[go: up one dir, main page]

JP5828756B2 - Automotive engine oil - Google Patents

Automotive engine oil Download PDF

Info

Publication number
JP5828756B2
JP5828756B2 JP2011286829A JP2011286829A JP5828756B2 JP 5828756 B2 JP5828756 B2 JP 5828756B2 JP 2011286829 A JP2011286829 A JP 2011286829A JP 2011286829 A JP2011286829 A JP 2011286829A JP 5828756 B2 JP5828756 B2 JP 5828756B2
Authority
JP
Japan
Prior art keywords
group
engine oil
mass
oil
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011286829A
Other languages
Japanese (ja)
Other versions
JP2013133463A (en
Inventor
小林 泉
泉 小林
久保 浩一
浩一 久保
洸史 村上
洸史 村上
裕彦 大津
裕彦 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP2011286829A priority Critical patent/JP5828756B2/en
Priority to PCT/EP2012/076991 priority patent/WO2013098354A1/en
Publication of JP2013133463A publication Critical patent/JP2013133463A/en
Application granted granted Critical
Publication of JP5828756B2 publication Critical patent/JP5828756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/06Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

本発明は、自動車用エンジンオイル(内燃機関用潤滑油組成物)に関し、より詳しくは、摩擦低減性能、エンジン清浄性能及び酸化安定性能に優れた自動車用エンジンオイルに関する。   The present invention relates to an engine oil for automobiles (a lubricating oil composition for an internal combustion engine), and more particularly to an engine oil for automobiles excellent in friction reduction performance, engine cleanup performance, and oxidation stability performance.

自動車用エンジンオイル油の性能分類としては、主にAPI(American Petroleum Institute:米国石油協会)や日米の自動車メーカーで組織されるILSAC(International Lubricants Standardization and Approve Committee)が制定する規格が、最も市場ニーズを先取りしたエンジン油規格として認知されている。ところで、昨今、省燃費性能とその持続性の強化、エンジンを保護する性能の強化、排気浄化装置を保護する性能の強化の観点から、API−SN及びILSAC GF−5規格が制定されるに至っている。ここで、上記性能発揮を踏まえた要求性能には、粘度グレード、ゲル化指数、酸化安定性、ピストン清浄性、摩耗防止性、エンジン清浄性、動弁系摩耗防止性、軸受腐食防止性、省燃費性、使用油のエアレーション、触媒被毒性、摩耗防止性、蒸発性、高温デポジット抑制、フィルター閉塞抑制、消泡性、使用油低温粘度、せん断安定性、均一性・混合性、低温腐食防止性、複合燃料適合性、ゴムシール適合性等、多岐に亘るため、多種の添加剤が配合される結果、それらの相互作用が問題となっている。ある添加剤は1つの性能には効果があるが、別の性能にはマイナス効果を持つなど、配合技術が益々難しくなってきている。特に昨今の省燃費改善から、摩擦調整剤が使用されるが、これらの化合物は活性が強く、清浄性、デポジット発生や酸化安定性等に悪影響することが知られている。   Standards established by API (American Petroleum Institute: American Petroleum Institute) and ILSAC (International Lubricants Standardization Committee), which is organized by Japanese and American automakers, are the most popular classifications of engine oils for automobiles. It is recognized as an engine oil standard that anticipates needs. By the way, in recent years, API-SN and ILSAC GF-5 standards have been established from the viewpoint of enhancing fuel efficiency and sustainability, enhancing engine protecting performance, and enhancing exhaust purification device performance. Yes. Here, the required performance based on the performance described above includes viscosity grade, gelation index, oxidation stability, piston cleanliness, wear resistance, engine cleanliness, valve system wear resistance, bearing corrosion resistance, Fuel efficiency, oil aeration, catalyst poisoning, wear resistance, evaporation, high temperature deposit suppression, filter clogging suppression, defoaming properties, low temperature oil viscosity, shear stability, uniformity / mixing, low temperature corrosion resistance As a result of various additives such as composite fuel compatibility, rubber seal compatibility and the like being mixed, there is a problem with their interaction. Some additives are effective in one performance, while others have a negative effect, making compounding techniques increasingly difficult. In particular, friction modifiers are used to improve fuel economy recently, but these compounds are highly active and are known to adversely affect cleanliness, deposit generation, oxidation stability, and the like.

ここで、摩擦調整剤としては、摩擦低減性能に寄与するグリセライド化合物が、金属を含有しないため無灰系の摩擦調整剤として多用されているが、省燃費化の必要量を添加すると清浄性や酸化安定性に問題あることから、十分な添加が出来ないという課題を抱えていた。また、摩耗防止剤及び酸化防止剤として最も好適な添加剤として、ジアルキルジチオリン酸亜鉛(ZDTP)が従来より使用されている。しかしながら、ジアルキルジチオリン酸亜鉛(ZDTP)中のリンは自動車環境触媒を痛める要因でもあることから、当該化合物を多量に使用した場合には、GF−5規格をはじめ、今後予想されるリン含有量の低減化の要請に応えることが困難となる。このように、低リン含有量を担保しつつ、耐摩耗性能や酸化安定性能等の性能を発揮できる、GF−5規格をはじめ、今後予想される厳格なスペックにも対応し得るエンジンオイルが要望されている。そこで、特許文献1では、GF−5規格の要求も満たしつつ、耐摩耗性能や酸化安定性能等の性能を発揮できる内燃機関用潤滑油が提案されている。
特開2005−002214
Here, as a friction modifier, a glyceride compound that contributes to friction reduction performance is frequently used as an ashless friction modifier because it does not contain metal, but if a necessary amount for fuel saving is added, cleanliness and Since there was a problem with oxidation stability, there was a problem that sufficient addition could not be performed. Further, zinc dialkyldithiophosphate (ZDTP) has been conventionally used as an additive most suitable as an antiwear agent and an antioxidant. However, since phosphorus in zinc dialkyldithiophosphate (ZDTP) is also a factor that hurts automobile environmental catalysts, when a large amount of the compound is used, the expected phosphorus content in the future, including the GF-5 standard, is expected. It becomes difficult to meet the demand for reduction. Thus, there is a demand for engine oil that can meet strict specifications expected in the future, including the GF-5 standard, which can exhibit performance such as wear resistance and oxidation stability while ensuring low phosphorus content. Has been. Therefore, Patent Document 1 proposes a lubricating oil for internal combustion engines that can exhibit performance such as wear resistance and oxidation stability while satisfying the requirements of the GF-5 standard.
JP 2005-002214 A

しかしながら、特許文献1に記載された新たな有効成分もリン含有化合物であることから、GF−5をはじめ、今後予想される低リン型の潤滑油の要求に十分に応え得るとは必ずしもいえない。そこで、本発明は、自動車用エンジンオイルにおいて、リン含有成分の量を低減させた場合でも、優れた摩擦低減性能、エンジン清浄性能及び酸化安定性能を達成し得る手段を提供することを課題とする。   However, since the new active ingredient described in Patent Document 1 is also a phosphorus-containing compound, it cannot always be said that it can sufficiently meet the demand for low phosphorus type lubricating oil expected in the future, including GF-5. . Therefore, an object of the present invention is to provide means capable of achieving excellent friction reduction performance, engine cleanup performance, and oxidation stability performance even when the amount of phosphorus-containing components is reduced in automotive engine oil. .

本発明者らは、添加剤として知られていた非リン系成分について、多岐に亘る組み合わせをスクリーニングした結果、特定の成分と特定の成分とを組み合わせることで、優れた摩擦低減性能、エンジン清浄性能及び酸化安定性能を達成し得る組み合わせが存在することを発見し、本発明を完成させた。具体的には、本発明は、下記式:

Figure 0005828756
(式中、R1はオレイル基である)で示されるグリセリン1−オレアートと
下記式:
Figure 0005828756
(式中、RはC8〜C22の炭化水素基であり、n及びmはそれぞれ独立して1又は2である)で示されるモノアルキル又はモノアルケニルアミンエチレンオキサイド付加物からなる群より選択される1種又は2種以上と
を含有することを特徴とする自動車用エンジンオイルである。 As a result of screening various combinations of non-phosphorus components known as additives, the present inventors have combined specific components with specific components, resulting in excellent friction reduction performance and engine cleaning performance. And it was discovered that there are combinations that can achieve oxidation stability performance, and the present invention has been completed. Specifically, the present invention has the following formula:
Figure 0005828756
(Wherein R1 is an oleyl group) and glycerol 1-oleate represented by the following formula:
Figure 0005828756
Wherein R is a C8-C22 hydrocarbon group, and n and m are each independently 1 or 2, and are selected from the group consisting of monoalkyl or monoalkenylamine ethylene oxide adducts An automotive engine oil characterized by containing one or more.

本発明によれば、グリセリン1−オレアート(GMO、モノオレイン)と特定構造のモノアルキル又はモノアルケニルアミンエチレンオキサイド付加物とを共存させることにより、GF−5規格(及び今後予想される、より高性能が要求される規格)での性能を満足させる程の、優れた摩擦低減性能、エンジン清浄性能及び酸化安定性能を有するエンジンオイルを提供することが可能になるという効果を奏する。尚、本発明は、現時点で最も新しいAPI−SN、及びILSAC GF−5規格の自動車用エンジンオイル組成物に特に好適であるが、当該規格のエンジンオイル組成物には何ら限定されない。   According to the present invention, the presence of glycerin 1-oleate (GMO, monoolein) and a monoalkyl or monoalkenylamine ethylene oxide adduct having a specific structure allows the GF-5 standard (and more to be expected in the future). There is an effect that it is possible to provide an engine oil having excellent friction reduction performance, engine cleaning performance, and oxidation stability performance that satisfies the performance in the standard that requires high performance. The present invention is particularly suitable for the automotive engine oil composition of the newest API-SN and ILSAC GF-5 standards at present, but is not limited to the engine oil composition of the standards.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

≪自動車用エンジンオイルの成分≫
(基油)
≪Ingredients of automotive engine oil≫
(Base oil)

本形態に係るエンジンオイルの基油には、通常の潤滑油に使用される鉱油、合成油を使用することができる。特に、API(American Petroleum Institute,米国石油協会)基油カテゴリーでグループ1、グループ2、グループ3、グループ4等に属する基油を、単独又は混合物として使用することができる。   As the base oil of the engine oil according to the present embodiment, mineral oil and synthetic oil used for ordinary lubricating oil can be used. In particular, base oils belonging to Group 1, Group 2, Group 3, Group 4, etc. in the API (American Petroleum Institute, American Petroleum Institute) base oil category can be used alone or as a mixture.

グループ1基油には、例えば、原油を常圧蒸留して得られる潤滑油留分に対して、溶剤精製、水素化精製、脱ろう等の精製手段を適宜組み合わせて適用することにより得られるパラフィン系鉱油がある。粘度指数は80〜120が好適であり、95〜110がより好適である。100℃における動粘度は、好ましくは2〜32mm/s、より好ましくは3〜12mm/sである。全窒素分は50ppm未満、好ましくは25ppm未満がよい。更に、アニリン点は80〜150℃のものが好適であり、90〜120℃のものがより好適である。 For Group 1 base oils, for example, paraffin obtained by applying a suitable combination of solvent refining, hydrorefining, dewaxing, etc. to lubricating oil fractions obtained by atmospheric distillation of crude oil There are mineral oils. The viscosity index is preferably 80 to 120, more preferably 95 to 110. The kinematic viscosity at 100 ° C. is preferably 2 to 32 mm 2 / s, more preferably 3 to 12 mm 2 / s. The total nitrogen content should be less than 50 ppm, preferably less than 25 ppm. Further, the aniline point is preferably from 80 to 150 ° C, more preferably from 90 to 120 ° C.

グループ2基油には、例えば、原油を常圧蒸留して得られる潤滑油留分に対して、水素化分解、脱ろう等の精製手段を適宜組合せて適用することにより得られたパラフィン系鉱油がある。ガルフ社法等の水素化精製法により精製されたグループ2基油は、全硫黄分が10ppm未満、アロマ分が5%以下である。これらの基油の粘度は特に制限されないが、粘度指数は90〜125が好適であり、100〜120がより好適である。100℃における動粘度は、好ましくは2〜32mm/s、より好ましくは3〜12mm/sである。また全硫黄分は好適には300ppm未満、より好適には100ppm未満、更に好適には10ppm未満である。全窒素分も好適には10ppm未満、より好適には1ppm未満である。更に、アニリン点は80〜150℃のものが好適であり、100〜135℃のものがより好適である。 For Group 2 base oils, for example, paraffinic mineral oil obtained by appropriately combining refining means such as hydrocracking and dewaxing for lubricating oil fractions obtained by atmospheric distillation of crude oil There is. Group 2 base oils refined by hydrorefining methods such as the Gulf Company method have a total sulfur content of less than 10 ppm and an aroma content of 5% or less. The viscosity of these base oils is not particularly limited, but the viscosity index is preferably 90 to 125, more preferably 100 to 120. The kinematic viscosity at 100 ° C. is preferably 2 to 32 mm 2 / s, more preferably 3 to 12 mm 2 / s. The total sulfur content is preferably less than 300 ppm, more preferably less than 100 ppm, and even more preferably less than 10 ppm. The total nitrogen content is also preferably less than 10 ppm, more preferably less than 1 ppm. Further, the aniline point is preferably 80 to 150 ° C, more preferably 100 to 135 ° C.

グループ3基油は、例えば、原油を常圧蒸留して得られる潤滑油留分に対して、高度水素化精製により製造されるパラフィン系鉱油や、脱ろうプロセスにて生成されるワックスをイソパラフィンに変換・脱ろうするISODEWAXプロセスにより精製された基油や、モービルWAX異性化プロセスにより精製された基油も好適である。これらの基油の粘度は特に制限されないが、粘度指数は120〜150が好適であり、120〜145がより好適である。100℃における動粘度は、2〜32mm/sが好適であり、3〜12mm/sがより好適である。また全硫黄分は、0〜100ppmが好適であり、10ppm未満がより好適である。全窒素分も10ppm未満が好適であり、1ppm未満がより好適である。更に、アニリン点は80〜150℃が好適であり、110〜135℃がより好適である。 Group 3 base oils are, for example, paraffinic mineral oils produced by advanced hydrorefining, and waxes produced in the dewaxing process to isoparaffins for lubricating oil fractions obtained by atmospheric distillation of crude oil. Also suitable are base oils refined by the ISODEWAX process for conversion and dewaxing, and base oils refined by the mobile WAX isomerization process. The viscosity of these base oils is not particularly limited, but the viscosity index is preferably 120 to 150, more preferably 120 to 145. Kinematic viscosity at 100 ° C. is, 2~32mm 2 / s are preferred, 3 to 12 mm 2 / s is more preferable. Moreover, 0-100 ppm is suitable for a total sulfur content, and less than 10 ppm is more suitable. The total nitrogen content is also preferably less than 10 ppm, and more preferably less than 1 ppm. Further, the aniline point is preferably 80 to 150 ° C, more preferably 110 to 135 ° C.

合成油としては、例えばポリオレフィン類が挙げられ、必要に応じてアルキルベンゼン、アルキルナフタレン、エステル等を混合して使用することができる。   Examples of synthetic oils include polyolefins, and alkylbenzene, alkylnaphthalene, ester, and the like can be mixed and used as necessary.

上記ポリオレフィンには、各種オレフィンの重合物、又はこれらの水素化物が含まれる。オレフィンとしては任意のものが用いられるが、例えば、エチレン、プロピレン、ブテン、炭素数5以上のα−オレフィン等が挙げられる。ポリオレフィンの製造にあたっては、上記オレフィンの1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。特にポリαオレフィン(PAO)と呼ばれているポリオレフィンが好適であり、これはグループ4基油である。これら合成基油の粘度は特に制限されないが、100℃における動粘度は、好ましくは2〜32mm/s、より好ましくは3~12mm/sである。エステルとしてはアジピン酸等の二塩基酸と一価のアルコールから合成されるジエステルやネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等の多価アルコールと一塩基酸から合成されるポリオールエステル及びこれらの混合物等が挙げられる。 The polyolefin includes polymers of various olefins or hydrides thereof. Any olefin may be used, and examples thereof include ethylene, propylene, butene, and α-olefin having 5 or more carbon atoms. In the production of polyolefin, one of the above olefins may be used alone, or two or more may be used in combination. Particularly preferred are polyolefins called polyalphaolefins (PAO), which are Group 4 base oils. The viscosity of these synthetic base oils is not particularly limited, but the kinematic viscosity at 100 ° C. is preferably 2 to 32 mm 2 / s, more preferably 3 to 12 mm 2 / s. Esters include diesters synthesized from dibasic acids such as adipic acid and monohydric alcohols, polyol esters synthesized from polybasic alcohols such as neopentyl glycol, trimethylolpropane, pentaerythritol and monobasic acids, and mixtures thereof. Etc.

天然ガスの液体燃料化技術のフィッシャートロプッシュ法により合成されたGTL(ガストゥリキッド)の油は、原油から精製された鉱油基油と比較して、硫黄分や芳香族分が極めて低く、パラフィン構成比率が極めて高いため、酸化安定性に優れ、蒸発損失も非常に小さい。GTL基油の粘度性状は特に制限されないが、通常、粘度指数は120〜180が好適であり、120〜150がより好適である。また100℃における動粘度は、2〜32mm/sが好適であり、3〜12mm/sがより好適である。また通例全硫黄分は10ppm未満が好適であり、全窒素分1ppm未満がより好適である。そのようなGTL基油商品の一例として、SHELL XHVI(登録商標)がある。 GTL (Gas Liquid) oil synthesized by the Fischer-Tropsch method, which is a natural gas liquid fuel technology, has extremely low sulfur and aromatic content compared to mineral oil base oil refined from crude oil. Since the composition ratio is extremely high, the oxidation stability is excellent and the evaporation loss is very small. The viscosity property of the GTL base oil is not particularly limited, but normally, the viscosity index is preferably 120 to 180, more preferably 120 to 150. Kinematic viscosity at 100 ° C. also, 2~32mm 2 / s are preferred, 3 to 12 mm 2 / s is more preferable. In general, the total sulfur content is preferably less than 10 ppm, and the total nitrogen content is preferably less than 1 ppm. An example of such a GTL base oil product is SHELL XHVI®.

(グリセリン1−オレアート)
本形態に係るエンジンオイルに必須成分として含まれるグリセリン1−オレアートは、下記式:

Figure 0005828756
(式中、R1はオレイル基である)で示される。 (Glycerin 1-oleate)
The glycerin 1-oleate contained as an essential component in the engine oil according to the present embodiment has the following formula:
Figure 0005828756
(Wherein R1 is an oleyl group).

(モノアルキル又はモノアルケニルアミンエチレンオキサイド付加物)
本形態に係るエンジンオイルに必須成分として含まれるモノアルキル又はモノアルケニルアミンエチレンオキサイド付加物は、下記式:

Figure 0005828756
(式中、RはC8〜C22の炭化水素基であり、n及びmはそれぞれ独立して1又は2である)で示される。この炭素数8〜22の炭化水素基としては、炭素数8〜20が好ましく、具体的には例えばオクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等のアルキル基(これらアルキル基は直鎖状でも分枝状でもよい)、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基等のアルケニル基(これらのアルケニル基は直鎖状でも分枝状でもよく、また2重結合の位置も任意で、シス型、トランス型でもよい)が挙げられる。ここで、n及びmは、それぞれ1であることが好ましい。また、引火点(COC)は200℃以上であることが好ましい。尚、当該付加物は、1種でも2種以上の混合物でもよい。 (Monoalkyl or monoalkenylamine ethylene oxide adduct)
The monoalkyl or monoalkenylamine ethylene oxide adduct contained as an essential component in the engine oil according to this embodiment has the following formula:
Figure 0005828756
(Wherein R is a C8-C22 hydrocarbon group, and n and m are each independently 1 or 2). The hydrocarbon group having 8 to 22 carbon atoms is preferably 8 to 20 carbon atoms. Specifically, for example, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, Hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group and other alkyl groups (these alkyl groups may be linear or branched), octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group Group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icocenyl group, etc. (These alkenyl groups may be linear or branched, and the position of the double bond is arbitrary. And may be cis type or trans type). Here, n and m are each preferably 1. The flash point (COC) is preferably 200 ° C. or higher. The adduct may be one kind or a mixture of two or more kinds.

(金属系清浄剤)
本形態に係るエンジンオイルに使用し得る金属系清浄剤としては、例えば、アルカリ土類金属スルフォネート、アルカリ土類金属フェネート、アルカリ土類金属サリシレート、アルカリ土類金属ナフテネート等を挙げることができる。このアルカリ土類金属としては、カルシウム、マグネシウムが挙げられる。これらは単独で或いは二種類以上を組み合わせて使用することができる。通常、カルシウム又はマグネシウムのスルフォネート、フェネート、サリシレートが好ましく用いられる。アルカリ土類金属フェネートとしては、炭素数4〜30、好ましくは6〜18の直鎖状又は分枝のアルキル基を有するアルキルフェノール、アルキルフェノールサルファイド、アルキルフェノールのマンニッヒ反応物のアルカリ土類金属塩、特にカルシウム塩が好ましく用いられる。アルカリ土類サリシレートとしては、炭素数1〜30、好ましくは6〜18の直鎖又は分枝のアルキル基を有するアルキルサルチル酸のアルカリ土類金属塩、特に好ましくはマグネシウム塩及び/又はカルシウム塩が好ましく用いられる。尚、これらの塩基価は適応する潤滑油の種類、目的によって任意に選ぶことができる。
(Metal-based detergent)
Examples of metal detergents that can be used in the engine oil according to the present embodiment include alkaline earth metal sulfonates, alkaline earth metal phenates, alkaline earth metal salicylates, alkaline earth metal naphthenates, and the like. Examples of the alkaline earth metal include calcium and magnesium. These can be used alone or in combination of two or more. Usually, calcium or magnesium sulfonates, phenates and salicylates are preferably used. Alkaline earth metal phenates include alkylphenols having a linear or branched alkyl group having 4 to 30, preferably 6 to 18 carbon atoms, alkylphenol sulfides, alkaline earth metal salts of alkylphenol Mannich reactants, especially calcium A salt is preferably used. Alkaline earth salicylates include alkaline earth metal salts of alkylsalicylic acid having a linear or branched alkyl group having 1 to 30 carbon atoms, preferably 6 to 18, particularly preferably magnesium salts and / or calcium salts. Preferably used. These base numbers can be arbitrarily selected depending on the type and purpose of the lubricating oil to be applied.

(無灰分散剤)
本形態に係るエンジンオイルに使用し得る無灰分散剤としては、例えば、ポリブテニルコハク酸イミド系、ポリブテニルコハク酸アミド系、ベンジルアミン系、コハク酸エステル系を挙げることができる。これらの分散剤は、ホウ素化されていてもよい。このポリブテニルコハク酸イミドは、高純度イソブテン或いは1−ブテンとイソブテンの混合物をフッ化ホウ素系触媒或いは塩化アルミニウム系触媒で重合させて得られるポリブデンから得られるものであり、ポリブデン末端にビニリデン構造を有するものが通常5〜100mol%含有される。尚、ポリアルキレンポリアミン鎖には優れたスラッジ抑制効果を得る観点から2~5個、特には3~4個の窒素原子を含むものが好ましい。またポリブテニルコハク酸イミドの誘導体としては、上記ポリブテニルコハク酸イミドにホウ酸等のホウ酸化合物やアルコール、アルデヒド、ケトン、アルキルフェノール、環状カーボネ−ト、有機酸等の含酸素有機化合物を作用させて、残存するアミノ基及び/又はイミノ基の一部又は全部を中和又はアミド化した、いわゆる変性コハク酸イミドとして用いることができる。特にホウ酸等のホウ素化合物との反応で得られるホウ素含有アルケニル(もしくはアルキル)コハク酸イミドは、熱・酸化安定性の面で優れている。
(Ashless dispersant)
Examples of the ashless dispersant that can be used in the engine oil according to this embodiment include polybutenyl succinimides, polybutenyl succinamides, benzylamines, and succinates. These dispersants may be borated. This polybutenyl succinimide is obtained from polybutene obtained by polymerizing a high purity isobutene or a mixture of 1-butene and isobutene with a boron fluoride catalyst or an aluminum chloride catalyst, and has a vinylidene structure at the end of the polybutene. In general, 5 to 100 mol% is contained. The polyalkylene polyamine chain preferably contains 2 to 5, particularly 3 to 4 nitrogen atoms from the viewpoint of obtaining an excellent sludge inhibiting effect. In addition, as a derivative of polybutenyl succinimide, a boric acid compound such as boric acid or an oxygen-containing organic compound such as alcohol, aldehyde, ketone, alkylphenol, cyclic carbonate, or organic acid is added to the polybutenyl succinimide. It can be used as a so-called modified succinimide in which a part or all of the remaining amino group and / or imino group is neutralized or amidated by acting. In particular, a boron-containing alkenyl (or alkyl) succinimide obtained by a reaction with a boron compound such as boric acid is excellent in terms of thermal and oxidation stability.

(耐摩耗剤)
本形態に係るエンジンオイルに使用する耐摩耗性や極圧性を付与する耐摩耗剤としては、ジチオリン酸亜鉛(ZnDTP)が挙げられる。ZnDTPとしては、一般に、ジアルキルジチオリン酸亜鉛、ジアリールジチオリン酸亜鉛、アリールアルキルジチオリン酸亜鉛等が挙げられる。これらアルキル基は直鎖状でも分枝状でもよい。例えば、ジアルキルジチオリン酸亜鉛のアルキル基は、炭素数3〜22の第1級又は第2級のアルキル基、炭素数3〜18のアルキル基で置換されたアルキルアリール基を有するジアルキルジチオリン酸亜鉛が使用される。ジアルキルジチオリン酸亜鉛の具体例としては、ジプロピルジチオリン酸亜鉛、ジブチルジチオリン酸亜鉛、ジペンチルジチオリン酸亜鉛、ジヘキシルジチオリン酸亜鉛、ジイソペンチルジチオリン酸亜鉛、ジエチルヘキシルジチオリン酸亜鉛、ジオクチルジチオリン酸亜鉛、ジノニルジチオリン酸亜鉛、ジデシルジチオリン酸亜鉛、ジドデシルジチオリン酸亜鉛、ジプロピルフェニルジチオリン酸亜鉛、ジペンチルフェニルジチオリン酸亜鉛、ジプロピルメチルフェニルジチオリン酸亜鉛、ジノニルフェニルジチオリン酸亜鉛、ジドデシルフェニルジチオリン酸亜鉛、ジドデシルフェニルジチオリン酸亜鉛等が挙げられる。
(Antiwear agent)
Examples of the antiwear agent that imparts wear resistance and extreme pressure used in the engine oil according to this embodiment include zinc dithiophosphate (ZnDTP). Examples of ZnDTP generally include zinc dialkyldithiophosphate, zinc diaryldithiophosphate, zinc arylalkyldithiophosphate, and the like. These alkyl groups may be linear or branched. For example, the zinc group of zinc dialkyldithiophosphate is a zinc dialkyldithiophosphate having an alkylaryl group substituted with a primary or secondary alkyl group having 3 to 22 carbon atoms or an alkyl group having 3 to 18 carbon atoms. used. Specific examples of zinc dialkyldithiophosphate include zinc dipropyldithiophosphate, zinc dibutyldithiophosphate, zinc dipentyldithiophosphate, zinc dihexyldithiophosphate, zinc diisopentyldithiophosphate, zinc diethylhexyldithiophosphate, zinc dioctyldithiophosphate, Zinc nonyldithiophosphate, zinc didecyldithiophosphate, zinc didodecyldithiophosphate, zinc dipropylphenyldithiophosphate, zinc dipentylphenyldithiophosphate, zinc dipropylmethylphenyldithiophosphate, zinc dinonylphenyldithiophosphate, didodecylphenyldithiophosphate Zinc, zinc dodecylphenyl dithiophosphate, and the like can be mentioned.

(金属不活性剤)
本形態に係るエンジンオイルに使用し得る金属不活性剤としては、ベンゾトリアゾール、アルキル−トルトリアゾール類等のベンゾトリアゾール誘導体、ベンゾイミダゾール類、トルイミダゾール類等のベンゾイミダゾール誘導体がある。また、トルインダゾール類等のインダゾール誘導体、ベンゾチアゾール類、トルゾチアゾール類等のベンゾチアゾール誘導体がある。更に、ベンゾオキサゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体等が挙げられる。
(Metal deactivator)
Examples of metal deactivators that can be used in the engine oil according to this embodiment include benzotriazole derivatives such as benzotriazole and alkyl-tolutriazole, and benzimidazole derivatives such as benzimidazoles and toluimidazoles. In addition, there are indazole derivatives such as tolindazoles, and benzothiazole derivatives such as benzothiazoles and torzothiazoles. Furthermore, a benzoxazole derivative, a thiadiazole derivative, a triazole derivative, etc. are mentioned.

(酸化防止剤)
本形態に係るエンジンオイルに使用し得る酸化防止剤としては、例えば、アミン系酸化防止剤、フェノール系酸化防止剤を挙げることができる。アミン系酸化防止剤としては、p,p’−ジオクチル−ジフェニルアミン(精工化学社製:ノンフレックスOD−3)、p,p’−ジ−α−メチルベンジル−ジフェニルアミン、N−p−ブチルフェニル−N−p’−オクチルフェニルアミン等のジアルキル−ジフェニルアミン類、モノ−t−ブチルジフェニルアミン、モノオクチルジフェニルアミン等のモノアルキルジフェニルアミン類、ジ(2,4−ジエチルフェニル)アミン、ジ(2−エチル−4−ノニルフェニル)アミン等のビス(ジアルキルフェニル)アミン類、オクチルフェニル−1−ナフチルアミン、N−t−ドデシルフェニル−1−ナフチルアミン等のアルキルフェニル−1−ナフチルアミン類、1−ナフチルアミン、フェニル−1−ナフチルアミン、フェニル−2−ナフチルアミン、N−ヘキシルフェニル−2−ナフチルアミン、N−オクチルフェニル−2−ナフチルアミン等のアリール−ナフチルアミン類、N,N’−ジイソプロピル−p−フェニレンジアミン、N,N’−ジフェニル−p−フェニレンジアミン等のフェニレンジアミン類、フェノチアジン(保土谷化学社製:Phenothiazine)、3,7−ジオクチルフェノチアジン等のフェノチアジン類等が挙げられる。フェノール系酸化防止剤としては、2−t−ブチルフェノール、2−t−ブチル−4−メチルフェノール、2−t−ブチル−5−メチルフェノール、2,4−ジ−t−ブチルフェノール、2,4−ジメチル−6−t−ブチルフェノール、2−t−ブチル−4−メトキシフェノール、3−t−ブチル−4−メトキシフェノール、2,5−ジ−t−ブチルヒドロキノン(川口化学社製:アンテージDBH)、2,6−ジ−t−ブチルフェノール、2,6−ジ−t−ブチル−4−メチルフェノール、2,6−ジ−t−ブチル−4−エチルフェノール等の2,6−ジ−t−ブチル−4−アルキルフェノール類、2,6−ジ−t−ブチル−4−メトキシフェノール、2,6−ジ−t−ブチル−4−エトキシフェノール等の2,6−ジ−t−ブチル−4−アルコキシフェノール類がある。また、3,5−ジ−t−ブチル−4−ヒドロキシベンジルメルカプト−オクチルアセテート、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート(吉富製薬社製:ヨシノックスSS)、n−ドデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2’−エチルヘキシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ベンゼンプロパン酸3,5−ビス(1,1−ジメチル−エチル)−4−ヒドロキシ−C7〜C9側鎖アルキルエステル(チバ・スペシャルティ・ケミカルズ社製:IrganoxL135)等のアルキル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート類、2,6−ジ−t−ブチル−α−ジメチルアミノ−p−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)(川口化学社製:アンテージW−400)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)(川口化学社製:アンテージW−500)等の2,2’−メチレンビス(4−アルキル−6−t−ブチルフェノール)類がある。更に、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)(川口化学社製:アンテージW−300)、4,4’−メチレンビス(2,6−ジ−t−ブチルフェノール)(シェル・ジャパン社製:Ionox220AH)、4,4’−ビス(2,6−ジ−t−ブチルフェノール)、2,2−(ジ−p−ヒドロキシフェニル)プロパン(シェル・ジャパン社製:ビスフェノールA)、2,2−ビス(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロパン、4,4’−シクロヘキシリデンビス(2,6−t−ブチルフェノール)、ヘキサメチレングリコールビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート](チバ・スペシャルティ・ケミカルズ社製:IrganoxL109)、トリエチレングリコールビス[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート](吉富製薬社製:トミノックス917)、2,2’−チオ−[ジエチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート](チバ・スペシャルティ・ケミカルズ社製:IrganoxL115)、3,9−ビス{1,1−ジメチル−2−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}2,4,8,10−テトラオキサスピロ[5,5]ウンデカン(住友化学:スミライザーGA80)、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)(川口化学社製:アンテージRC)、2,2’−チオビス(4,6−ジ−t−ブチル−レゾルシン)等のビスフェノール類がある。そして、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン(チバ・スペシャルティ・ケミカルズ社製:IrganoxL101)、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン(吉富製薬社製:ヨシノックス930)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン(シェル・ジャパン社製:Ionox330)、ビス−[3,3’−ビス−(4’−ヒドロキシ−3’−t−ブチルフェニル)ブチリックアシッド]グリコールエステル、2−(3’,5’−ジ−t−ブチル−4−ヒドロキシフェニル)メチル−4−(2”,4”−ジ−t−ブチル−3”−ヒドロキシフェニル)メチル−6−t−ブチルフェノール、2,6−ビス(2’−ヒドロキシ−3’−t−ブチル−5’−メチル−ベンジル)−4−メチルフェノール等のポリフェノール類、p−t−ブチルフェノールとホルムアルデヒドの縮合体、p−t−ブチルフェノールとアセトアルデヒドの縮合体等のフェノールアルデヒド縮合体等が挙げられる。
(Antioxidant)
As antioxidant which can be used for the engine oil which concerns on this form, an amine antioxidant and a phenolic antioxidant can be mentioned, for example. As amine-based antioxidants, p, p′-dioctyl-diphenylamine (manufactured by Seiko Chemical Co., Ltd .: non-flex OD-3), p, p′-di-α-methylbenzyl-diphenylamine, Np-butylphenyl- Dialkyl-diphenylamines such as Np′-octylphenylamine, monoalkyldiphenylamines such as mono-t-butyldiphenylamine and monooctyldiphenylamine, di (2,4-diethylphenyl) amine, di (2-ethyl-4 -Bis (dialkylphenyl) amines such as nonylphenyl) amine, alkylphenyl-1-naphthylamines such as octylphenyl-1-naphthylamine, Nt-dodecylphenyl-1-naphthylamine, 1-naphthylamine, phenyl-1- Naphtylamine, phenyl-2-naphthyla , N-hexylphenyl-2-naphthylamine, aryl-naphthylamines such as N-octylphenyl-2-naphthylamine, N, N′-diisopropyl-p-phenylenediamine, N, N′-diphenyl-p-phenylenediamine, etc. Phenylenediamines, phenothiazines (manufactured by Hodogaya Chemical Co., Ltd .: Phenothiazine), and phenothiazines such as 3,7-dioctylphenothiazine. Examples of phenolic antioxidants include 2-t-butylphenol, 2-t-butyl-4-methylphenol, 2-t-butyl-5-methylphenol, 2,4-di-t-butylphenol, 2,4- Dimethyl-6-t-butylphenol, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,5-di-t-butylhydroquinone (manufactured by Kawaguchi Chemical Co., Ltd .: Antage DBH), 2,6-di-t-butylphenol such as 2,6-di-t-butylphenol, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol 2,6-di-tert-butyl-4-, such as -4-alkylphenols, 2,6-di-tert-butyl-4-methoxyphenol, 2,6-di-tert-butyl-4-ethoxyphenol There is a Turkey alkoxy phenols. 3,5-di-t-butyl-4-hydroxybenzyl mercapto-octyl acetate, n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (manufactured by Yoshitomi Pharmaceutical Co., Ltd.) Yoshinox SS), n-dodecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2'-ethylhexyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Alkyl-3- () such as propionate, benzenepropanoic acid 3,5-bis (1,1-dimethyl-ethyl) -4-hydroxy-C7-C9 side chain alkyl ester (manufactured by Ciba Specialty Chemicals: Irganox L135) 3,5-di-t-butyl-4-hydroxyphenyl) propionates, 2,6-di-t-butyl-α-di Tylamino-p-cresol, 2,2′-methylenebis (4-methyl-6-t-butylphenol) (manufactured by Kawaguchi Chemical Co .: Antage W-400), 2,2′-methylenebis (4-ethyl-6-t-) And 2,2′-methylenebis (4-alkyl-6-t-butylphenol) such as (Butylphenol) (manufactured by Kawaguchi Chemical Co., Ltd .: Antage W-500). Further, 4,4′-butylidenebis (3-methyl-6-tert-butylphenol) (manufactured by Kawaguchi Chemical Co., Ltd .: Antage W-300), 4,4′-methylenebis (2,6-di-tert-butylphenol) (shell) -Japan company make: Ionox220AH), 4,4'-bis (2,6-di-t-butylphenol), 2, 2- (di-p-hydroxyphenyl) propane (shell Japan company make: bisphenol A), 2,2-bis (3,5-di-t-butyl-4-hydroxyphenyl) propane, 4,4′-cyclohexylidenebis (2,6-t-butylphenol), hexamethylene glycol bis [3- ( 3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by Ciba Specialty Chemicals: Irganox L109), triethyle Glycol bis [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate] (manufactured by Yoshitomi Pharmaceutical Co., Ltd .: Tominox 917), 2,2′-thio- [diethyl-3- (3 5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by Ciba Specialty Chemicals: Irganox L115), 3,9-bis {1,1-dimethyl-2- [3- (3-t-butyl -4-hydroxy-5-methylphenyl) propionyloxy] ethyl} 2,4,8,10-tetraoxaspiro [5,5] undecane (Sumitomo Chemical: Sumilizer GA80), 4,4'-thiobis (3-methyl -6-t-butylphenol) (manufactured by Kawaguchi Chemical Co., Ltd .: Antage RC), 2,2'-thiobis (4,6-di-t-butyl-resorcin) There is Lumpur class. Tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane (manufactured by Ciba Specialty Chemicals: Irganox L101), 1,1,3-tris (2-methyl) -4-hydroxy-5-t-butylphenyl) butane (Yoshitomi Pharmaceutical Co., Ltd .: Yoshinox 930), 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4 -Hydroxybenzyl) benzene (manufactured by Shell Japan: Ionox 330), bis- [3,3′-bis- (4′-hydroxy-3′-t-butylphenyl) butyric acid] glycol ester, 2- (3 ', 5'-di-tert-butyl-4-hydroxyphenyl) methyl-4- (2 ", 4" -di-tert-butyl-3 "-hydroxyphenyl) methyl Of polyphenols such as -6-tert-butylphenol, 2,6-bis (2'-hydroxy-3'-tert-butyl-5'-methyl-benzyl) -4-methylphenol, pt-butylphenol and formaldehyde Examples include condensates and phenol aldehyde condensates such as a condensate of pt-butylphenol and acetaldehyde.

(粘度指数向上剤)
本形態に係るエンジンオイルに使用し得る粘度指数向上剤としては、例えば、ポリメタクリレート類やエチレン−プロピレン共重合体、スチレン−ジエン共重合体、ポリイソブチレン、ポリスチレン等のオレフィンポリマー類等の非分散型粘度指数向上剤や、これらに含窒素モノマーを共重合させた分散型粘度指数向上剤等が挙げられる。
(Viscosity index improver)
Examples of the viscosity index improver that can be used in the engine oil according to the present embodiment include non-dispersions of olefin polymers such as polymethacrylates, ethylene-propylene copolymers, styrene-diene copolymers, polyisobutylene, and polystyrene. Examples thereof include a type viscosity index improver and a dispersion type viscosity index improver obtained by copolymerizing a nitrogen-containing monomer.

(消泡剤)
本形態に係るエンジンオイルに使用し得る消泡剤としては、例えば、ジメチルポリシロキサン、ジエチルシリケート、フルオロシリコーン等のオルガノシリケート類、ポリアルキルアクリレート等の非シリコーン系消泡剤が挙げられる。
(Defoamer)
Examples of the antifoaming agent that can be used for the engine oil according to the present embodiment include organosilicates such as dimethylpolysiloxane, diethyl silicate, and fluorosilicone, and non-silicone antifoaming agents such as polyalkyl acrylate.

≪自動車用エンジンオイルの組成≫
(エンジンオイルにおけるグリセリン1−オレアートの量)
グリセリン1−オレアートの含有量は、エンジンオイル組成物の全質量を基準として、0.1〜2.0質量%であることが好適であり、0.25〜1.5質量%であることがより好適であり、0.5〜1.2質量%の範囲であることが更に好適である。
≪Composition of engine oil for automobiles≫
(Amount of glycerin 1-oleate in engine oil)
The content of glycerin 1-oleate is preferably 0.1 to 2.0% by mass and 0.25 to 1.5% by mass based on the total mass of the engine oil composition. Is more suitable, and it is still more suitable that it is the range of 0.5-1.2 mass%.

(エンジンオイルにおけるモノアルキル又はモノアルケニルアミンエチレンオキサイド付加物の量)
モノアルキル又はモノアルケニルアミンエチレンオキサイド付加物の含有量(複数種含む場合にはそれらの合計量)は、エンジンオイル組成物の全質量を基準として、単独又は複数組み合わせて、エンジンオイル組成物の全質量を基準として、0.1〜2.0質量%であることが好適であり、0.2〜1.5質量%であることがより好適であり、0.2〜1.0質量%の範囲であることが更に好適である。
(Amount of monoalkyl or monoalkenylamine ethylene oxide adduct in engine oil)
The content of the monoalkyl or monoalkenylamine ethylene oxide adduct (the total amount when there are plural types) is determined based on the total mass of the engine oil composition, alone or in combination, and the total amount of the engine oil composition. It is preferably 0.1 to 2.0% by mass, more preferably 0.2 to 1.5% by mass, based on mass, and 0.2 to 1.0% by mass. More preferably, it is in the range.

(エンジンオイルにおける他の成分の量)
本形態に係るエンジンオイル組成物に添加してもよい他の成分の好適添加量について説明する。まず、酸化防止剤の好適添加量は、単独又は複数組み合わせて、エンジンオイル組成物の全質量を基準として、0.01〜2質量%の範囲である。金属不活性剤の好適添加量は、単独又は複数組み合わせて、エンジンオイル組成物の全質量を基準として、0.01〜0.5質量%の範囲である。耐摩耗剤(例えばZnDTP)の好適添加量は、単独又は複数組み合わせて、エンジンオイル組成物の全質量を基準にリン(P)量として、0.01〜0.10質量%、より好ましくは0.05~0.08質量%の範囲である。エンジン油全重量に対してZnDTPに含まれるリン元素重量が0.01質量%未満では充分な耐摩耗性を得ることができず、また0.10質量%より高い濃度では自動車の排ガス浄化触媒に与える被毒の影響が大きくなる。粘度指数向上剤の好適添加量は、単独又は複数組み合わせて、エンジンオイル組成物の全質量を基準として、0.05〜20質量%の範囲である。消泡剤の好適添加量は、単独又は複数組み合わせて、エンジンオイル組成物の全質量を基準として、0.0001〜0.01質量%の範囲である。金属系清浄剤の好適添加量は、単独又は複数組み合わせて、エンジンオイル組成物の全質量を基準として金属量で0.05〜0.3質量%、より好ましくは0.1〜0.2質量%である。無灰分散剤の好適添加量は、単独又は複数組み合わせて、エンジンオイル組成物の全質量を基準として、0.01〜0.3質量%の窒素を提供する程度の量である。
(Amount of other components in engine oil)
The preferred addition amount of other components that may be added to the engine oil composition according to this embodiment will be described. First, the preferred addition amount of the antioxidant is in the range of 0.01 to 2% by mass based on the total mass of the engine oil composition, alone or in combination. A suitable addition amount of the metal deactivator is in a range of 0.01 to 0.5% by mass based on the total mass of the engine oil composition, alone or in combination. A suitable addition amount of the antiwear agent (for example, ZnDTP) is 0.01 to 0.10% by mass, more preferably 0, based on the total mass of the engine oil composition, based on the total mass of the engine oil composition. The range is from 0.05 to 0.08% by mass. If the weight of elemental phosphorus contained in ZnDTP is less than 0.01% by mass with respect to the total weight of engine oil, sufficient wear resistance cannot be obtained, and if the concentration is higher than 0.10% by mass, the exhaust gas purification catalyst for automobiles cannot be obtained. The effect of poisoning increases. The preferred addition amount of the viscosity index improver is in the range of 0.05 to 20% by mass based on the total mass of the engine oil composition, alone or in combination. The preferred addition amount of the antifoaming agent is in the range of 0.0001 to 0.01% by mass based on the total mass of the engine oil composition, alone or in combination. The preferred addition amount of the metallic detergent is 0.05 to 0.3% by mass, more preferably 0.1 to 0.2% by mass, based on the total mass of the engine oil composition, alone or in combination. %. The preferred addition amount of the ashless dispersant is such that it provides 0.01 to 0.3% by mass of nitrogen, alone or in combination, based on the total mass of the engine oil composition.

≪自動車用エンジンオイルの物性≫
本形態に係るエンジンオイル組成物は、「グリセリン1−オレアート」及び「モノアルキル又はモノアルケニルアミンエチレンオキサイド付加物」を含んでいないこと以外は同一組成であるエンジンオイル組成物を基準として、5%以上摩擦係数(80℃における往復動摩擦係数)が低く(改善されている)ことが好ましく、10%以上摩擦係数(80℃における往復動摩擦係数)が低く(改善されている)ことがより好ましい。更に、本形態に係るエンジンオイル組成物は、摩擦係数(往復動摩擦係数)が0.100以下の範囲であることが好適である。また、ホットチューブ試験による評点(エンジン清浄性試験:280℃)は、好適には5以上、より好適には7以上、更に好適には8以上であり、ホットチューブ試験による評点(エンジン清浄性試験:295℃)は、好適には2以上、より好適には3.0以上、更に好適には3.5以上である。更に、酸化安定度試験(ISOT)による100℃の動粘度に対する粘度変化率は、好適には0.5%未満、より好適には0.25%未満である。また、酸化安定度試験(ISOT)による酸価変化は、好適には0.3mgKOH/g未満、より好適には0.2mgKOH/g未満、更に好適には0.15mgKOH/g未満である。
≪Physical properties of automotive engine oil≫
The engine oil composition according to this embodiment is based on an engine oil composition having the same composition except that it does not contain “glycerin 1-oleate” and “monoalkyl or monoalkenylamine ethylene oxide adduct”. % Friction coefficient (reciprocating friction coefficient at 80 ° C.) is preferably low (improved), and it is more preferable that the coefficient of friction (reciprocating friction coefficient at 80 ° C.) is low (improved). Furthermore, the engine oil composition according to this embodiment preferably has a friction coefficient (reciprocating friction coefficient) in the range of 0.100 or less. Moreover, the score by the hot tube test (engine cleanliness test: 280 ° C.) is preferably 5 or more, more preferably 7 or more, and even more preferably 8 or more. Score by the hot tube test (engine cleanliness test) : 295 ° C.) is preferably 2 or more, more preferably 3.0 or more, and even more preferably 3.5 or more. Further, the rate of change in viscosity with respect to the kinematic viscosity at 100 ° C. by the oxidation stability test (ISOT) is preferably less than 0.5%, more preferably less than 0.25%. Moreover, the acid value change by an oxidation stability test (ISOT) is preferably less than 0.3 mgKOH / g, more preferably less than 0.2 mgKOH / g, and even more preferably less than 0.15 mgKOH / g.

≪成分≫
(基油)
実施例及び比較例にて使用した基油は表1の性状を示すものである。ここで、動粘度(@40℃)、動粘度(@100℃)は、JIS
K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」によって得られる値である。また、粘度指数は、JIS−K−2283
原油及び石油製品-動粘度試験方法及び粘度指数算出方法に準拠して得られる値である。流動点(P.P)についてはJIS K 2269、硫黄分についてはJIS K 2541(放射線励式起法)、窒素分についてはJIS K 2609(化学発光法)を用いた。
≪Ingredients≫
(Base oil)
The base oils used in Examples and Comparative Examples have the properties shown in Table 1. Here, kinematic viscosity (@ 40 ° C) and kinematic viscosity (@ 100 ° C) are JIS
K 2283 “crude oil and petroleum products—kinematic viscosity test method and viscosity index calculation method”. The viscosity index is JIS-K-2283.
Crude oil and petroleum products-values obtained according to the kinematic viscosity test method and viscosity index calculation method. JIS K 2269 was used for the pour point (PP), JIS K 2541 (radiation excitation method) for the sulfur content, and JIS K 2609 (chemiluminescence method) for the nitrogen content.

Figure 0005828756
Figure 0005828756

(グリセリン1−オレアート)
実施例及び比較例にて使用したグリセリン1−オレアート(GMO)の物性は下記の通りである。ここで、引火点は、JIS K2265のクリーブランド開放式(COC)で行った値である。また、水酸基価は、JIS K 0070に準拠し、ピリジン−塩化アセチル化法により測定した値である。
融点:41℃
動粘度@100℃:11mm2/s
引火点(COC):220℃
水酸基価:222mgKOH/g
(Glycerin 1-oleate)
The physical properties of glycerin 1-oleate (GMO) used in Examples and Comparative Examples are as follows. Here, the flash point is a value obtained by the Cleveland open type (COC) of JIS K2265. The hydroxyl value is a value measured by a pyridine-acetyl chloride method according to JIS K 0070.
Melting point: 41 ° C
Kinematic viscosity @ 100 ° C: 11mm 2 / s
Flash point (COC): 220 ° C
Hydroxyl value: 222mgKOH / g

(アミンエチレンオキサイド付加物)
アミンエチレンオキサイド付加物(DEA)として実施例及び比較例にて使用したものの物性等は下記の通りである。ここで、塩基価は、JIS
K2501法(過塩素酸法)により測定された値である。
R=オレイル基,[ CH3(CH27−CH=CH−(CH2)7− ]
n=1
m=1
融点:31℃
密度:0.92g/cm3
動粘度@40℃:69mm2/s
引火点(COC):230℃
水酸基価:322mgKOH/g
塩基価:160mgKOH/g
(Amine ethylene oxide adduct)
The physical properties and the like of those used in Examples and Comparative Examples as the amine ethylene oxide adduct (DEA) are as follows. Here, the base number is JIS
It is a value measured by the K2501 method (perchloric acid method).
R = oleyl group, [CH 3 (CH 2 ) 7 —CH═CH— (CH 2 ) 7 −]
n = 1
m = 1
Melting point: 31 ° C
Density: 0.92 g / cm 3
Kinematic viscosity @ 40 ° C: 69mm 2 / s
Flash point (COC): 230 ° C
Hydroxyl value: 322 mgKOH / g
Base number: 160mgKOH / g

(DIパッケージ添加剤)
実施例及び比較例にて使用したDIパッケージ添加剤(GF−5相当)の主たる成分は下記の通りである{尚、各成分の含有量は、実施例におけるエンジン油を100質量%として算出(実施例では当該添加剤を9.05質量%添加)}。
金属系清浄剤:Caサリシレート(Ca分=0.21質量%、塩基価(HCl法)=6.7mgKOH/g)
無灰分散剤:ポリブテニルコハク酸イミド(N分=0.095質量%、B分=0.006質量%)
ジアルキルジチオリン酸亜鉛(2級アルキルタイプ、Zn分=0.085質量%、P分=0.074質量%)
金属不活性剤
酸化防止剤:芳香族アミン化合物、ヒンダードフェノール化合物
(DI package additive)
The main components of the DI package additive (corresponding to GF-5) used in the examples and comparative examples are as follows {in addition, the content of each component is calculated with the engine oil in the examples as 100% by mass ( In the examples, the additive is added by 9.05% by mass)}.
Metal detergent: Ca salicylate (Ca content = 0.21 mass%, base number (HCl method) = 6.7 mgKOH / g)
Ashless dispersant: polybutenyl succinimide (N content = 0.095 mass%, B content = 0.006 mass%)
Zinc dialkyldithiophosphate (secondary alkyl type, Zn content = 0.085 mass%, P content = 0.074 mass%)
Metal deactivator antioxidant: Aromatic amine compounds, hindered phenol compounds

(粘度指数向上剤)
Viscoplex 6-6955(ポリメタアクリレート系粘度指数向上剤)
使用した分散剤-粘度指数(VI)向上剤は、ローマックスから商品名“VISCOPLEX 6‐6955”で得られるポリメタクリレート共重合体である。
(Viscosity index improver)
Viscoplex 6-6955 (Polymethacrylate viscosity index improver)
The dispersant-viscosity index (VI) improver used is a polymethacrylate copolymer obtained from Romax under the trade name “VISCOPLEX 6-6955”.

(消泡剤)
ポリジメチルシロキサンを溶媒として灯油で希釈した3質量%の溶液
(Defoamer)
3% by weight solution diluted with kerosene using polydimethylsiloxane as solvent

≪評価方法≫
(往復動摩擦試験条件)
摩擦特性を見るために、ASTM−G−133(American Society for Testing and Materials)で使用されるCAMERON−PLINT・TE77試験機を用いて評価した。上部試験片はSK−3製で直径6mm、長さ16mmの円筒形とし、下部試験片はSK−3製の板を用い、試験温度80℃、荷重300N、振幅15mm、往復振動数10Hzで10分間試験を実施し、安定した最後の1分間に測定した摩擦係数の平均値を記した。摩擦係数が小さいほど摩擦低減性が優れていることを示す。
≪Evaluation method≫
(Reciprocating friction test conditions)
In order to see the friction characteristics, it evaluated using the CAMERON-PLINT * TE77 test machine used by ASTM-G-133 (American Society for Testing and Materials). The upper test piece is made of SK-3 and has a cylindrical shape with a diameter of 6 mm and a length of 16 mm. The lower test piece is a plate made of SK-3, and the test temperature is 80 ° C., the load is 300 N, the amplitude is 15 mm, and the reciprocating frequency is 10 Hz. A minute test was performed and the average value of the coefficient of friction measured during the last stable minute was noted. A smaller friction coefficient indicates better friction reduction.

(ホットチューブ試験)
石油学会法、JPI−5S−55−99に基づいて実施。試験温度を280℃と295℃の2点について行った。日本のディーゼルエンジン油規格JASO M355:2008にも高温堆積物防止性の評価試験として、試験温度280℃が用いられ、評点が7.0以上であることが日本のディーゼルエンジン油の規格として規定されている。評点が高いほど高温堆積防止性が良いことを示す。
(Hot tube test)
Implemented based on the Petroleum Institute Act, JPI-5S-55-99. The test temperature was performed at two points of 280 ° C. and 295 ° C. The Japanese diesel engine oil standard JASO M355: 2008 also uses a test temperature of 280 ° C as an evaluation test for the prevention of high temperature deposits. ing. The higher the score, the better the high-temperature deposition prevention property.

(酸化安定度試験(ISOT))
JIS−K−2514に準拠、験温度:165.5℃、試験時間:96時間で、評価項目としては試験後の100℃の動粘度増加率%、酸価の変化量、mgKOH/gを測定し、結果を表3に記した。
(Oxidation stability test (ISOT))
According to JIS-K-2514, test temperature: 165.5 ° C., test time: 96 hours, and as evaluation items, kinematic viscosity increase rate at 100 ° C. after test, change in acid value, mgKOH / g are measured The results are shown in Table 3.

≪実施例1〜4及び比較例1〜5≫
実施例1〜4及び比較例1〜5に係るエンジンオイルの組成を表2に示す。また、実施例1〜4及び比較例1〜5に係るエンジンオイルの性状を表3に示す。ここで、酸価は、JIS K2501に従い測定された値である。
<< Examples 1-4 and Comparative Examples 1-5 >>
Table 2 shows compositions of engine oils according to Examples 1 to 4 and Comparative Examples 1 to 5. Table 3 shows the properties of the engine oil according to Examples 1 to 4 and Comparative Examples 1 to 5. Here, the acid value is a value measured according to JIS K2501.

Figure 0005828756
Figure 0005828756

Figure 0005828756
Figure 0005828756

表4は、実施例及び比較例に係るエンジンオイルの摩擦低減性評価の結果を示したものである。当該表から分かるように、GMOを増やすことで、摩擦係数が下がり省燃費効果が認められた。一方、DEA自体には摩擦係数低減効果による省燃費性は認められなかった。GMOとDEAとを組み合わせると、良好な摩擦係数低減効果が得られた。DEAの窒素原子とGMOの水酸基の水素原子とが水素結合して、DEAとGMOによる強固で緻密な吸着膜が表面で形成され、摩擦係数がより低下したものと推定される。   Table 4 shows the results of the evaluation of the friction reduction performance of the engine oil according to the example and the comparative example. As can be seen from the table, increasing the GMO decreased the coefficient of friction and recognized a fuel saving effect. On the other hand, the DEA itself did not show fuel efficiency due to the friction coefficient reducing effect. When GMO and DEA were combined, a good friction coefficient reduction effect was obtained. It is presumed that the nitrogen atom of DEA and the hydrogen atom of the hydroxyl group of GMO are hydrogen-bonded to form a strong and dense adsorption film on the surface by DEA and GMO, and the friction coefficient is further reduced.

Figure 0005828756
Figure 0005828756

≪ピストン清浄性評価≫
表5は、実施例及び比較例に係るエンジンオイルのピストン清浄性評価の結果を示したものである。当該表から分かるように、GMO及びDEAの組み合わせでは、280℃のホットチューブ試験によるピストン清浄性の大きな違いは認められなかった。一方、295℃の厳しい高温度では、全体的に清浄性は悪化し、清浄性の評点は低下した。特に、GMOはオレイル基の部分に2重結合があるため、高温では酸化・劣化しやすい。GMOの添加量が増えると明らかに清浄性は低下した。しかしDEAを組合せると劇的に清浄性は改善された。これは界面活性剤であるDEAの洗浄作用が高温でも劣化せず、添加効果が見られたためと推定される。
≪Piston cleanliness evaluation≫
Table 5 shows the results of the piston cleanliness evaluation of the engine oil according to the example and the comparative example. As can be seen from the table, in the combination of GMO and DEA, no significant difference in piston cleanliness was observed in the hot tube test at 280 ° C. On the other hand, at a severe high temperature of 295 ° C., the overall cleanliness deteriorated, and the cleanliness score decreased. In particular, since GMO has a double bond in the oleyl group, it tends to oxidize and deteriorate at high temperatures. As the amount of GMO added increased, the cleanliness clearly decreased. However, the cleanliness improved dramatically when the DEA was combined. This is presumably because the cleaning effect of the surfactant DEA did not deteriorate even at high temperatures, and the addition effect was observed.

Figure 0005828756
Figure 0005828756

≪熱・酸化安定性評価≫
表6及び表7は、実施例及び比較例に係るエンジンオイルのピストン清浄性評価の結果を示したものである。まず、表6から分かるように、ISOT後の100℃の粘度変化率は、GMOの場合、添加量に比例して増加し、試料油の熱・酸化劣化に悪影響が出た。これは高温によって先に示すオレイル基の2重結合の部分に対して酸化・劣化が起きやすいためと考えられる。GMOを含む試料油にDEAを0.5wt%添加すると、劇的に酸化劣化が抑えられ、粘度増加が抑制、改善された。一方、DEA単独の場合は、添加量が増えると、増粘する傾向があるが、その度合いは非常に小さかった。この試験においても、GMOとDEAとを組み合わせると、熱酸化劣化による粘度増加は抑制され、少なくなった。GMOとDEAとの組合せ効果(相乗効果)が働いていることが分かる。この相乗効果の理由は明確には分からないが、DEAが、ISOT試験に使用される触媒金属のCuやFeの表面を不活性化し酸化劣化を抑制していることが考えられた。
≪Heat and oxidation stability evaluation≫
Tables 6 and 7 show the results of the piston cleanliness evaluation of the engine oil according to Examples and Comparative Examples. First, as can be seen from Table 6, the rate of change in viscosity at 100 ° C. after ISOT increased in proportion to the amount added in the case of GMO, which had an adverse effect on the thermal and oxidative deterioration of the sample oil. This is presumably because oxidation and deterioration are likely to occur in the double bond portion of the oleyl group described above at a high temperature. Addition of 0.5 wt% DEA to the sample oil containing GMO dramatically suppressed oxidative degradation and suppressed and improved viscosity increase. On the other hand, in the case of DEA alone, as the addition amount increases, the viscosity tends to increase, but the degree is very small. Also in this test, when GMO and DEA were combined, the increase in viscosity due to thermal oxidative degradation was suppressed and decreased. It can be seen that the combined effect (synergistic effect) of GMO and DEA is working. Although the reason for this synergistic effect is not clearly understood, it was considered that DEA deactivated the surface of the catalytic metals Cu and Fe used in the ISOT test to suppress oxidative degradation.

Figure 0005828756
Figure 0005828756

また、表7は、ISOT後の劣化油の酸価を測定した結果である。表7から分かるように、GMOは添加量が増えると、酸価が上昇していることから酸性物質が生成している。一方、DEAも添加量が増えると、酸価が増える傾向が少し見られた。GMOとDEAとを組み合わせると酸価の増加はほとんど無くなった。このことから、組合せ効果の存在が明確である。   Table 7 shows the results of measuring the acid value of the deteriorated oil after ISOT. As can be seen from Table 7, as the amount of GMO added increases, the acid value increases, so that acidic substances are generated. On the other hand, there was a slight tendency for the acid value to increase as DEA increased in addition. When GMO and DEA were combined, there was almost no increase in acid value. From this, the existence of the combination effect is clear.

Figure 0005828756
Figure 0005828756

Claims (2)

下記式:
Figure 0005828756

(式中、R1はオレイル基である)で示されるグリセリン1−オレアートと
下記式:
Figure 0005828756
(式中、RはC8〜C22の炭化水素基であり、n及びmはそれぞれ独立して1又は2で
ある)で示されるモノアルキル又はモノアルケニルアミンエチレンオキサイド付加物から
なる群より選択される1種又は2種以上と
API基油カテゴリーでグループ3に属する基油と
を含有し、
オイルの全質量を基準として、グリセリン1−オレアートの含有量が0.5〜2.0質
量%であり、前記付加物の含有量が0.5〜2.0質量%である
ことを特徴とする自動車用エンジンオイル。
Following formula:
Figure 0005828756

(Wherein R1 is an oleyl group) and glycerol 1-oleate represented by the following formula:
Figure 0005828756
Wherein R is a C8-C22 hydrocarbon group, and n and m are each independently 1 or 2, and are selected from the group consisting of monoalkyl or monoalkenylamine ethylene oxide adducts 1 type or 2 types or more
A base oil belonging to Group 3 in the API base oil category, and
Based on the total mass of the oil, the content of glycerin 1-oleate is 0.5 to 2.0.
An engine oil for automobiles , wherein the content of the adduct is 0.5 to 2.0% by mass .
オイルの全質量を基準として、グリセリン1−オレアートの含有量が0.5〜1.2質量%であり、前記付加物の含有量が0.〜1.0質量%である、請求項1記載の自動車用エンジンオイル。 Based on the total mass of the oil, the content of glycerin 1-oleate is 0.5 to 1.2% by mass, and the content of the adduct is 0.1. The engine oil for automobiles according to claim 1, which is 5 to 1.0 mass%.
JP2011286829A 2011-12-27 2011-12-27 Automotive engine oil Active JP5828756B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011286829A JP5828756B2 (en) 2011-12-27 2011-12-27 Automotive engine oil
PCT/EP2012/076991 WO2013098354A1 (en) 2011-12-27 2012-12-27 An engine oil for motor vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286829A JP5828756B2 (en) 2011-12-27 2011-12-27 Automotive engine oil

Publications (2)

Publication Number Publication Date
JP2013133463A JP2013133463A (en) 2013-07-08
JP5828756B2 true JP5828756B2 (en) 2015-12-09

Family

ID=47631403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286829A Active JP5828756B2 (en) 2011-12-27 2011-12-27 Automotive engine oil

Country Status (2)

Country Link
JP (1) JP5828756B2 (en)
WO (1) WO2013098354A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6114330B2 (en) * 2015-03-31 2017-04-12 出光興産株式会社 Lubricating oil composition and internal combustion engine friction reducing method
JP2018062551A (en) * 2016-10-11 2018-04-19 出光興産株式会社 Lubricating oil composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649459A1 (en) * 1992-04-15 1995-04-26 Exxon Chemical Patents Inc. Lubricant composition containing mixed friction modifiers
JP4303037B2 (en) 2003-06-11 2009-07-29 新日本石油株式会社 Lubricating oil composition
EP2077317B1 (en) * 2006-10-17 2013-08-14 Idemitsu Kosan Co., Ltd. Lubricating oil composition
JP2009126868A (en) * 2007-11-19 2009-06-11 Adeka Corp Lubricant-additive composition and lubricant composition containing the same

Also Published As

Publication number Publication date
WO2013098354A1 (en) 2013-07-04
JP2013133463A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5943252B2 (en) Lubricating oil composition for internal combustion engines
JP4515797B2 (en) Lubricating oil composition for diesel engines
JP6716360B2 (en) Lubricating oil composition for internal combustion engine
EP3397740B1 (en) Lubricating oil composition for diesel engines
WO2016159185A1 (en) Lubricating oil composition and method for reducing friction in internal combustion engines
JP7444782B2 (en) Lubricating oil composition and method for producing the same
JP5687951B2 (en) Lubricating oil composition for diesel engines
JP2012117065A (en) Lubricating oil composition
KR102075820B1 (en) Lubricant oil composition for internal combustion engine
JP5101915B2 (en) Lubricating oil composition for diesel engines
JP5912971B2 (en) Lubricating oil composition for internal combustion engines
JP2012102280A (en) Engine oil composition
JP6072605B2 (en) Lubricating oil composition for internal combustion engines
JP5828756B2 (en) Automotive engine oil
JP2014125569A (en) Lubricant composition for internal combustion engine
JP6895861B2 (en) Lubricating oil composition for internal combustion engine
JP2019048909A (en) Lubricant composition for diesel engine, and method for improving base number holding performance or method for improving long-drain performance
JP2024500764A (en) Reaction products of organic amines and glycidol and their use as friction modifiers
JP6971149B2 (en) Lubricating composition
US20240141250A1 (en) Lubricating Oil Compositions
JP2025015522A (en) Flat oil viscosity lubricant composition
JP2023004316A (en) Lubricant composition for internal combustion engines
JP2017101151A (en) Lubricating oil composition
KR20240051049A (en) Lubricant composition containing metal alkanoate
KR20240155886A (en) Lubricant composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151020

R150 Certificate of patent or registration of utility model

Ref document number: 5828756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250