JP5846868B2 - Manufacturing method of stainless steel diffusion bonding products - Google Patents
Manufacturing method of stainless steel diffusion bonding products Download PDFInfo
- Publication number
- JP5846868B2 JP5846868B2 JP2011251157A JP2011251157A JP5846868B2 JP 5846868 B2 JP5846868 B2 JP 5846868B2 JP 2011251157 A JP2011251157 A JP 2011251157A JP 2011251157 A JP2011251157 A JP 2011251157A JP 5846868 B2 JP5846868 B2 JP 5846868B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- diffusion bonding
- steel
- stainless steel
- austenite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Description
本発明は、インサート材なしにステンレス鋼材同士を拡散接合するステンレス鋼拡散接合製品の製造方法に関する。 The present invention relates to a method of manufacturing a stainless steel diffusion bonding product in which stainless steel materials are diffusion bonded without an insert material.
ステンレス鋼材同士の接合方法の一つに拡散接合があり、拡散接合によって組み立てられたステンレス鋼拡散接合製品は、熱交換器、機械部品、燃料電池部品、家電製品部品、プラント部品、装飾品構成部材、建材など、種々の用途に適用されている。拡散接合方法には、インサート材を接合界面に挿入し固相拡散または液相拡散により接合する「インサート材挿入法」と、双方のステンレス鋼材の表面同士を直接接触させて拡散接合する「直接法」がある。 One of the joining methods of stainless steel materials is diffusion bonding. Stainless steel diffusion bonding products assembled by diffusion bonding are heat exchangers, machine parts, fuel cell parts, home appliance parts, plant parts, decorative components. It is applied to various uses such as building materials. The diffusion bonding method includes an “insert material insertion method” in which an insert material is inserted into the bonding interface and bonded by solid phase diffusion or liquid phase diffusion, and a “direct method” in which the surfaces of both stainless steel materials are in direct contact with each other. There is.
インサート材挿入法としては、例えば2相ステンレス鋼をインサート材に用いる方法(特許文献1)、NiとAuを数μmめっきした被接合物と同一組成の箔状インサート材を用いる液相拡散接合方法(特許文献2)、Siを11.5%以下の範囲で多量に含有するオーステナイト系ステンレス鋼をインサート材に用いる方法(特許文献3)など、従来から多くの技術が知られている。また、ニッケル系のろう材(例えばJIS:BNi−1〜7)や、銅系のろう材をインサート材として用いる「ろう付け」も液相拡散接合の1種と見ることができる。これらのインサート材挿入法は確実な拡散接合を比較的簡便に実現できる点で有利である。しかし、インサート材を用いることによりコストが増大する点や、接合部分が異種金属となることにより耐食性が低下する場合がある点で直接法よりも不利となる。 As an insert material insertion method, for example, a method using duplex stainless steel as an insert material (Patent Document 1), and a liquid phase diffusion bonding method using a foil-like insert material having the same composition as a workpiece to be plated with Ni and Au by several μm Many techniques are conventionally known, such as (Patent Document 2) and a method of using austenitic stainless steel containing a large amount of Si in a range of 11.5% or less as an insert material (Patent Document 3). Further, “brazing” using a nickel-based brazing material (for example, JIS: BNi-1 to 7) or a copper-based brazing material as an insert material can be regarded as one type of liquid phase diffusion bonding. These insert material insertion methods are advantageous in that reliable diffusion bonding can be realized relatively easily. However, the use of the insert material is disadvantageous compared to the direct method in that the cost is increased and the corrosion resistance may be lowered due to the dissimilar metal in the joint portion.
他方、直接法はインサート材挿入法に比べ一般に十分な接合強度を得ることが難しいとされる。しかし、製造コスト低減の面で有利となる可能性を含んでいることから、直接法に関しても種々の方法が検討されてきた。例えば特許文献4には鋼中のS量を0.01%以下とし所定温度の非酸化性雰囲気中で拡散接合することで材料の変形を回避してステンレス鋼材の拡散接合性を向上させる技術が開示されている。特許文献5には酸洗処理により表面に凹凸を付与したステンレス鋼箔材を使用する方法が開示されている。特許文献6には拡散接合の阻害要因となるアルミナ皮膜が拡散接合時に生成しにくいようにAl含有量を抑制したステンレス鋼を被接合材として用いる方法が開示されている。特許文献7には冷間加工により変形を付与したステンレス鋼箔を用いて拡散を促進させることが開示されている。特許文献8には組成を適性化した直接拡散接合用のフェライト系ステンレス鋼が記載されている。 On the other hand, it is generally difficult for the direct method to obtain sufficient bonding strength compared to the insert material insertion method. However, since there is a possibility that it is advantageous in terms of reduction in manufacturing cost, various methods have been examined with respect to the direct method. For example, Patent Document 4 discloses a technique for improving the diffusion bonding property of a stainless steel material by avoiding deformation of the material by diffusion bonding in a non-oxidizing atmosphere at a predetermined temperature with an S amount in steel of 0.01% or less. It is disclosed. Patent Document 5 discloses a method of using a stainless steel foil material having irregularities on the surface by pickling treatment. Patent Document 6 discloses a method of using, as a material to be joined, stainless steel in which the Al content is suppressed so that an alumina film that becomes an impediment to diffusion bonding is difficult to form during diffusion bonding. Patent Document 7 discloses that diffusion is promoted using a stainless steel foil that has been deformed by cold working. Patent Document 8 describes a ferritic stainless steel for direct diffusion bonding having an optimized composition.
上述の技術などによりステンレス鋼材の拡散接合は直接法によっても可能となった。しかし工業的には、直接法はステンレス鋼材の拡散接合方法の主流として定着するには至っていない。その主たる理由は、接合部の信頼性(接合強度や密封性)確保と、製造負荷抑制の両立が難しいことにある。従来の知見によると、直接法により接合部の信頼性を確保するためには接合温度を1100℃を超える高温としたり、ホットプレスやHIP等により高い面圧を付与したりする負荷の大きい工程を採用する必要があり、それによるコスト増大が避けられない。ステンレス鋼材の拡散接合を通常のインサート材挿入法と同等の作業負荷にて実施すると、接合部の信頼性を十分に確保することは難しいのが現状である。 Due to the above technique, diffusion bonding of stainless steel materials has become possible by the direct method. However, industrially, the direct method has not yet been established as the mainstream diffusion bonding method for stainless steel materials. The main reason is that it is difficult to ensure the reliability of the joint (joint strength and sealability) and suppress the production load. According to the conventional knowledge, in order to ensure the reliability of the joint part by the direct method, the process of making the joint temperature higher than 1100 ° C. or applying a high surface pressure by hot press, HIP or the like is a heavy load process. It is necessary to employ it, and the cost increase by it is inevitable. If diffusion bonding of stainless steel material is performed with a work load equivalent to that of a normal insert material insertion method, it is difficult to sufficiently secure the reliability of the joint.
本発明は、従来のインサート材挿入法と同等の作業負荷で実施できる「直接法」によって接合部の信頼性に優れたステンレス鋼材の拡散接合製品を提供しようというものである。 The present invention intends to provide a diffusion bonding product of stainless steel material having excellent joint reliability by a “direct method” that can be carried out with a work load equivalent to that of a conventional insert material insertion method.
発明者らの詳細な研究の結果、拡散接合時にフェライト相がオーステナイト相へ変態するときの粒界移動を利用すると、特別な高温加熱や高面圧を付与することなく、ステンレス鋼材同士の境界における拡散が促進することがわかった。本発明はこのような相変態に伴う結晶粒の成長(相境界の移動)を利用してインサート材を使用せずにステンレス鋼材同士を拡散接合するものである。 As a result of detailed research by the inventors, when using the grain boundary movement when the ferrite phase transforms to the austenite phase during diffusion bonding, it is not possible to apply special high-temperature heating or high surface pressure at the boundary between stainless steel materials. It was found that diffusion was promoted. The present invention uses the growth of crystal grains accompanying such phase transformation (movement of phase boundary) to diffuse and join stainless steel materials without using an insert material.
すなわち本発明では、ステンレス鋼材同士を直接接触させて拡散接合により一体化させるに際し、接触させる双方のステンレス鋼材の少なくとも一方に昇温過程でのオーステナイト変態開始温度Ac1点を650〜950℃に持ちオーステナイト+フェライト2相温度域を880℃以上の範囲に持つ2相系鋼を適用し、接触面圧0.03MPa以上1.0MPa以下、加熱温度880〜1080℃の条件範囲で前記2相系鋼のフェライト相がオーステナイト相へ変態するときの粒界移動を伴いながら拡散接合を進行させる、ステンレス鋼拡散接合製品の製造方法が提供される。 That is, in the present invention, when stainless steel materials are brought into direct contact and integrated by diffusion bonding, at least one of both stainless steel materials to be brought into contact has an austenite transformation start temperature Ac 1 point in the temperature rising process at 650 to 950 ° C. Applying a two-phase steel having an austenite + ferrite two-phase temperature range of 880 ° C. or higher, with a contact surface pressure of 0.03 MPa to 1.0 MPa and a heating temperature of 880 to 1080 ° C. There is provided a method for producing a stainless steel diffusion bonding product, in which diffusion bonding proceeds while accompanying grain boundary movement when the ferrite phase of the steel is transformed into an austenite phase.
特に、接触させる双方のステンレス鋼材の少なくとも一方に下記(A)の化学組成を有しオーステナイト+フェライト2相温度域を880℃以上の範囲に持つ2相系鋼を適用することができる。
(A)質量%で、C:0.0001〜0.15%、Si:0.001〜1.0%、Mn:0.001〜1.0%、Ni:0.05〜2.5%、Cr:13.0〜18.5%、Cu:0〜0.2%、Mo:0〜0.5%、Al:0〜0.05%、Ti:0〜0.2%、Nb:0〜0.2%、V:0〜0.2%、B:0〜0.01%、N:0.005〜0.1%、残部Feおよび不可避的不純物からなり、下記(1)式で示されるX値が650〜950である。
X値=35(Cr+1.72Mo+2.09Si+4.86Nb+8.29V+1.77Ti+21.4Al+40.0B−7.14C−8.0N−3.28Ni−1.89Mn−0.51Cu)+310 …(1)
In particular, at least one of the two stainless steel materials to be contacted can be applied to a two-phase steel having a chemical composition of the following (A) and having an austenite + ferrite two-phase temperature range of 880 ° C. or more.
(A) By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.0%, Mn: 0.001 to 1.0%, Ni: 0.05 to 2.5% Cr: 13.0 to 18.5%, Cu: 0 to 0.2%, Mo: 0 to 0.5%, Al: 0 to 0.05%, Ti: 0 to 0.2%, Nb: It consists of 0 to 0.2%, V: 0 to 0.2%, B: 0 to 0.01%, N: 0.005 to 0.1%, the balance Fe and inevitable impurities, and the following formula (1) The X value indicated by is 650-950.
X value = 35 (Cr + 1.72Mo + 2.09Si + 4.86Nb + 8.29V + 1.77Ti + 21.4Al + 40.0B-7.14C-8.0N-3.28Ni-1.89Mn-0.51Cu) +310 (1)
一般にステンレス鋼は常温での金属組織に基づいてオーステナイト系ステンレス鋼、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼などに分類されるが、本明細書でいう「2相系鋼」はAc1点以上の温度域でオーステナイト+フェライト2相組織となる鋼である。このような2相系鋼の中にはフェライト系ステンレス鋼やマルテンサイト系ステンレス鋼に分類されるステンレス鋼が含まれる。 Generally stainless steel austenitic stainless steels based on the metal structure at room temperature, ferritic stainless steels are classified into such martensitic stainless steel, referred to herein as "2-phase steels" refers Ac 1 or more points Is a steel having a two-phase structure of austenite + ferrite in the temperature range. Such a two-phase steel includes stainless steels classified as ferritic stainless steel and martensitic stainless steel.
拡散接合に供する双方のステンレス鋼材の組み合わせについては、以下の3パターンを例示することができる。
〔パターン1〕拡散接合に供する双方のステンレス鋼材がいずれも上記(A)の化学組成を有する2相系鋼である場合。
〔パターン2〕拡散接合に供する双方のステンレス鋼材のうち一方が上記(A)の化学組成を有する2相系鋼であり、他方が下記(B)の化学組成を有する鋼である場合。
〔パターン3〕拡散接合に供する双方のステンレス鋼材のうち一方が下記(A)の化学組成を有する2相系鋼であり、他方が下記(C)の化学組成を有する鋼である場合。
About the combination of both stainless steel materials used for diffusion bonding, the following three patterns can be illustrated.
[Pattern 1] Both stainless steel materials used for diffusion bonding are two-phase steels having the chemical composition (A).
[Pattern 2] When one of the stainless steel materials used for diffusion bonding is a two-phase steel having the chemical composition (A) and the other is a steel having the chemical composition (B) below.
[Pattern 3] When one of the stainless steel materials used for diffusion bonding is a two-phase steel having the following chemical composition (A) and the other is a steel having the following chemical composition (C).
(B)質量%で、C:0.0001〜0.15%、Si:0.001〜4.0%、Mn:0.001〜2.5%、P:0.001〜0.045%、S:0.0005〜0.03%、Ni:6.0〜28.0%、Cr:15.0〜26.0%、Mo:0〜7.0%、Cu:0〜3.5%、Nb:0〜1.0%、Ti:0〜1.0%、Al:0〜0.1%、N:0〜0.3%、B:0〜0.01%、V:0〜0.5%、W:0〜0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0〜0.1%、残部Feおよび不可避的不純物からなる。 (B) By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 4.0%, Mn: 0.001 to 2.5%, P: 0.001 to 0.045% , S: 0.0005 to 0.03%, Ni: 6.0 to 28.0%, Cr: 15.0 to 26.0%, Mo: 0 to 7.0%, Cu: 0 to 3.5 %, Nb: 0 to 1.0%, Ti: 0 to 1.0%, Al: 0 to 0.1%, N: 0 to 0.3%, B: 0 to 0.01%, V: 0 -0.5%, W: 0-0.3%, Ca, Mg, Y, REM (rare earth elements) total: 0-0.1%, balance Fe and inevitable impurities.
(C)質量%で、C:0.0001〜0.15%、Si:0.001〜1.2%、Mn:0.001〜1.2%、P:0.001〜0.04%、S:0.0005〜0.03%、Ni:0〜0.6%、Cr:11.5〜32.0%、Mo:0〜2.5%、Cu:0〜1.0%、Nb:0〜1.0%、Ti:0〜1.0%、Al:0〜0.2%、N:0〜0.025%、B:0〜0.01%、V:0〜0.5%、W:0〜0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0〜0.1%、残部Feおよび不可避的不純物からなる。 (C) By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.2%, Mn: 0.001 to 1.2%, P: 0.001 to 0.04% S: 0.0005 to 0.03%, Ni: 0 to 0.6%, Cr: 11.5 to 32.0%, Mo: 0 to 2.5%, Cu: 0 to 1.0%, Nb: 0 to 1.0%, Ti: 0 to 1.0%, Al: 0 to 0.2%, N: 0 to 0.025%, B: 0 to 0.01%, V: 0 to 0 0.5%, W: 0 to 0.3%, Ca, Mg, Y, REM (rare earth elements) total: 0 to 0.1%, balance Fe and inevitable impurities.
ここで、(B)はオーステナイト系ステンレス鋼を含む組成範囲であり、(C)はフェライト系ステンレス鋼を含む組成範囲である。 Here, (B) is a composition range including austenitic stainless steel, and (C) is a composition range including ferritic stainless steel.
上記(A)の組成を有する2相系鋼において、特に下記(2)式で示されるγmaxが20〜100未満である鋼を適用すると拡散接合条件の自由度が一層拡がる。このような鋼を提供した場合には、接触面圧0.03〜0.8MPa、保持温度880〜1030℃の条件範囲で拡散接合を進行させるとよい。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49Ti−50Nb−52Al+470N+189 …(2)
In the two-phase steel having the above composition (A), the degree of freedom of the diffusion bonding conditions is further expanded by applying a steel having a γmax of 20 to less than 100 represented by the following formula (2). When such steel is provided, diffusion bonding may be advanced in the condition range of contact surface pressure of 0.03 to 0.8 MPa and holding temperature of 880 to 1030 ° C.
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-50Nb-52Al + 470N + 189 (2)
上記(1)式、(2)式の成分元素の箇所には質量%で表された当該元素の含有量の値が代入される。含有しない元素については0(ゼロ)が代入される。 The value of the content of the element expressed by mass% is substituted for the component element in the above formulas (1) and (2). For elements not contained, 0 (zero) is substituted.
本発明に従うステンレス鋼拡散接合構造は接合強度および密封性に優れ、インサート材を使用していないので異種金属(特にCuを含む金属)との接触に起因する耐食性低下を回避するうえで有効である。また、従来の直接法によるステンレス鋼材の拡散接合と比べ低接触面圧化、低温度化が可能となり、インサート材挿入法に適用されている一般的な拡散接合設備が利用できる。このためインサート材を使用しないことによる製造コスト低減効果が作業負荷の増大によって相殺されることもない。したがって本発明は信頼性の高いステンレス鋼拡散接合製品の普及に寄与するものである。 The stainless steel diffusion bonding structure according to the present invention is excellent in bonding strength and sealing performance, and is effective in avoiding a decrease in corrosion resistance due to contact with dissimilar metals (particularly metals containing Cu) since no insert material is used. . In addition, compared with conventional diffusion bonding of stainless steel materials by direct method, the contact surface pressure and temperature can be reduced, and general diffusion bonding equipment applied to the insert material insertion method can be used. For this reason, the manufacturing cost reduction effect by not using insert material is not offset by the increase in work load. Therefore, the present invention contributes to the spread of highly reliable stainless steel diffusion bonding products.
一般的にステンレス鋼材同士を直接接触させた状態で拡散接合が完了するまでには、以下の過程を経ると考えられる。
[1]接触面の凹凸が変形して密着し、接触面積が増大する過程。
[2]接触面に存在していた双方の鋼材の表面酸化皮膜が分解および拡散消失する過程。
[3]原子の相互拡散および結晶粒の成長が生じる過程。
[4]接触面に介在するボイド内の残留ガスが金属素地との反応により消失する過程。
ステンレス鋼材の表面酸化皮膜は強固な不動態皮膜であるため、特に[2]の過程を完了させるためには高い接触面圧や高温での長時間保持が必要となる。これがステンレス鋼材の直接拡散接合法の工業的な普及を阻む要因となっている。
In general, it is considered that the following processes are required until diffusion bonding is completed in a state where stainless steel materials are in direct contact with each other.
[1] A process in which the unevenness of the contact surface is deformed and closely adheres to increase the contact area.
[2] A process in which the surface oxide films of both steel materials existing on the contact surface decompose and diffuse and disappear.
[3] A process in which interdiffusion of atoms and growth of crystal grains occur.
[4] A process in which the residual gas in the void interposed in the contact surface disappears due to the reaction with the metal substrate.
Since the surface oxide film of the stainless steel material is a strong passive film, it is necessary to maintain a high contact surface pressure and high temperature for a long time, in particular, in order to complete the process [2]. This is a factor that hinders the industrial spread of the direct diffusion bonding method of stainless steel.
発明者らは鋭意研究の結果、上記[2]の過程の完了を必要とすることなくステンレス鋼材の直接拡散接合を実現する手法を見出した。その手法の骨子は双方のステンレス鋼材の接触面近傍で生じる相変態の駆動力を利用して拡散接合を行うことにある。それによれば従来より低温、低接触面圧の条件で工業的な直接拡散接合が実施でき、接合面の信頼性も向上する。 As a result of intensive studies, the inventors have found a technique for realizing direct diffusion bonding of stainless steel materials without requiring completion of the process [2]. The essence of this method is to perform diffusion bonding using the driving force of the phase transformation that occurs in the vicinity of the contact surfaces of both stainless steel materials. According to this, industrial direct diffusion bonding can be performed under conditions of lower temperature and lower contact surface pressure than before, and the reliability of the bonding surface is improved.
図1に、本発明対象の化学組成を有する2相系鋼を双方の鋼材に用いて900℃での拡散接合を試みた場合の接合界面付近の断面組織を例示する。この2相系鋼は後述表1のD−2に相当する鋼であり、拡散接合前の金属組織はフェライト相+M23C6(MはCr等の金属元素)系炭化物である。板厚1.0mmの2D仕上材を試料に用い、表面粗さRaが0.21μmである表面同士を直接接触させ、接触面圧を0.3MPaとし、真空引きにより10-3Paの圧力としたチャンバー内で、ヒーターにより試料を常温から900℃まで約1hで昇温させ、900℃に到達後その温度で保持し、所定の保持時間が経過した時点で炉から取り出して急冷し、断面組織を調査したものである。図1(a)は保持時間10min、(b)は保持時間50minの段階である。 FIG. 1 exemplifies a cross-sectional structure in the vicinity of a joint interface when diffusion bonding at 900 ° C. is attempted using a two-phase steel having the chemical composition of the present invention for both steel materials. This two-phase steel is a steel corresponding to D-2 in Table 1 described later, and the metal structure before diffusion bonding is a ferrite phase + M 23 C 6 (M is a metal element such as Cr) -based carbide. A 2D finishing material having a thickness of 1.0 mm is used as a sample, the surfaces having a surface roughness Ra of 0.21 μm are brought into direct contact with each other, the contact surface pressure is set to 0.3 MPa, and a pressure of 10 −3 Pa is obtained by evacuation. In the chamber, the temperature of the sample was raised from room temperature to 900 ° C. with a heater in about 1 h, held at that temperature after reaching 900 ° C., taken out of the furnace when a predetermined holding time passed, and rapidly cooled to obtain a cross-sectional structure. Is a survey. FIG. 1A shows a stage where the holding time is 10 min, and FIG. 1B shows a stage where the holding time is 50 min.
本明細書では、拡散接合前に双方の部材が接触していた位置を「界面位置」と呼ぶ。
図1(a)に見られるように、保持時間10minの段階で、界面位置を跨ぐ結晶粒が生じている。それらの結晶粒は昇温前のフェライト相と炭化物から変態により生成したオーステナイト相に相当するものである(写真は保持温度から急冷後に撮影したので、前記オーステナイト相はマルテンサイト相となっている)。この例では拡散接合前の金属組織がフェライト相+炭化物であるため、オーステナイト相への変態は炭化物を起点として生じる。生成したオーステナイト結晶はフェライト相中に粒界を拡げながら成長する。すなわち、フェライト相がオーステナイト相へ変態するときの粒界移動を伴いながらオーステナイト結晶粒が成長する。
In this specification, a position where both members are in contact before diffusion bonding is referred to as an “interface position”.
As can be seen in FIG. 1A, crystal grains straddling the interface position are generated at the stage of the holding time of 10 min. These crystal grains correspond to the austenite phase generated by transformation from the ferrite phase and carbide before the temperature rise (the photograph is taken after quenching from the holding temperature, so the austenite phase is a martensite phase) . In this example, since the metal structure before diffusion bonding is a ferrite phase + carbide, the transformation to the austenite phase occurs from the carbide. The generated austenite crystal grows while expanding grain boundaries in the ferrite phase. That is, austenite crystal grains grow while accompanying grain boundary movement when the ferrite phase transforms into the austenite phase.
図1の例では双方の鋼材が同じ2相系鋼であるため、界面位置近傍に存在しているどちらかの鋼材の炭化物を起点として生成したオーステナイト相が成長する際、そのオーステナイト結晶粒が相手側鋼材の結晶の一部を取り込んで1つのオーステナイト結晶粒として成長し、拡散接合が進行していく。なお、図1(a)の段階では、界面位置には未接合部分が多く残っている。 In the example of FIG. 1, since both steel materials are the same two-phase steel, when the austenite phase generated from the carbide of one of the steel materials existing near the interface position grows, the austenite crystal grains Part of the side steel crystal is taken in and grown as one austenite crystal grain, and diffusion bonding proceeds. In the stage of FIG. 1A, many unjoined portions remain at the interface position.
相手側の鋼材が拡散接合の保持温度でオーステナイト単相となる鋼やフェライト単相となる鋼であっても、2相系鋼の界面位置近傍の炭化物を起点として生成したオーステナイト結晶粒が成長する際、界面位置を跨いで相手材の結晶中へも成長することが確認されている。 Even if the steel on the other side is a steel that becomes an austenite single phase or a ferritic single phase at the holding temperature of diffusion bonding, austenite grains generated from carbides near the interface position of the two-phase steel grow. At this time, it has been confirmed that it also grows into the crystal of the counterpart material across the interface position.
本発明の対象となる2相系鋼の金属組織は、化学組成や鋼板製造条件によってフェライト相+炭化物、フェライト相+マルテンサイト相、またはマルテンサイト単相となる。拡散接合時にフェライト相がオーステナイト相へ変態するときの粒界移動に伴う原子の拡散を利用するためには、拡散接合の加熱によってオーステナイトが生成し始める時点においてフェライト相が50体積%以上存在していることが望ましい。拡散接合に供する前記2相系鋼がマルテンサイト単相の金属組織を有している場合には、予め焼鈍を施してフェライト相+マルテンサイト相の組織としておくことが効果的である。その焼鈍としては例えば600℃〜Ac1点+50℃に材料を保持する条件が採用できるが、通常は拡散接合の昇温過程で焼鈍効果が得られ、フェライト相が存在する組織状態でオーステナイト相の生成開始を迎えることができる。 The metal structure of the two-phase steel that is the subject of the present invention is a ferrite phase + carbide, a ferrite phase + martensite phase, or a martensite single phase, depending on the chemical composition and steel sheet production conditions. In order to utilize the diffusion of atoms accompanying the grain boundary migration when the ferrite phase transforms to the austenite phase during diffusion bonding, the ferrite phase is present in an amount of 50% by volume or more at the time when austenite begins to be generated by heating the diffusion bonding. It is desirable. When the two-phase steel used for diffusion bonding has a martensitic single-phase metal structure, it is effective to anneal it in advance to obtain a ferrite phase + martensitic phase structure. As the annealing, for example, the condition of holding the material at 600 ° C. to Ac 1 point + 50 ° C. can be adopted, but usually the annealing effect is obtained in the temperature rising process of diffusion bonding, and the austenite phase is in the structure state where the ferrite phase exists. The generation start can be reached.
オーステナイト結晶は、フェライト相+炭化物の組織を有する2相系鋼では炭化物を起点として生成し、フェライト相+マルテンサイト相の組織を有する2相系鋼ではマルテンサイト相を起点そして生成する。いずれの場合も2相系鋼中のオーステナイト結晶は周囲のフェライト相中へと粒界を移動させながら成長する。その際、双方の鋼材間の界面位置では拡散の障壁となる酸化物の完全消失を待たずに接合相手材の方へ結晶粒界が移動する。 The austenite crystal is generated starting from carbide in a two-phase steel having a ferrite phase + carbide structure, and starting from and generating a martensite phase in a two-phase steel having a ferrite phase + martensitic structure. In either case, the austenite crystal in the duplex stainless steel grows while moving the grain boundary into the surrounding ferrite phase. At that time, at the interface position between the two steel materials, the crystal grain boundary moves toward the bonding partner material without waiting for the complete disappearance of the oxide serving as a diffusion barrier.
拡散接合が進行する温度での保持時間を十分に確保するとオーステナイト相の体積率増大は終了し、残部のフェライト結晶粒にも粒界移動が生じるようになる。そして、図1(b)のように、界面位置を乗り越えて成長したフェライト結晶粒が観察されるようになる。この段階になると、界面位置に残る未接合部分は非常に少なくなっており、双方の鋼材は拡散接合によって一体化したものとみなすことができる。後述する超音波厚さ計による測定で界面位置のほとんどの部分が接合している状態であることが確認できる。 When a sufficient holding time at the temperature at which diffusion bonding proceeds is secured, the increase in the volume fraction of the austenite phase is completed, and grain boundary migration also occurs in the remaining ferrite crystal grains. Then, as shown in FIG. 1B, ferrite crystal grains grown over the interface position are observed. At this stage, there are very few unbonded portions remaining at the interface position, and it can be considered that both steel materials are integrated by diffusion bonding. It can be confirmed that most portions of the interface position are joined by measurement with an ultrasonic thickness meter, which will be described later.
〔2相系鋼〕
本発明では、低温・低接触面圧下で直接法による拡散接合を実現するために、拡散接合に供する双方のステンレス鋼材のうち少なくとも一方に、拡散接合が進行する温度域でオーステナイト+フェライト2相組織となる鋼(2相系鋼)を適用する。具体的には昇温過程でのオーステナイト変態開始温度Ac1点を650〜950℃に持ちオーステナイト+フェライト2相温度域を880℃以上の範囲に持つ2相系鋼が好適な対象となる。ここで、Ac1点が880℃以上であれば必然的に880℃以上の範囲に2相温度域を有することとなるが、Ac1点があまり高いとそれに伴って2相温度域の下限が上昇するので、加熱温度の設定下限も高くなり、2相系鋼のフェライト相がオーステナイト相へ変態するときの粒界移動を利用して比較的低温でインサート材を使わずに拡散接合を行うという本発明のメリットが活かせない。種々検討の結果、Ac1点が950℃以下の範囲にある鋼を適用することが有効であり、900℃以下の鋼がより好適である。
[Dual phase steel]
In the present invention, in order to realize diffusion bonding by a direct method under low temperature and low contact surface pressure, at least one of both stainless steel materials used for diffusion bonding is austenite + ferrite two-phase structure in a temperature range where diffusion bonding proceeds. The following steel (duplex steel) is applied. Specifically, a two-phase steel having an austenite transformation start temperature Ac 1 point in the temperature rising process at 650 to 950 ° C. and an austenite + ferrite two-phase temperature range in the range of 880 ° C. or more is a suitable target. Here, if the Ac 1 point is 880 ° C. or higher, it will inevitably have a two-phase temperature range in the range of 880 ° C. or higher. However, if the Ac 1 point is too high, the lower limit of the two-phase temperature range is associated with it. As the temperature rises, the lower limit of the heating temperature is also increased, and diffusion bonding is performed without using an insert material at a relatively low temperature by using the grain boundary movement when the ferrite phase of the two-phase steel transforms to the austenite phase. The merit of the present invention cannot be utilized. As a result of various studies, it is effective to apply steel having an Ac 1 point in the range of 950 ° C. or lower, and steel of 900 ° C. or lower is more preferable.
本発明で適用する2相系鋼は、拡散接合を進行させる温度域でオーステナイト+フェライト2相組織を呈するものであれば、いわゆる「マルテンサイト系ステンレス鋼」に分類される鋼種であっても構わない。マルテンサイト系ステンレス鋼は例えば1050℃以上といった高温のオーステナイト単相域から急冷することによってマルテンサイト組織を得る鋼種であるが、オーステナイト+フェライト2相温度域でオーステナイト相への変態に伴う結晶粒界の移動を利用した拡散接合が可能な組成を有するマルテンサイト系ステンレス鋼も存在する。したがって、そのようなマルテンサイト系ステンレス鋼も、本明細書では2相系鋼として扱っている。 The duplex stainless steel applied in the present invention may be a steel type classified as a so-called “martensitic stainless steel” as long as it exhibits an austenite + ferrite dual phase structure in a temperature range in which diffusion bonding proceeds. Absent. Martensitic stainless steel is a steel type that obtains a martensite structure by quenching from a high-temperature austenite single-phase region such as 1050 ° C. or more. There is also a martensitic stainless steel having a composition capable of diffusion bonding utilizing the movement of. Therefore, such martensitic stainless steel is also treated as a duplex stainless steel in this specification.
本発明で対象とする2相系鋼の具体的な成分組成としては、下記(A)を満たすものが例示できる。
(A)質量%で、C:0.0001〜0.15%、Si:0.001〜1.0%、Mn:0.001〜1.0%、Ni:0.05〜2.5%、Cr:13.0〜18.5%、Cu:0〜0.2%、Mo:0〜0.5%、Al:0〜0.05%、Ti:0〜0.2%、Nb:0〜0.2%、V:0〜0.2%、B:0〜0.01%、N:0.005〜0.1%、残部Feおよび不可避的不純物からなり、下記(1)式で示されるX値が650〜950である。
X値=35(Cr+1.72Mo+2.09Si+4.86Nb+8.29V+1.77Ti+21.4Al+40.0B−7.14C−8.0N−3.28Ni−1.89Mn−0.51Cu)+310 …(1)
Examples of the specific component composition of the duplex stainless steel targeted in the present invention include those satisfying the following (A).
(A) By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.0%, Mn: 0.001 to 1.0%, Ni: 0.05 to 2.5% Cr: 13.0 to 18.5%, Cu: 0 to 0.2%, Mo: 0 to 0.5%, Al: 0 to 0.05%, Ti: 0 to 0.2%, Nb: It consists of 0 to 0.2%, V: 0 to 0.2%, B: 0 to 0.01%, N: 0.005 to 0.1%, the balance Fe and inevitable impurities, and the following formula (1) The X value indicated by is 650-950.
X value = 35 (Cr + 1.72Mo + 2.09Si + 4.86Nb + 8.29V + 1.77Ti + 21.4Al + 40.0B-7.14C-8.0N-3.28Ni-1.89Mn-0.51Cu) +310 (1)
ここで、上記X値は、オーステナイト+フェライト2相温度域を880℃以上の範囲に持つ2相系鋼において、昇温過程でのオーステナイト変態開始温度Ac1点(℃)を精度良く推定することができる指標である。 Here, the above-mentioned X value accurately estimates the austenite transformation start temperature Ac 1 point (° C.) in the temperature rising process in the two-phase steel having the austenite + ferrite two-phase temperature range of 880 ° C. or more. It is an indicator that can.
前記(A)の化学組成を有する2相系鋼として、特に下記(2)式で示されるγmaxが20〜100未満である鋼を適用することができる。
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49Ti−50Nb−52Al+470N+189 …(2)
γmaxは1100℃程度に加熱保持した場合に生成するオーステナイト相の量(体積%)を表す指標である。γmaxが100以上となる場合、その鋼は高温でオーステナイト単相となる鋼種であるとみなすことができる。γmaxが20〜100未満である鋼においては、γ単相域を避ける温度設定が容易であり、より低温、低接触面圧側に適正条件の自由度が拡がる。γmaxが50〜80である鋼を適用することが一層好ましい。
As the two-phase steel having the chemical composition (A), steel having a γmax represented by the following formula (2) of 20 to less than 100 can be applied.
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-50Nb-52Al + 470N + 189 (2)
γmax is an index that represents the amount (volume%) of the austenite phase that is produced when heated to about 1100 ° C. When γmax is 100 or more, the steel can be regarded as a steel type that becomes an austenite single phase at a high temperature. In steels where γmax is less than 20 to 100, it is easy to set the temperature to avoid the γ single-phase region, and the degree of freedom of appropriate conditions is expanded to the lower temperature and lower contact pressure side. It is more preferable to apply steel having γmax of 50-80.
〔接合相手の鋼種〕
上記2相系鋼からなる鋼材と拡散接合により一体化させる相手材としては、上記2相系鋼を適用できる他、拡散接合の加熱温度域でオーステナイト単相となるオーステナイト系鋼種やフェライト単相となるフェライト系鋼種を適用することができる。2相系鋼以外を相手材に用いても、一方の2相系鋼内で変態により成長するオーステナイト相は界面位置から相手材の方へも成長するので、界面位置を跨ぐ結晶粒を介する健全な拡散接合部を構築することが可能である。
[Joint type]
As the counterpart material to be integrated by diffusion bonding with the steel material composed of the above-mentioned two-phase steel, in addition to the above-mentioned two-phase steel, an austenitic steel type or a ferrite single phase that becomes an austenite single phase in the heating temperature range of diffusion bonding can be used. A ferritic steel grade can be applied. Even if a material other than a dual phase steel is used as the counterpart material, the austenite phase that grows by transformation in one of the dual phase steels also grows from the interface position toward the counterpart material. It is possible to construct a simple diffusion joint.
上記オーステナイト系またはフェライト系の鋼種としては用途に応じて種々の既存鋼種が適用でき、拡散接合性の観点からは特に成分組成にこだわる必要はない。具体的な成分組成範囲は、オーステナイト系鋼種としては下記(B)、フェライト系鋼種としては下記(C)のものを挙げることができる。 As the austenitic or ferritic steel types, various existing steel types can be applied depending on the application, and there is no need to pay particular attention to the component composition from the viewpoint of diffusion bonding properties. Specific component composition ranges include the following (B) as an austenitic steel type and the following (C) as a ferritic steel type.
(B)質量%で、C:0.0001〜0.15%、Si:0.001〜4.0%、Mn:0.001〜2.5%、P:0.001〜0.045%、S:0.0005〜0.03%、Ni:6.0〜28.0%、Cr:15.0〜26.0%、Mo:0〜7.0%、Cu:0〜3.5%、Nb:0〜1.0%、Ti:0〜1.0%、Al:0〜0.1%、N:0〜0.3%、B:0〜0.01%、V:0〜0.5%、W:0〜0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0〜0.1%、残部Feおよび不可避的不純物からなる。 (B) By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 4.0%, Mn: 0.001 to 2.5%, P: 0.001 to 0.045% , S: 0.0005 to 0.03%, Ni: 6.0 to 28.0%, Cr: 15.0 to 26.0%, Mo: 0 to 7.0%, Cu: 0 to 3.5 %, Nb: 0 to 1.0%, Ti: 0 to 1.0%, Al: 0 to 0.1%, N: 0 to 0.3%, B: 0 to 0.01%, V: 0 -0.5%, W: 0-0.3%, Ca, Mg, Y, REM (rare earth elements) total: 0-0.1%, balance Fe and inevitable impurities.
(C)質量%で、C:0.0001〜0.15%、Si:0.001〜1.2%、Mn:0.001〜1.2%、P:0.001〜0.04%、S:0.0005〜0.03%、Ni:0〜0.6%、Cr:11.5〜32.0%、Mo:0〜2.5%、Cu:0〜1.0%、Nb:0〜1.0%、Ti:0〜1.0%、Al:0〜0.2%、N:0〜0.025%、B:0〜0.01%、V:0〜0.5%、W:0〜0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0〜0.1%、残部Feおよび不可避的不純物からなる。 (C) By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.2%, Mn: 0.001 to 1.2%, P: 0.001 to 0.04% S: 0.0005 to 0.03%, Ni: 0 to 0.6%, Cr: 11.5 to 32.0%, Mo: 0 to 2.5%, Cu: 0 to 1.0%, Nb: 0 to 1.0%, Ti: 0 to 1.0%, Al: 0 to 0.2%, N: 0 to 0.025%, B: 0 to 0.01%, V: 0 to 0 0.5%, W: 0 to 0.3%, Ca, Mg, Y, REM (rare earth elements) total: 0 to 0.1%, balance Fe and inevitable impurities.
〔拡散接合条件〕
拡散接合に供する両部材間の接触面圧は1.0MPa以下とする。接触面圧が1.0MPa以下であれば、比較的簡便な設備にてインサート材を用いない拡散接合が実施できる。適用する鋼種や加熱保持温度・保持時間に応じて拡散接合が進行するに足る接触面圧を1.0MPa以下の範囲で設定すればよい。特に上記2相系鋼としてγmaxが100未満の鋼を適用する場合には0.8MPa以下の接触面圧にて良好な結果を得やすい。一方、接触面圧が極端に低いと加熱保持時間が長くなり生産性が低下する。工業的には0.03MPa以上の接触面圧を確保することが好ましく、0.1MPa以上となるように管理してもよい。なお、拡散接合に供するステンレス鋼材の接合面となる表面は、Raが0.30μm以下に平滑であることが望ましい。表面の仕上は、酸洗、光輝焼鈍、研磨のいずれであっても構わない。
[Diffusion bonding conditions]
The contact surface pressure between the two members used for diffusion bonding is 1.0 MPa or less. If the contact surface pressure is 1.0 MPa or less, diffusion bonding using no insert material can be performed with relatively simple equipment. What is necessary is just to set the contact surface pressure which is sufficient for diffusion joining to advance according to the steel grade to apply, heating holding temperature, and holding time in the range of 1.0 Mpa or less. In particular, when a steel having a γmax of less than 100 is applied as the two-phase steel, good results can be easily obtained at a contact surface pressure of 0.8 MPa or less. On the other hand, when the contact surface pressure is extremely low, the heating and holding time becomes long and the productivity is lowered. Industrially, it is preferable to ensure a contact surface pressure of 0.03 MPa or more, and the contact pressure may be controlled to be 0.1 MPa or more. In addition, as for the surface used as the joining surface of the stainless steel material used for diffusion joining, it is desirable for Ra to be 0.30 micrometer or less. The surface finish may be pickling, bright annealing, or polishing.
拡散接合の加熱温度は880℃以上とする。発明者らの検討によれば、上記2相系鋼の変態による粒界移動を利用する場合、従来のように高温に保持しなくてもステンレス鋼材同士の拡散接合が可能となるが、接触面圧を1.0MPa以下の条件とする場合、880℃以上での加熱が望まれる。900℃以上とすることが拡散促進の観点からより好ましい。 The heating temperature for diffusion bonding is 880 ° C. or higher. According to the study by the inventors, when using the grain boundary movement due to the transformation of the above-mentioned two-phase steel, diffusion bonding between stainless steel materials can be performed without holding at a high temperature as in the prior art. When the pressure is 1.0 MPa or lower, heating at 880 ° C. or higher is desired. A temperature of 900 ° C. or higher is more preferable from the viewpoint of promoting diffusion.
ただし、双方または一方の部材に適用する前記2相系鋼のオーステナイト+フェライト2相温度域に加熱保持する必要がある。これら2相が共存する温度域に保持することで、新たに成長するオーステナイト結晶粒が接触相手材の方へと界面位置を乗り越えて成長しやすい。そのメカニズムについては現時点で不明な点も多いが以下のようなことが考えられる。2相系鋼中にフェライト相が存在している状態でオーステナイト+フェライト2相共存温度域に加熱すると、その2相系鋼中では、まず炭化物やマルテンサイト相を起点としてオーステナイト結晶が生成する。生成したオーステナイト結晶とその周囲のフェライト結晶の間の結晶粒界は、フェライト相とオーステナイト相の比率を平衡状態に近づけようとする「変態の駆動力」によって、非常に動きやすい状態となる。この変態の駆動力を利用してオーステナイト結晶は2相系鋼中で隣接するフェライト結晶の中に粒界を移動させながら成長する。その際、接触相手材との界面位置に面して成長中のオーステナイト結晶粒は、エネルギー的により安定した存在形態となろうとして接触相手材の結晶粒内へも粒界を移動して拡がるものと考えられ、結果的に界面位置を跨ぐオーステナイト結晶粒となる。両部材の界面位置が部分的にオーステナイト結晶粒で繋がると、それらのオーステナイト結晶粒の近傍で界面位置に面して存在している両部材の結晶粒も拡散によって互いに粒界移動を生じ、拡散接合が進行していく。 However, it is necessary to heat and hold the two-phase steel austenite + ferrite two-phase temperature range applied to both or one member. By maintaining the temperature range in which these two phases coexist, newly grown austenite crystal grains easily grow over the interface position toward the contact partner material. Although there are many unclear points about the mechanism at this time, the following can be considered. When the austenite + ferrite two-phase coexisting temperature region is heated in a state where the ferrite phase is present in the two-phase steel, austenite crystals are first generated in the two-phase steel starting from the carbide or martensite phase. The grain boundary between the generated austenite crystal and the surrounding ferrite crystal is in a state of being very mobile due to the “transformation driving force” that tries to bring the ratio of the ferrite phase to the austenite phase closer to the equilibrium state. Utilizing this transformation driving force, the austenite crystal grows while moving the grain boundary into the adjacent ferrite crystal in the duplex phase steel. At that time, the austenite crystal grains that are growing facing the interface with the contact partner material are moved to expand into the crystal grains of the contact partner material in order to become a more stable form of energy. As a result, austenite crystal grains straddling the interface position are formed. When the interface position of both members is partially connected by austenite crystal grains, the crystal grains of both members facing the interface position in the vicinity of these austenite crystal grains also cause grain boundary movement due to diffusion and diffusion. Joining proceeds.
880℃以上でフェライト単相となる鋼やオーステナイト単相となる鋼を上記2相系鋼の代わりに用いた場合には、接触面圧1.0MPa以下、加熱温度880〜1080℃という低接触面圧・低温加熱での条件下では界面位置に未接合部分(欠陥)が残りやすいことが確認されている。このことから、上記2相系鋼の変態駆動力を利用することが、低接触面圧・低温加熱でのステンレス鋼材同士の拡散接合の進行を促進させるうえで極めて有利であると言える。 When steel that becomes a ferrite single phase at 880 ° C or higher or steel that becomes an austenite single phase is used instead of the above two-phase steel, a low contact surface with a contact surface pressure of 1.0 MPa or less and a heating temperature of 880 to 1080 ° C. It has been confirmed that unbonded portions (defects) are likely to remain at the interface position under pressure and low temperature heating conditions. From this, it can be said that using the transformation driving force of the above-mentioned two-phase steel is extremely advantageous in promoting the progress of diffusion bonding between stainless steel materials at low contact surface pressure and low temperature heating.
上記(2)式のγmaxが100以下である化学組成を有する2相系鋼は、概ね1100℃より低い温度範囲にオーステナイト+フェライト2相組織となる温度領域がある。発明者らの検討によると、γmaxが20〜100未満に調整された2相系鋼を用いる場合、接触面圧0.03〜0.8MPa、加熱温度880〜1030℃の条件範囲で拡散接合を進行させることができ、拡散接合条件の低接触面圧化、低温度化に有利となる。特にγmaxが50〜80である2相系鋼を用いると拡散接合条件の自由度がより一層拡大し、接触面圧0.03〜0.5MPa、加熱温度880〜1000℃の範囲に適正な条件を見出すことができる。この場合、加熱温度の上限は例えば980℃以下の低温域に設定してもよい。 The duplex stainless steel having a chemical composition in which the γmax in the formula (2) is 100 or less has a temperature range in which austenite + ferrite two-phase structure is formed in a temperature range lower than about 1100 ° C. According to the study by the inventors, when using a dual-phase steel whose γmax is adjusted to less than 20 to 100, diffusion bonding is performed in a condition range of a contact surface pressure of 0.03 to 0.8 MPa and a heating temperature of 880 to 1030 ° C. It is possible to proceed, which is advantageous for lowering the contact surface pressure and lowering the temperature of the diffusion bonding conditions. In particular, when a duplex stainless steel having a γmax of 50 to 80 is used, the degree of freedom of diffusion bonding conditions is further expanded, and conditions suitable for a contact surface pressure of 0.03 to 0.5 MPa and a heating temperature of 880 to 1000 ° C. Can be found. In this case, the upper limit of the heating temperature may be set in a low temperature range of 980 ° C. or lower, for example.
拡散接合の加熱は従来一般的なインサート材を用いたステンレス鋼材同士の拡散接合の場合と同様に、真空引きにより圧力を概ね10-3Pa以下とした雰囲気中で被接合部材を加熱保持することによって行うことができる。ただし、インサート材は使用せず、接合するステンレス鋼材同士を直接接触させる。接触面圧は前述のように1.0MPa以下の範囲で設定する。加熱方法はヒーターにより炉内の部材全体を均一に加熱する方法の他、通電による抵抗加熱によって接触部近傍を所定の温度に加熱する方法を採用することもできる。加熱保持時間は30〜120minの範囲で設定すればよい。 As in the case of diffusion bonding between stainless steel materials using a conventional general insert material, the heat of diffusion bonding is to heat and hold the member to be bonded in an atmosphere in which the pressure is approximately 10 −3 Pa or less by evacuation. Can be done by. However, the insert material is not used, and the stainless steel materials to be joined are brought into direct contact with each other. As described above, the contact surface pressure is set within a range of 1.0 MPa or less. As a heating method, in addition to a method of uniformly heating the entire member in the furnace with a heater, a method of heating the vicinity of the contact portion to a predetermined temperature by resistance heating by energization can be adopted. What is necessary is just to set the heating holding time in the range of 30-120 min.
〔実施例1〕
表1に示す化学組成を有する鋼板を用意した。D−1〜D−3はγmaxが100未満の鋼、M−1〜M−2はいわゆるマルテンサイト系ステンレス鋼に分類される鋼、F−1はフェライト単相鋼、A−1はオーステナイト単相鋼である。鋼板の板厚、表面仕上、表面粗さRaも表1に記載してある。用意した各鋼板の金属組織は、D−1〜D〜3はフェライト相+炭化物、M−1、M−2はフェライト相+マルテンサイト相、M−3はマルテンサイト単相、F−1はフェライト単相、A−1はオーステナイト単相である。
[Example 1]
Steel plates having the chemical composition shown in Table 1 were prepared. D-1 to D-3 are steels having a γmax of less than 100, M-1 to M-2 are steels classified as so-called martensitic stainless steels, F-1 is a ferritic single phase steel, and A-1 is an austenitic single steel. It is a phase steel. Table 1 also lists the plate thickness, surface finish, and surface roughness Ra of the steel plate. The metallographic structure of each prepared steel sheet is as follows: D-1 to D-3 are ferrite phase + carbide, M-1, M-2 is ferrite phase + martensite phase, M-3 is martensite single phase, F-1 is A ferrite single phase, A-1, is an austenite single phase.
各鋼板から20mm×20mmの平板試験片を切り出し、以下の方法にて2枚の試験片を重ね合わせて拡散接合を試みた。
拡散接合を試みる2枚の試験片を互いの表面同士が接触するように積層した状態とし、てこの原理を利用した治具を用いてこれら2枚の試験片の接触表面に付与される面圧(接触面圧)を所定の大きさに調整した。この治具はカーボンコンポジット製の支柱にカーボンコンポジット製のアームが水平方向の固定軸周りに回転可能な状態で取付けられており、そのアームに吊り下げた錘の重力によって積層した試験片に荷重を付与するものである。すなわちこの治具は、アームの前記固定軸位置を支点、積層した試験片に荷重を付与する位置を作用点、錘を吊す位置を力点とし、支点と力点の間に作用点が位置するてこを構成しており、錘にかかる重力が増幅されて試験片の接触面に作用するようになっている。以下、積層した2枚の試験片を「鋼材1」および「鋼材2」と呼び、鋼材1と鋼材2が積層した状態のものを「積層体」と呼ぶ。
A plate test piece of 20 mm × 20 mm was cut out from each steel plate, and two test pieces were overlapped by the following method to attempt diffusion bonding.
The surface pressure applied to the contact surface of these two test pieces using a jig utilizing the principle of the two test pieces that are to be diffusion-bonded so that the surfaces are in contact with each other. (Contact surface pressure) was adjusted to a predetermined magnitude. This jig is attached to a carbon composite column with a carbon composite arm rotatable around a fixed axis in the horizontal direction, and a load is applied to the specimens stacked by the gravity of the weight suspended on the arm. It is given. In other words, this jig uses the fixed axis position of the arm as a fulcrum, the position where the load is applied to the stacked test pieces as the action point, and the position where the weight is suspended as the force point. The gravity applied to the weight is amplified and acts on the contact surface of the test piece. Hereinafter, the two test pieces that are laminated are referred to as “steel material 1” and “steel material 2”, and a state in which the steel material 1 and the steel material 2 are laminated is referred to as a “laminate”.
以下の加熱処理により鋼材1と鋼材2の拡散接合を試みた。上記治具により積層体に所定の荷重を付与した状態とし、治具と積層体を真空炉に装入し、真空引きを行って圧力10-3〜10-4Paの真空度としたのち、880℃以上の範囲に設定した所定の加熱温度まで約1hで昇温し、その温度で2h保持した後、冷却室に移して冷却した。冷却は保持温度−100℃まで上記真空度を維持し、その後Arガスを導入して90kPaのArガス雰囲気中で約100℃以下まで冷却した。 The diffusion bonding of the steel materials 1 and 2 was tried by the following heat treatment. After a predetermined load is applied to the laminate by the jig, the jig and the laminate are placed in a vacuum furnace and evacuated to a vacuum of 10 −3 to 10 −4 Pa. The temperature was raised to a predetermined heating temperature set in a range of 880 ° C. or higher in about 1 h, held at that temperature for 2 h, then transferred to a cooling chamber and cooled. The above-mentioned degree of vacuum was maintained at a holding temperature of −100 ° C., and then Ar gas was introduced to cool to about 100 ° C. or less in a 90 kPa Ar gas atmosphere.
上記加熱処理を終えた積層体について、超音波厚さ計(オリンパス社製;Model35DL)を用いて、図2に示すように20mm×20mmの積層体表面上に3mmピッチで設けた49箇所の測定点において厚さ測定を行った。プローブ径は1.5mmとした。ある測定点での板厚測定値が鋼材1と鋼材2の合計板厚を示す場合には、その測定点に対応する両鋼材の界面位置では原子の拡散によって両鋼材が一体化しているとみなすことができる。一方、板厚測定値が鋼材1と鋼材2の合計板厚に満たない場合には、その測定点に対応する両鋼材の界面位置に未接合部(欠陥)が存在する。発明者らは加熱処理後の積層体の断面組織と、この測定手法により得られた測定結果との対応関係を詳細に調べたところ、測定結果が鋼材1と鋼材2の合計板厚となった測定点の数を測定総数49で除した値(これを「接合率」と呼ぶ)によって、接触面積に占める接合部分の面積率が精度良く評価できることを確認した。そこで、以下の評価基準で拡散接合性を評価した。
◎:接合率100%(拡散接合性;優秀)
○:接合率90〜99%(拡散接合性;良好)
△:接合率60〜89%(拡散接合性;やや不良)
×:接合率0〜59%(拡散接合性;不良)
種々検討の結果、○評価において拡散接合部の強度は十分に確保され、かつ両部材間のシール性(連通する欠陥を介する気体の漏れが生じない性質)も良好であることから、○評価以上を合格と判定した。
評価結果を表2に示す。
About the laminated body which completed the said heat processing, 49 measurement provided in 3 mm pitch on the surface of a 20 mm x 20 mm laminated body as shown in FIG. 2 using the ultrasonic thickness meter (Olympus company make; Model35DL). Thickness measurements were made at points. The probe diameter was 1.5 mm. When the measured thickness at a certain measurement point indicates the total thickness of steel materials 1 and 2, it is considered that both steel materials are integrated by diffusion of atoms at the interface position of both steel materials corresponding to the measurement point. be able to. On the other hand, when the plate thickness measurement value is less than the total plate thickness of the steel materials 1 and 2, there is an unjoined portion (defect) at the interface position between the two steel materials corresponding to the measurement point. The inventors examined in detail the correspondence between the cross-sectional structure of the laminate after the heat treatment and the measurement result obtained by this measurement method, and the measurement result was the total thickness of the steel materials 1 and 2. It was confirmed that the area ratio of the joint portion occupying the contact area can be accurately evaluated by a value obtained by dividing the number of measurement points by the total number of measurements 49 (referred to as “joining ratio”). Therefore, diffusion bonding properties were evaluated according to the following evaluation criteria.
A: Joining rate 100% (diffusion bonding; excellent)
○: Joining rate 90 to 99% (diffusion bonding; good)
Δ: Joining rate 60-89% (diffusion bonding; somewhat poor)
×: Joining rate 0 to 59% (diffusion bonding property; poor)
As a result of various investigations, the strength of the diffusion bonding part is sufficiently ensured in the evaluation, and the sealing property between the two members (the property that gas does not leak through the communicating defect) is also good. Was determined to be acceptable.
The evaluation results are shown in Table 2.
また、上記加熱処理を終えた積層体について、厚さ方向に平行な断面内の界面位置を含む領域について光学顕微鏡で組織観察を行った。その結果、顕微鏡観察により観測される拡散接合の進行の程度(すなわち界面位置における未接合部分の消失の程度)と、上記の「接合率」の値は良好な対応関係にあることが確認された。図3〜図13に、いくつかの例について断面組織写真を例示する。ここに示した組織写真は、◎評価のものを除き、界面位置に未接合部分ができるだけ多く残存している箇所を意図的に選んで撮影したものである。これらの断面組織写真がどの試験No.に該当するかは表2中に記載してある。 Moreover, about the laminated body which finished the said heat processing, structure | tissue observation was performed with the optical microscope about the area | region containing the interface position in the cross section parallel to a thickness direction. As a result, it was confirmed that the degree of progress of diffusion bonding observed by microscopic observation (that is, the degree of disappearance of the unbonded portion at the interface position) and the value of the above-mentioned “bonding rate” had a good correspondence. . 3 to 13 illustrate cross-sectional structure photographs for some examples. The structural photographs shown here were taken by intentionally selecting locations where as many unbonded portions as possible remained at the interface positions, except for those evaluated as ◎. Table 2 shows which test No. these cross-sectional structure photographs correspond to.
表2からわかるように、本発明に従う2相系鋼を双方または一方の鋼材に用いた本発明例では、接触面圧1.0MPa以下かつ加熱温度1080℃以下の条件で拡散接合を進行させることができ、健全な拡散接合部が得られた。加熱温度を1100℃以上といった高温に設定する必要がないことから結晶粒の粗大化も抑制され、拡散接合製品の機械的性質の改善にもつながる。γmaxが100以下である2相系鋼(D−1〜D−3)を採用した場合には適正な拡散接合条件範囲が接触面圧、保持温度とも低い方向に拡がる。中でもγmaxが50〜80に調整された2相系鋼(D−1、D−2)を使用すると適正条件範囲が一層拡がり、製造コストの面でも有利となる。 As can be seen from Table 2, in the example of the present invention in which the two-phase steel according to the present invention is used for both or one of the steel materials, diffusion bonding is allowed to proceed under conditions of a contact surface pressure of 1.0 MPa or less and a heating temperature of 1080 ° C. or less. And a healthy diffusion joint was obtained. Since it is not necessary to set the heating temperature to a high temperature such as 1100 ° C. or higher, the coarsening of crystal grains is suppressed, and the mechanical properties of the diffusion bonded product are improved. When two-phase steels (D-1 to D-3) having a γmax of 100 or less are adopted, an appropriate diffusion bonding condition range extends in a direction where both the contact surface pressure and the holding temperature are low. In particular, the use of a two-phase steel (D-1, D-2) whose γmax is adjusted to 50 to 80 further expands the appropriate condition range, which is advantageous in terms of manufacturing cost.
これに対し、比較例No.9、17、20、22、25は加熱温度が高いために結晶粒が粗大化した(図4、図6、図8参照)。No.21、24は2相系鋼としてγmaxが100以上のマルテンサイト系ステンレス鋼を採用したものであり、2相温度域でのオーステナイト相への変態の駆動力はγmaxが100未満の鋼種より小さいものと考えられ、保持温度を1000℃まで下げると拡散接合は進行しなかった。No.27、28はオーステナイト+フェライト2相組織となる温度域が存在しないと考えられるマルテンサイト系ステンレス鋼同士を適用したことにより、適正な拡散接合条件を見出すことができなかった。No.32およびNo.33は880〜1080℃においてそれぞれフェライト単相組織およびオーステナイト単相組織となる鋼同士の拡散接合を試みたものであるが、本発明例のように低接触面圧、低加熱温度での拡散接合は実現できななかった。 On the other hand, Comparative Examples No. 9, 17, 20, 22, and 25 were coarse in crystal grains because of the high heating temperature (see FIGS. 4, 6, and 8). Nos. 21 and 24 employ martensitic stainless steel with a γmax of 100 or more as a two-phase steel, and the driving force for transformation to an austenite phase in a two-phase temperature range is less than that of a steel type with a γmax of less than 100. It was thought that the temperature was small, and diffusion bonding did not proceed when the holding temperature was lowered to 1000 ° C. No. 27 and No. 28 were unable to find appropriate diffusion bonding conditions by applying martensitic stainless steels that were considered to have no temperature range that would be an austenite + ferrite two-phase structure. No. 32 and No. 33 were obtained by attempting diffusion bonding between steels having a ferrite single-phase structure and an austenite single-phase structure at 880 to 1080 ° C., respectively. Diffusion bonding at the heating temperature could not be realized.
〔実施例2〕
表3に示す化学組成の鋼を溶製し、熱間圧延にて板厚3〜4mmの熱延板とし、焼鈍、酸洗、冷間圧延、仕上焼鈍、酸洗を順次行う工程により板厚1.0mmの供試鋼板とした。D−11〜D−15は本発明対象の2相系鋼、F−11はフェライト単相鋼、A−11はオーステナイト単相鋼である。鋼板の板厚、表面仕上、表面粗さRaも表3に記載してある。各鋼板の金属組織は、D−11〜D〜15はフェライト相+炭化物、F−11はフェライト単相、A−11はオーステナイト単相である。
[Example 2]
The steel having the chemical composition shown in Table 3 is melted and hot rolled to obtain a hot rolled sheet having a thickness of 3 to 4 mm, and the thickness of the sheet is determined by sequentially performing annealing, pickling, cold rolling, finish annealing, and pickling. A 1.0 mm test steel plate was used. D-11 to D-15 are two-phase steels according to the present invention, F-11 is a ferrite single-phase steel, and A-11 is an austenite single-phase steel. Table 3 also lists the plate thickness, surface finish, and surface roughness Ra of the steel plate. As for the metal structure of each steel plate, D-11 to D-15 are a ferrite phase + carbide, F-11 is a ferrite single phase, and A-11 is an austenite single phase.
鋼D−11〜D−15の各供試鋼板から切削加工により100mm角の鋼材(以下「平板材」という)を作製した。また、全ての鋼種の供試鋼板から切削加工により100mm角の板の中央をくりぬいて幅5mmの枠で構成される鋼材(以下「枠材」という)を作製した。その際、バリは除去していない。平板材と枠材には対角線上端部付近2箇所に6mmΦの穴を形成した。図14(a)の[1][5]に平板材の寸法・形状を、同[2]〜[4]に枠材の寸法・形状をそれぞれ模式的に示してある。図14に示すように3枚の枠材を重ね、その両側を平板材で蓋をするように、図14(a)に示す[1]〜[5]の積層順でこれらの鋼材を重ね合わせて積層体とし、各鋼材を連通する上記穴にAlloy600製の5mmΦのピンを差し込み、水平に置かれたこの積層体の上面に質量5kgの錘を乗せ、真空拡散接合に供した。このとき鋼材間の接触面には約0.05MPaの面圧が付与されている。 A 100 mm square steel material (hereinafter referred to as “flat plate material”) was produced from each test steel plate of steels D-11 to D-15 by cutting. Further, a steel material (hereinafter referred to as “frame material”) constituted by a frame having a width of 5 mm was produced by cutting the center of a 100 mm square plate by cutting from test steel plates of all steel types. At that time, burrs are not removed. In the flat plate member and the frame member, 6 mmφ holes were formed at two locations near the upper end of the diagonal line. In FIG. 14A, [1] and [5] schematically show the dimensions and shape of the flat plate, and [2] to [4] schematically show the dimensions and shape of the frame material. As shown in FIG. 14, these three steel members are stacked in the stacking order of [1] to [5] shown in FIG. Then, a 5 mmφ pin made of Alloy 600 was inserted into the hole communicating with each steel material, and a weight of 5 kg was placed on the upper surface of the horizontally placed laminate, and subjected to vacuum diffusion bonding. At this time, a contact pressure of about 0.05 MPa is applied to the contact surface between the steel materials.
鋼材[1]〜[5]の組み合わせは以下の2パターンとした。
パターンA;[1]〜[5]全てが本発明対象の2相系同一鋼種。
パターンB;[1][3][5]が本発明対象の2相系同一鋼種、その相手材に相当する[2][4]がオーステナイト系同一鋼種またはフェライト系同一鋼種。
The combinations of steel materials [1] to [5] were the following two patterns.
Pattern A; [1] to [5] are all the same two-phase steel grades of the present invention.
Pattern B; [1] [3] [5] are the same two-phase steel types of the subject of the present invention, and [2] [4] corresponding to the counterpart material are the same austenitic or ferritic same steel types.
拡散接合は、上記積層体を真空炉に装入して10-3Pa以下の圧力となるまで真空引きした後、900〜1100℃の範囲に設定した加熱温度まで昇温してその温度に60min保持し、その後、炉中で放冷する手法にて行った。 In diffusion bonding, the laminate is charged in a vacuum furnace and evacuated to a pressure of 10 −3 Pa or less, and then heated to a heating temperature set in the range of 900 to 1100 ° C. and then heated to that temperature for 60 min. It hold | maintained and it carried out by the method of cooling in a furnace after that.
〔拡散接合部の信頼性評価〕
上記のステンレス鋼拡散接合製品(図14(b)の形状のもの)について、大気中800℃で24hの加熱試験に供した。その後、図14(b)のa−a’の位置で積層方向に切断し、内部の空洞表面(内表面)の酸化の有無を目視で調査した。拡散接合部に外部と繋がる空隙が存在していた場合や、当該加熱処理時に拡散接合部に破損が生じた場合には、内部に酸素が侵入するため加熱試験後の内表面は酸化され、当初の金属光沢が失われる。一方、拡散接合部の健全性が維持され内部が高真空の状態に保たれている場合は加熱試験後の内表面はステンレス鋼特有の金属光沢を呈する。そこで、内表面が当初の金属光沢を維持しているステンレス鋼拡散接合製品を○(拡散接合部の信頼性;良好)、それ以外を×(拡散接合部の信頼性;不良)と評価した。結果を表4に示す。
[Diffusion bonding reliability evaluation]
The above stainless steel diffusion bonding product (in the shape of FIG. 14B) was subjected to a heating test at 800 ° C. for 24 hours in the atmosphere. Then, it cut | disconnected in the lamination direction in the position of aa 'of FIG.14 (b), and the presence or absence of oxidation of the internal cavity surface (inner surface) was investigated visually. If there is a gap connected to the outside in the diffusion bonding part or if the diffusion bonding part is damaged during the heat treatment, the inner surface after the heating test is oxidized because oxygen penetrates into the inside. The metallic luster is lost. On the other hand, when the soundness of the diffusion bonded portion is maintained and the inside is kept in a high vacuum state, the inner surface after the heating test exhibits a metallic luster unique to stainless steel. Therefore, a stainless steel diffusion bonding product whose inner surface maintained the original metallic luster was evaluated as “◯” (diffusion bonding portion reliability: good), and the others were evaluated as “x” (diffusion bonding reliability: poor). The results are shown in Table 4.
表4からわかるように、拡散接合部において双方の鋼材の少なくとも一方に本発明対象の2相系鋼を適用することによって、880〜1000℃という低温下で信頼性に優れる拡散接合製品が得られた。 As can be seen from Table 4, a diffusion bonded product having excellent reliability at a low temperature of 880 to 1000 ° C. can be obtained by applying the two-phase steel of the present invention to at least one of both steel materials in the diffusion bonded portion. It was.
これに対し比較例であるNo.49、50は2相系鋼を使用しなかったものであり、1100℃でも信頼性に優れる拡散接合製品が得られなかった。 On the other hand, No. 49 and 50 which are comparative examples did not use a duplex steel, and a diffusion bonded product excellent in reliability could not be obtained even at 1100 ° C.
Claims (6)
(A)質量%で、C:0.0001〜0.15%、Si:0.001〜1.0%、Mn:0.001〜1.0%、Ni:0.05〜2.5%、Cr:13.0〜18.5%、Cu:0〜0.2%、Mo:0〜0.5%、Al:0〜0.05%、Ti:0〜0.2%、Nb:0〜0.2%、V:0〜0.2%、B:0〜0.01%、N:0.005〜0.1%、残部Feおよび不可避的不純物からなり、下記(1)式で示されるX値が650〜950である。
X値=35(Cr+1.72Mo+2.09Si+4.86Nb+8.29V+1.77Ti+21.4Al+40.0B−7.14C−8.0N−3.28Ni−1.89Mn−0.51Cu)+310 …(1) When stainless steel materials are brought into direct contact and integrated by diffusion bonding, at least one of both stainless steel materials to be brought into contact has a chemical composition of the following (A), and the austenite + ferrite two-phase temperature range is in the range of 880 ° C. or more. Grain boundary movement when the ferrite phase of the two-phase steel transforms to the austenite phase under the conditions of a contact surface pressure of 0.03 MPa to 1.0 MPa and a heating temperature of 880 to 1080 ° C. A method of manufacturing a stainless steel diffusion bonding product, in which diffusion bonding is advanced while accompanying the above.
(A) By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.0%, Mn: 0.001 to 1.0%, Ni: 0.05 to 2.5% Cr: 13.0 to 18.5%, Cu: 0 to 0.2%, Mo: 0 to 0.5%, Al: 0 to 0.05%, Ti: 0 to 0.2%, Nb: It consists of 0 to 0.2%, V: 0 to 0.2%, B: 0 to 0.01%, N: 0.005 to 0.1%, the balance Fe and inevitable impurities, and the following formula (1) The X value indicated by is 650-950.
X value = 35 (Cr + 1.72Mo + 2.09Si + 4.86Nb + 8.29V + 1.77Ti + 21.4Al + 40.0B-7.14C-8.0N-3.28Ni-1.89Mn-0.51Cu) +310 (1)
(A)質量%で、C:0.0001〜0.15%、Si:0.001〜1.0%、Mn:0.001〜1.0%、Ni:0.05〜2.5%、Cr:13.0〜18.5%、Cu:0〜0.2%、Mo:0〜0.5%、Al:0〜0.05%、Ti:0〜0.2%、Nb:0〜0.2%、V:0〜0.2%、B:0〜0.01%、N:0.005〜0.1%、残部Feおよび不可避的不純物からなり、下記(1)式で示されるX値が650〜950である。
X値=35(Cr+1.72Mo+2.09Si+4.86Nb+8.29V+1.77Ti+21.4Al+40.0B−7.14C−8.0N−3.28Ni−1.89Mn−0.51Cu)+310 …(1)
(B)質量%で、C:0.0001〜0.15%、Si:0.001〜4.0%、Mn:0.001〜2.5%、P:0.001〜0.045%、S:0.0005〜0.03%、Ni:6.0〜28.0%、Cr:15.0〜26.0%、Mo:0〜7.0%、Cu:0〜3.5%、Nb:0〜1.0%、Ti:0〜1.0%、Al:0〜0.1%、N:0〜0.3%、B:0〜0.01%、V:0〜0.5%、W:0〜0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0〜0.1%、残部Feおよび不可避的不純物からなる。 When stainless steel materials are brought into direct contact and integrated by diffusion bonding, one of the stainless steel materials to be brought into contact has the chemical composition of the following (A) and has an austenite + ferrite two-phase temperature range of 880 ° C. or more. Two-phase steel and the other stainless steel having the chemical composition (B) below are applied to each other, and the above-mentioned two-phase steel under the conditions of a contact surface pressure of 0.03 MPa to 1.0 MPa and a heating temperature of 880 to 1080 ° C. A method for producing a stainless steel diffusion bonding product, in which diffusion bonding proceeds while accompanying grain boundary movement when the ferrite phase of the steel transforms into an austenite phase.
(A) By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.0%, Mn: 0.001 to 1.0%, Ni: 0.05 to 2.5% Cr: 13.0 to 18.5%, Cu: 0 to 0.2%, Mo: 0 to 0.5%, Al: 0 to 0.05%, Ti: 0 to 0.2%, Nb: It consists of 0 to 0.2%, V: 0 to 0.2%, B: 0 to 0.01%, N: 0.005 to 0.1%, the balance Fe and inevitable impurities, and the following formula (1) The X value indicated by is 650-950.
X value = 35 (Cr + 1.72Mo + 2.09Si + 4.86Nb + 8.29V + 1.77Ti + 21.4Al + 40.0B-7.14C-8.0N-3.28Ni-1.89Mn-0.51Cu) +310 (1)
(B) By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 4.0%, Mn: 0.001 to 2.5%, P: 0.001 to 0.045% , S: 0.0005 to 0.03%, Ni: 6.0 to 28.0%, Cr: 15.0 to 26.0%, Mo: 0 to 7.0%, Cu: 0 to 3.5 %, Nb: 0 to 1.0%, Ti: 0 to 1.0%, Al: 0 to 0.1%, N: 0 to 0.3%, B: 0 to 0.01%, V: 0 -0.5%, W: 0-0.3%, Ca, Mg, Y, REM (rare earth elements) total: 0-0.1%, balance Fe and inevitable impurities.
(A)質量%で、C:0.0001〜0.15%、Si:0.001〜1.0%、Mn:0.001〜1.0%、Ni:0.05〜2.5%、Cr:13.0〜18.5%、Cu:0〜0.2%、Mo:0〜0.5%、Al:0〜0.05%、Ti:0〜0.2%、Nb:0〜0.2%、V:0〜0.2%、B:0〜0.01%、N:0.005〜0.1%、残部Feおよび不可避的不純物からなり、下記(1)式で示されるX値が650〜950である。
X値=35(Cr+1.72Mo+2.09Si+4.86Nb+8.29V+1.77Ti+21.4Al+40.0B−7.14C−8.0N−3.28Ni−1.89Mn−0.51Cu)+310 …(1)
(C)質量%で、C:0.0001〜0.15%、Si:0.001〜1.2%、Mn:0.001〜1.2%、P:0.001〜0.04%、S:0.0005〜0.03%、Ni:0〜0.6%、Cr:11.5〜32.0%、Mo:0〜2.5%、Cu:0〜1.0%、Nb:0〜1.0%、Ti:0〜1.0%、Al:0〜0.2%、N:0〜0.025%、B:0〜0.01%、V:0〜0.5%、W:0〜0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0〜0.1%、残部Feおよび不可避的不純物からなる。 When stainless steel materials are brought into direct contact and integrated by diffusion bonding, one of the stainless steel materials to be brought into contact has the chemical composition of the following (A) and has an austenite + ferrite two-phase temperature range of 880 ° C. or more. Two-phase steel, and stainless steel having the chemical composition (C) below is applied to the other, and the above-mentioned two-phase steel under the conditions of contact surface pressure of 0.03 MPa to 1.0 MPa and heating temperature of 880 to 1080 ° C. A method for producing a stainless steel diffusion bonding product, in which diffusion bonding proceeds while accompanying grain boundary movement when the ferrite phase of the steel transforms into an austenite phase.
(A) By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.0%, Mn: 0.001 to 1.0%, Ni: 0.05 to 2.5% Cr: 13.0 to 18.5%, Cu: 0 to 0.2%, Mo: 0 to 0.5%, Al: 0 to 0.05%, Ti: 0 to 0.2%, Nb: It consists of 0 to 0.2%, V: 0 to 0.2%, B: 0 to 0.01%, N: 0.005 to 0.1%, the balance Fe and inevitable impurities, and the following formula (1) The X value indicated by is 650-950.
X value = 35 (Cr + 1.72Mo + 2.09Si + 4.86Nb + 8.29V + 1.77Ti + 21.4Al + 40.0B-7.14C-8.0N-3.28Ni-1.89Mn-0.51Cu) +310 (1)
(C) By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.2%, Mn: 0.001 to 1.2%, P: 0.001 to 0.04% S: 0.0005 to 0.03%, Ni: 0 to 0.6%, Cr: 11.5 to 32.0%, Mo: 0 to 2.5%, Cu: 0 to 1.0%, Nb: 0 to 1.0%, Ti: 0 to 1.0%, Al: 0 to 0.2%, N: 0 to 0.025%, B: 0 to 0.01%, V: 0 to 0 0.5%, W: 0 to 0.3%, Ca, Mg, Y, REM (rare earth elements) total: 0 to 0.1%, balance Fe and inevitable impurities.
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49Ti−50Nb−52Al+470N+189 …(2) The stainless steel diffusion bonding according to any one of claims 2 to 4, wherein a steel having a γmax expressed by the following formula (2) of 20 to less than 100 is applied as the two-phase steel having the chemical composition (A). Product manufacturing method.
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-50Nb-52Al + 470N + 189 (2)
γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo+9Cu−49Ti−50Nb−52Al+470N+189 …(2) As the two-phase steel having the chemical composition (A), a steel having a γmax of 20 to less than 100 represented by the following formula (2) is applied, the contact surface pressure is 0.03 to 0.8 MPa, and the heating temperature is 880. The stainless steel diffusion bonding product according to any one of claims 2 to 4, wherein diffusion bonding proceeds while accompanying grain boundary movement when the ferrite phase of the two-phase steel transforms to an austenite phase in a condition range of -1030 ° C. Manufacturing method.
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-50Nb-52Al + 470N + 189 (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011251157A JP5846868B2 (en) | 2011-11-16 | 2011-11-16 | Manufacturing method of stainless steel diffusion bonding products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011251157A JP5846868B2 (en) | 2011-11-16 | 2011-11-16 | Manufacturing method of stainless steel diffusion bonding products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013103271A JP2013103271A (en) | 2013-05-30 |
JP5846868B2 true JP5846868B2 (en) | 2016-01-20 |
Family
ID=48623240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011251157A Active JP5846868B2 (en) | 2011-11-16 | 2011-11-16 | Manufacturing method of stainless steel diffusion bonding products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5846868B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5850763B2 (en) * | 2012-02-27 | 2016-02-03 | 日新製鋼株式会社 | Stainless steel diffusion bonding products |
SG11201509040WA (en) * | 2013-05-15 | 2015-12-30 | Nisshin Steel Co Ltd | Method for producing a stainless steel diffusion-bonded product |
CN103331513B (en) * | 2013-07-03 | 2016-01-20 | 北京科技大学 | A kind of manufacture method of superplasticity two phase stainless steel sandwich |
WO2015046091A1 (en) * | 2013-09-27 | 2015-04-02 | 独立行政法人産業技術総合研究所 | Methods for joining stainless steel members, and stainless steels |
JP6425897B2 (en) * | 2014-02-18 | 2018-11-21 | 日新製鋼株式会社 | Plate type heat exchanger and method of manufacturing the same |
JP6377915B2 (en) * | 2014-02-18 | 2018-08-22 | 日新製鋼株式会社 | Plate heat exchanger and manufacturing method thereof |
JP6192564B2 (en) | 2014-02-18 | 2017-09-06 | 日新製鋼株式会社 | Plate heat exchanger and manufacturing method thereof |
JP6377914B2 (en) * | 2014-02-18 | 2018-08-22 | 日新製鋼株式会社 | Plate heat exchanger and manufacturing method thereof |
AU2014404621B2 (en) * | 2014-08-25 | 2018-04-05 | Nisshin Steel Co., Ltd. | Lithium-ion secondary-battery case and manufacturing method therefor |
JP6129140B2 (en) * | 2014-11-05 | 2017-05-17 | 日新製鋼株式会社 | Stainless steel for diffusion bonding |
CN107083524A (en) * | 2017-03-23 | 2017-08-22 | 合肥协耀玻璃制品有限公司 | A kind of two phase stainless steel and preparation method thereof |
JP7274837B2 (en) * | 2018-09-05 | 2023-05-17 | 日鉄ステンレス株式会社 | Diffusion bonded product and its manufacturing method |
KR102550028B1 (en) | 2018-10-04 | 2023-07-03 | 닛폰세이테츠 가부시키가이샤 | Austenitic stainless steel sheet and manufacturing method thereof |
JP7328504B2 (en) * | 2019-04-17 | 2023-08-17 | 日本製鉄株式会社 | Steel part and its manufacturing method |
JP6716071B1 (en) * | 2019-08-16 | 2020-07-01 | ラブロ コロマー ジャウム | Ornaments |
CN113369800A (en) * | 2020-03-09 | 2021-09-10 | 天津大学 | Method for obtaining solid phase diffusion connection of low-activation ferrite/martensite steel and TP347H austenite steel reliable joint |
JP7187604B2 (en) * | 2021-04-14 | 2022-12-12 | 日鉄ステンレス株式会社 | High-Ni alloy with excellent weld hot cracking resistance |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6024751B2 (en) * | 1979-05-14 | 1985-06-14 | 三菱重工業株式会社 | Improvements in diffusion welding |
JPS61210158A (en) * | 1985-03-15 | 1986-09-18 | Sumitomo Metal Ind Ltd | Superplastic two-phase stainless steel and hot working method thereof |
JPS63119993A (en) * | 1986-11-07 | 1988-05-24 | Sumitomo Metal Ind Ltd | Diffusion bonding method |
JPS63215388A (en) * | 1987-03-02 | 1988-09-07 | Sumitomo Metal Ind Ltd | How to join duplex stainless steel parts |
JP2568313B2 (en) * | 1990-11-30 | 1997-01-08 | 川崎製鉄 株式会社 | Method for seam welding stainless steel strip in process line |
JP2000303150A (en) * | 1999-04-19 | 2000-10-31 | Nippon Steel Corp | Stainless steel for direct diffusion joining |
JP2002103055A (en) * | 2000-09-29 | 2002-04-09 | Japan Science & Technology Corp | Diffusion joining method utilizing dynamic recrystallization |
JP3815227B2 (en) * | 2001-01-31 | 2006-08-30 | 住友金属工業株式会社 | Martensitic stainless steel welded joint with excellent strain aging resistance |
JP2002332543A (en) * | 2001-03-07 | 2002-11-22 | Nisshin Steel Co Ltd | High strength stainless steel for metal gasket having excellent fatigue performance and high temperature setting resistance and production method therefor |
JP2003138900A (en) * | 2001-11-07 | 2003-05-14 | Nisshin Steel Co Ltd | Lock bolt made of stainless steel pipe |
JP3961341B2 (en) * | 2002-05-10 | 2007-08-22 | 日新製鋼株式会社 | Manufacturing method of high strength duplex stainless steel sheet for welded structures |
US7165712B2 (en) * | 2003-10-23 | 2007-01-23 | Siemens Power Generation, Inc. | Transient liquid phase bonding to cold-worked surfaces |
KR100910493B1 (en) * | 2007-12-26 | 2009-07-31 | 주식회사 포스코 | Flux cored arc welding metal parts with excellent low temperature CT characteristics |
JP5822439B2 (en) * | 2010-06-22 | 2015-11-24 | 日新製鋼株式会社 | Low Cr stainless steel with excellent heat resistance and age-hardening characteristics and automobile exhaust gas path member made of such steel |
SG11201509040WA (en) * | 2013-05-15 | 2015-12-30 | Nisshin Steel Co Ltd | Method for producing a stainless steel diffusion-bonded product |
-
2011
- 2011-11-16 JP JP2011251157A patent/JP5846868B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013103271A (en) | 2013-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5846868B2 (en) | Manufacturing method of stainless steel diffusion bonding products | |
WO2014184890A1 (en) | Process for producing stainless steel diffusion-joined product | |
JP5850763B2 (en) | Stainless steel diffusion bonding products | |
JP5658709B2 (en) | Clad alloy substrate and manufacturing method thereof | |
KR102384698B1 (en) | Stainless steel material for diffusion bonding | |
JP5868242B2 (en) | Austenitic stainless steel for diffusion bonding and method for manufacturing diffusion bonding products | |
JP2013204149A (en) | Ferritic stainless steel material for diffusion bonding and method for manufacturing diffusion-bonded article | |
CN112958626A (en) | Sheath suitable for rolling TiAl alloy and preparation method thereof | |
Guo et al. | Forming and tensile fracture characteristics of Ti-6Al-4V and T2 Cu vacuum electron beam welded joints | |
JP7385487B2 (en) | Stainless steel materials and diffusion bonded bodies | |
JPS6188986A (en) | Manufacture of titanium clad material | |
KR101202502B1 (en) | Clad alloy substrates and method for making same | |
Saboktakin et al. | The Effect of Copper Interlayer on Metallurgical Properties of Roll Bonding Titanium Clad Steel | |
MUZVIDZIWA | Fatigue Resistance Relevant to Locally Developed Microstructures in Friction Stir Welded Light Metal Joints |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140718 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5846868 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |