 13e corresponding to the test region TR, the two control regions CR, and the LED light detection unit is provided in this way, the light detection unit of the flow path member is equal to the thickness of the cover member 13 near the opening 13e. Is low, and the light detection part of the flow path member is difficult to touch directly with the hand, so that the effect of preventing fingerprint adhesion to the flow path member can be obtained.

図6に示すように、カバー部材13の下面側には2つの掛合ピン13fが形成されている。また、流路部材の上側部材12には掛合ピン13fを挿入するとともに端辺において掛合ピン13fと掛合する掛合部12dが形成されており、下側部材11には掛合ピン13fを挿入する挿入孔11cが形成されている。このような構成とすることにより、下側部材11と上側部材12とを溶着により結合させて流路部材を製造し、この流路部材に後からカバー部材13を嵌合させるだけで分析チップ10を製造できる。そのため、各部材の形状を簡素化することができるとともに、製作性も良好であるため、製作コストを下げることができる。   As shown in FIG. 6, two hook pins 13 f are formed on the lower surface side of the cover member 13. Further, the upper member 12 of the flow path member is formed with a hooking portion 13d for inserting the hooking pin 13f and the hooking pin 13f at the end, and the lower member 11 has an insertion hole for inserting the hooking pin 13f. 11c is formed. With such a configuration, the flow path member is manufactured by joining the lower member 11 and the upper member 12 by welding, and the analysis chip 10 is simply fitted into the flow path member later. Can be manufactured. Therefore, the shape of each member can be simplified and the manufacturability is also good, so that the production cost can be reduced.

また、流路部材とカバー部材13とは別体であるため、流路部材の流路15内に固着させる試薬と、カバー部材13の前処理用ポット13aおよび1次反応処理用ポット13b内に固着させる試薬とは、乾燥時間や温度等の条件が異なる環境下で生成できるため、各々に最適な生成環境とすることができる。   In addition, since the flow path member and the cover member 13 are separate bodies, the reagent fixed in the flow path 15 of the flow path member, the pretreatment pot 13a and the primary reaction treatment pot 13b of the cover member 13 are included. Since the reagent to be fixed can be generated in an environment having different conditions such as drying time and temperature, an optimal generation environment can be obtained for each.

また、例えば下側部材11の下面等、分析チップ10の表面に、分析チップ10の個体差や製造年月日等の所定の情報を表すバーコードBCを表示するようにしてもよい。このような態様とすれば、上記の情報を用いて分析チップ10から取得された測定結果に対して分析チップの個体差に起因する誤差の補正処理や、品質管理等を行うことができるようになるので、分析チップの商品性を向上させることができる。   Further, a barcode BC representing predetermined information such as individual differences of the analysis chip 10 or the manufacturing date may be displayed on the surface of the analysis chip 10 such as the lower surface of the lower member 11. With such an aspect, it is possible to perform correction processing of errors due to individual differences of analysis chips, quality control, and the like on the measurement results obtained from the analysis chip 10 using the above information. Therefore, the merchantability of the analysis chip can be improved.

次に、本実施の形態の分析チップ10を使用する蛍光検出装置について説明する。
図7は上記分析チップを用いた蛍光検出装置の一例を示す模式図、図8は上記蛍光検出装置の測定部の概略構成図、図9は上記蛍光検出装置のブロック図、図10は上記分析チップの模式図、図11は図9の検体処理手段によりノズルチップを用いて検体が検体容器から抽出される様子を示す模式図、図12は図9の検体処理手段によりノズルチップ内の検体が試薬セルに注入・撹拌される様子を示す模式図、図13は図9の光照射手段および蛍光検出手段の一例を示す模式図、図14は図9のデータ分析手段においてレート法により定量的または定性的な分析が行われる様子を示すグラフである。
Next, a fluorescence detection apparatus that uses the analysis chip 10 of the present embodiment will be described.
FIG. 7 is a schematic diagram showing an example of a fluorescence detection apparatus using the analysis chip, FIG. 8 is a schematic configuration diagram of a measurement unit of the fluorescence detection apparatus, FIG. 9 is a block diagram of the fluorescence detection apparatus, and FIG. FIG. 11 is a schematic diagram showing how a sample is extracted from a sample container using a nozzle tip by the sample processing means of FIG. 9, and FIG. 12 is a diagram showing how the sample in the nozzle chip is extracted by the sample processing means of FIG. FIG. 13 is a schematic diagram showing an example of light irradiation means and fluorescence detection means in FIG. 9, and FIG. 14 is a graph showing quantitative or quantitative analysis by the rate method in the data analysis means in FIG. It is a graph which shows a mode that a qualitative analysis is performed.

この蛍光検出装置1はたとえば表面プラズモン共鳴を利用した免疫解析装置である。蛍光検出装置1により分析を行う際、図7および図8に示すように検体が収容された検体容器CBと、検体および試薬を抽出する際に用いられるノズルチップNCと、分析チップ10がテーブル61上に装填される。なお、検体容器CB、ノズルチップNC、分析チップ10およびテーブル61はいずれも一度使用したら破棄される使い捨てのものである。そして、蛍光検出装置1は検体を分析チップ10のマイクロ流路15に流しながら検体内の被検物質について定量的もしくは定性的な分析を行う。   The fluorescence detection apparatus 1 is an immunological analysis apparatus using surface plasmon resonance, for example. When the analysis is performed by the fluorescence detection apparatus 1, as shown in FIGS. 7 and 8, the sample container CB in which the sample is accommodated, the nozzle chip NC used for extracting the sample and the reagent, and the analysis chip 10 include the table 61. Loaded on top. The sample container CB, the nozzle tip NC, the analysis chip 10 and the table 61 are all disposable items that are discarded once used. Then, the fluorescence detection apparatus 1 performs a quantitative or qualitative analysis on the test substance in the sample while flowing the sample through the microchannel 15 of the analysis chip 10.

この蛍光検出装置1は、検体処理手段20、光照射手段30、蛍光検出手段40、データ分析手段50等を備えている。検体処理手段20は、ノズルチップNCを用いて検体を収容した検体容器CB内から検体を抽出し、抽出した検体を試薬と混合撹拌した検体溶液を生成するものである。   The fluorescence detection apparatus 1 includes a sample processing unit 20, a light irradiation unit 30, a fluorescence detection unit 40, a data analysis unit 50, and the like. The sample processing means 20 extracts a sample from the sample container CB containing the sample using the nozzle chip NC, and generates a sample solution obtained by mixing and stirring the extracted sample with a reagent.

図8に示すように、検体容器CB、ノズルチップNCおよび分析チップ10が装填されたテーブル61は、装填位置から所定の測定位置まで移動する。また測定位置では、分析チップ10を挟んで、検体処理手段20が搭載された分注ユニット62と、光照射手段30および蛍光検出手段40が搭載された測定ユニット63が、前処理用ポット13a、1次反応処理用ポット13b、注入口挿入孔13c、および吸引孔挿入孔13dの並び方向に対して各々平行に移動し、下記で説明する所定の処理を自動的に実行可能に構成されている。   As shown in FIG. 8, the table 61 loaded with the sample container CB, the nozzle chip NC, and the analysis chip 10 moves from the loading position to a predetermined measurement position. At the measurement position, the dispensing unit 62 on which the sample processing means 20 is mounted and the measurement unit 63 on which the light irradiation means 30 and the fluorescence detection means 40 are mounted are sandwiched between the analysis chip 10 and the preprocessing pot 13a, The primary reaction processing pot 13b, the inlet insertion hole 13c, and the suction hole insertion hole 13d move in parallel with each other, and are configured to automatically execute predetermined processing described below. .

分析の開始が指示された際、検体処理手段20は図11に示すようにノズルチップNCを用いて検体容器CBから検体を吸引する。その後、検体処理手段20は図12に示すように前処理用ポット13aのシール部材Sを穿孔し前処理用ポット13a内に対して検体の吐出・吸引を繰り返すことにより、処理用ポット13a内の試薬DCと検体とをよく混合・撹拌させた後、検体溶液を再びノズルチップNCを用いて吸引する。この動作を1次反応処理用ポット13bについても同様に行う。すると、検体内に存在する被検物質(抗原)Aに試薬内の特異的に結合する第2の結合物質である第2抗体B2が表面に修飾された検体溶液が生成される。そして、検体処理手段20は、検体溶液を収容したノズルチップNCを注入口12a上に設置した後、吸引孔12bに負圧を生じさせてノズルチップNC内の検体溶液を2次反応処理用の流路15内に流入させる。   When the start of analysis is instructed, the sample processing means 20 aspirates the sample from the sample container CB using the nozzle tip NC as shown in FIG. Thereafter, as shown in FIG. 12, the sample processing means 20 punctures the sealing member S of the preprocessing pot 13a and repeats the discharge and suction of the sample into the preprocessing pot 13a. After thoroughly mixing and stirring the reagent DC and the specimen, the specimen solution is again sucked using the nozzle tip NC. This operation is similarly performed for the primary reaction processing pot 13b. Then, a sample solution is generated in which the second antibody B2, which is a second binding substance specifically binding in the reagent, to the test substance (antigen) A present in the sample is modified on the surface. Then, the sample processing means 20 installs the nozzle tip NC containing the sample solution on the injection port 12a, and then creates a negative pressure in the suction hole 12b to cause the sample solution in the nozzle tip NC to be used for secondary reaction processing. It flows into the flow path 15.

図13は光照射手段30および蛍光検出手段40の一例を示す模式図である。なお、図13においてはテスト領域TRに着目して説明するが、コントロール領域CRについても同様に励起光Lが照射されるものである。図9の光照射手段30は、分析チップ10の流路部材(下側部材11)の側面側から励起光Lを全反射条件となる入射角度でテスト領域TRの下側部材11(誘電体プレート)と金属膜16に照射するものである。蛍光検出手段40は、たとえばフォトダイオード、CCD、CMOS等からなり、光照射手段30の励起光Lの照射によりテスト領域TRから生じる蛍光Lfを蛍光信号FSとして検出するものである。   FIG. 13 is a schematic diagram showing an example of the light irradiation means 30 and the fluorescence detection means 40. In FIG. 13, the description will be given focusing on the test region TR, but the excitation light L is similarly applied to the control region CR. The light irradiation means 30 in FIG. 9 has the lower member 11 (dielectric plate) of the test region TR at an incident angle that causes the excitation light L to be totally reflected from the side surface side of the flow path member (lower member 11) of the analysis chip 10. ) And the metal film 16 are irradiated. The fluorescence detection means 40 is composed of, for example, a photodiode, a CCD, a CMOS, or the like, and detects fluorescence Lf generated from the test region TR by the irradiation of the excitation light L of the light irradiation means 30 as a fluorescence signal FS.

そして、光照射手段30により励起光Lが下側部材11(誘電体プレート)と金属膜16との界面に対して全反射角以上の特定の入射角度で入射されることにより、金属膜16上の試料S中にエバネッセント波Ewが滲み出し、このエバネッセント波Ewによって金属膜16中に表面プラズモンが励起される。この表面プラズモンにより金属膜16表面に電界分布が生じ、電場増強領域が形成される。すると、結合した蛍光標識物質Fはエバネッセント波Ewにより励起され増強された蛍光を発生する。   Then, the excitation light L is incident on the interface between the lower member 11 (dielectric plate) and the metal film 16 at a specific incident angle equal to or greater than the total reflection angle by the light irradiating means 30. The evanescent wave Ew oozes out from the sample S, and surface plasmons are excited in the metal film 16 by the evanescent wave Ew. This surface plasmon causes an electric field distribution on the surface of the metal film 16 to form an electric field enhancement region. Then, the bound fluorescent labeling substance F is excited by the evanescent wave Ew and generates enhanced fluorescence.

図9のデータ分析手段50は、蛍光検出手段40により検出された蛍光信号FSの経時変化に基づいて被検物質の分析を行うものである。具体的には、蛍光強度は蛍光標識物質Fの結合した量によって変化するため、図14に示すように時間経過とともに蛍光強度は変化する。データ分析手段50は、複数の蛍光信号FSを所定期間(たとえば5分間)において所定のサンプリング周期(たとえば5秒周期)で取得し、蛍光強度の時間変化率を解析することにより検体内の被検物質について定量的な分析を行う(レート法)。そして分析結果は、モニタやプリンタ等からなる情報出力手段4から出力される。   The data analysis means 50 in FIG. 9 analyzes the test substance based on the change over time of the fluorescence signal FS detected by the fluorescence detection means 40. Specifically, since the fluorescence intensity changes depending on the amount of the fluorescent labeling substance F bound thereto, the fluorescence intensity changes with time as shown in FIG. The data analysis means 50 acquires a plurality of fluorescent signals FS at a predetermined sampling period (for example, a period of 5 seconds) in a predetermined period (for example, 5 minutes), and analyzes the change rate of the fluorescence intensity over time, thereby analyzing the test within the sample. Perform quantitative analysis of substances (rate method). The analysis result is output from the information output means 4 comprising a monitor, a printer or the like.

以上、本発明の好ましい実施の形態について説明したが、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行なってもよいのは勿論である。   The preferred embodiments of the present invention have been described above, but it goes without saying that various improvements and modifications may be made without departing from the scope of the present invention.

1 蛍光検出装置
4 情報出力手段
10 分析チップ
11 下側部材
12 上側部材
13 カバー部材
13a 前処理用ポット
13b 1次反応処理用ポット
15 流路
20 検体処理手段
30 光照射手段
40 蛍光検出手段
50 照射位置調整手段
50 データ分析手段
AS 凹凸
BC バーコード
CR コントロール領域
DS 乾燥試薬
TR テスト領域
DESCRIPTION OF SYMBOLS 1 Fluorescence detection apparatus 4 Information output means 10 Analysis chip 11 Lower member 12 Upper member 13 Cover member 13a Pretreatment pot 13b Primary reaction treatment pot 15 Channel 20 Sample processing means 30 Light irradiation means 40 Fluorescence detection means 50 Irradiation Position adjustment means 50 Data analysis means AS Unevenness BC Bar code CR Control area DS Dry reagent TR Test area

Claims (17)

被検物質と結合した光応答性標識物質から生じる光を検出して前記被検物質の分析を行う光検出法に使用される分析チップであって、
検体溶液を貯留し、該検体溶液に対して所定の処理を行うためのポットと、
光応答性標識物質から生じる光を検出するための検出領域を有し、前記検体溶液が流下される流路と、
前記流路の上流側に設けられ、該流路に前記検体溶液を注入するための注入口と、
前記流路の下流側に設けられ、前記注入口から注入された前記検体溶液を前記下流側から吸引するための吸引孔とを備え、
前記流路が形成されるとともに、少なくとも前記検出領域に対する光の光路部分は透光性を有する流路部材と、
前記ポットが形成され、前記流路部材と嵌合するカバー部材とから構成されたことを特徴とする分析チップ。
An analysis chip used in a light detection method for detecting light generated from a photoresponsive labeling substance bonded to a test substance and analyzing the test substance,
A pot for storing the sample solution and performing a predetermined process on the sample solution;
A detection region for detecting light generated from the photoresponsive labeling substance, and a flow path through which the sample solution flows,
An inlet provided on the upstream side of the flow path, for injecting the sample solution into the flow path;
A suction hole provided on the downstream side of the flow path, for sucking the sample solution injected from the injection port from the downstream side;
The flow path is formed, and at least the light path portion of the light with respect to the detection region has a light-transmitting flow path member,
An analysis chip comprising the pot and a cover member fitted to the flow path member.
前記検出領域が、エバネッセント波を生じさせるための励起光を入射させるための誘電体プレートと、該誘電体プレートの検体溶液接触面側の所定領域に設けられた金属層とを備えていることを特徴とする請求項1記載の分析チップ。   The detection region includes a dielectric plate for entering excitation light for generating an evanescent wave, and a metal layer provided in a predetermined region on the specimen solution contact surface side of the dielectric plate. The analysis chip according to claim 1. 前記ポットが、前記検体溶液に対して所定の前処理を行うための前処理用ポットを含むことを特徴とする請求項1または2記載の分析チップ。   The analysis chip according to claim 1, wherein the pot includes a pretreatment pot for performing a predetermined pretreatment on the sample solution. 前記ポットが、前記検体溶液中の被検物質と光応答性標識物質とを結合させるための1次反応処理用ポットを含むことを特徴とする請求項1から3のいずれか1項記載の分析チップ。   The analysis according to any one of claims 1 to 3, wherein the pot includes a primary reaction processing pot for binding a test substance and a photoresponsive labeling substance in the sample solution. Chip. 前記前処理用ポットおよび前記1次反応処理用ポットの少なくともいずれか一方の内面に、所定の乾燥試薬が固着されていることを備えたことを特徴とする請求項3または4記載の分析チップ。   The analysis chip according to claim 3 or 4, wherein a predetermined dry reagent is fixed to the inner surface of at least one of the pretreatment pot and the primary reaction treatment pot. 前記乾燥試薬の固着部に、前記乾燥試薬の剥離を防止するための凹凸が形成されていることを特徴とする請求項5記載の分析チップ。   6. The analysis chip according to claim 5, wherein irregularities for preventing the dry reagent from being peeled are formed in the dry reagent fixing portion. 前記前処理用ポットおよび前記1次反応処理用ポットの少なくともいずれか一方の開口部が、封止されていることを特徴とする請求項5または6記載の分析チップ。   The analysis chip according to claim 5 or 6, wherein an opening of at least one of the pretreatment pot and the primary reaction treatment pot is sealed. 前記注入口、前記吸引孔および前記ポットが、直線状に配置されていることを特徴とする請求項1から7のいずれか1項記載の分析チップ。   The analysis chip according to claim 1, wherein the inlet, the suction hole, and the pot are arranged in a straight line. 前記検出領域が、直線状に配置された複数の検出領域から構成されていることを特徴とする請求項1から8のいずれか1項記載の分析チップ。   The analysis chip according to any one of claims 1 to 8, wherein the detection area includes a plurality of detection areas arranged in a straight line. 下側部材と上側部材とからなり、前記下側部材と前記上側部材との間に前記流路が形成されるとともに、少なくとも前記検出領域に対する光の光路部分は透光性を有する流路部材と、
前記ポットが形成され、前記流路部材の前記上側部材側から嵌合するカバー部材とから構成されたことを特徴とする請求項1から9のいずれか1項記載の分析チップ。
A lower member and an upper member, wherein the flow path is formed between the lower member and the upper member, and at least an optical path portion of light with respect to the detection region is a light-transmitting flow path member ,
The analysis chip according to claim 1, wherein the analysis chip according to claim 1 is configured by a cover member that is formed with the pot and is fitted from the upper member side of the flow path member.
前記下側部材の下面および前記上側部材の上面の少なくともいずれか一方の面において、前記下側部材と前記上側部材とを超音波溶着するためのホーンの当接部分が平坦であることを特徴とする請求項1から10のいずれか1項記載の分析チップ。   A contact portion of a horn for ultrasonic welding the lower member and the upper member is flat on at least one of the lower surface of the lower member and the upper surface of the upper member. The analysis chip according to any one of claims 1 to 10. 前記カバー部材が、前記光検出領域と対向する領域に開口が設けられたものであることを特徴とする請求項1から11のいずれか1項記載の分析チップ。   The analysis chip according to claim 1, wherein the cover member is provided with an opening in a region facing the light detection region. 前記流路部材および前記カバー部材の少なくともいずれか一方の表面に、所定の情報を表すバーコードが表示されていることを特徴とする請求項1から12のいずれか1項記載の分析チップ。   The analysis chip according to any one of claims 1 to 12, wherein a bar code representing predetermined information is displayed on a surface of at least one of the flow path member and the cover member. 前記吸引孔、前記ポット、前記注入口がこの順に直線状に配置されていることを特徴とする請求項1から13のいずれか1項記載の分析チップ。   The analysis chip according to any one of claims 1 to 13, wherein the suction hole, the pot, and the injection port are linearly arranged in this order. 前記ポットとして、光応答性標識物質と被検物質とを結合させる1次反応処理を行う前の前処理を行うための前処理用ポットを備え、
前記吸引孔、前記前処理用ポット、前記注入口がこの順に直線状に配置されていることを特徴とする請求項1から14のいずれか1項記載の分析チップ。
The pot includes a pretreatment pot for performing a pretreatment before performing a primary reaction treatment for binding a photoresponsive labeling substance and a test substance,
The analysis chip according to claim 1, wherein the suction hole, the pretreatment pot, and the injection port are linearly arranged in this order.
前記ポットとして、光応答性標識物質を収容し該光応答性標識物質と被検物質とを結合させる1次反応処理を行う1次反応処理用ポットを備え、
前記吸引孔、前記1次反応処理用ポット、前記注入口がこの順に直線状に配置されていることを特徴とする請求項1から14のいずれか1項記載の分析チップ。
The pot includes a primary reaction processing pot that contains a photoresponsive labeling substance and performs a primary reaction process for binding the photoresponsive labeling substance and a test substance,
The analysis chip according to any one of claims 1 to 14, wherein the suction hole, the pot for primary reaction processing, and the injection port are arranged linearly in this order.
前記ポットとして、光応答性標識物質と被検物質とを結合させる1次反応処理を行う前の前処理を行うための前処理用ポット、および、光応答性標識物質を収容し該光応答性標識物質と被検物質とを結合させる1次反応処理を行う1次反応処理用ポットを備え、
前記吸引孔、前記前処理用ポット、前記1次反応処理用ポット、前記注入口がこの順に直線状に配置されていることを特徴とする請求項1から14のいずれか1項記載の分析チップ。
As the pot, a pretreatment pot for performing a pretreatment before performing a primary reaction treatment for binding a photoresponsive labeling substance and a test substance, and a photoresponsive labeling substance are accommodated in the pot. A primary reaction treatment pot for performing a primary reaction treatment for binding a labeling substance and a test substance;
The analysis chip according to any one of claims 1 to 14, wherein the suction hole, the pretreatment pot, the primary reaction treatment pot, and the injection port are arranged linearly in this order. .
JP2014249855A 2014-12-10 2014-12-10 Analysis chip Active JP5851015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249855A JP5851015B2 (en) 2014-12-10 2014-12-10 Analysis chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249855A JP5851015B2 (en) 2014-12-10 2014-12-10 Analysis chip

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010276376A Division JP5666277B2 (en) 2010-12-10 2010-12-10 Analysis chip

Publications (2)

Publication Number Publication Date
JP2015045664A JP2015045664A (en) 2015-03-12
JP5851015B2 true JP5851015B2 (en) 2016-02-03

Family

ID=52671240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249855A Active JP5851015B2 (en) 2014-12-10 2014-12-10 Analysis chip

Country Status (1)

Country Link
JP (1) JP5851015B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223674A (en) * 1989-11-30 1991-10-02 Mochida Pharmaceut Co Ltd Reaction vessel
JP2001108619A (en) * 1999-10-12 2001-04-20 Minolta Co Ltd Analyzer, sample operation needle, and sample take-out method
JP2005030906A (en) * 2003-07-11 2005-02-03 Mitsubishi Chemicals Corp Analysis chip and analysis method
JP2007189960A (en) * 2006-01-20 2007-08-02 Toppan Printing Co Ltd Reaction vessel
JP5395076B2 (en) * 2008-07-22 2014-01-22 アークレイ株式会社 Analysis apparatus and analysis method by capillary electrophoresis
JPWO2010010858A1 (en) * 2008-07-22 2012-01-05 アークレイ株式会社 Analyzer by capillary electrophoresis
JP2010071693A (en) * 2008-09-16 2010-04-02 Fujifilm Corp Sensing method, sensing device, inspection chip, and inspection kit
JP2010210378A (en) * 2009-03-10 2010-09-24 Fujifilm Corp Sensing method and sensing kit to be used of the same
JP5075150B2 (en) * 2009-03-17 2012-11-14 富士フイルム株式会社 Detection method and detection system

Also Published As

Publication number Publication date
JP2015045664A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5666277B2 (en) Analysis chip
EP2380007B1 (en) Sensing device and method for sensing a fluid
JP5701778B2 (en) Detection device for detecting target substances
JP6238207B2 (en) Optical analysis method, optical analysis system and program
KR20200015316A (en) Automated device for enzyme immunoassay in liquid and method thereof
TWI612289B (en) Optical analysis method and optical analysis device using microchip, and microchip for optical analysis device and processing device for optical analysis
JP6026262B2 (en) Measuring apparatus and measuring method
JP6477488B2 (en) Detection device and detection method using the detection device
JP2013532824A (en) Measuring cassette and measuring device for detecting target molecules in a liquid specimen by measuring fluorescence emission after excitation in an evanescent field
JP2009204509A (en) Inspection chip, sensing device using it and substance detecting method
JP5797427B2 (en) Detection method and detection apparatus
JP6766820B2 (en) Optical sample detection system
US9983128B2 (en) Parallel optical examinations of a sample
WO2016132945A1 (en) Reaction method and reaction device
JP2012202742A (en) Detection method and detection device
JP5851015B2 (en) Analysis chip
JP2010071682A (en) Sensing device, substance detecting method, inspection chip, and inspection kit
WO2016093039A1 (en) Detection chip and detection method
JP6922907B2 (en) Reaction methods, as well as reaction systems and equipment that perform this.
JP2011214862A (en) Analyzer and method
JP6768621B2 (en) Fluorescence detection device using surface plasmon resonance and its operation method
JP5681077B2 (en) Measuring method and measuring device
JP2013076673A (en) Measurement apparatus
JP4417215B2 (en) Biomolecular interaction measurement device
JP2012202911A (en) Analysis chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151201

R150 Certificate of patent or registration of utility model

Ref document number: 5851015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250