[go: up one dir, main page]

JP5810549B2 - Method for producing bi-directional reinforcing fiber fabric - Google Patents

Method for producing bi-directional reinforcing fiber fabric Download PDF

Info

Publication number
JP5810549B2
JP5810549B2 JP2011036124A JP2011036124A JP5810549B2 JP 5810549 B2 JP5810549 B2 JP 5810549B2 JP 2011036124 A JP2011036124 A JP 2011036124A JP 2011036124 A JP2011036124 A JP 2011036124A JP 5810549 B2 JP5810549 B2 JP 5810549B2
Authority
JP
Japan
Prior art keywords
weft
fiber
warp
fabric
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011036124A
Other languages
Japanese (ja)
Other versions
JP2012172281A (en
Inventor
武田 重一
重一 武田
伊藤 稔之
稔之 伊藤
久雄 木場
久雄 木場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2011036124A priority Critical patent/JP5810549B2/en
Publication of JP2012172281A publication Critical patent/JP2012172281A/en
Application granted granted Critical
Publication of JP5810549B2 publication Critical patent/JP5810549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Woven Fabrics (AREA)

Description

本発明は、繊維強化複合材料の補強基材として用いられる経糸及び緯糸がマルチフィラメント強化繊維偏平糸からなる二方向性強化繊維織物の製造方法に関し、具体的には織糸の目ズレや、裁断時の解れを抑えることができ、織目の開口が均等な形態を保持でき、表面平滑性に優れた繊維強化プラスチック製品を得ることのできる、特に目止め処理を施された二方向性の強化繊維織物の製造方法に関する。   The present invention relates to a method for producing a bidirectional reinforced fiber fabric in which warps and wefts used as a reinforcing base material for a fiber reinforced composite material are multifilament reinforced fiber flat yarns, specifically, misalignment of a woven yarn and cutting. The bi-directional reinforcement with a special sealing treatment that can suppress the breakage of time, can maintain the uniform shape of the opening of the texture, and can obtain a fiber-reinforced plastic product with excellent surface smoothness. The present invention relates to a method for producing a textile fabric.

従来より、炭素繊維などの強化繊維は、比強度、比弾性率に優れ軽量化もしやすいことから、繊維強化プラスチックの補強用基材としてスポーツ・レジャー用品をはじめ、航空機用途や一般産業用途、更には橋やトンネル、建物などのコンクリート構造対の補強材、補修材などに広く採用されている。かかる繊維強化プラスチックの成形方法としては、ハンドレイアップ成形をはじめとしてオートクレーブ成形、RTM成形など多様な方法があり、成形品の形状、個数、要求される特性などにより適宜選ばれている。これら成形法では、強化繊維は中間基材として織物の形態としたものが多く使われ、マトリックス樹脂が繊維間に均等に行き渡る必要のあることから、繊維間及び織糸間に所要の間隙が要求される。そのため、成形に到るまでに織物の組織自体が変形したり、経糸や緯糸がずれる目ズレや、織物を裁断した際に織糸が解れやすいという問題があった。   Conventionally, reinforced fibers such as carbon fibers have excellent specific strength and specific elastic modulus and are easy to lighten, so as a base material for reinforcing fiber reinforced plastics, such as sports and leisure products, aircraft and general industrial applications, Is widely used for reinforcement and repair materials for concrete structures such as bridges, tunnels and buildings. As a method for molding such fiber reinforced plastic, there are various methods such as hand lay-up molding, autoclave molding, and RTM molding, which are appropriately selected depending on the shape and number of molded products, required characteristics, and the like. In these molding methods, reinforced fibers are often used in the form of a woven fabric as an intermediate substrate, and the matrix resin needs to be evenly distributed between the fibers. Is done. For this reason, there is a problem that the structure of the woven fabric itself is deformed before reaching the forming, the misalignment of warp and weft is shifted, and the woven yarn is easily unraveled when the woven fabric is cut.

かかる問題に対処すべく、例えば特開平10−317247号公報(特許文献1)や特開2006−2295号公報(特許文献2)により、経糸と緯糸とを交錯させた二方向性強化繊維織物にあって、経糸と緯糸との交錯部を溶融樹脂をもって部分的に接着して目止めを行うことが提案されている。   In order to cope with such a problem, for example, according to Japanese Patent Application Laid-Open No. 10-317247 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2006-2295 (Patent Document 2), a bi-directional reinforcing fiber woven fabric in which warps and wefts are interlaced is used. Therefore, it has been proposed that the intersections between the warp and the weft are partially bonded with a molten resin for sealing.

具体的には、特許文献1では低融点の熱可塑性ポリマーからなる糸を目止め材として使い、その具体例によれば経糸と緯糸が交互に交錯する平織組織の織物において、全ての緯糸上に前記目止め材が線状に配列され、経糸の1本おきに同じく線状の目止め材を配列し、これを加熱溶融させて目止めを行っている。この目止め織物では経糸と緯糸との目止めされた交錯点を織物全体の交錯点数の60〜90%に規定し、複雑な曲面へのフィット性を確保している。   Specifically, in Patent Document 1, a yarn made of a thermoplastic polymer having a low melting point is used as a filler, and according to the specific example, in a woven fabric of a plain weave structure in which warp and weft are alternately interlaced, all the wefts are covered. The said sealing material is arranged in a line, and the same linear sealing material is arranged every other warp, and this is heated and melted to perform the sealing. In this woven fabric, the intersection of the warps and wefts is set to 60 to 90% of the number of intersections of the entire woven fabric, and the fit to a complicated curved surface is ensured.

ところで、炭素繊維は繊度が大きくなるほど生産性が向上し、安価な炭素繊維を製造することが可能となる。しかし、通常の炭素繊維織物は、ほぼ円形断面に収束させた炭素繊維を織糸としており、織り込まれた状態においては、経糸と緯糸が交錯する交錯部における炭素繊維糸の断面が楕円で、織糸が大きくクリンプしている。特に太い炭素繊維糸を使用した炭素繊維織物では、太い経糸と太い緯糸が交錯するのでこの傾向が大である。このため、大きくクリンプした炭素繊維織物では、繊維密度が不均一となり、炭素繊維の特徴である高強度特性を十分に発揮させることが出来ない。このように織糸が大きくクリンプすることを避けるため、太い炭素繊維で低い目付の織物にすると、炭素繊維糸間に形成される空隙が大きくなる。   By the way, as the fineness of the carbon fiber increases, the productivity improves, and it becomes possible to produce an inexpensive carbon fiber. However, a normal carbon fiber woven fabric uses woven yarn made of carbon fibers converged to a substantially circular cross section. In the woven state, the cross section of the carbon fiber yarn at the crossing portion where the warp and the weft intersect is elliptical, The yarn is crimped greatly. In particular, in a carbon fiber woven fabric using thick carbon fiber yarns, this tendency is significant because thick warps and thick wefts cross each other. For this reason, in the carbon fiber fabric crimped greatly, the fiber density becomes non-uniform, and the high strength characteristic that is characteristic of the carbon fiber cannot be sufficiently exhibited. In order to avoid the crimping of the woven yarn being large in this way, when the fabric is made of thick carbon fiber and having a low basis weight, the gap formed between the carbon fiber yarns becomes large.

こうした課題を解決すべく、上記特許文献2では、特許文献1と同様の二方向性強化繊維織物であって、経糸及び緯糸の少なくとも一方を開繊して偏平化させ、その少なくとも緯糸上に目止め材としての熱融着繊維を配して、これを経糸及び緯糸の交差部で熱溶着させ、目止めとともにクリンプを小さくし、同時に繊維密度を均一化して、炭素繊維の特徴である高強度特性を十分に発揮させる。この目止め織物にあっては、熱融着繊維の繊度を110dtex以上とし、開繊されて偏平化した経糸及び緯糸の少なくとも一方の接着強
力が2N以上であり、織目の開口率を10%以下に規定して、たとえ繊維密度を均一化し、経糸及び緯糸に太い繊度の糸が使われたとしても、完成されるプラスチック製品は所期の高強度特性が保持される。
In order to solve these problems, Patent Document 2 discloses a bi-directional reinforcing fiber woven fabric similar to Patent Document 1, in which at least one of warp and weft is opened and flattened, and at least on the weft. A high-strength characteristic of carbon fiber is achieved by arranging heat-bonded fibers as a stop material and heat-welding them at the intersection of warp and weft yarns, making crimps smaller together with equalizing the fiber density and making the fiber density uniform Fully exhibit the characteristics. In this sealing fabric, the heat-bonding fiber has a fineness of 110 dtex or more, the adhesive strength of at least one of warped and weft yarns that has been opened and flattened is 2 N or more, and the opening ratio of the weave is 10%. As defined below, the finished plastic product retains the desired high strength properties even if the fiber density is made uniform and thicker yarns are used for the warp and weft.

特開平10−317247号公報Japanese Patent Laid-Open No. 10-317247 特開2006−2295号公報JP 2006-2295 A

しかして、この種の二方向性の偏平糸織物は、通常、上記特許文献1にも記載されているとおり、織り上がった織物の経糸及び緯糸は共に撚りの無い偏平なマルチフィラメント糸のからなる糸条形態をもっている。上記特許文献2には、この点につき明示されてはいないが、緯糸を開繊拡幅しやくするため無撚りの緯糸を使うことが適切であるとの意図をもっていることは明らかである。   Thus, this type of bi-directional flat yarn fabric is usually composed of a flat multifilament yarn having no twist in both the warp and weft of the woven fabric, as described in Patent Document 1 above. Has a thread form. Although this point is not clearly described in the above-mentioned Patent Document 2, it is clear that there is an intention that it is appropriate to use a non-twisted weft in order to easily spread and widen the weft.

しかしながら、特許文献1及び2に記載されているように、無撚りのマルチフィラメントからなる偏平な緯糸に沿って目止め材である熱融着繊維を直線的に添設させて織成すると、緯糸の構成糸であるフィラメント間に熱融着繊維が埋もれる部分が生じやすく、以降の熱融着繊維を熱溶融させながら経糸と緯糸との交差部分を熱融着して目止めするとき、前記熱融着繊維がフィラメント間に埋もれた部分では、経糸と緯糸との交差部分において経糸と緯糸とが熱融着繊維によって融着がなされず、目止めがなされ部分が発生しかねない。   However, as described in Patent Documents 1 and 2, if weaving is performed by linearly attaching a heat-sealing fiber as a sealing material along a flat weft made of untwisted multifilaments, weft The portion where the heat-sealing fiber is buried between the filaments that are the constituent yarns of the yarn is likely to occur, and when the crossing portion of the warp and the weft yarn is heat-sealed while sealing the subsequent heat-sealing fiber, the heat In the portion where the fused fiber is buried between the filaments, the warp and the weft are not fused by the heat-fusible fiber at the intersection of the warp and the weft.

本発明は、こうした課題を解消すべくなされたものであり、その具体的な目的は、特に扁平な強化繊維糸を用いた二方向性の強化繊維織物において、例えば前記織物を小さく裁断して貼り合わせながら曲面を有する複合材料用プリフォーム等を作製する際にも、織糸が解れることなく容易に所定のプリフォームを形成できる二方向性強化繊維織物の製造方法を提供することにある。   The present invention has been made to solve these problems, and a specific object thereof is, in particular, in a bi-directional reinforcing fiber fabric using flat reinforcing fiber yarns, for example, by cutting the fabric into small pieces and pasting them. An object of the present invention is to provide a method for producing a bi-directional reinforcing fiber woven fabric that can easily form a predetermined preform without unraveling the woven yarn even when producing a preform for a composite material having a curved surface while being combined.

上記目的を達成するため、本発明の基本的構成は、マルチフィラメント強化繊維偏平糸からなる経糸と、偏平な面上を糸方向に沿って低融点繊維が添設されたマルチフィラメント強化繊維偏平糸からなる緯糸とを製織して得られる二方向性強化繊維織物の製造方法であって、前記低融点繊維が前記経糸及び緯糸を構成するマルチフィラメント繊維より低い融点を有してなり、織機上における前記経糸は実質的に無撚りであり、前記緯糸は解舒撚りを有してなり、前記低融点繊維は解舒撚りを有する前記緯糸上に糸方向に沿って直線的に配され、前記経糸と前記緯糸とを製織したのち、前記低融点繊維を加熱溶融して経糸と緯糸との交差部において経糸及び緯糸に融着させてなる二方向性強化繊維織物の製造方法にある。   In order to achieve the above object, the basic configuration of the present invention includes a warp made of a multifilament reinforced fiber flat yarn and a multifilament reinforced fiber flat yarn in which a low melting point fiber is attached along the yarn direction on the flat surface. A low-melting fiber having a lower melting point than the multifilament fibers constituting the warp and the weft, and is obtained on a loom. The warp is substantially untwisted, the weft has an untwisted twist, and the low-melting-point fiber is linearly arranged along the yarn direction on the weft having the untwisted twist. And the weft yarn, and the low melting point fiber is heated and melted and fused to the warp yarn and the weft yarn at the intersection of the warp yarn and the weft yarn.

好適な態様によれば、前記緯糸がマルチフィラメント強化繊維からなる実質的に無撚りであり、当該緯糸が巻かれたボビンをクリールに掛けること、前記ボビンから前記緯糸をボビンの軸線方向に引き出すこと、或いは前記緯糸がマルチフィラメント強化繊維からなる解舒撚りを有し、当該緯糸が巻かれたボビンをクリールに掛けること、前記ボビンから前記緯糸をボビンの軸線方向と直交する方向に引き出すことを含み、更に前記引き出された緯糸を織機上で緯挿入するとき前記低融点繊維を緯糸に沿って連続して添設させること、製織された繊維強化織物を加熱して低融点繊維を溶融させることを含んでいる。   According to a preferred aspect, the weft is substantially untwisted made of multifilament reinforcing fibers, the bobbin around which the weft is wound is applied to a creel, and the weft is pulled out from the bobbin in the axial direction of the bobbin. Or, the weft has an untwisted strand made of multifilament reinforcing fibers, the bobbin around which the weft is wound is applied to a creel, and the weft is pulled out from the bobbin in a direction perpendicular to the axial direction of the bobbin. Further, when the drawn weft is inserted on the loom, the low-melting fiber is continuously provided along the weft, and the woven fiber-reinforced fabric is heated to melt the low-melting fiber. Contains.

更に好ましい態様によれば、前記経糸のトウ幅が2.0〜5.0mmであり、前記緯糸のトウ幅が2.0〜5.0mmであって、前記低融点繊維の総繊度が55〜330dtexである。また、前記経糸及び緯糸に6000〜15000本の炭素繊維からなるマルチフィラメント偏平糸が使われ、織物の目付を200〜400g/mとすることが望ましい。更に、好ましくは織製された織物における経糸及び緯糸のうちの経糸を引っ張ることにより経糸の接着強力を測定し、又は緯糸を引っ張ることにより緯糸の接着強力を測定し、経糸の接着強力及び緯糸の接着強力のいずれか一方の接着強力が150g以上であるとよい。 According to a more preferred aspect, the tow width of the warp is 2.0 to 5.0 mm, the tow width of the weft is 2.0 to 5.0 mm, and the total fineness of the low melting point fiber is 55 to 330 dtex. In addition, it is desirable that multifilament flat yarn made of 6000 to 15000 carbon fibers is used for the warp and weft, and the basis weight of the woven fabric is 200 to 400 g / m 2 . Further, preferably the adhesive strength of the warp yarns was measured by pulling the warp and warp of the weft in woven textiles, or weft adhesion strength of the weft was measured by pulling the adhesive strong and weft warp The adhesive strength of either one of the adhesive strengths is preferably 150 g or more.

本発明の代表的な実施形態である二方向性強化繊維織物の部分平面図である。It is a fragmentary top view of the bidirectional reinforcement fiber fabric which is typical embodiment of this invention. 解舒撚りを有する緯糸に沿って目止め材としての低融点繊維を添設するときの一例を示す緯糸挿入部近傍の斜視図である。It is a perspective view of the vicinity of a weft insertion portion showing an example when a low melting point fiber as a sealing material is attached along a weft having unwinding twist.

以下、本発明の好適な実施形態について図面を参照しつつ詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.

図1は本発明で得られる二方向性の強化繊維織物の一部平面図であり、緯糸2の長手方向に沿って直線状に低融点繊維3が添設され、経糸1と緯糸2とが1本ごとに交互に交差した平織構造を備え、経糸1と緯糸2との交差部分が溶融した低融点繊維3で接合されている。また、本発明で得られる強化繊維織物は、上記特許文献2に開示された強化繊維織物の製造方法と同様に、製織工程において緯糸2に低融点繊維3が添設されて織成され連続して熱ロールにより加熱処理される。   FIG. 1 is a partial plan view of a bi-directional reinforcing fiber woven fabric obtained by the present invention. Low-melting fibers 3 are linearly attached along the longitudinal direction of the weft 2, and warp 1 and weft 2 are Each piece has a plain weave structure that alternately intersects, and the intersecting portion of the warp 1 and the weft 2 is joined by a melted low melting point fiber 3. Further, the reinforcing fiber woven fabric obtained by the present invention is woven continuously by adding the low melting point fibers 3 to the weft yarns 2 in the weaving process in the same manner as the manufacturing method of the reinforcing fiber woven fabric disclosed in Patent Document 2 above. Then, heat treatment is performed with a hot roll.

本発明で得られる強化繊維織物は、経糸1と緯糸2の交点の50%以上が目止めされた状態であれば現場施工する際の取り扱いには何ら問題の生じない接着性が確保される。接着性は強化繊維織物の目付け及び低融点繊維3の糸種、繊度、加熱バーの条件などにより大きく左右される。本発明で得られる強化繊維織物の接着強力は経糸1及び緯糸2の少なくとも一方の接着強力が150g以上であることが必要である。   The reinforcing fiber woven fabric obtained by the present invention can secure adhesiveness that does not cause any problems in handling in the field construction as long as 50% or more of the intersections of the warp 1 and the weft 2 are sealed. Adhesiveness greatly depends on the basis weight of the reinforcing fiber fabric, the yarn type of the low melting point fiber 3, the fineness, the conditions of the heating bar, and the like. The adhesive strength of the reinforcing fiber fabric obtained in the present invention is required to be 150 g or more for at least one of the warp 1 and the weft 2.

この接着強力の測定方法は、次のようにして行う。まず、経糸1又は緯糸2に対して平行に、強化繊維織物を150mm幅に切断し、平面上(机上でよい)に、切断した強化繊維織物をテープで固定する。次に、その強化繊維織物の経糸1または緯糸2の中央部にバネ秤りのフックを引っ掛け、該強化繊維織物を平面と平行かつ引っ掛けた経糸1又は緯糸2に垂直な方向に引っ張っていき、経糸と緯糸との融着がはがれる直前にバネ秤りが示した、秤りの目盛りの最大値を測定する。そして、これを経糸1及び緯糸2それぞれについて20回繰り返して測定し、それらのそれぞれの平均値をこの強化繊維織物の経糸1又は緯糸2の接着強力とする。   The method for measuring the adhesive strength is performed as follows. First, the reinforcing fiber fabric is cut into a width of 150 mm in parallel to the warp 1 or the weft 2, and the cut reinforcing fiber fabric is fixed on a flat surface (may be on a desk) with a tape. Next, a hook of a spring scale is hooked at the center of the warp 1 or weft 2 of the reinforcing fiber fabric, and the reinforcing fiber fabric is pulled in a direction perpendicular to the warp 1 or weft 2 that is parallel and hooked to the plane, The maximum value of the scale of the scale indicated by the spring scale is measured immediately before the fusion between the warp and the weft. The measurement is repeated 20 times for each of the warp 1 and the weft 2, and the average value of each is defined as the adhesive strength of the warp 1 or the weft 2 of the reinforcing fiber fabric.

低融点繊維3の挿入方法は、本実施形態のような平織組織であって経糸1と緯糸1の交点の50%であれば、経糸1或いは緯糸2のいずれか一方に添設すればよいが、経糸1に添設する場合、実際の製織を考慮した場合、経糸1と同数の融着繊維をクリールなどに準備し、且つ経糸1に沿って引き揃えて配置するには、各経糸1の上に該繊維を配列させながら製織させなければならない。更には、多数の強化繊維と多数の低融点繊維3とを同時に張力コントロールしながら製織する必要もあり、非常に煩雑な工程管理が必要となる。逆に本発明方法のように緯糸2上に該低融点繊維3を挿入する方法を採れば、1本の低融点繊維3の張力コントロールだけを行えば足り、比較的容易に緯糸2に沿って直線状に該低融点繊維3を挿入させることができる。   The low melting point fiber 3 may be inserted into either the warp 1 or the weft 2 as long as it is a plain weave structure as in this embodiment and 50% of the intersection of the warp 1 and the weft 1. When attaching to the warp 1 and considering actual weaving, the same number of fused fibers as the warp 1 are prepared in a creel and arranged along the warp 1 in order to arrange each warp 1 The fibers must be woven with the fibers arranged on top. Furthermore, it is necessary to weave a large number of reinforcing fibers and a large number of low-melting fibers 3 while simultaneously controlling the tension, which requires very complicated process management. On the contrary, if the method of inserting the low-melting fiber 3 onto the weft 2 as in the method of the present invention is employed, it is sufficient to control only the tension of one low-melting fiber 3, and it is relatively easy to follow the weft 2. The low melting point fiber 3 can be inserted linearly.

ここで、本発明におけるマルチフィラメントからなる緯糸2に低融点繊維3を添設するにあたって最も重要な点は、緯糸2に添設された低融点繊維3の挙動や、その挙動による
緯糸2の形状変化に対する影響に注目する点にある。低融点繊維3を添設する緯糸2には、上述のように、一般的には実質的に撚りを有さないマルチフィラメント糸が使われている。このとき、緯糸2が偏平化されているか否かとは無関係に、仮に無撚りであった場合には、織機上への緯糸2の供給時又は経糸1の開口への挿入時(製織時)に緯糸2を構成するマルチフィラメントのフィラメント間へと低融点繊維3が沈み込み、複数のフィラメント間に埋もれる部分が生じやすい。その結果、製織後の織物を加熱して低融点繊維3を溶融させて、経糸1と緯糸2との交差部分を接着させたとしても、前述のようなフィラメント間に埋もれた低融点繊維は糸表面に表出せず、緯糸2の内部でフィラメント同士を融着させるだけで、肝心の経糸1との間での融着が実現されない部分が発生し、以降のプリプレグ作成時及び繊維強化成形品の成形時に既述したような不具合が発生しやすくなるばかりでなく、最終製品の物性にも大きな影響を与えかねない。
Here, the most important point in attaching the low melting point fiber 3 to the weft 2 made of multifilament in the present invention is the behavior of the low melting point fiber 3 attached to the weft 2 and the shape of the weft 2 due to the behavior. The focus is on the impact on change. As described above, a multifilament yarn having substantially no twist is generally used for the weft 2 to which the low melting point fiber 3 is attached. At this time, regardless of whether or not the weft 2 is flattened, if it is untwisted, when the weft 2 is supplied onto the loom or inserted into the opening of the warp 1 (at the time of weaving) The low melting point fiber 3 sinks between the multifilaments constituting the weft 2, and a portion buried between the plurality of filaments is likely to occur. As a result, even if the low-melting fiber 3 is melted by heating the woven fabric after weaving and the intersecting portion between the warp 1 and the weft 2 is bonded, the low-melting fiber buried between the filaments as described above is not Only the filaments are fused inside the weft 2 without being exposed to the surface, and a portion where fusion with the essential warp 1 is not realized occurs. During subsequent prepreg creation and fiber reinforced molded product Not only are the above-mentioned defects likely to occur at the time of molding, but the physical properties of the final product may be greatly affected.

これに対処するには、従来のように、緯糸2の長手方向に低融点繊維3を単純に引き揃えて挿入することを避けなければならない。そこで多様な検討を重ねた結果、前記低融点繊維3を緯糸2に添設するにあたり、緯糸2に予め解舒撚りを積極的に施しておくことが、作業性及び経済性の両面からも上記課題を払拭するために最も効果的であることを知った。この解舒撚りを施すには以下の二つの方法が採用できる。   In order to cope with this, it is necessary to avoid the low-melting-point fibers 3 from being simply drawn in the longitudinal direction of the weft 2 as in the prior art. Accordingly, as a result of various studies, it is preferable to positively untwist the weft yarn 2 in advance when attaching the low melting point fiber 3 to the weft yarn 2 from the viewpoint of both workability and economy. I knew it was the most effective way to get rid of the challenges. The following two methods can be used for applying this untwisting.

その一つ目は、緯糸2を多数のフィラメントが平行に引き揃えられた無撚りの状態でボビンに巻き上げ、そのボビンをクリールに掛けたのち、緯糸2をボビンの軸線方向に向けて引き出しながら織機上で緯挿入する。こうしてボビンから緯糸2を縦取りすると緯糸2にはボビンを一周するごとに1回の解舒撚りが施される。また、この製織時に、低融点繊維3が巻かれたボビンを別途用意した低融点繊維用クリールに掛けておき、前記低融点繊維3をボビンから引き出し、図2に示すように、適宜ガイドを使って低融点繊維3を前記緯糸2の長手方向に沿って低融点繊維3を引き揃えながら添設する。   The first is that the weft 2 is wound around a bobbin in a non-twisted state in which a large number of filaments are aligned in parallel, and the bobbin is hung on a creel, and then the weft 2 is pulled out in the axial direction of the bobbin. Insert the weft above. Thus, when the weft 2 is taken up from the bobbin, the weft 2 is untwisted once each time the bobbin goes around. Further, during this weaving, a bobbin around which the low melting point fiber 3 is wound is hung on a separately prepared creel for low melting point fiber, the low melting point fiber 3 is pulled out from the bobbin, and a guide is appropriately used as shown in FIG. Then, the low melting point fiber 3 is attached along the longitudinal direction of the weft 2 while the low melting point fiber 3 is aligned.

緯糸2に予め解舒撚りを施す二つ目の方法は、上記ボビンに巻き取るとき予め解舒撚りに相当する撚りを与えておき、解舒撚りが施されたボビンを緯糸用クリールに掛け、低融点繊維3を前記ボビンからその軸線に直交する方向に引き出して、そのまま織機上の経糸1により作られる開口へと挿入する。従って、この緯挿入時も、緯糸2には解舒撚りに相当する撚りが残った状態を維持する。ここで、上記一つ目の方法と同様に、低融点繊維用クリールに掛けられたボビンから低融点繊維3を引き出し、適宜ガイドを使って低融点繊維3を前記緯糸2の長手方向に沿って添設しながら、緯糸2と一緒に経糸により作られる開口へと緯挿入する。   The second method of pre-twisting the weft 2 in advance is to give a twist corresponding to the untwisting in advance when the bobbin is wound, and then apply the untwisted bobbin to the weft creel, The low melting point fiber 3 is pulled out from the bobbin in a direction perpendicular to the axis thereof, and is inserted into the opening made by the warp 1 on the loom as it is. Accordingly, even when the weft is inserted, the weft 2 is maintained in a state in which the twist corresponding to the untwisting is left. Here, as in the first method, the low-melting fiber 3 is pulled out from the bobbin hung on the low-melting fiber creel, and the low-melting fiber 3 is pulled along the longitudinal direction of the weft 2 using an appropriate guide. While being attached, the weft is inserted into the opening made of the warp together with the weft 2.

ここで、上記低融点繊維3はポリアミド繊維、ポリエチレン繊維、ポリウレタン繊維といった熱可塑性繊維など特に限定するものではないが、接着性を有する低融点繊維であれば如何なる繊維を用いてもよい。基本的には使用する低融点繊維3の太さにより接着性が異なり、太い繊度の繊維を用いる程、接着性は明らかに大きくなり、強化繊維織物全体にコシがでて、取り扱い性、作業性が向上する。しかし、必要以上に太い繊度の該低融点繊維3を用いると強化繊維織物が剛直になりすぎ、樹脂含浸が阻害される恐れが生じ、強度にも悪い影響を及ぼすことが考えられる。これらを考慮したとき、低融点繊維3の繊度は、特に限定されないが、総繊度が55〜330dtexであることが好ましく、用途、接着性を考慮し適宜決定するとよい。   Here, the low melting point fiber 3 is not particularly limited, such as a thermoplastic fiber such as a polyamide fiber, a polyethylene fiber, or a polyurethane fiber, but any fiber may be used as long as it is a low melting point fiber having adhesiveness. Basically, the adhesiveness differs depending on the thickness of the low melting point fiber 3 to be used, and the thicker the finer the fibers, the more clearly the adhesiveness. Will improve. However, if the low melting point fiber 3 having a finer thickness than necessary is used, the reinforcing fiber fabric becomes too rigid, which may impede resin impregnation, and may adversely affect the strength. In consideration of these, the fineness of the low melting point fiber 3 is not particularly limited, but the total fineness is preferably 55 to 330 dtex, and may be appropriately determined in consideration of use and adhesiveness.

また、低融点繊維3を目止め材として使用することから、該低融点繊維3の融着処理を施す方法として、一般的にロール式やベルトニップ式などを挙げることができるが、如何なる方法を用いても差し支えない。融着処理後の接着度合は処理速度、熱ロール温度、接触角度やロール数などにより異なり適宜適正条件を選定できる。また、融着処理の工程は織物を製織しながら連続して処理を施すインライン式、或いはオフライン式による処理で
も何ら問題はない。特に融着温度は使用する該低融点繊維3の融点により異なり、融点以上の温度で処理することが必要である。また、処理速度は製織と連動させるインラインでは製織速度が優先されるため、接着性は熱ロールの表面温度、ロール数や該ロールの接触長などでコントロールする。逆にオフライン式では処理速度は接着性を重視して調整することが可能となる。
In addition, since the low melting point fiber 3 is used as a sealing material, a roll type or a belt nip type can be generally used as a method for performing the fusion treatment of the low melting point fiber 3. It can be used. The degree of adhesion after the fusing process varies depending on the processing speed, hot roll temperature, contact angle, number of rolls, etc., and appropriate conditions can be selected as appropriate. In addition, there is no problem in the process of the fusing process even with an in-line process or an off-line process in which the process is continuously performed while weaving the fabric. In particular, the fusing temperature varies depending on the melting point of the low-melting fiber 3 to be used, and it is necessary to perform the treatment at a temperature higher than the melting point. Further, since the weaving speed is given priority in the in-line that is linked with weaving, the adhesion is controlled by the surface temperature of the hot roll, the number of rolls, the contact length of the roll, and the like. Conversely, in the off-line method, the processing speed can be adjusted with an emphasis on adhesiveness.

次に、経糸1及び緯糸2のトウ幅、低融点繊維3の繊度、目止め温度、製織条件を変更した試験例に基づき本発明を更に具体的に説明する。
以下に示す試験例1〜5では経糸1及び緯糸2に、炭素繊維(三菱レイヨン株式会社製パイロフィルTR50S、フィラメント数12000本・ 繊度8000dtex)をそれぞれ用いて、300g/m2 の目付で製織すると共に、緯糸2に沿って低融点繊維3を添設した後に加熱処理して経糸1と緯糸2とをその交差部で融着して強化繊維織物を得、その接着強力を測定した。その結果を表1に示す。
Next, the present invention will be described more specifically based on test examples in which the tow widths of the warp 1 and the weft 2, the fineness of the low melting point fiber 3, the sealing temperature, and the weaving conditions are changed.
In Test Examples 1 to 5 shown below, weaving with a basis weight of 300 g / m 2 using carbon fiber (Pyrofil TR50S manufactured by Mitsubishi Rayon Co., Ltd., 12,000 filaments, fineness 8000 dtex) for warp 1 and weft 2 respectively. After the low melting point fiber 3 was attached along the weft 2, heat treatment was performed to fuse the warp 1 and the weft 2 at the intersection to obtain a reinforced fiber fabric, and the adhesive strength was measured. The results are shown in Table 1.

〔試験例1〕
試験例1では低融点繊維として、融点が約110℃、繊度が56dtexである東レ株式会社製ナイロン繊維を用い、これを解舒撚りを有する緯糸の糸方向に沿わせて添設し、上記経糸及び緯糸を用いて平織物を織成した。続いて130℃に熱した加熱ロールに接触させることにより熱処理を施し、この強化繊維織物の接着強力を測定したところ、189gの接着強力を有していた。
[Test Example 1]
In Test Example 1, nylon fiber manufactured by Toray Industries, Inc. having a melting point of about 110 ° C. and a fineness of 56 dtex was used as the low melting point fiber, and this was added along the weft direction of the untwisted weft. A plain woven fabric was woven using the weft. Subsequently, a heat treatment was performed by contacting with a heated roll heated to 130 ° C., and the adhesive strength of the reinforcing fiber fabric was measured. As a result, the adhesive strength was 189 g.

〔試験例2〕
試験例2では低融点繊維として、融点が約110℃、繊度が78dtexである東レ株式会社製ナイロン繊維を用いた以外は試験例1と同じ方法で強化繊維織物を得た。得られた強化繊維織物の接着強力を測定したところ、225gの接着強力を有していた。
[Test Example 2]
In Test Example 2, a reinforced fiber fabric was obtained in the same manner as in Test Example 1 except that nylon fibers manufactured by Toray Industries, Inc. having a melting point of about 110 ° C. and a fineness of 78 dtex were used as the low melting point fibers. When the adhesive strength of the obtained reinforcing fiber fabric was measured, it had an adhesive strength of 225 g.

〔試験例3〕
試験例3では低融点繊維として、融点が約110℃、繊度が110dtexである東レ株式会社製ナイロン繊維を用いた以外は試験例1と同じ方法で強化繊維織物を得た。得られた強化繊維織物の接着強力を測定したところ、267gの接着強力の高い数値を有していた。
[Test Example 3]
In Test Example 3, a reinforced fiber fabric was obtained in the same manner as in Test Example 1 except that nylon fiber manufactured by Toray Industries, Inc. having a melting point of about 110 ° C. and a fineness of 110 dtex was used as the low melting point fiber. When the adhesive strength of the obtained reinforcing fiber fabric was measured, it had a high value of 267 g of adhesive strength.

〔試験例4〕
試験例4では低融点繊維として、融点が約110℃、繊度が330dtexである東レ株式会社製ナイロン繊維を用いた以外は試験例1と同じ方法で強化繊維織物を得た。得られた強化繊維織物の接着強力を測定したところ、522gの接着強力で試験例1〜3より高い数値を有していたが、実用的には問題ないが、試験例1〜3に比べ強化繊維織物の剛直性が増し、柔軟性にやや欠けるものであった。
[Test Example 4]
In Test Example 4, a reinforced fiber fabric was obtained in the same manner as in Test Example 1 except that nylon fibers manufactured by Toray Industries, Inc. having a melting point of about 110 ° C. and a fineness of 330 dtex were used as the low melting point fibers. When the adhesive strength of the obtained reinforcing fiber fabric was measured, it had a numerical value higher than that of Test Examples 1 to 3 with an adhesive strength of 522 g. The stiffness of the fiber fabric was increased and the flexibility was somewhat lacking.

〔試験例5〕
試験例5では低融点繊維として、融点が約110℃、繊度が33dtexである東レ株式会社製ナイロン繊維を用いた以外は試験例1と同じ方法で強化繊維織物を得た。得られた強化繊維織物の接着強力を測定したところ、125gの接着強力であり、特に土建用途の強化繊維織物としてはほつれやすく取扱い性が悪く実用に供し得なかった。
更に、以下に示す試験例6〜10では経糸及び緯糸に、炭素繊維(三菱レイヨン株式会社製パイロフィルTR50S、フィラメント数6000本・ 繊度4000dtex)をそれぞれ用いて、200g/m2 の目付で製織すると共に、緯糸に沿って低融点繊維を添設した後に加熱処理して経糸と緯糸とをその交差部で融着して強化繊維織物を得、その接着強力を測定した。その結果を表2に示す。
[Test Example 5]
In Test Example 5, a reinforced fiber fabric was obtained in the same manner as in Test Example 1 except that nylon fibers manufactured by Toray Industries, Inc. having a melting point of about 110 ° C. and a fineness of 33 dtex were used as the low melting point fibers. When the adhesive strength of the obtained reinforcing fiber fabric was measured, the adhesive strength was 125 g, and as a reinforcing fiber fabric for earthwork use, it was easily frayed and its handleability was poor and could not be put to practical use.
Further, in Test Examples 6 to 10 shown below, carbon fibers (Pyrofil TR50S manufactured by Mitsubishi Rayon Co., Ltd., 6000 filaments, fineness 4000 dtex) are used for weft and weft, respectively, and weaving is performed with a basis weight of 200 g / m 2. After adding low-melting fibers along the wefts, heat treatment was performed to fuse the warps and wefts at the intersections to obtain a reinforced fiber fabric, and the adhesive strength was measured. The results are shown in Table 2.

〔試験例6〕
試験例6では低融点繊維として、融点が約110℃、繊度が56dtexである東レ株式会社製ナイロン繊維を用い、これを解舒撚りを有する緯糸の糸方向に沿わせて添設し、上記経糸及び緯糸を用いて平織物を織成した。続いて130℃に熱した加熱ロールに接触させることにより熱処理を施し、この強化繊維織物の接着強力を測定したところ、160gの接着強力を有していた。
[Test Example 6]
In Test Example 6, a nylon fiber manufactured by Toray Industries, Inc. having a melting point of about 110 ° C. and a fineness of 56 dtex was used as the low melting point fiber, and this was added along the yarn direction of the untwisted weft. A plain woven fabric was woven using the weft. Subsequently, heat treatment was performed by contacting the heated roll heated to 130 ° C., and the adhesive strength of the reinforcing fiber fabric was measured. As a result, the adhesive strength was 160 g.

〔試験例7〕
試験例7では低融点繊維として、融点が約110℃、繊度が78dtexである東レ株式会社製ナイロン繊維を用いた以外は試験例1と同じ方法で強化繊維織物を得た。得られた強化繊維織物の接着強力を測定したところ、196gの接着強力を有していた。
[Test Example 7]
In Test Example 7, a reinforced fiber fabric was obtained in the same manner as in Test Example 1 except that nylon fibers manufactured by Toray Industries, Inc. having a melting point of about 110 ° C. and a fineness of 78 dtex were used as the low melting point fibers. When the adhesive strength of the obtained reinforcing fiber fabric was measured, it had an adhesive strength of 196 g.

〔試験例8〕
試験例8では低融点繊維として、融点が約110℃、繊度が110dtexである東レ株式会社製ナイロン繊維を用いた以外は試験例1と同じ方法で強化繊維織物を得た。得られた強化繊維織物の接着強力を測定したところ、210gの接着強力の高い数値を有していた。
[Test Example 8]
In Test Example 8, a reinforced fiber fabric was obtained in the same manner as in Test Example 1 except that nylon fiber manufactured by Toray Industries, Inc. having a melting point of about 110 ° C. and a fineness of 110 dtex was used as the low melting point fiber. When the adhesive strength of the obtained reinforcing fiber fabric was measured, it had a high value of 210 g of adhesive strength.

〔試験例9〕
試験例9では低融点繊維として、融点が約110℃、繊度が330dtexである東レ株式会社製ナイロン繊維を用いた以外は試験例1と同じ方法で強化繊維織物を得た。得られた強化繊維織物の接着強力を測定したところ、315gの接着強力で試験例1〜3より高い数値を有していたが、実用的には問題ないが、試験例1〜3に比べ強化繊維織物の剛直性が増し、柔軟性にやや欠けるものであった。
[Test Example 9]
In Test Example 9, a reinforced fiber fabric was obtained in the same manner as in Test Example 1 except that nylon fibers manufactured by Toray Industries, Inc. having a melting point of about 110 ° C. and a fineness of 330 dtex were used as the low melting point fibers. When the adhesion strength of the obtained reinforcing fiber fabric was measured, it had a higher value than Test Examples 1 to 3 with an adhesive strength of 315 g. The stiffness of the fiber fabric was increased and the flexibility was somewhat lacking.

〔試験例10〕
試験例10では低融点繊維として、融点が約110℃、繊度が33dtexである東レ株式会社製ナイロン繊維を用いた以外は試験例1と同じ方法で強化繊維織物を得た。得られた強化繊維織物の接着強力を測定したところ、105gの接着強力であり、特に土建用途の強化繊維織物としてはほつれやすく、取扱い性が悪く実用に供し得なかった。
[Test Example 10]
In Test Example 10, a reinforced fiber fabric was obtained in the same manner as in Test Example 1 except that nylon fibers manufactured by Toray Industries, Inc. having a melting point of about 110 ° C. and a fineness of 33 dtex were used as the low melting point fibers. When the adhesive strength of the obtained reinforcing fiber fabric was measured, it was 105 g, and it was easily frayed especially as a reinforcing fiber fabric for earthwork use.

表1、2からも明らかのように低融点繊維として融点が約110℃、繊度が55dtex以上の東レ株式会社製ナイロン繊維を用いて強化繊維織物を織成することで取り扱い性、作業性などに支障をきたさない優れた強化繊維織物が得られる。   As is clear from Tables 1 and 2, the low-melting fiber has a melting point of about 110 ° C. and a fineness of 55 dtex or more. An excellent reinforcing fiber woven fabric that does not cause trouble is obtained.

Figure 0005810549
Figure 0005810549

Figure 0005810549
Figure 0005810549

次に上記試験例1及び試験例6で得られた強化繊維織物にコニシ株式会社製の土建用エポキシ樹脂(E2500S)を用いて樹脂を含浸させて平板を作製し、JIS A1191A型に準拠した測定法に基づきコンポ物性評価を実施した結果、表3に示すように、二方向性強化織物としての土建用物性値の公称規格(強度≧2900Mpa 、弾性率240±24Gpa)を上回る強度が得られた。   Next, the reinforcing fiber fabric obtained in Test Example 1 and Test Example 6 was impregnated with resin using an epoxy resin for construction (E2500S) manufactured by Konishi Co., Ltd. to produce a flat plate, and measurement in accordance with JIS A1191A type As a result of carrying out the component physical property evaluation based on the law, as shown in Table 3, the strength exceeding the nominal standard (strength ≧ 2900 Mpa, elastic modulus 240 ± 24 Gpa) of the physical property value for earthwork as the bidirectional reinforced fabric was obtained. .

Figure 0005810549
Figure 0005810549

1 経糸
2 緯糸
3 低融点繊維
1 Warp 2 Weft 3 Low melting point fiber

Claims (7)

マルチフィラメント強化繊維偏平糸からなる経糸と、偏平な面上を長手方向に沿って低融点繊維が添設されたマルチフィラメント強化繊維偏平糸からなる緯糸とを製織して得られる二方向性の強化繊維織物の製造方法であって、
前記低融点繊維が前記経糸及び緯糸を構成するマルチフィラメント繊維より低い融点を有してなり、
織機上における前記経糸は実質的に無撚りであり、前記緯糸は解舒撚りを有してなり、
前記低融点繊維は解舒撚りを有する前記緯糸上に糸方向に沿って直線的に配され、
前記経糸と前記緯糸とを製織したのち、前記低融点繊維を加熱溶融して経糸と緯糸との交差部において経糸及び緯糸を溶融した低融点繊維を介して接着させてなる、二方向性強化繊維織物の製造方法。
Bidirectional reinforcement obtained by weaving warps made of multifilament reinforced fiber flat yarn and weft made of multifilament reinforced fiber flat yarn with low melting point fibers along the longitudinal direction on the flat surface A method of manufacturing a textile fabric,
The low melting point fiber has a lower melting point than the multifilament fiber constituting the warp and weft,
The warp on the loom is substantially untwisted, the weft has an untwisted twist,
The low-melting fiber is linearly arranged along the yarn direction on the weft having unwinding twist,
After weaving the warp and the weft, the bi-directional reinforcing fiber is formed by heating and melting the low-melting fiber and bonding the warp and the weft through the low-melting fiber at the intersection of the warp and the weft. A method for producing a woven fabric.
前記緯糸がマルチフィラメント強化繊維からなる実質的に無撚りであり、当該緯糸が巻かれたボビンをクリールに掛けること、前記ボビンから前記緯糸をボビンの軸線方向に引き出すこと、この引き出された緯糸を織機上で緯挿入するとき前記低融点繊維を緯糸に沿って連続して添設させること、製織された繊維強化織物を加熱して低融点繊維を溶融させることを含んでなる、請求項1記載の二方向性強化繊維織物の製造方法。   The weft is substantially non-twisted of multifilament reinforcing fibers, the bobbin around which the weft is wound is applied to a creel, the weft is pulled out from the bobbin in the axial direction of the bobbin, and the drawn weft is The low-melting fiber is continuously added along the weft when weft is inserted on a loom, and the woven fiber-reinforced fabric is heated to melt the low-melting fiber. A method for producing a bi-directional reinforcing fiber fabric. 前記緯糸がマルチフィラメント強化繊維からなる解舒撚りを有し、当該緯糸が巻かれたボビンをクリールに掛けること、前記ボビンから前記緯糸をボビンの軸線方向と直交する方向に引き出すこと、この引き出された緯糸を織機上で緯挿入するとき前記低融点繊維を緯糸に沿って連続して添設させること、製織された繊維強化織物を加熱して低融点繊維を溶融させることを含んでなる、請求項1記載の二方向性強化繊維織物の製造方法。   The weft has an untwisted twist made of multifilament reinforcing fiber, the bobbin around which the weft is wound is applied to a creel, and the weft is pulled out from the bobbin in a direction perpendicular to the axial direction of the bobbin. The low-melting fiber is continuously added along the weft when weft is inserted on the loom, and the low-melting fiber is melted by heating the woven fiber-reinforced fabric. Item 2. A method for producing a bi-directional reinforcing fiber fabric according to Item 1. 二方向性強化繊維織物を加熱して低融点繊維を溶融させることをインライン又はオフラインにて行うことを含んでなる、請求項1記載の二方向性強化繊維織物の製造方法。   The method for producing a bidirectional reinforcing fiber fabric according to claim 1, comprising heating the bidirectional reinforcing fiber fabric to melt the low melting point fiber in-line or offline. 前記経糸のトウ幅が2.0〜5.0mmであり、前記緯糸のトウ幅が2.0〜5.0mmであって、前記低融点繊維の総繊度が56〜330dtexである、請求項1〜4のいずれかに記載の二方向性強化繊維織物の製造方法。   The tow width of the warp is 2.0 to 5.0 mm, the tow width of the weft is 2.0 to 5.0 mm, and the total fineness of the low-melting fiber is 56 to 330 dtex. The manufacturing method of the bidirectional reinforcement fiber fabric in any one of -4. 前記経糸及び緯糸に6000〜15000本の炭素繊維からなるマルチフィラメント偏平糸が使われ、目付が200〜400g/m2である、請求項5に記載の二方向性強化繊維織物の製造方法。 The multifilament flat yarns consisting of 6,000 to 15,000 pieces of carbon fibers in warp and weft is used, the basis weight is 200 to 400 g / m 2, the manufacturing method of the bidirectional reinforcing fiber fabric according to claim 5. 織製された前記織物における前記経糸及び前記緯糸のうちの前記経糸を引っ張ることにより前記経糸の接着強力を測定し、又は前記緯糸を引っ張ることにより前記緯糸の接着強力を測定し、前記経糸の接着強力及び前記緯糸の接着強力のいずれか一方の接着強力が150g以上である、請求項1〜4のいずれかに記載の二方向性強化繊維織物の製造方法。 The adhesive strength of the warp were measured by pulling the warp of the warp and the weft of woven has been the fabric, or to measure the adhesion strength of the weft by pulling the weft, adhesion of the warp yarns The method for producing a bidirectional reinforced fiber fabric according to any one of claims 1 to 4, wherein the adhesive strength of any one of the strength and the adhesive strength of the weft is 150 g or more.
JP2011036124A 2011-02-22 2011-02-22 Method for producing bi-directional reinforcing fiber fabric Active JP5810549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011036124A JP5810549B2 (en) 2011-02-22 2011-02-22 Method for producing bi-directional reinforcing fiber fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011036124A JP5810549B2 (en) 2011-02-22 2011-02-22 Method for producing bi-directional reinforcing fiber fabric

Publications (2)

Publication Number Publication Date
JP2012172281A JP2012172281A (en) 2012-09-10
JP5810549B2 true JP5810549B2 (en) 2015-11-11

Family

ID=46975465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011036124A Active JP5810549B2 (en) 2011-02-22 2011-02-22 Method for producing bi-directional reinforcing fiber fabric

Country Status (1)

Country Link
JP (1) JP5810549B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10786053B2 (en) 2014-06-17 2020-09-29 Apple Inc. Woven material including double layer construction
US10021945B2 (en) 2014-08-11 2018-07-17 Apple Inc. Self-closing buckle mechanism
US9745676B2 (en) 2015-03-06 2017-08-29 Apple Inc. Woven materials having tapered portions
US10227721B2 (en) 2015-03-06 2019-03-12 Apple Inc. Woven materials and methods of forming woven materials
US9938646B2 (en) 2015-03-08 2018-04-10 Apple Inc. Woven band with different stretch regions
FR3054842A1 (en) * 2016-08-04 2018-02-09 Hexcel Reinforcements DRY INTERMEDIATE TEXTILE MATERIAL WITH THERMOPLASTIC BONDING YARNS, PRE-IMPREGNATED MATERIAL AND COMPOSITE PART COMPRISING SUCH MATERIAL, AND METHODS OF MANUFACTURE
IT202200002183A1 (en) 2022-02-08 2023-08-08 Sachim Srl RAINPROOF NET WITH ALTERNATE STRAP AND MONOFILAMENT WEFT

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626932A (en) * 1985-07-01 1987-01-13 東レ株式会社 Production of reinforcing fiber fabric
JPH08302537A (en) * 1995-05-10 1996-11-19 Ichinomiya Orimono:Kk Carbon fiber woven fabric, its production thereof and device therefor
JP3862106B2 (en) * 1997-05-13 2006-12-27 東レ株式会社 Reinforcing fiber fabric and method for producing the same
JPH10317247A (en) * 1997-05-14 1998-12-02 Toray Ind Inc Reinforcing flat yarn fabric
JP5002895B2 (en) * 2005-02-22 2012-08-15 東レ株式会社 Method for producing reinforced fiber fabric

Also Published As

Publication number Publication date
JP2012172281A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5810549B2 (en) Method for producing bi-directional reinforcing fiber fabric
US5783278A (en) Reinforcing woven fabric and method and apparatus for manufacturing the same
JP6278956B2 (en) Woven parts, composite material elements containing woven parts, and methods of manufacturing the same
JP5279375B2 (en) Nonwoven fabric for reinforcement having reinforcing fiber yarn sheet
JP2010156081A (en) Reinforced strong fiber sheet and method for producing the same
JP5707734B2 (en) Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate
KR102512971B1 (en) Carbon fiber fabric and method of manufacturing the same
JP5049215B2 (en) Reinforcing fiber fabric and its weaving method
JP6912044B2 (en) Heat resistant multi-axis stitch base material
JP2012188786A (en) Unidirectional woven fabric and method for producing the same, and fiber-reinforced plastic molded article using the unidirectional woven fabric and molding method thereof
JP6897705B2 (en) Reinforcing fiber woven fabric and its manufacturing method
JP3214647B2 (en) Material for molding fiber-reinforced thermoplastic resin and method for producing the same
JPH08302537A (en) Carbon fiber woven fabric, its production thereof and device therefor
JP5796732B2 (en) Fiber reinforced sheet, method for producing the same, and fiber reinforced composite material
JP5461930B2 (en) Reinforcing fiber fabric and method for producing the same
JP6642141B2 (en) Method and apparatus for manufacturing reinforced fiber fabric
JPH10317247A (en) Reinforcing flat yarn fabric
JP6364798B2 (en) Reinforcing fiber fabric and method for producing the same
WO1997037835A1 (en) Reinforcement material
JP2019523161A (en) Textile reinforcement suitable for use in thermoplastic resin impregnation
JP2006002295A (en) Method for producing reinforcing fiber cloth and reinforcing fiber cloth
JPH01150532A (en) Workpiece with multiaxially reinforced reinforcing interliner
KR102389445B1 (en) Thermoforming of textile products
JP2015117442A (en) Reinforcing fiber woven fabric and method for producing the same
JPH0457933A (en) Woven fabric for molding composite material reinforced in one direction

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R151 Written notification of patent or utility model registration

Ref document number: 5810549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250