[go: up one dir, main page]

JP5830229B2 - Wafer defect inspection system - Google Patents

Wafer defect inspection system Download PDF

Info

Publication number
JP5830229B2
JP5830229B2 JP2010137336A JP2010137336A JP5830229B2 JP 5830229 B2 JP5830229 B2 JP 5830229B2 JP 2010137336 A JP2010137336 A JP 2010137336A JP 2010137336 A JP2010137336 A JP 2010137336A JP 5830229 B2 JP5830229 B2 JP 5830229B2
Authority
JP
Japan
Prior art keywords
infrared
light
wafer
silicon wafer
imaging camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010137336A
Other languages
Japanese (ja)
Other versions
JP2012002648A (en
Inventor
健伍 浦壁
健伍 浦壁
亮 関川
亮 関川
健一 笠原
健一 笠原
與一 小俣
與一 小俣
祐 岡田
祐 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Engineering Inc
Original Assignee
Micro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Engineering Inc filed Critical Micro Engineering Inc
Priority to JP2010137336A priority Critical patent/JP5830229B2/en
Publication of JP2012002648A publication Critical patent/JP2012002648A/en
Application granted granted Critical
Publication of JP5830229B2 publication Critical patent/JP5830229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、半導体シリコンウエハの表面及び内部に存在する、例えば微細なピンホールやクラックなどの欠陥を赤外線によって検査するためのウエハ欠陥検査装置に関する。   The present invention relates to a wafer defect inspection apparatus for inspecting defects such as fine pinholes and cracks existing on and inside a semiconductor silicon wafer with infrared rays.

従来、この種のウエハ欠陥検査装置として、被検体であるシリコン基板に赤外線を照射する赤外光源のハロゲンランプと、前記シリコン基板を透過した赤外線を集光する赤外線レンズと、前記赤外線レンズにより集光された赤外線を受光して電気信号に変換して出力する赤外線カメラと、前記赤外線カメラから出力する電気信号を入力して画像信号に変換し、前記画像信号に基づいて画像を表示するモニタとを備えたものがある(例えば、特許文献1参照)。
このものにおいて、シリコン基板の一部にクラックなどの異常部分が含まれている時には、その異常部分では赤外線の透過状態が他の正常部分とは異なるために、異常部分と正常部分とで赤外線の透過状態に差異が生じ、この差異が赤外線カメラで影として捕らえられ、この赤外線画像において正常な透過部分と影の部分とのコントラスト比により異常部分の位置を特定している。
Conventionally, as this type of wafer defect inspection apparatus, a halogen lamp of an infrared light source that irradiates a silicon substrate as an object with infrared rays, an infrared lens that collects infrared rays that have passed through the silicon substrate, and an infrared lens. An infrared camera that receives the emitted infrared light, converts it into an electrical signal, and outputs it; a monitor that inputs the electrical signal output from the infrared camera, converts it into an image signal, and displays an image based on the image signal; (For example, refer to Patent Document 1).
In this case, when an abnormal part such as a crack is included in a part of the silicon substrate, since the infrared transmission state in the abnormal part is different from other normal parts, the infrared part is abnormally transmitted in the abnormal part. A difference occurs in the transmission state, and this difference is captured as a shadow by the infrared camera. In this infrared image, the position of the abnormal part is specified by the contrast ratio between the normal transmission part and the shadow part.

特開2006−351669号公報JP 2006-351669 A

しかし乍ら、このような従来のウエハ欠陥検査装置では、ハロゲンランプから幅広い波長の赤外線をシリコンウエハに照射するため、特にシリコンウエハがケミカルエッチング後のウエハのように、該ウエハの表面全体に無数の微細な凹凸が存在する場合には、その表面粗さ部分(地肌の粗い部分)が、例えば微細なピンホールやクラックを含むキズ又は明るさむらなどの欠陥部分と混在して赤外線画像に表示され、このような地肌の粗い部分と欠陥部分とを画像処理で識別することが困難であった。
このことが欠陥検出の自動化において最大のネックとなっており、自動検査システムでの歩留まり低下と品質管理の低下が著しく問題となっている。
However, in such a conventional wafer defect inspection apparatus, since a silicon wafer is irradiated with infrared rays of a wide wavelength from a halogen lamp, the silicon wafer is innumerable on the entire surface of the wafer, particularly a wafer after chemical etching. If there are fine irregularities on the surface, the surface roughness part (rough part of the background) is displayed on the infrared image mixed with defective parts such as scratches or uneven brightness including fine pinholes and cracks, for example. Therefore, it is difficult to identify such rough portions and defective portions by image processing.
This is the biggest bottleneck in the automation of defect detection, and the yield and quality control in the automatic inspection system are serious problems.

本発明は、このような問題に対処することを課題とするものであり、検査対象のシリコンウエハに表面粗さ部分があっても欠陥部分を確実に識別すること、シリコンウエハの表面粗さ部分となる成分を確実に消去すること、安定した単波長の近赤外散乱光を簡単な構造で容易に得ること、検査対象のシリコンウエハに単波長の近赤外散乱光線を均一照射すること、などを目的とするものである。   An object of the present invention is to cope with such a problem. Even if a silicon wafer to be inspected has a surface roughness portion, the defective portion can be reliably identified, and the surface roughness portion of the silicon wafer can be identified. Surely erase components that become stable, easily obtain stable single-wavelength near-infrared scattered light with a simple structure, uniformly irradiate a silicon wafer to be inspected with single-wavelength near-infrared scattered light, It is for the purpose.

このような目的を達成するために本発明に係るウエハ欠陥検査装置は、シリコンウエハに単波長の近赤外散乱光線を照射する近赤外光源と、前記シリコンウエハを透過した透過光線を集光するカメラレンズと、前記カメラレンズにより集光された前記透過光線を受光して撮像する撮像用カメラと、前記撮像用カメラの撮像画像上で画像処理を行う画像処理部と、を備え、前記近赤外光源は、互いに接近するように配置させて940〜960nmいずれかの単波長の近赤外線を出射する複数の発光ダイオードと、前記発光ダイオードの出射方向に配置される拡散板を有し、前記発光ダイオードから出射される前記近赤外散乱光線が前記拡散板を通過することで、空間的に均一に分布されて前記シリコンウエハの面に向け均一照射され、前記画像処理部は、前記撮像用カメラの撮像画像上で前記シリコンウエハの表面粗さ部分となる成分を消去することを特徴とする。 In order to achieve such an object, a wafer defect inspection apparatus according to the present invention condenses a near-infrared light source that irradiates a silicon wafer with a single-wavelength near-infrared scattered light and a transmitted light transmitted through the silicon wafer. A camera lens, an imaging camera that receives and images the transmitted light collected by the camera lens, and an image processing unit that performs image processing on a captured image of the imaging camera. The infrared light source includes a plurality of light emitting diodes arranged so as to be close to each other and emitting near infrared rays having a single wavelength of 940 to 960 nm, and a diffusion plate arranged in an emission direction of the light emitting diodes, The near-infrared scattered light emitted from the light-emitting diode passes through the diffuser plate, and is spatially uniformly distributed and uniformly irradiated toward the surface of the silicon wafer. Processing section is characterized by erasing the ingredients and a surface roughness of the portion of the silicon wafer on the captured image of the imaging camera.

前述した特徴に加えて、前記近赤外光源から940〜960nmいずれかの単波長の前記近赤外散乱光線を前記シリコンウエハに照射することを特徴とする。 In addition to the features discussed above, characterized in that said irradiated from the near infrared light source 940~960nm the near-infrared scattered light of any single wavelength in the silicon wafer.

さらに前述した特徴に加えて、前記撮像用カメラとしてエリアセンサカメラを用いたことを特徴とする。   Further, in addition to the above-described features, an area sensor camera is used as the imaging camera.

前述した特徴を有する本発明は、近赤外光源から単波長の近赤外散乱光線をシリコンウエハに照射し、このシリコンウエハを透過した透過光線がカメラレンズで集光され、この集光された透過光線を撮像用カメラで受光して撮像し、画像処理部が撮像用カメラの撮像画像上でシリコンウエハの表面粗さ部分となる成分を消去することにより、欠陥部分の画像が強調されるので、検査対象のシリコンウエハに表面粗さ部分があっても欠陥部分を確実に識別することができる。
その結果、ハロゲンランプを用いた従来のものに比べ、欠陥検出の自動化が可能となり、自動検査システムで歩留まりを向上させるとともに品質管理の向上を図ることができる。
In the present invention having the above-described features, a silicon wafer is irradiated with a single-wavelength near-infrared scattered light from a near-infrared light source, and the transmitted light transmitted through the silicon wafer is condensed by a camera lens. Since the transmitted light is received by the imaging camera and imaged, and the image processing unit erases the component that becomes the surface roughness portion of the silicon wafer on the captured image of the imaging camera, thereby enhancing the image of the defective portion. Even if the silicon wafer to be inspected has a surface roughness portion, the defective portion can be reliably identified.
As a result, defect detection can be automated as compared with the conventional one using a halogen lamp, and the yield can be improved and quality control can be improved by the automatic inspection system.

さらに、前記近赤外光源から940〜960nmいずれかの単波長の近赤外散乱光線を前記シリコンウエハに照射する場合には、940〜960nmいずれかの単波長の近赤外散乱光線が、シリコンウエハを透過することにより、撮像用カメラの撮像画像上に欠陥部分の影とは異なる形の地肌模様が穏やかになるので、シリコンウエハの表面粗さ部分となる成分を確実に消去することができる。
その結果、欠陥部分の識別精度を向上させることができる。
Further, when the silicon wafer is irradiated with a near-infrared scattered light having a single wavelength of 940 to 960 nm from the near-infrared light source, the near-infrared scattered light having a single wavelength of 940 to 960 nm is converted into silicon. By passing through the wafer, the background pattern having a shape different from the shadow of the defective portion becomes gentle on the captured image of the imaging camera, so that the component that becomes the surface roughness portion of the silicon wafer can be surely erased. .
As a result, it is possible to improve the identification accuracy of the defective portion.

また、前記近赤外光源が、複数の発光ダイオードを互いに接近させて配置した場合には、複数の発光ダイオードからそれぞれ出射される近赤外線において強弱の差が小さくなるので、安定した単波長の近赤外散乱光を簡単な構造で容易に得ることができる。   In addition, when the near-infrared light source has a plurality of light-emitting diodes arranged close to each other, the difference in intensity between the near-infrared rays respectively emitted from the plurality of light-emitting diodes is reduced, so that a stable single-wavelength near-wavelength light source can be obtained. Infrared scattered light can be easily obtained with a simple structure.

また、前記発光ダイオードの出射方向に拡散板を配置した場合には、複数の発光ダイオードから出射される単波長の近赤外散乱光線が、拡散板を通過することで、空間的に均一に分布されるので、検査対象のシリコンウエハに単波長の近赤外散乱光線を均一照射することができる。
その結果、欠陥部分の識別精度を向上させることができる。
In addition, when a diffusion plate is arranged in the emission direction of the light emitting diode, single-wavelength near-infrared scattered light emitted from a plurality of light emitting diodes passes through the diffusion plate, and is distributed spatially and uniformly. Therefore, it is possible to uniformly irradiate the silicon wafer to be inspected with a single-wavelength near-infrared scattered light.
As a result, it is possible to improve the identification accuracy of the defective portion.

本発明の実施形態に係るウエハ欠陥検査装置を示す説明図である。It is explanatory drawing which shows the wafer defect inspection apparatus which concerns on embodiment of this invention. 実施例におけるウエハ面内部の明るさプロファイルである。It is the brightness profile inside the wafer surface in an Example. 比較例におけるウエハ面内部の明るさプロファイルである。It is the brightness profile inside the wafer surface in a comparative example.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
本発明の実施形態に係るウエハ欠陥検査装置Aは、図1に示すように、検査対象のシリコンウエハWに単波長(単一波長又は固定波長)の近赤外散乱光線R1を照射する近赤外光源1と、シリコンウエハWを透過した透過光線R2を集光するカメラレンズ2と、カメラレンズ2により集光された透過光線R2を受光して撮像する撮像用カメラ3と、撮像用カメラ3の撮像画像上で画像処理を行う画像処理部4とを備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, a wafer defect inspection apparatus A according to an embodiment of the present invention irradiates a near-infrared scattered light R1 having a single wavelength (single wavelength or fixed wavelength) onto a silicon wafer W to be inspected. An external light source 1, a camera lens 2 that collects the transmitted light R2 that has passed through the silicon wafer W, an imaging camera 3 that receives and images the transmitted light R2 collected by the camera lens 2, and an imaging camera 3 And an image processing unit 4 that performs image processing on the captured image.

シリコンウエハWは、インゴットを薄くスライスした板であり、その表面及び内部に存在する、例えば微細なピンホールやクラックを含むキズ又は明るさむらなどの欠陥部分を検査する必要がある。検査対象としては、半導体シリコンウエハの製造過程において作成される、ラッピング処理されたウエハ、例えばケミカル(化学的)エッチングなどのエッチング処理後のウエハ、鏡面仕上げを施したウエハなどが挙げられる。
これらの中で、ケミカルエッチング後のウエハは、その表面全体に無数の微細な凹凸が存在しているため、その表面粗さ部分(地肌の粗い部分)が、微細なピンホールやクラックを含むキズ又は明るさむらなどの欠陥部分と混在して画像に表示され、それにより、このような地肌の粗い部分と欠陥部分とが画像処理などで最も識別し難いと言われている。
The silicon wafer W is a plate obtained by thinly slicing an ingot, and it is necessary to inspect a defective portion such as a scratch or a brightness unevenness including a fine pinhole and a crack existing on the surface and inside thereof. Examples of the inspection target include a lapped wafer, a wafer after an etching process such as chemical etching, a wafer having a mirror finish, and the like, which are created in the manufacturing process of a semiconductor silicon wafer.
Among these, the wafer after chemical etching has countless fine irregularities on the entire surface, so that the surface roughness portion (the rough portion of the background) has scratches containing fine pinholes and cracks. Or, it is displayed on an image in a mixed manner with a defective portion such as uneven brightness, and it is said that such a rough portion and a defective portion are most difficult to distinguish by image processing or the like.

近赤外光源1は、例えば約940〜960nmいずれかの単波長の近赤外線を出射する発光ダイオード(LED)1aを有し、この発光ダイオード1aを複数配置することにより、近赤外散乱光線R1をシリコンウエハWに向けて出射させることが好ましい。
その具体例としては、複数の発光ダイオード1aを互いに接近するように配置させて、これら複数の発光ダイオード1aからそれぞれ出射される近赤外線において強弱の差が生じないようにすることが好ましい。
さらに、これら発光ダイオード1aの出射方向には、拡散板1bを配置し、発光ダイオード1aから出射される近赤外散乱光線R1が拡散板1bを通過することで、空間的に均一に分布され、シリコンウエハWの表裏いずれか一方の面W1に向けて均一照射されるようにすることが好ましい。
The near-infrared light source 1 has a light-emitting diode (LED) 1a that emits near-infrared light having a single wavelength of about 940 to 960 nm, for example, and by arranging a plurality of the light-emitting diodes 1a, the near-infrared scattered light R1 Is preferably emitted toward the silicon wafer W.
As a specific example, it is preferable to arrange a plurality of light emitting diodes 1a so as to be close to each other so that a difference in intensity does not occur in near infrared rays respectively emitted from the plurality of light emitting diodes 1a.
Furthermore, in the emission direction of these light emitting diodes 1a, a diffuser plate 1b is arranged, and the near-infrared scattered light R1 emitted from the light emitting diode 1a passes through the diffuser plate 1b, so that it is distributed spatially and uniformly. It is preferable that the silicon wafer W is uniformly irradiated toward one of the front and back surfaces W1.

そして、シリコンウエハWの他方の面W2から透過した透過光線R2は、カメラレンズ2によって集光され、撮像用カメラ3の内部に配備された受光素子上にシリコンウエハWの像を結ぶ。
撮像用カメラ3としては、エリアセンサカメラを用いることが好ましい。
また、撮像用カメラ3に接続するモニター(図示しない)を設け、撮像用カメラ3からの電気信号を受けて撮像用カメラ3が撮像した画像を表示することにより、検査者が撮像画像から欠陥部分を目視で確認できるようにすることも可能である。
The transmitted light R2 transmitted from the other surface W2 of the silicon wafer W is collected by the camera lens 2 and forms an image of the silicon wafer W on the light receiving element provided inside the imaging camera 3.
As the imaging camera 3, an area sensor camera is preferably used.
In addition, a monitor (not shown) connected to the imaging camera 3 is provided, and an image taken by the imaging camera 3 in response to an electrical signal from the imaging camera 3 is displayed so that the inspector can detect a defective portion from the captured image. It is also possible to visually confirm the above.

画像処理部4は、撮像用カメラ3から出力される画像データをパーソナルコンピュータ(図示しない)で受け、パーソナルコンピュータにおいて、例えば画像データからシリコンウエハWの表面粗さ部分となる成分を消去するなどの画像処理が行われる。   The image processing unit 4 receives image data output from the imaging camera 3 with a personal computer (not shown), and the personal computer erases, for example, a component that becomes a surface roughness portion of the silicon wafer W from the image data. Image processing is performed.

そして、本発明の実施形態に係るウエハ欠陥検査装置Aの動作を説明する。
複数の発光ダイオード1aから出射された単波長(約940〜960nm)の近赤外散乱光線R1は、拡散板1bを通過して空間的に均一に分布され、シリコンウエハWの一方の面W1に均一照射される。
それにより、近赤外散乱光線R1は、シリコンウエハWにおいて微細な欠陥部分が無い部分と、微細な欠陥部分と、シリコンウエハWの表面に存在する表面粗さ部分をそれぞれ透過し、これらの透過光線R2がカメラレンズ2によって撮像用カメラ3内の受光素子上に撮像され、この撮像画像は画像処理部4によって、後述する画像処理が行われる。
And operation | movement of the wafer defect inspection apparatus A which concerns on embodiment of this invention is demonstrated.
Near-infrared scattered light R1 having a single wavelength (about 940 to 960 nm) emitted from the plurality of light emitting diodes 1a passes through the diffusion plate 1b and is spatially uniformly distributed on one surface W1 of the silicon wafer W. Uniform irradiation.
As a result, the near-infrared scattered light R1 passes through the silicon wafer W without a fine defect portion, the fine defect portion, and the surface roughness portion existing on the surface of the silicon wafer W, respectively. The light ray R2 is imaged on the light receiving element in the imaging camera 3 by the camera lens 2, and the captured image is subjected to image processing to be described later by the image processing unit 4.

ここで、微細な欠陥部分が無い部分は、シリコンの単結晶であるために、その画像は単波長の近赤外散乱光線R1の透過状態が常に一定であるために、一様である。
一方、微細なピンホールやクラックを含むキズ又は明るさむらなどの欠陥部分は、その部分で近赤外散乱光線R1の反射及び吸収が生じるために、欠陥部分と同じ形の「影」が発生する。
また、シリコンウエハWとして、例えばケミカルエッチング後のウエハのように、該ウエハの表面全体に無数の微細な凹凸が存在する場合には、その表面粗さ部分(地肌の粗い部分)において、近赤外散乱光線R1の反射及び吸収が生じるために、欠陥部分の「影」とは異なる形の「地肌模様」が発生する。
これらに基づいて画像処理部4で画像処理を行い、撮像画像上において、シリコンウエハWの表面粗さ部分となる成分を消去することで、欠陥部分の画像が強調される。
Here, since the portion without the fine defect portion is a single crystal of silicon, the image is uniform since the transmission state of the single-wavelength near-infrared scattered light R1 is always constant.
On the other hand, defects such as scratches or uneven brightness including fine pinholes and cracks cause reflection and absorption of the near-infrared scattered light R1, and thus a "shadow" of the same shape as the defect occurs. To do.
In addition, when the silicon wafer W has countless fine irregularities on the entire surface of the wafer, such as a wafer after chemical etching, the surface roughness portion (the rough portion of the background) Since reflection and absorption of the externally scattered light R1 occur, a “background pattern” having a shape different from the “shadow” of the defective portion is generated.
Based on these, the image processing unit 4 performs image processing and erases the component that becomes the surface roughness portion of the silicon wafer W on the captured image, thereby enhancing the image of the defective portion.

このようなウエハ欠陥検査装置Aによると、検査対象のシリコンウエハAとして例えばケミカルエッチング後のウエハのように、欠陥部分を確実に識別することができて、欠陥検出の自動化が可能となる。
次に、本発明の一実施例を説明する。
According to such a wafer defect inspection apparatus A, the defect portion can be reliably identified as the silicon wafer A to be inspected, for example, a wafer after chemical etching, and the defect detection can be automated.
Next, an embodiment of the present invention will be described.

検査対象のシリコンウエハWとして、厚さ寸法が異なる複数のケミカルエッチング後のウエハに対し、近赤外光源1として複数の発光ダイオード1aから940nm未満の単波長の近赤外散乱光線R1が照射される実験と、940〜960nmいずれかの単波長の近赤外散乱光線R1が照射される実験と、960nmよりも長い単波長の近赤外散乱光線R1が照射される実験を行った。
また、これらの比較例として、同じ条件でケミカルエッチング後のウエハに対し、ハロゲンランプから赤外線が照射される実験も行った。
As a silicon wafer W to be inspected, a plurality of chemically-etched wafers having different thickness dimensions are irradiated with near-infrared scattered light R1 having a single wavelength of less than 940 nm from a plurality of light-emitting diodes 1a as a near-infrared light source 1. And an experiment in which a near-infrared scattered light R1 having a single wavelength of 940 to 960 nm is irradiated, and an experiment in which a near-infrared scattered light R1 having a single wavelength longer than 960 nm is irradiated.
In addition, as a comparative example, an experiment was performed in which infrared rays were irradiated from a halogen lamp onto a wafer after chemical etching under the same conditions.

これらの実験の結果、940nm未満の単波長の近赤外散乱光線R1をケミカルエッチング後のウエハに照射した場合には、近赤外散乱光線R1が透過し難くなり、撮像用カメラ3の撮像画像は適度な明るさが得られない画像となった。
940〜960nmいずれかの単波長の近赤外散乱光線R1をケミカルエッチング後のウエハに照射した場合には、近赤外散乱光線R1がそれぞれ透過し、これらの透過光線R2をカメラレンズ2で集光することにより、撮像用カメラ3の撮像画像上に、欠陥部分と同じ形の「影」と、ウエハの表面粗さ部分に相当する欠陥部分の「影」とは異なる形の「地肌模様」が穏やかになることを確認できた。
また、960nmよりも長い単波長の近赤外散乱光線R1をケミカルエッチング後のウエハに照射した場合には、近赤外散乱光線R1が透過し易くなっていき、それに伴い地肌模様が強く現れ始め、欠陥部分と表面粗さ部分を識別可能に撮像できないことが判明した。
As a result of these experiments, when the near-infrared scattered light R1 having a single wavelength of less than 940 nm is irradiated onto the wafer after chemical etching, the near-infrared scattered light R1 becomes difficult to transmit, and the captured image of the imaging camera 3 is captured. Became an image where moderate brightness could not be obtained.
When the near-infrared scattered light R1 having a single wavelength of 940 to 960 nm is irradiated to the wafer after chemical etching, the near-infrared scattered light R1 is transmitted through the wafer, and the transmitted light R2 is collected by the camera lens 2. By “lighting”, “background pattern” having a shape different from the “shadow” of the same shape as the defective portion and the “shadow” of the defective portion corresponding to the surface roughness portion of the wafer on the captured image of the imaging camera 3. Was confirmed to be calm.
In addition, when the wafer after chemical etching is irradiated with a near-infrared scattered light R1 having a single wavelength longer than 960 nm, the near-infrared scattered light R1 is likely to be transmitted, and a background pattern starts to appear strongly. It was found that the defect portion and the surface roughness portion could not be imaged in a distinguishable manner.

さらに、950nmの単波長の近赤外散乱光線R1をケミカルエッチング後のウエハに照射し、該ウエハの一部分における、ウエハ面内部の明るさプロファイル(輝度プロファイル)を実施例として図2に示す。
同様に、ハロゲンランプで照射した比較例で、ウエハの一部分における、ウエハ面内部の明るさプロファイルを比較例として図3に示す。
図2に示される実施例の明るさプロファイルによれば、ケミカルエッチング後のウエハにおいて表面粗さ部分(地肌の粗い部分)による輝度差があるものの、その輝度幅が狭くてバラツキが小さいため、欠陥部分による輝度差が発生した場合には、容易に識別できる。
これに対して、図3に示される比較例の明るさプロファイルによれば、ケミカルエッチング後のウエハにおいて表面粗さ部分(地肌の粗い部分)による輝度差が幅広くてバラツキが大きいため、欠陥部分による輝度差が一緒に発生した場合には、識別が困難である。
Further, the wafer after chemical etching is irradiated with a near-infrared scattered light R1 having a single wavelength of 950 nm, and a brightness profile (luminance profile) inside the wafer surface in a part of the wafer is shown in FIG. 2 as an example.
Similarly, in a comparative example irradiated with a halogen lamp, a brightness profile inside the wafer surface in a part of the wafer is shown in FIG. 3 as a comparative example.
According to the brightness profile of the embodiment shown in FIG. 2, although there is a luminance difference due to the surface roughness portion (rough portion of the background) in the wafer after chemical etching, the luminance width is narrow and variation is small. When a luminance difference due to a portion occurs, it can be easily identified.
On the other hand, according to the brightness profile of the comparative example shown in FIG. 3, the brightness difference due to the surface roughness portion (the rough surface portion) is wide and the variation is large in the wafer after chemical etching. If a luminance difference occurs together, identification is difficult.

このような本発明の実施例に係るウエハ欠陥検査装置Aによると、単波長の近赤外散乱光線R1を透過させた時に、撮像用カメラ3の撮像画像上に欠陥部分の影とは異なる形で表面粗さ部分に相当する「地肌模様」が発生し、特に940〜960nmいずれかの単波長の近赤外散乱光線R1を照射した時には、表面粗さ部分に相当する「地肌模様」が穏やかになるため、表面粗さ部分となる成分を確実に消去することができるという利点がある。   According to the wafer defect inspection apparatus A according to the embodiment of the present invention, when the single-wavelength near-infrared scattered light R1 is transmitted, the shape different from the shadow of the defective portion on the captured image of the imaging camera 3 is obtained. In this case, a “background pattern” corresponding to the surface roughness portion is generated, and when the near-infrared scattered light R1 having a single wavelength of 940 to 960 nm is irradiated, the “background pattern” corresponding to the surface roughness portion is gentle. Therefore, there is an advantage that the component that becomes the surface roughness portion can be surely erased.

さらに、近赤外光源1として複数の発光ダイオード1aを互いに接近するように配置すると、これら複数の発光ダイオード1aからそれぞれ出射される近赤外線において強弱の差が小さくなるため、安定した単波長の近赤外散乱光線R1を簡単な構造で容易に得ることができるという利点がある。   Further, when the plurality of light emitting diodes 1a are arranged close to each other as the near-infrared light source 1, the difference in intensity in the near infrared rays respectively emitted from the plurality of light emitting diodes 1a is reduced. There is an advantage that the infrared scattered light R1 can be easily obtained with a simple structure.

また、複数の発光ダイオード1aの出射方向に拡散板1bを配置すると、これら発光ダイオード1aから出射される近赤外散乱光線R1が拡散板1bを通過することで、空間的に均一に分布されるため、検査対象のシリコンウエハWに近赤外散乱光線R1を均一照射することができるという利点がある。   Further, when the diffusing plate 1b is arranged in the emission direction of the plurality of light emitting diodes 1a, the near-infrared scattered light R1 emitted from the light emitting diodes 1a passes through the diffusing plate 1b, so that it is distributed spatially and uniformly. Therefore, there is an advantage that the silicon wafer W to be inspected can be uniformly irradiated with the near-infrared scattered light R1.

なお、近赤外光源1として複数の発光ダイオード1aから単波長の近赤外散乱光線R1が出射される場合を説明したが、これに限定されず、発光ダイオード1aとは異なる光源を用いても良い。   Although the case where the single-wavelength near-infrared scattered light R1 is emitted from the plurality of light-emitting diodes 1a as the near-infrared light source 1 has been described, the present invention is not limited to this, and a light source different from the light-emitting diode 1a may be used. good.

1 近赤外光源 1a 発光ダイオード
1b 拡散板 2 カメラレンズ
3 撮像用カメラ 4 画像処理部
R1 近赤外散乱光線 R2 透過光線
W シリコンウエハ
DESCRIPTION OF SYMBOLS 1 Near-infrared light source 1a Light emitting diode 1b Diffuser 2 Camera lens 3 Imaging camera 4 Image processing part R1 Near-infrared scattered light R2 Transmitted light W Silicon wafer

Claims (2)

シリコンウエハに単波長の近赤外散乱光線を照射する近赤外光源と、
前記シリコンウエハを透過した透過光線を集光するカメラレンズと、
前記カメラレンズにより集光された前記透過光線を受光して撮像する撮像用カメラと、
前記撮像用カメラの撮像画像上で画像処理を行う画像処理部と、を備え、
前記近赤外光源は、互いに接近するように配置させて940〜960nmいずれかの単波長の近赤外線を出射する複数の発光ダイオードと、前記発光ダイオードの出射方向に配置される拡散板を有し、前記発光ダイオードから出射される前記近赤外散乱光線が前記拡散板を通過することで、空間的に均一に分布されて前記シリコンウエハの面に向け均一照射され、
前記画像処理部は、前記撮像用カメラの撮像画像上で前記シリコンウエハの表面粗さ部分となる成分を消去することを特徴とするウエハ欠陥検査装置。
A near-infrared light source that irradiates a silicon wafer with a single-wavelength near-infrared scattered light; and
A camera lens that collects the transmitted light transmitted through the silicon wafer;
An imaging camera that receives and images the transmitted light collected by the camera lens;
An image processing unit that performs image processing on a captured image of the imaging camera;
The near-infrared light source has a plurality of light-emitting diodes arranged so as to be close to each other and emitting near-infrared rays having a single wavelength of 940 to 960 nm, and a diffusion plate arranged in the emission direction of the light-emitting diodes The near-infrared scattered light emitted from the light-emitting diode passes through the diffusion plate, and is uniformly distributed spatially and uniformly irradiated toward the surface of the silicon wafer,
The wafer defect inspection apparatus, wherein the image processing unit erases a component that becomes a surface roughness portion of the silicon wafer on a captured image of the imaging camera.
前記撮像用カメラとしてエリアセンサカメラを用いたことを特徴とする請求項1記載のウエハ欠陥検査装置。
Claim 1 Symbol mounting wafer defect inspection device characterized by using the area sensor camera as the imaging camera.
JP2010137336A 2010-06-16 2010-06-16 Wafer defect inspection system Active JP5830229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010137336A JP5830229B2 (en) 2010-06-16 2010-06-16 Wafer defect inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010137336A JP5830229B2 (en) 2010-06-16 2010-06-16 Wafer defect inspection system

Publications (2)

Publication Number Publication Date
JP2012002648A JP2012002648A (en) 2012-01-05
JP5830229B2 true JP5830229B2 (en) 2015-12-09

Family

ID=45534805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010137336A Active JP5830229B2 (en) 2010-06-16 2010-06-16 Wafer defect inspection system

Country Status (1)

Country Link
JP (1) JP5830229B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5966704B2 (en) * 2012-07-11 2016-08-10 株式会社島津製作所 Substrate inspection device and transmission illumination device for substrate inspection device
CN105716829B (en) * 2014-12-01 2019-08-06 深圳超多维科技有限公司 Spectroscopic device detection system and detection method
JP6658051B2 (en) * 2016-02-16 2020-03-04 三菱電機株式会社 Wafer inspection apparatus, wafer inspection method, and semiconductor device manufacturing method
CN105866073B (en) * 2016-03-30 2018-12-07 广东美的厨房电器制造有限公司 For detecting the device and household electrical appliance of attachment magnitude
CN108878307B (en) * 2017-05-11 2020-12-08 北京北方华创微电子装备有限公司 Chip detection system and chip detection method
JP2023102366A (en) 2022-01-12 2023-07-25 東京エレクトロン株式会社 Substrate inspection apparatus, substrate inspection method, and substrate inspection program
CN115128099A (en) * 2022-08-29 2022-09-30 苏州高视半导体技术有限公司 Wafer defect detection method, wafer defect detection equipment and shooting device thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220008A (en) * 1995-02-15 1996-08-30 Mitsubishi Electric Corp Infrared ray inspecting apparatus
JP2000094429A (en) * 1999-09-24 2000-04-04 Hitachi Ltd Manufacture of green sheet and device therefor
DE102004015326A1 (en) * 2004-03-30 2005-10-20 Leica Microsystems Apparatus and method for inspecting a semiconductor device
JP2006184177A (en) * 2004-12-28 2006-07-13 Mitsubishi Electric Corp Infrared inspection device and method
JP4523474B2 (en) * 2005-04-06 2010-08-11 シーケーディ株式会社 Defect inspection device and PTP packaging machine
JP4864504B2 (en) * 2006-03-24 2012-02-01 Sumco Techxiv株式会社 Crystal wafer inspection method and apparatus for silicon wafer
JP2010054377A (en) * 2008-08-28 2010-03-11 Ccs Inc Infrared inspection device

Also Published As

Publication number Publication date
JP2012002648A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5830229B2 (en) Wafer defect inspection system
TWI391645B (en) Differential wavelength photoluminescence for non-contact measuring of contaminants and defects located below the surface of a wafer or other workpiece
TWI645182B (en) Miniaturized imaging apparatus for wafer edge
US20070008518A1 (en) Photoluminescence imaging with preferential detection of photoluminescence signals emitted from a specified material layer of a wafer or other workpiece
US20120044346A1 (en) Apparatus and method for inspecting internal defect of substrate
JP2015014582A (en) Illumination system used in optical inspection, inspection system and inspection method using the same
JP2009513984A (en) Apparatus and method for inspecting a composite structure for defects
JP2015148447A (en) Automatic visual inspection apparatus
TWI627398B (en) Epitaxial wafer back-surface inspection device and epitaxial wafer back-surface inspection method using the same
JP2010151479A (en) Wiring pattern inspecting device
JP2011117928A (en) Apparatus and method for inspecting internal defect of substrate
KR101203210B1 (en) Apparatus for inspecting defects
JP5831425B2 (en) Solar cell inspection equipment
US20200333260A1 (en) Appearance inspection apparatus and appearance inspection method
KR101575895B1 (en) Apparatus and method for inspecting wafer using light
JP2011106912A (en) Imaging illumination means and pattern inspection device
US10466179B2 (en) Semiconductor device inspection of metallic discontinuities
JP4408902B2 (en) Foreign object inspection method and apparatus
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
JP2012068211A (en) Distortion inspection device for sheet member and distortion inspection method for sheet member
JP7372173B2 (en) Board edge inspection equipment
JP6248819B2 (en) Inspection apparatus and inspection method
JP2010190740A (en) Substrate inspection device, method, and program
JP2011196897A (en) Inspection device
JP2021110551A (en) Substrate edge inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140519

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140701

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R150 Certificate of patent or registration of utility model

Ref document number: 5830229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250