JP5820804B2 - Method for producing antibacterial medical device - Google Patents
Method for producing antibacterial medical device Download PDFInfo
- Publication number
- JP5820804B2 JP5820804B2 JP2012507051A JP2012507051A JP5820804B2 JP 5820804 B2 JP5820804 B2 JP 5820804B2 JP 2012507051 A JP2012507051 A JP 2012507051A JP 2012507051 A JP2012507051 A JP 2012507051A JP 5820804 B2 JP5820804 B2 JP 5820804B2
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- antibacterial
- medical device
- tube
- antibacterial agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
- A61M25/0045—Catheters; Hollow probes characterised by structural features multi-layered, e.g. coated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
- A61L29/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/08—Materials for coatings
- A61L29/10—Inorganic materials
- A61L29/106—Inorganic materials other than carbon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/10—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
- A61L2300/102—Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/62—Encapsulated active agents, e.g. emulsified droplets
- A61L2300/622—Microcapsules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
- A61M2025/0056—Catheters; Hollow probes characterised by structural features provided with an antibacterial agent, e.g. by coating, residing in the polymer matrix or releasing an agent out of a reservoir
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Pulmonology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Materials For Medical Uses (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Description
本発明は、抗菌性医療器具の製造方法に関し、特に、医療器具の表面に抗菌剤を固定することを特徴とする。 The present invention relates to the production how antimicrobial medical device, in particular, characterized in that the surface of the medical device fixes the antimicrobial agent.
抗菌性が付与された抗菌性医療器具の一つとして、中心静脈カテーテルが挙げられる。この中心静脈カテーテルは、鎖骨下静脈や頸静脈に中心静脈カテーテルの皮膚刺入部を差し込み、上大静脈に中心静脈カテーテルの先端部を長期留置して使用する器具である。
そして、中心静脈カテーテルは、中心静脈カテーテルの皮膚刺入部あるいは内腔を介して細菌が体内に進入し、細菌感染を起こすおそれを回避するために、中心静脈カテーテルに抗菌性が付与されている。
また、中心静脈カテーテルを体内に長期留置して使用することがあるため、抗菌性が長期間維持されることが望まれている。As one of antibacterial medical devices provided with antibacterial properties, a central venous catheter can be mentioned. This central venous catheter is an instrument that is used by inserting the skin piercing portion of the central venous catheter into the subclavian vein or the jugular vein and placing the distal end portion of the central venous catheter in the superior vena cava for a long period of time.
The central venous catheter is given antibacterial properties in order to avoid the possibility of bacteria entering the body via the skin puncture site or lumen of the central venous catheter and causing bacterial infection. .
In addition, since the central venous catheter may be used after being placed in the body for a long period of time, it is desired that antibacterial properties be maintained for a long period of time.
ここで、抗菌性医療器具の製造方法としては、特許文献1に開示されるように、医療器具の原材料である高分子化合物等に抗菌剤を練り込む製造方法がある。
その他、特許文献2に開示されるように、抗菌剤が溶けた溶剤に医療器具を浸漬させるとともに、溶剤を乾燥させて、医療器具の表面を抗菌剤の層でコーティングする製造方法がある。Here, as disclosed in
In addition, as disclosed in
また、前記した抗菌性医療器具の製造方法によれば、同じ量の抗菌剤を使用した場合、高分子化合物等に抗菌剤を練り込んで製造した場合に比べて、医療器具の表面に抗菌剤の層をコーティングした場合の方が、医療器具の表面に多くの抗菌剤が分布する。そのため、医療器具の表面に抗菌剤の層をコーティングした場合の方が、抗菌性が高いという利点がある。 In addition, according to the above-described method for manufacturing an antibacterial medical device, when the same amount of antibacterial agent is used, the antibacterial agent is applied to the surface of the medical device as compared to the case where the antibacterial agent is kneaded into a polymer compound or the like. More antibacterial agents are distributed on the surface of the medical device when this layer is coated. Therefore, the antibacterial property is more advantageous when the surface of the medical device is coated with the antibacterial agent layer.
しかしながら、例えば、銀ゼオライトなどの溶剤に溶けない抗菌剤を用いて、中心静脈カテーテルの表面をコーティングしようとした場合、銀ゼオライトが溶媒に溶けないため、粒径が比較的大きい状態で、中心静脈カテーテルの表面に固定される。
そのため、使用時において、中心静脈カテーテルを体内に差し込む際に、中心静脈カテーテルの表面の抗菌剤の層が擦れ、中心静脈カテーテルの表面から抗菌剤が容易に脱落してしまい、長期において抗菌性を維持することができないという問題があった。
したがって、従来においては、銀ゼオライト等の溶剤に溶けない抗菌剤を用いて、長期において抗菌性を維持できる抗菌性医療器具を製造することができなかった。However, for example, when an antibacterial agent that is insoluble in a solvent such as silver zeolite is used to coat the surface of the central venous catheter, silver zeolite does not dissolve in the solvent, so that the central vein Fixed to the surface of the catheter.
Therefore, during use, when the central venous catheter is inserted into the body, the antibacterial agent layer on the surface of the central venous catheter rubs, and the antibacterial agent easily falls off from the surface of the central venous catheter. There was a problem that it could not be maintained.
Therefore, conventionally, an antibacterial medical device that can maintain antibacterial properties over a long period of time cannot be produced using an antibacterial agent that is not soluble in a solvent such as silver zeolite.
そこで、本発明は、前記問題に鑑みて、溶剤に溶けない抗菌剤であっても、医療器具の表面に抗菌剤を固定することが可能であり、かつ、長期において抗菌性を維持できる抗菌性医療器具の製造方法を提供することを課題とする。 Therefore, in view of the above problems, the present invention is able to fix an antibacterial agent on the surface of a medical device even if it is an antibacterial agent that is not soluble in a solvent, and can maintain antibacterial properties over a long period of time. It is an object to provide a method for manufacturing a medical device.
前記課題を解決するために、本発明に係る抗菌性医療器具の製造方法は、医療器具の少なくとも体内挿入部位の表面に、沸点が異なる第1溶媒と第2溶媒とを混合した混合溶媒に抗菌剤粒子を分散させた抗菌剤含有溶媒を付着させる付着工程と、前記医療器具の表面に付着した前記抗菌剤含有溶媒を乾燥させる乾燥工程と、を含み、前記第1溶媒は、前記医療器具の表面を溶解させないものであり、前記第2溶媒は、前記医療器具の表面を溶解させることが可能なものであり、前記乾燥工程は、室温により前記第1溶媒を蒸発させて、前記第2溶媒により前記医療器具の表面を溶解し、溶解した前記医療器具の表面から前記抗菌剤粒子の一部が露出する第1処理工程と、加熱により前記第2溶媒を蒸発させる第2処理工程とを含むことを特徴とする。
また、本発明に係る抗菌性医療器具の製造方法は、前記第2溶媒と前記第1溶媒とを混合する体積比は1:3〜3:1の範囲であることが好ましい。
In order to solve the above-mentioned problems, the method for manufacturing an antibacterial medical device according to the present invention is an antibacterial solution in which a mixed solvent is prepared by mixing a first solvent and a second solvent having different boiling points on the surface of at least a body insertion site of a medical device. agents and adhesion step for particles adhere an antibacterial agent containing solvent having dispersed therein a drying step of drying the antimicrobial-containing solvent adhering to the surface of the medical device, only containing the first solvent, the medical instrument And the second solvent is capable of dissolving the surface of the medical device, and the drying step evaporates the first solvent at room temperature, A first treatment step in which a surface of the medical device is dissolved with a solvent, and a part of the antibacterial agent particles are exposed from the dissolved surface of the medical device; and a second treatment step in which the second solvent is evaporated by heating. characterized in that it comprises To.
In the method for producing an antibacterial medical device according to the present invention, the volume ratio of mixing the second solvent and the first solvent is preferably in the range of 1: 3 to 3: 1.
このような抗菌性医療器具の製造方法によれば、付着工程により医療器具の表面に付着する抗菌剤含有溶媒には、医療器具の表面を溶解させる第2溶媒のほかに、医療器具の表面を溶解させない第1溶媒も含まれているために、抗菌性含有溶媒中における第2溶媒の濃度が低くなる。よって、抗菌性含有溶媒を医療器具に付着させても、第1溶媒を蒸発させない限り、医療器具の表面を溶解させるおそれがない。
そして、乾燥工程において、室温により第1溶媒が蒸発する第1処理工程によって、抗菌剤含有溶媒中の第2溶媒の濃度を高くすることが可能となり、医療器具の表面を溶解させることが可能となる。また、第1処理工程は、室温で第1溶媒を蒸発させるため、医療器具が熱により変形するおそれがない。
また、第2処理工程によって、第2溶媒が蒸発するため、医療器具の表面を溶解することがないため、医療器具の溶解面を硬化し、医療器具の表面に抗菌剤を溶着させることが可能となる。
よって、医療器具の表面に抗菌剤の層がコーティングされた抗菌性医療器具を製造することができる。
そして、上記する工程により製造した抗菌性医療器具は、医療器具の表面から抗菌剤が脱落し難く、長期における抗菌性を維持することが可能となる。
According to such a method for manufacturing an antibacterial medical device, the antibacterial agent-containing solvent that adheres to the surface of the medical device in the attaching step includes the surface of the medical device in addition to the second solvent that dissolves the surface of the medical device. Since the 1st solvent which is not dissolved is also contained, the density | concentration of the 2nd solvent in an antibacterial content solvent becomes low. Therefore, even if the antibacterial-containing solvent is attached to the medical device, there is no possibility of dissolving the surface of the medical device unless the first solvent is evaporated.
In the drying step, the first treatment step in which the first solvent evaporates at room temperature makes it possible to increase the concentration of the second solvent in the antibacterial agent-containing solvent and dissolve the surface of the medical device. Become. Further, since the first treatment step evaporates the first solvent at room temperature, there is no possibility that the medical instrument is deformed by heat.
In addition, since the second solvent evaporates in the second treatment step, the surface of the medical device is not dissolved, so that the dissolution surface of the medical device can be cured and the antibacterial agent can be deposited on the surface of the medical device. It becomes.
Therefore, an antibacterial medical device in which the antibacterial agent layer is coated on the surface of the medical device can be manufactured.
And the antibacterial medical device manufactured by the process mentioned above cannot maintain an antibacterial property for a long time, since an antibacterial agent is hard to drop out from the surface of a medical device.
また、本発明に係る抗菌性医療器具の製造方法は、前記第1溶媒が、その沸点が前記第2溶媒の沸点よりも30℃以上低いことを特徴とする。
このような製造方法によれば、第1溶媒が第2溶媒よりも30℃以上沸点が低いため、第1溶媒の蒸発中に、第2溶媒を蒸発させるおそれが少なくなり、抗菌剤含有溶媒における第2溶媒の濃度を確実に高くすることが可能となる。The method for producing an antibacterial medical device according to the present invention is characterized in that the boiling point of the first solvent is 30 ° C. or more lower than the boiling point of the second solvent.
According to such a production method, since the first solvent has a boiling point of 30 ° C. or more lower than that of the second solvent, there is less risk of evaporating the second solvent during the evaporation of the first solvent. It is possible to reliably increase the concentration of the second solvent.
また、本発明に係る抗菌性医療器具の製造方法は、前記抗菌剤粒子は、銀担持シリカ粒子、ゼオライト銀粒子、銀粒子の少なくともいずれか一つ含むことが好ましい。
このような製造方法によれば、抗菌作用に優れた銀を抗菌剤として用いているため、より抗菌作用にすぐれた抗菌性医療器具を製造することができる。In the method for producing an antibacterial medical device according to the present invention, the antibacterial agent particles preferably include at least one of silver-supported silica particles, zeolite silver particles, and silver particles.
According to such a manufacturing method, since silver excellent in antibacterial action is used as an antibacterial agent, an antibacterial medical instrument having a better antibacterial action can be manufactured.
また、本発明に係る抗菌性医療器具の製造方法は、前記抗菌剤含有溶媒に、分散剤が添加されていることが好ましい。このような製造方法によれば、混合溶媒中に分散させる抗菌剤の分散性の安定化を図ることが可能となるからである。 Moreover, it is preferable that the manufacturing method of the antibacterial medical device which concerns on this invention has added the dispersing agent to the said antibacterial agent containing solvent. This is because according to such a production method, it is possible to stabilize the dispersibility of the antibacterial agent dispersed in the mixed solvent.
以上、本発明によれば、溶剤に溶けない抗菌剤であっても、医療器具の表面に抗菌剤を固定することが可能であって、長期において抗菌性を維持できる抗菌性医療器具の製造方法を提供することができる。 As described above, according to the present invention, even if the antibacterial agent is not soluble in a solvent, the antibacterial agent can be fixed on the surface of the medical device, and the antibacterial medical device can be maintained for a long time. Can be provided.
次に本発明の実施形態における抗菌性医療器具の製造方法について、図面を用いて説明する。実施形態の抗菌性医療器具の製造方法は、医療器具の表面に抗菌剤含有溶媒を付着させる付着工程と、医療器具の表面に付着した抗菌剤含有溶媒を乾燥させる乾燥工程とを含んで構成される。 Next, the manufacturing method of the antibacterial medical device in embodiment of this invention is demonstrated using drawing. The method of manufacturing an antibacterial medical device according to the embodiment includes an attachment step of attaching an antibacterial agent-containing solvent to the surface of the medical device, and a drying step of drying the antibacterial agent-containing solvent attached to the surface of the medical device. The
(付着工程)
まず、医療器具の表面に抗菌剤含有溶媒を付着させる付着工程について説明する。(Adhesion process)
First, the attachment process for attaching the antibacterial agent-containing solvent to the surface of the medical device will be described.
(中心静脈カテーテル)
実施形態において用いられる医療器具である中心静脈カテーテル1について説明する。この中心静脈カテーテル1は、図1に示すように、薬液等が流れる内腔(図示せず)を有するチューブ状の本体部2と、本体部2の先端側に接合されたチューブ状の先端部3と、本体部2の基端側に接合されたハブ4と、ハブ4に接合された薬液注入のための接続チューブ5と、接続チューブ5の基端側に接合されたコネクター6を備えている。
この中心静脈カテーテル1は、鎖骨下静脈や頸静脈から本体部2を挿入し、先端部3を上大静脈などに留置させて、接続チューブ5から高カロリー輸液、薬剤投与、採血などを行うための医療器具であり、ポリウレタンで形成されている。
なお、医療器具の体内挿入部位は、中心静脈カテーテル1においては、本体部2と先端部3であって、中心静脈カテーテル1の体内挿入部位の表面とは、筒状である本体部2と先端部3との内表面と外表面を指す。
また、実施形態において、医療器具として中心静脈カテーテル1を用いて説明しているが、その他にも、フォーリーカテーテル、胃管カテーテル、輸液チューブ、人工呼吸器、ドレッシング材、フィーディングチューブなどの人体に長期間留置するもので、金属を除く熱可塑性樹脂や熱可塑性樹脂などの高分子化合物により形成されているものに適用できる。(Central venous catheter)
The central
This central
In the central
In the embodiment, the central
(抗菌剤含有溶媒)
抗菌剤含有溶媒は、混合溶媒に抗菌剤を分散させた溶媒である。また、混合溶媒とは、第1溶媒と第2溶媒を混ぜ合わせて製造された溶媒をいう。
この第2溶媒は、付着する医療器具の表面を溶解させることが可能な溶液であって、後記する第1溶媒よりも蒸発する温度が高い高沸点溶媒である。よって、第2溶媒が医療器具を溶解可能か否かは、医療器具を構成する原材料によって相対的に決まることとなる。
また、実施形態においては、中心静脈カテーテル1がポリウレタンで形成されているため、このポリウレタンを溶解可能な第2溶媒として、N−メチル-ピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、ジ−メチルアセトアミド(DMA)、シクロヘキサノン等が挙げられる。このような高沸点溶媒である第2溶媒の沸点は、100℃〜250℃であり、後記する第1溶媒よりも蒸発する温度が高い。(Antimicrobial agent-containing solvent)
The antibacterial agent-containing solvent is a solvent in which an antibacterial agent is dispersed in a mixed solvent. The mixed solvent refers to a solvent produced by mixing the first solvent and the second solvent.
This second solvent is a solution capable of dissolving the surface of the medical device to be adhered, and is a high-boiling solvent having a higher evaporation temperature than the first solvent described later. Therefore, whether or not the second solvent can dissolve the medical device is relatively determined by the raw materials constituting the medical device.
In the embodiment, since the central
第1溶媒は、第2溶媒と混合させて、混合溶媒中における第2溶媒の濃度を低くするための溶媒であり、医療器具を溶解しないとともに第2溶媒よりも低い温度で蒸発する低沸点溶媒である。例えば、メタノールやエタノールがあげられる。
また、このような低沸点溶媒である第1溶媒の沸点は、50℃〜100℃であり、高沸点溶媒である第2溶媒の沸点よりも30℃以上低いことが好ましい。The first solvent is a solvent for lowering the concentration of the second solvent in the mixed solvent by mixing with the second solvent, and does not dissolve the medical device and evaporates at a temperature lower than the second solvent. It is. Examples include methanol and ethanol.
Moreover, the boiling point of the 1st solvent which is such a low boiling point solvent is 50 to 100 degreeC, and it is preferable that it is 30 degreeC or more lower than the boiling point of the 2nd solvent which is a high boiling point solvent.
また、第2溶媒と第1溶媒との混合比は、医療器具が溶解しない混合比率であり、第2溶媒と第1溶媒とを混合する体積比は1:3〜3:1の範囲であることが望ましい。 The mixing ratio of the second solvent and the first solvent is a mixing ratio at which the medical device does not dissolve, and the volume ratio of mixing the second solvent and the first solvent is in the range of 1: 3 to 3: 1. It is desirable.
(抗菌剤)
抗菌剤は、抗菌性を有する無機系抗菌剤か、または、混合溶媒に混入しても抗菌性を失わない有機系抗菌剤が挙げられ、例えば、銀担持シリカ粒子、ゼオライト銀粒子、銀粒子、銅粒子、プラチナ微粒子、酸化チタン粒子、酸化亜鉛粒子、酸化タングステン粒子、スルファジアジン銀、カーボンナノチューブ、銀担持カーボンナノチューブ、銀被覆カーボンナノチューブなどが挙げられる。そして、混合溶媒に抗菌剤を投入して攪拌し、混合溶媒に抗菌剤を分散させて、抗菌剤含有溶媒を製造する。(Antimicrobial agent)
Antibacterial agents include inorganic antibacterial agents having antibacterial properties, or organic antibacterial agents that do not lose antibacterial properties even when mixed in a mixed solvent. For example, silver-supported silica particles, zeolite silver particles, silver particles, Examples include copper particles, platinum fine particles, titanium oxide particles, zinc oxide particles, tungsten oxide particles, silver sulfadiazine, carbon nanotubes, silver-supporting carbon nanotubes, and silver-coated carbon nanotubes. Then, an antibacterial agent is added to the mixed solvent and stirred, and the antibacterial agent-containing solvent is produced by dispersing the antibacterial agent in the mixed solvent.
(分散剤)
また、混合溶媒中における抗菌剤の分散性の安定化を図るため、分散剤を混合溶媒中に添加してもよい。分散剤は、粒子表面に吸着し、電気的反発や立体障害により粒子間の凝集、沈降を抑制する働きがある。分散剤の種類としては、化学構造として、分子骨格がポリエーテル系、ポリエステル系、アクリル系、ウレタン系、吸着基としてアミン系、カルボン酸系、燐酸系をもつものに分類される。使用する抗菌剤や溶媒の種類により、最適な分散剤を選定する。(Dispersant)
Further, in order to stabilize the dispersibility of the antibacterial agent in the mixed solvent, a dispersant may be added to the mixed solvent. The dispersing agent is adsorbed on the particle surface and functions to suppress aggregation and sedimentation between the particles due to electrical repulsion and steric hindrance. The types of dispersants are classified into chemical structures having molecular skeletons of polyether-based, polyester-based, acrylic-based, urethane-based and amine-based, carboxylic acid-based, and phosphoric acid-based adsorbing groups. Select the optimal dispersant according to the type of antibacterial agent and solvent used.
(付着)
中心静脈カテーテルの表面への抗菌剤含有溶媒の付着は、抗菌剤含有溶媒中に中心静脈カテーテルを浸漬させて行なう。浸漬以外には、スプレーコーティングなどがあり、特に限定されない。また、中心静脈カテーテルの外表面のみならず、内表面にも混合溶媒を付着させることが必要である。(Adhesion)
Attachment of the antibacterial agent-containing solvent to the surface of the central venous catheter is performed by immersing the central venous catheter in the antibacterial agent-containing solvent. There is spray coating etc. other than immersion, and there is no particular limitation. Moreover, it is necessary to adhere the mixed solvent not only to the outer surface of the central venous catheter but also to the inner surface.
(乾燥工程)
つぎに、中心静脈カテーテル1の表面に付着した抗菌剤含有溶媒を乾燥させる乾燥工程について説明する。
実施形態の乾燥工程は、抗菌剤含有溶媒中の第1溶媒を蒸発させる第1処理工程と、抗菌剤含有溶媒中の第2溶媒を蒸発させる第2処理工程及び第3処理工程との3つの工程からなる。(Drying process)
Next, a drying process for drying the antibacterial agent-containing solvent attached to the surface of the central
The drying process of the embodiment includes three processes, a first treatment process for evaporating the first solvent in the antibacterial agent-containing solvent, a second treatment process for evaporating the second solvent in the antibacterial agent-containing solvent, and a third treatment process. It consists of a process.
(第1処理工程)
第1処理工程は、室温で1時間程度放置する等により、抗菌剤含有溶媒中の第1溶媒を蒸発させ、抗菌剤含有溶媒における第2溶媒の濃度を高くするための工程である。
よって、第1処理工程の温度は、特に限定されないが、室温である場合には、第1溶媒であるメタノール等の大部分を蒸発させることができる。
そして、第1処理工程によれば、抗菌剤含有溶媒における第2溶媒の濃度が高くなり、抗菌剤含有溶媒が付着した中心静脈カテーテルの表面を溶解させて、抗菌剤を埋没させることができる。
また、第1処理工程の時間は、溶解した中心静脈カテーテルの高分子材料が、抗菌剤の全面を覆わない程度、つまり、溶解した高分子材料から抗菌剤の一部が露出する程度に中心静脈カテーテルの表面を溶解させることが必要である。(First processing step)
The first treatment step is a step for evaporating the first solvent in the antibacterial agent-containing solvent and leaving the concentration of the second solvent in the antibacterial agent-containing solvent high, for example, by leaving it at room temperature for about 1 hour.
Therefore, the temperature of the first treatment step is not particularly limited, but when it is room temperature, most of the first solvent such as methanol can be evaporated.
And according to a 1st process process, the density | concentration of the 2nd solvent in an antibacterial agent containing solvent becomes high, the surface of the central venous catheter to which the antibacterial agent containing solvent adhered can be dissolved, and an antibacterial agent can be buried.
Also, the time of the first treatment step is such that the polymer material of the dissolved central venous catheter does not cover the entire surface of the antibacterial agent, that is, the central vein is exposed to the extent that part of the antibacterial agent is exposed from the dissolved polymer material. It is necessary to dissolve the surface of the catheter.
(第2処理工程)
第2処理工程は、熱処理により第2溶媒を蒸発させる工程である。また、第2溶媒を蒸発させるための熱処理の温度及び時間は特に限定されないが、温度が高すぎると、中心静脈カテーテルが変形するおそれがある点に留意する。(Second processing step)
The second treatment step is a step of evaporating the second solvent by heat treatment. Moreover, the temperature and time of the heat treatment for evaporating the second solvent are not particularly limited, but it should be noted that if the temperature is too high, the central venous catheter may be deformed.
(第3処理工程)
第3処理工程は、残存する抗菌剤含有溶媒を蒸発させるために熱処理を行う工程である。よって、第3処理工程の熱処理は、第2溶媒が蒸発すればよく、抗菌剤含有溶媒を第2溶媒の沸点温度となるように加熱する必要はない。また、高温により中心静脈カテーテルが変形しない程度である必要がある。
これによれば、溶解した中心静脈カテーテルを構成する高分子材料が硬化して抗菌剤の一部が溶着し、抗菌剤の一部が露出した状態で中心静脈カテーテルの表面に固定されることとなる。(Third treatment process)
The third treatment step is a step of performing heat treatment to evaporate the remaining antibacterial agent-containing solvent. Therefore, the heat treatment in the third treatment step is only required to evaporate the second solvent, and it is not necessary to heat the antibacterial agent-containing solvent to the boiling point temperature of the second solvent. Moreover, it is necessary that the central venous catheter is not deformed by high temperature.
According to this, the polymer material constituting the dissolved central venous catheter is cured and a part of the antibacterial agent is welded, and a part of the antibacterial agent is exposed and fixed to the surface of the central venous catheter. Become.
以上、実施形態における抗菌性医療器具の製造方法について説明したが、実施形態の製造方法によれば、医療器具である中心静脈カテーテルの表面には、抗菌剤の一部が露出した形で溶着され、表面に抗菌剤が固定された中心静脈カテーテルを製造することが可能となる。 As mentioned above, although the manufacturing method of the antibacterial medical device in embodiment was demonstrated, according to the manufacturing method of embodiment, the surface of the central venous catheter which is a medical device was welded in the form where a part of antibacterial agent was exposed. It becomes possible to manufacture a central venous catheter having an antibacterial agent fixed on its surface.
以上、実施形態における抗菌性医療器具の製造方法について説明したが、本発明は、実施形態に説明した製造方法に限定されない。 As mentioned above, although the manufacturing method of the antibacterial medical device in embodiment was demonstrated, this invention is not limited to the manufacturing method demonstrated in embodiment.
次に、本発明の実施例等について説明する。
実施例1は、上記した実施形態で説明した製造方法により抗菌性チューブAを製造し、抗菌性チューブAの表面に溶着した抗菌剤が容易に脱落するか否かの剥離試験を行った。また、併せて、医療器具を溶解させる第2溶媒を使用しているため、抗菌性チューブAが変形しているか否かの形状の確認も行った。
また、比較例として、本発明の混合溶媒を異なる溶媒を用意するとともに、その混合溶媒により製造した比較例1、2を用意し、医療器具が変形するか否かの試験と、抗菌剤の剥離試験を併せて行った。Next, examples of the present invention will be described.
In Example 1, the antibacterial tube A was manufactured by the manufacturing method described in the above-described embodiment, and a peel test was performed to determine whether or not the antibacterial agent welded to the surface of the antibacterial tube A easily falls off. In addition, since the second solvent that dissolves the medical device is used, the shape of whether or not the antibacterial tube A is deformed was also confirmed.
In addition, as a comparative example, a mixed solvent of the present invention is prepared with a different solvent, and Comparative Examples 1 and 2 manufactured with the mixed solvent are prepared, whether the medical device is deformed, and antibacterial agent peeling The test was also performed.
(実施例1)
実施例1は、医療器具として、ポリウレタンチューブを用いた。このポリウレタンチューブは、ポリウレタン(日本ミラクトラン社製、商品名「E990」)を原材料とし、外径2.1mm、内径1.3mmに形成されたものである。
第2溶媒は、N−メチル-ピロリドン5mL用意し、一方で、第1溶媒は、メタノールを5mL用意し、両者を混合させて混合溶液を製造した。なお、第2溶媒と第1溶媒との混合比は、1:1である。
また、抗菌剤は、ゼオライト銀粒子(シナネンゼオミック社製、商品名「ゼオライト銀AJ−10D」)の粉末を0.3g用意し、混合溶媒に分離させ、ゼオライト銀粒子が3wt/v%の割合で入っている抗菌剤含有溶媒Aを製造した。なお、このゼオライト銀粒子は、銀含有量が5%である。
そして、付着方法は、ポリウレタンチューブの長さ30cmを抗菌剤含有溶媒Aの中に浸漬されて付着させた。Example 1
In Example 1, a polyurethane tube was used as a medical instrument. This polyurethane tube is made of polyurethane (product name “E990”, manufactured by Nippon Miractran Co., Ltd.) as a raw material, and is formed with an outer diameter of 2.1 mm and an inner diameter of 1.3 mm.
5 mL of N-methyl-pyrrolidone was prepared as the second solvent, while 5 mL of methanol was prepared as the first solvent, and both were mixed to produce a mixed solution. The mixing ratio between the second solvent and the first solvent is 1: 1.
In addition, the antibacterial agent prepared 0.3 g of zeolite silver particles (trade name “Zeolite Silver AJ-10D” manufactured by Sinanen Zeomic Co., Ltd.), separated into a mixed solvent, and the ratio of zeolite silver particles to 3 wt / v%. The antibacterial agent-containing solvent A contained in The zeolite silver particles have a silver content of 5%.
And as for the attachment method, 30 cm in length of the polyurethane tube was immersed in the antibacterial agent-containing solvent A and attached.
乾燥工程は、第1処理工程として、室温(20℃)で1時間放置し、第2処理工程として、50℃のオーブンの中に1時間熱処理し、第3処理工程として、オーブンの温度を80℃に上げて2時間乾燥させ、抗菌材が表面に溶着した抗菌性チューブAを製造した。なお、抗菌剤含有溶媒AをチューブAにコーティング後の重量は、0.0342g増加した。 In the drying step, the first treatment step is allowed to stand at room temperature (20 ° C.) for 1 hour, the second treatment step is heat-treated in an oven at 50 ° C. for one hour, and the third treatment step is performed at an oven temperature of 80 ° C. The antibacterial tube A in which the antibacterial material was welded to the surface was manufactured by raising the temperature to 0 ° C. and drying for 2 hours. The weight after coating the tube A with the antibacterial agent-containing solvent A increased by 0.0342 g.
(比較例1、2)
比較例1と比較例2の抗菌性医療器具は、実施例1の混合溶媒と異なる溶媒である抗菌剤含有溶媒B又は抗菌剤含有溶媒Cとにより製造した。
具体的に、比較例1の混合溶媒Bは、第2溶媒のみからなり、N−メチル-ピロリドンを10mL用意した。
そして、この混合溶媒Bに、実施例1と同じゼオライト銀粒子(シナネンゼオミック社製、商品名「ゼオライト銀AJ−10D」)の粉末を0.3g用意し、混合溶媒Bに分離させ、ゼオライト銀粒子が3wt/v%の割合で入っている抗菌剤含有溶媒Bを製造した。そして、実施例1と同じ乾燥工程を経て、抗菌性チューブBを製造した。(Comparative Examples 1 and 2)
The antibacterial medical devices of Comparative Example 1 and Comparative Example 2 were produced with the antibacterial agent-containing solvent B or the antibacterial agent-containing solvent C, which is a solvent different from the mixed solvent of Example 1.
Specifically, the mixed solvent B of Comparative Example 1 consists only of the second solvent, and 10 mL of N-methyl-pyrrolidone was prepared.
Then, 0.3 g of the same zeolite silver particles (trade name “Zeolite Silver AJ-10D”, manufactured by Sinanen Zeomic Co., Ltd.) as in Example 1 is prepared in the mixed solvent B, separated into the mixed solvent B, and the zeolite silver An antibacterial agent-containing solvent B containing particles at a rate of 3 wt / v% was produced. And the antimicrobial tube B was manufactured through the same drying process as Example 1.
また、比較例2の混合溶液Cは、第1溶媒のみからなり、メタノールを10mL用意した。そして、この混合溶媒Cに、実施例1と同じゼオライト銀粒子(シナネンゼオミック社製、商品名「ゼオライト銀AJ−10D」)の粉末を0.3g用意し、混合溶媒Cに分離させ、ゼオライト銀粒子が3wt/v%の割合で入っている抗菌剤含有溶媒Cを製造した。そして、実施例1と同じ乾燥工程を経て、抗菌性チューブCを製造した。 Moreover, the mixed solution C of the comparative example 2 consisted only of the 1st solvent, and prepared 10 mL of methanol. Then, 0.3 g of the same zeolite silver particles (product name “Zeolite Silver AJ-10D”, manufactured by Sinanen Zeomic Co., Ltd.) as in Example 1 is prepared in the mixed solvent C, separated into the mixed solvent C, and the zeolite silver An antibacterial agent-containing solvent C containing particles at a rate of 3 wt / v% was produced. And the antimicrobial tube C was manufactured through the same drying process as Example 1.
(製造後の形状確認)
以上の製造方法により製造した実施例1の抗菌性チューブAと比較例1の抗菌性チューブBと比較例2の抗菌性チューブCのそれぞれの形状を目視により確認した。なお、形状確認の結果を下記表1に示す。(Confirm shape after production)
The shapes of the antibacterial tube A of Example 1, the antibacterial tube B of Comparative Example 1, and the antibacterial tube C of Comparative Example 2 manufactured by the above manufacturing method were visually confirmed. The results of shape confirmation are shown in Table 1 below.
形状確認の結果は、抗菌性チューブAと抗菌性チューブCは、チューブの形状に変化はなかった。しかしながら、抗菌性チューブBは、チューブそのものの形状が変形していた。つまり、第2溶媒のみからなる混合溶媒Bでは、医療器具の表面を溶解しすぎるため、医療器具そのものの形状が変化した。 As a result of the shape confirmation, the antibacterial tube A and the antibacterial tube C did not change in the shape of the tube. However, the antibacterial tube B has a deformed shape. That is, in the mixed solvent B composed only of the second solvent, the surface of the medical instrument is excessively dissolved, so that the shape of the medical instrument itself has changed.
(剥離試験)
抗菌剤の剥離試験は、製造後の抗菌性チューブA、抗菌性チューブCの表面に溶着した抗菌剤が、綿棒により擦った後も抗菌性チューブA、抗菌性チューブCの表面に溶着しているかを走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、型式:S−3400N)の表面写真(撮影方向:チューブ表面に対して垂直方向、倍率:3000倍)により視認して確認した。なお、綿棒による擦りの力は、中心静脈カテーテルを体内に差し込む際に、チューブが受ける力と同等な力である。また、表面写真(図2〜図5)において、抗菌剤は粒状に撮影される。(Peel test)
In the antibacterial agent peel test, whether the antibacterial agent welded to the surface of the antibacterial tube A and the antibacterial tube C after manufacture is still adhered to the surface of the antibacterial tube A and the antibacterial tube C after rubbing with a cotton swab. Was visually confirmed with a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, model: S-3400N) with a surface photograph (photographing direction: perpendicular to the tube surface, magnification: 3000 times). The rubbing force with the cotton swab is equivalent to the force that the tube receives when the central venous catheter is inserted into the body. In the surface photographs (FIGS. 2 to 5), the antibacterial agent is photographed in a granular form.
まず、製造後の抗菌性チューブAは、図2に示すように、抗菌性チューブAの表面には、抗菌剤の一部が露出した状態で溶着されていることが確認できた。
一方で、抗菌性チューブCの方においても、図3に示すように、抗菌性チューブCの表面に抗菌剤があることが確認できた。First, as shown in FIG. 2, the manufactured antibacterial tube A was confirmed to be welded to the surface of the antibacterial tube A with a part of the antibacterial agent exposed.
On the other hand, it was confirmed that the antibacterial tube C also has an antibacterial agent on the surface of the antibacterial tube C as shown in FIG.
次に、綿棒により抗菌性チューブAと抗菌性チューブCとの表面を綿棒で擦った。
これによれば、擦った後の抗菌性チューブAの表面には、図4に示すように、依然として抗菌剤が固定されており、抗菌性チューブAの表面から抗菌剤が容易に脱落しないことを確認できた。一方で、擦った後の抗菌性チューブCの表面は、図5に示すように、抗菌剤がなく、抗菌剤が容易に脱落した。Next, the surface of the antibacterial tube A and the antibacterial tube C was rubbed with a cotton swab with a cotton swab.
According to this, as shown in FIG. 4, the antibacterial agent is still fixed on the surface of the antibacterial tube A after rubbing, and the antibacterial agent does not easily fall off from the surface of the antibacterial tube A. It could be confirmed. On the other hand, as shown in FIG. 5, the surface of the antibacterial tube C after rubbing did not have the antibacterial agent, and the antibacterial agent easily dropped off.
なお、抗菌性チューブBにおいても、剥離試験はおこなったが、抗菌性チューブBは、チューブ表面の溶解量が多く、抗菌剤が埋没した状態で、溶着されていた。
よって、抗菌剤は剥離しないものの、抗菌剤が露出していないため、銀イオンが溶出せず、抗菌性チューブBは抗菌性が発揮できないことがわかった。In addition, although the peeling test was done also in the antibacterial tube B, the antibacterial tube B was welded in a state where the amount of dissolution on the tube surface was large and the antibacterial agent was buried.
Therefore, although the antibacterial agent does not peel off, the antibacterial agent is not exposed, so that silver ions do not elute, and the antibacterial tube B cannot exhibit the antibacterial property.
以上の実施例1の抗菌性チューブA、比較例2の抗菌性チューブCの試験結果より、実施例1の抗菌性チューブAでは、抗菌剤が容易に剥離しないことが証明できた。 From the test results of the antibacterial tube A of Example 1 and the antibacterial tube C of Comparative Example 2, it was proved that the antibacterial agent does not easily peel off in the antibacterial tube A of Example 1.
つぎに、実施例1の抗菌性チューブAにおける、銀イオンの溶出量と抗菌活性値を測定した。また、比較例3として、練り込み式により製造された抗菌性チューブDを用意し、その銀イオンの溶出量と抗菌活性値を測定した。
(比較例3)
比較例3の抗菌性チューブDは、実施例1と同じポリウレタン(日本ミラクトラン社製、商品名「E990」)を原材料とした。
また、抗菌剤も、実施例1と同様に、ゼオライト銀粒子の粉末を用意した。そして、ポリウレタンに対して5wt/v%の割合でゼオライト銀粒子を混合させて、外径2.1mm、内径1.3mmの抗菌性チューブDを製造した。なお、抗菌性チューブDに含有されるゼオライト銀粒子は、0.0348gであり、抗菌性チューブAの0.0342gと略同じ量の抗菌剤を有している。Next, the elution amount of silver ions and the antibacterial activity value in the antibacterial tube A of Example 1 were measured. Moreover, as Comparative Example 3, an antibacterial tube D produced by a kneading method was prepared, and the elution amount and antibacterial activity value of the silver ions were measured.
(Comparative Example 3)
The antibacterial tube D of Comparative Example 3 was made from the same polyurethane as that of Example 1 (product name “E990” manufactured by Nippon Milactolan Co., Ltd.).
As for the antibacterial agent, a powder of zeolite silver particles was prepared in the same manner as in Example 1. Then, the silver zeolite particles were mixed at a rate of 5 wt / v% with respect to the polyurethane to produce an antibacterial tube D having an outer diameter of 2.1 mm and an inner diameter of 1.3 mm. In addition, the zeolite silver particle contained in the antibacterial tube D is 0.0348 g, and has the same amount of antibacterial agent as 0.0342 g of the antibacterial tube A.
(試験方法)
試験方法は、抗菌性チューブAと抗菌性チューブDを長さ30cm(全表面積は、32±5cm2程度)に切り、黄色ブドウ球菌懸濁培地溶液10ml中に浸漬させた。そして、浸漬後の溶液を用いて、ICP発光分析装置を用いて銀イオンの溶出量(ppm)を測定した。また、銀イオンの溶出量の測定は、溶液に浸漬後の1日後、7日後、14日後、21日後、28日後に分けて測定することにより、銀イオンの溶出量の経時的変化を測定した。測定結果を図6に示す。(Test method)
In the test method, the antibacterial tube A and the antibacterial tube D were cut to a length of 30 cm (total surface area is about 32 ± 5 cm 2 ) and immersed in 10 ml of a staphylococcus aureus suspension medium solution. And the elution amount (ppm) of silver ion was measured using the solution after immersion using the ICP emission spectrometer. In addition, the measurement of the elution amount of silver ions was carried out by measuring the elution amount of silver ions over time by separately measuring after 1 day, 7 days, 14 days, 21 days, and 28 days after immersion in the solution. . The measurement results are shown in FIG.
一方で、抗菌活性値については、抗菌性チューブA、抗菌性チューブDが浸漬された溶液を用いて、抗菌試験技術協議会規格に定められたシェーク法により測定した。また、抗菌活性値の測定は、溶液に浸漬後の0日後、7日後、14日後、21日後、28日後に分けて測定することにより、抗菌活性値の経時的変化を測定した。測定結果を図7に示す。 On the other hand, the antibacterial activity value was measured using a solution in which the antibacterial tube A and the antibacterial tube D were immersed, according to the shake method defined in the antibacterial test technology meeting standard. In addition, the antibacterial activity value was measured by measuring the change over time of the antibacterial activity value by separately measuring after 0 days, 7 days, 14 days, 21 days, and 28 days after immersion in the solution. The measurement results are shown in FIG.
銀イオンの溶出量の測定に関し、実施例1の抗菌性チューブAと比較例3の抗菌性チューブDとともに、日時が経過することに銀イオンの溶出量は低減しているものの、常時、実施例1の抗菌性チューブAの方が、比較例3の抗菌性チューブDよりも、銀イオンの溶出量が多かった。 Regarding the measurement of the elution amount of silver ions, although the antibacterial tube A of Example 1 and the antibacterial tube D of Comparative Example 3 are reduced, the elution amount of silver ions is reduced as time passes. The antibacterial tube A of 1 had a greater silver ion elution amount than the antibacterial tube D of Comparative Example 3.
また、抗菌活性値においては、実施例1の抗菌性チューブAの抗菌活性値は、低下することなく高い値を維持していた。つまり、以上より、実施例1の抗菌性チューブAは、抗菌性を長期において発揮することができた。
一方で、比較例3の抗菌性チューブDは、14日後まで、実施例1と同等な抗菌活性値を示していたが、21日後、28日後と日時が経過するごとに、抗菌活性値が低下した。
よって、実施例1の抗菌性チューブAは、比較例3の抗菌性チューブDに比べて、高い抗菌活性値を長期において発揮することが証明できた。Moreover, in the antibacterial activity value, the antibacterial activity value of the antibacterial tube A of Example 1 maintained a high value without decreasing. That is, from the above, the antibacterial tube A of Example 1 was able to exhibit antibacterial properties over a long period of time.
On the other hand, the antibacterial tube D of Comparative Example 3 showed an antibacterial activity value equivalent to that of Example 1 until 14 days later, but the antibacterial activity value decreased every 21 days and 28 days later. did.
Therefore, it was proved that the antibacterial tube A of Example 1 exhibited a high antibacterial activity value in the long term as compared with the antibacterial tube D of Comparative Example 3.
つぎに、抗菌性チューブの表面に溶着した抗菌剤の状態について、再度確認した。
(実施例2、比較例4)
実施例2は、実施例1と同様にして抗菌性チューブEを製造した。また、比較例4は、比較例2と同様にして抗菌性チューブFを製造した。
製造した抗菌性チューブE、抗菌性チューブFについて、その表面に溶着した抗菌剤の状態を、走査電子顕微鏡(株式会社日立ハイテクノロジーズ製、型式:S−3400N)の表面写真(撮影方向:チューブ表面に対して斜め方向、倍率:3000倍)、断面写真(倍率:3000倍)により視認して確認した。なお、表面写真(図8、図10)、断面写真(図9、図11)において、抗菌剤は粒状に撮影される。Next, the state of the antibacterial agent welded to the surface of the antibacterial tube was confirmed again.
(Example 2, Comparative Example 4)
In Example 2, the antibacterial tube E was produced in the same manner as in Example 1. In Comparative Example 4, an antibacterial tube F was produced in the same manner as Comparative Example 2.
About the manufactured antibacterial tube E and antibacterial tube F, the surface state of the antibacterial agent welded to the surface of the scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, model: S-3400N) (shooting direction: tube surface) In comparison with the oblique direction, magnification: 3000 times), cross-sectional photograph (magnification: 3000 times) was visually confirmed. In the surface photographs (FIGS. 8 and 10) and cross-sectional photographs (FIGS. 9 and 11), the antibacterial agent is photographed in a granular form.
実施例2の抗菌性チューブEは、図8、図9に示すように、抗菌性チューブEの表面には、抗菌剤の一部が露出した状態で溶着されていることが確認できた。したがって、抗菌性チューブEでは、前記剥離試験において、抗菌剤が容易に脱落しないことがわかった。
また、比較例4の抗菌性チューブFは、図10、図11に示すように、抗菌性チューブFの表面に抗菌剤があることが確認できた。したがって、抗菌性チューブFでは、前記剥離試験において、抗菌剤が容易に脱落することがわかった。As shown in FIGS. 8 and 9, it was confirmed that the antibacterial tube E of Example 2 was welded to the surface of the antibacterial tube E in a state where a part of the antibacterial agent was exposed. Therefore, in the antibacterial tube E, it turned out that an antibacterial agent does not fall out easily in the said peeling test.
Moreover, the antibacterial tube F of the comparative example 4 has confirmed that there was an antibacterial agent on the surface of the antibacterial tube F, as shown in FIG. 10, FIG. Therefore, in the antibacterial tube F, it turned out that an antibacterial agent falls out easily in the said peeling test.
1 中心静脈カテーテル
2 本体部
3 先端部
4 ハブ
5 接続チューブ
6 コネクターDESCRIPTION OF
Claims (5)
前記医療器具の表面に付着した前記抗菌剤含有溶媒を乾燥させる乾燥工程と、を含み、
前記第1溶媒は、前記医療器具の表面を溶解させないものであり、前記第2溶媒は、前記医療器具の表面を溶解させることが可能なものであり、
前記乾燥工程は、室温により前記第1溶媒を蒸発させて、前記第2溶媒により前記医療器具の表面を溶解し、溶解した前記医療器具の表面から前記抗菌剤粒子の一部が露出する第1処理工程と、加熱により前記第2溶媒を蒸発させる第2処理工程とを含むことを特徴とする抗菌性医療器具の製造方法。 An attachment step of attaching an antibacterial agent-containing solvent in which antibacterial agent particles are dispersed in a mixed solvent in which a first solvent and a second solvent having different boiling points are mixed, on the surface of at least a body insertion site of the medical device;
Look including a drying step of drying the antimicrobial-containing solvent adhering to the surface of the medical device,
The first solvent does not dissolve the surface of the medical device, and the second solvent is capable of dissolving the surface of the medical device,
In the drying step, the first solvent is evaporated at room temperature, the surface of the medical device is dissolved by the second solvent, and a part of the antibacterial agent particles are exposed from the surface of the dissolved medical device. A method for producing an antibacterial medical device, comprising: a treatment step; and a second treatment step for evaporating the second solvent by heating .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012507051A JP5820804B2 (en) | 2010-03-26 | 2011-03-24 | Method for producing antibacterial medical device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010073742 | 2010-03-26 | ||
JP2010073742 | 2010-03-26 | ||
PCT/JP2011/057096 WO2011118680A1 (en) | 2010-03-26 | 2011-03-24 | Process for production of antimicrobial medical instrument, and antimicrobial medical instrument |
JP2012507051A JP5820804B2 (en) | 2010-03-26 | 2011-03-24 | Method for producing antibacterial medical device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2011118680A1 JPWO2011118680A1 (en) | 2013-07-04 |
JP5820804B2 true JP5820804B2 (en) | 2015-11-24 |
Family
ID=44673229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012507051A Active JP5820804B2 (en) | 2010-03-26 | 2011-03-24 | Method for producing antibacterial medical device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5820804B2 (en) |
CN (1) | CN102639162B (en) |
WO (1) | WO2011118680A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9695323B2 (en) | 2013-02-13 | 2017-07-04 | Becton, Dickinson And Company | UV curable solventless antimicrobial compositions |
US9750928B2 (en) | 2013-02-13 | 2017-09-05 | Becton, Dickinson And Company | Blood control IV catheter with stationary septum activator |
US9789279B2 (en) | 2014-04-23 | 2017-10-17 | Becton, Dickinson And Company | Antimicrobial obturator for use with vascular access devices |
US10376686B2 (en) | 2014-04-23 | 2019-08-13 | Becton, Dickinson And Company | Antimicrobial caps for medical connectors |
US9675793B2 (en) | 2014-04-23 | 2017-06-13 | Becton, Dickinson And Company | Catheter tubing with extraluminal antimicrobial coating |
US20160008569A1 (en) * | 2014-07-08 | 2016-01-14 | Becton, Dickinson And Company | Antimicrobial actuator for opening the side port of a ported catheter |
US10232088B2 (en) | 2014-07-08 | 2019-03-19 | Becton, Dickinson And Company | Antimicrobial coating forming kink resistant feature on a vascular access device |
US10493244B2 (en) | 2015-10-28 | 2019-12-03 | Becton, Dickinson And Company | Extension tubing strain relief |
CN108463489B (en) * | 2016-02-11 | 2022-01-04 | 阿波罗恩有限公司 | Composition for catheter and method for producing the same |
US20190015560A1 (en) | 2016-02-11 | 2019-01-17 | Apollon Co., Ltd. | Composition for catheter and production method therefor |
CN108577908B (en) * | 2018-05-15 | 2020-11-17 | 温州医科大学附属第一医院 | Anus draw hook and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09308676A (en) * | 1996-05-23 | 1997-12-02 | Unitika Ltd | Implement for medical treatment and its production |
JPH11504241A (en) * | 1995-04-24 | 1999-04-20 | ベイラー・カレッジ・オブ・メディスン | Catheter and medical implant injected with antimicrobial agent and method for injecting the same |
JP2004523267A (en) * | 2000-12-22 | 2004-08-05 | ザ トラスティース オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク | Antibacterial medical device |
JP2005334216A (en) * | 2004-05-26 | 2005-12-08 | Terumo Corp | Antibacterial catheter |
JP2008508321A (en) * | 2004-07-30 | 2008-03-21 | アクリメッド インコーポレイテッド | Antibacterial silver composition |
WO2008150867A2 (en) * | 2007-05-29 | 2008-12-11 | Innova Materials, Llc | Surfaces having particles and related methods |
WO2010030374A2 (en) * | 2008-09-11 | 2010-03-18 | Bacterin International, Inc. | Elastomeric article having a broad spectrum antimicrobial agent and method of making |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4612337A (en) * | 1985-05-30 | 1986-09-16 | The Trustees Of Columbia University In The City Of New York | Method for preparing infection-resistant materials |
US4917686A (en) * | 1985-12-16 | 1990-04-17 | Colorado Biomedical, Inc. | Antimicrobial device and method |
US5019096A (en) * | 1988-02-11 | 1991-05-28 | Trustees Of Columbia University In The City Of New York | Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same |
WO2010090097A1 (en) * | 2009-02-09 | 2010-08-12 | テルモ株式会社 | Antibacterial catheter, and method for manufacturing same |
-
2011
- 2011-03-24 JP JP2012507051A patent/JP5820804B2/en active Active
- 2011-03-24 WO PCT/JP2011/057096 patent/WO2011118680A1/en active Application Filing
- 2011-03-24 CN CN201180004706.XA patent/CN102639162B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11504241A (en) * | 1995-04-24 | 1999-04-20 | ベイラー・カレッジ・オブ・メディスン | Catheter and medical implant injected with antimicrobial agent and method for injecting the same |
JPH09308676A (en) * | 1996-05-23 | 1997-12-02 | Unitika Ltd | Implement for medical treatment and its production |
JP2004523267A (en) * | 2000-12-22 | 2004-08-05 | ザ トラスティース オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク | Antibacterial medical device |
JP2005334216A (en) * | 2004-05-26 | 2005-12-08 | Terumo Corp | Antibacterial catheter |
JP2008508321A (en) * | 2004-07-30 | 2008-03-21 | アクリメッド インコーポレイテッド | Antibacterial silver composition |
WO2008150867A2 (en) * | 2007-05-29 | 2008-12-11 | Innova Materials, Llc | Surfaces having particles and related methods |
WO2010030374A2 (en) * | 2008-09-11 | 2010-03-18 | Bacterin International, Inc. | Elastomeric article having a broad spectrum antimicrobial agent and method of making |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011118680A1 (en) | 2013-07-04 |
CN102639162A (en) | 2012-08-15 |
WO2011118680A1 (en) | 2011-09-29 |
CN102639162B (en) | 2015-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5820804B2 (en) | Method for producing antibacterial medical device | |
Wu et al. | Antimicrobial activity and cytocompatibility of silver nanoparticles coated catheters via a biomimetic surface functionalization strategy | |
US7820284B2 (en) | Microbe-resistant medical device, microbe-resistant polymeric coating and methods for producing same | |
JP5685539B2 (en) | Medical devices with controlled-release antibacterial agents | |
AU582796B2 (en) | Antimicrobial compositions | |
JP5787566B2 (en) | Antibacterial catheter and method for producing the same | |
JP5128757B2 (en) | Manufacturing method of antibacterial plastic products | |
ES2961963T3 (en) | Systems and methods for applying a new antimicrobial coating material to a medical device | |
US20090029077A1 (en) | Drug eluting medical devices having porous layers | |
EP3436094B1 (en) | Anti-microbial medical materials and devices | |
WO2007092179A2 (en) | Device with nanocomposite coating for controlled drug release | |
JP2013514108A (en) | Medical device for short-term use with a rapidly releasable antimicrobial agent | |
JP2011523369A (en) | Medical device with electrodeposition coating | |
CN112294752B (en) | AgNPs@CSSCS nanogel drug loading system and its preparation | |
KR100455343B1 (en) | Covering composition for drug releasing stent and drug releasing stent manufactured using same | |
Grinberg et al. | Antibiotic nanoparticles embedded into the Parylene C layer as a new method to prevent medical device-associated infections | |
WO2014193410A1 (en) | Method and device for detecting device colonization | |
JP2012254296A (en) | Method for producing medicine releasing stent coating agent and medicine releasing stent coating agent produced by the same | |
CN108379669A (en) | With the medical catheter and preparation method thereof containing copper coating | |
JP2010179031A (en) | Method of manufacturing antibacterial medical instrument and antibacterial medical instrument | |
JPH04231062A (en) | Antimicrobial medical product | |
Kong et al. | Advanced antibacterial materials for the prevention of nosocomial infections | |
JP5639481B2 (en) | Antibacterial medical device manufacturing method and antibacterial medical device | |
WO2010090097A1 (en) | Antibacterial catheter, and method for manufacturing same | |
Farah et al. | Catheters with Antimicrobial Surfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151005 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5820804 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |