JP5810249B1 - Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material - Google Patents
Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material Download PDFInfo
- Publication number
- JP5810249B1 JP5810249B1 JP2015522818A JP2015522818A JP5810249B1 JP 5810249 B1 JP5810249 B1 JP 5810249B1 JP 2015522818 A JP2015522818 A JP 2015522818A JP 2015522818 A JP2015522818 A JP 2015522818A JP 5810249 B1 JP5810249 B1 JP 5810249B1
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- electrolytic copper
- secondary battery
- ion secondary
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/382—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
二次電池製造時のハンドリング性に優れ、150℃、1時間加熱しても引張り強度が低下しない電解銅箔を提供し、さらに該電解銅箔を集電体として用いることでサイクル寿命を高めたリチウムイオン二次電池用負極電極、及び該電極を組み込んだリチウムイオン二次電池を提供する。表面粗さRzが2.0μm以下、光沢度Gs(60?)が40以上150以下、動摩擦係数が0.11以上0.29以下であり、150℃で1時間加熱後の常温で測定した引張り強度が300MPa以上である電解銅箔、および、該電解銅箔を集電体とするリチウムイオン二次電池が提供される。Provided an electrolytic copper foil that is excellent in handling at the time of manufacturing a secondary battery and does not decrease the tensile strength even when heated at 150 ° C. for 1 hour, and further increased the cycle life by using the electrolytic copper foil as a current collector. A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery incorporating the electrode are provided. Tensile surface roughness Rz of 2.0 μm or less, gloss Gs (60?) Of 40 to 150, dynamic friction coefficient of 0.11 to 0.29, measured at room temperature after heating at 150 ° C. for 1 hour An electrolytic copper foil having a strength of 300 MPa or more and a lithium ion secondary battery using the electrolytic copper foil as a current collector are provided.
Description
本発明は、電解銅箔と、それを用いたリチウム(Li)イオン二次電池用負極電極及びリチウムイオン二次電池に関するものである。
また本発明は、本発明電解銅箔を用いたプリント配線板並びに電磁波シールド材に関するものである。The present invention relates to an electrolytic copper foil, a negative electrode for a lithium (Li) ion secondary battery and a lithium ion secondary battery using the same.
Moreover, this invention relates to the printed wiring board and electromagnetic wave shielding material which used this invention electrolytic copper foil.
リチウムイオン二次電池は、例えば、正極と、負極集電体の表面に負極活物質層が形成された負極と、非水電解質とで構成されており、主に携帯電話機やノートタイプパソコン等に使用されている。
リチウムイオン二次電池の負極は、電解により製造された、いわゆる「未処理銅箔」に防錆処理を施したものが使用され、銅箔(負極集電体)の表面に負極活物質層としてカーボン粒子等を塗布、乾燥し、さらにプレスして形成される。
リチウムイオン二次電池が十分な電池特性を得るには、活物質粒子間、及び、活物質と集電体の距離を小さくすると共に集電体の形状が活物質表面の形状に沿って変形することが重要である。活物質表面の形状に沿って集電体が変形した場合には、活物質と集電体との接触性がさらに良くなり、電気伝導度がさらに大きくなり、望ましい電池特性が得られる。他方、活物質表面の形状に沿って集電体が変形しない場合には、活物質と集電体の接触部分が少なくなり、電気伝導度が小さくなり、望ましい電池特性が得られなくなる。A lithium ion secondary battery is composed of, for example, a positive electrode, a negative electrode having a negative electrode active material layer formed on the surface of a negative electrode current collector, and a non-aqueous electrolyte. It is used.
As the negative electrode of the lithium ion secondary battery, a so-called “untreated copper foil” manufactured by electrolysis is subjected to rust prevention treatment, and the negative electrode active material layer is formed on the surface of the copper foil (negative electrode current collector). It is formed by applying, drying, and pressing carbon particles or the like.
In order for the lithium ion secondary battery to obtain sufficient battery characteristics, the distance between the active material particles and the distance between the active material and the current collector are reduced, and the shape of the current collector is deformed along the shape of the active material surface. This is very important. When the current collector is deformed along the shape of the active material surface, the contact between the active material and the current collector is further improved, the electric conductivity is further increased, and desirable battery characteristics can be obtained. On the other hand, when the current collector does not deform along the shape of the active material surface, the contact portion between the active material and the current collector is reduced, the electrical conductivity is reduced, and desirable battery characteristics cannot be obtained.
また、集電体表面の凹凸が大きい場合には、活物質と集電体の接触点が少なく接触抵抗が高くなる。このような接触抵抗が大きい電極は、充放電を繰り返すと、活物質の充放電に伴う膨張収縮によるストレスや、接着剤であるバインダーの電解液への溶解などによって、集電体と活物質との距離が段々と大きくなり、一部の活物質が充放電に利用できない電気伝導度となって容量の劣化が起きる。したがって、負極集電体には、引張り強度が所定値以上で、両面がより平滑である銅箔が好ましく使用される(特許文献1)。
しかし、リチウムイオン二次電池の負極集電体として、両面がより平滑な電解銅箔を使用すると、平滑な銅箔は電池製造工程における活物質塗工ラインにおいて、搬送ロール上で箔が滑りスリップし易く、スリップにより銅箔(集電体)に皺が生じ、或いは活物質の塗工工程に不具合が発生する等の惧れがある。
また、活物質は充放電時のリチウムの吸蔵及び放出に伴う体積変化で、集電体と活物質との接着状態を良好に維持することが困難になる場合があり、集電体に破壊が起こり、サイクル特性が劣化する現象が生じる。
このような対策として、集電体の引張り強度を所定値以上とする必要がある。Moreover, when the unevenness | corrugation of the collector surface is large, there are few contact points of an active material and a collector, and contact resistance becomes high. Such an electrode having a large contact resistance, when repeated charging and discharging, due to stress due to expansion and contraction accompanying charging and discharging of the active material, dissolution of the binder as an adhesive in the electrolytic solution, and the like, As the distance increases, some active materials become electrical conductivity that cannot be used for charging and discharging, resulting in capacity degradation. Therefore, a copper foil having a tensile strength equal to or higher than a predetermined value and smoother on both sides is preferably used for the negative electrode current collector (Patent Document 1).
However, when an electrolytic copper foil with smoother surfaces is used as the negative electrode current collector of a lithium ion secondary battery, the smooth copper foil slips on the transport roll in the active material coating line in the battery manufacturing process. There is a risk that the slip may cause wrinkles in the copper foil (current collector), or a defect may occur in the active material coating process.
In addition, the volume of the active material that accompanies insertion and extraction of lithium during charge and discharge may make it difficult to maintain a good adhesion between the current collector and the active material. Occurs and the cycle characteristics deteriorate.
As such a countermeasure, it is necessary to set the tensile strength of the current collector to a predetermined value or more.
また近時、リジッドプリント配線板、フレキシブルプリント配線板等のプリント配線板においては、銅箔とフィルム間のより高い密着強度を有しながら、回路基板に要求される高周波特性に優れるプリント配線板が要求されている。加えて、薄箔で強度があり、特にフレキシブルプリント配線板の製造工程において、箔切れや皺等が生じにくい銅箔の要求がなされている。
また、プリント配線板を製造する際にかかる熱履歴を経ても、高い強度を維持する銅箔が要求されている。Also, recently, in printed wiring boards such as rigid printed wiring boards and flexible printed wiring boards, printed wiring boards that have higher adhesion strength between the copper foil and the film and have excellent high frequency characteristics required for circuit boards have been developed. It is requested. In addition, there is a demand for copper foil that is thin and strong, and that is less likely to cause foil breakage or wrinkles, particularly in the manufacturing process of flexible printed wiring boards.
In addition, a copper foil that maintains high strength is required even after a thermal history when manufacturing a printed wiring board.
本発明は、両面が平滑で、引張り強度に優れ、150℃で1時間加熱しても、例えば、常温における引張り強度が低下しない電解銅箔と、該電解銅箔を集電体として用いたリチウムイオン二次電池用負極電極及びリチウムイオン二次電池を提供することを目的とする。
また、リジッドプリント配線板、フレキシブルプリント配線板等のプリント配線板において要求される、銅箔とフィルム間のより高い密着強度、高周波特性、薄箔で強度があることに加えて、特にフレキシブルプリント配線板の製造工程において箔切れや皺等が生じにくい電解銅箔を提供することを目的とする。
また、プリント配線板を製造する際にかかる熱履歴を経ても、高い強度を維持する電解銅箔を提供することを目的とする。
さらに、電磁波シールドの効果に優れ、かつ製造工程において箔切れや皺等が生じにくい電磁波シールド材用の電解銅箔を提供することを目的とする。The present invention provides an electrolytic copper foil that is smooth on both sides, excellent in tensile strength, and does not decrease in tensile strength at room temperature even when heated at 150 ° C. for 1 hour, and lithium using the electrolytic copper foil as a current collector. An object is to provide a negative electrode for an ion secondary battery and a lithium ion secondary battery.
Moreover, in addition to the higher adhesion strength between copper foil and film, high frequency characteristics, and strength of thin foil required for printed wiring boards such as rigid printed wiring boards and flexible printed wiring boards, especially flexible printed wiring An object of the present invention is to provide an electrolytic copper foil that is less prone to foil breakage, wrinkles, and the like in the plate manufacturing process.
Moreover, it aims at providing the electrolytic copper foil which maintains high intensity | strength even if it passes through the thermal history concerning the time of manufacturing a printed wiring board.
Furthermore, it aims at providing the electrolytic copper foil for electromagnetic wave shielding materials which is excellent in the effect of an electromagnetic wave shield, and is hard to produce foil cutting, a wrinkle, etc. in a manufacturing process.
本発明の電解銅箔は、マット面(M面)およびシャイニー面(S面)少なくとも一方の面において、十点平均表面粗さRzが2.0μm以下、光沢度Gs(60°)が40以上150以下、動摩擦係数が0.11以上0.29以下であり、150℃、1時間加熱後の、常温で測定した引張り強度が300MPa以上であることを特徴とする。 The electrolytic copper foil of the present invention has a 10-point average surface roughness Rz of 2.0 μm or less and a glossiness Gs (60 °) of 40 or more on at least one of the matte surface (M surface) and shiny surface (S surface). 150 or less, the dynamic friction coefficient is 0.11 or more and 0.29 or less, and the tensile strength measured at room temperature after heating at 150 ° C. for 1 hour is 300 MPa or more.
上記本発明の電解銅箔は、好適には、150℃で1時間の熱処理を施した後の、常温で測定した引張り強度が400MPa以上である。 The electrolytic copper foil of the present invention preferably has a tensile strength of 400 MPa or more measured at room temperature after heat treatment at 150 ° C. for 1 hour.
本発明のリチウムイオン二次電池用負極電極は上記本発明電解銅箔を集電体としている。
また、本発明のリチウムイオン二次電池は上記本発明電解銅箔を集電体とした負極電極を組み込んだ二次電池である。
また、本発明のプリント配線板は上記電解銅箔を導電体としている。
更に、本発明の電磁波シールド材は上記電解銅箔をシールド材としている。The negative electrode for a lithium ion secondary battery of the present invention uses the electrolytic copper foil of the present invention as a current collector.
Moreover, the lithium ion secondary battery of this invention is a secondary battery incorporating the negative electrode which used the said this invention electrolytic copper foil as a collector.
Moreover, the printed wiring board of this invention uses the said electrolytic copper foil as a conductor.
Furthermore, the electromagnetic shielding material of the present invention uses the electrolytic copper foil as a shielding material.
本発明は、マット面(M面)およびシャイニー面(S面)の少なくとも一方の面の十点平均表面粗さRzが2.0μm以下、光沢度Gs(60°)が40以上150以下、動摩擦係数が0.11以上0.29以下であり、該銅箔の150℃、1時間加熱後の、常温で測定した引張り強度が300MPa以上であることを特徴とする電解銅箔を提供することができる。
本発明は表面粗さRzが2.0μm以下、光沢度Gs(60°)が40以上である電解銅箔を集電体とすることで、サイクル特性を高めたリチウムイオン二次電池用負極電極を提供することができる。
また本発明は、表面粗さRzが2.0μm以下、光沢度Gs(60°)が40以上である電解銅箔を集電体とすることで、活物質と集電体の接触性が良くなり、電気伝導度が高く、良好なサイクル寿命の二次電池を提供することができる。
また、集電体を構成する電解銅箔は150℃、1時間加熱後の、常温で測定した引張り強度が300MPa以上であることで、充放電時の活物質体積膨張収縮による応力に耐えることができ、良好なサイクル寿命の二次電池を提供することができる。In the present invention, at least one of the matte surface (M surface) and the shiny surface (S surface) has a 10-point average surface roughness Rz of 2.0 μm or less, a glossiness Gs (60 °) of 40 to 150, dynamic friction It is possible to provide an electrolytic copper foil having a coefficient of 0.11 or more and 0.29 or less, and a tensile strength measured at room temperature after heating the copper foil at 150 ° C. for 1 hour is 300 MPa or more. it can.
The present invention provides a negative electrode for a lithium ion secondary battery with improved cycle characteristics by using an electrolytic copper foil having a surface roughness Rz of 2.0 μm or less and a glossiness Gs (60 °) of 40 or more as a current collector. Can be provided.
In addition, the present invention uses the electrolytic copper foil having a surface roughness Rz of 2.0 μm or less and a glossiness Gs (60 °) of 40 or more as a current collector, so that the contact between the active material and the current collector is good. Thus, a secondary battery with high electrical conductivity and good cycle life can be provided.
In addition, the electrolytic copper foil constituting the current collector has a tensile strength of 300 MPa or more measured at room temperature after heating at 150 ° C. for 1 hour, so that it can withstand stress due to active material volume expansion and contraction during charge and discharge. And a secondary battery having a good cycle life can be provided.
更に、表面粗さRzが2.0μm以下、光沢度Gs(60°)が40以上である電解銅箔を絶縁フィルムに貼り付けることで、銅箔表面に存在する微細な凹凸により、より高い銅箔と絶縁フィルム間の密着強度を有しながら、回路基板に要求される高周波特性に優れるプリント配線板(例えばリジッドプリント配線板、フレキシブルプリント配線板等)を提供することができる。
加えて、本発明電解銅箔は薄箔でも強度があり、特にフレキシブルプリント配線板の製造工程において箔切れや皺等を生じにくく好ましく使用できる。また、銅箔の150℃、1時間加熱後の常温における引張り強度が300MPa以上であることで、プリント配線板を製造する際にかかる熱履歴を経ても、高い強度を維持することができる。
本発明の電解銅箔は、電磁波シールド材としても優れた効果を有するものである。
また、いずれの用途においても、本発明の電解銅箔は、銅箔の光沢度Gs(60°)が150以下で動摩擦係数が0.11以上0.29以下であることで、表面の微細な凹凸が搬送ロール上の滑り止めとなり、箔がロール上でスリップすることを抑制するため、ハンドリング性が良好となる。Furthermore, by attaching an electrolytic copper foil having a surface roughness Rz of 2.0 μm or less and a glossiness Gs (60 °) of 40 or more to an insulating film, a finer unevenness existing on the surface of the copper foil allows higher copper. A printed wiring board (for example, a rigid printed wiring board, a flexible printed wiring board, etc.) excellent in high frequency characteristics required for a circuit board while having adhesion strength between the foil and the insulating film can be provided.
In addition, the electrolytic copper foil of the present invention is strong even when it is a thin foil, and it can be preferably used, particularly in the process of manufacturing a flexible printed wiring board, in which foil breakage, wrinkles and the like are unlikely to occur. Moreover, high intensity | strength can be maintained even if it passes through the thermal history concerning the time of manufacturing a printed wiring board because the tensile strength in the normal temperature after 150 degreeC and 1 hour heating of copper foil is 300 Mpa or more.
The electrolytic copper foil of the present invention has an excellent effect as an electromagnetic shielding material.
Moreover, in any application, the electrolytic copper foil of the present invention has a fine surface with fineness Gs (60 °) of the copper foil of 150 or less and a dynamic friction coefficient of 0.11 or more and 0.29 or less. The unevenness becomes anti-slip on the transport roll, and the foil is prevented from slipping on the roll, so that the handling property is good.
[電解銅箔の構成]
本発明の一実施形態をリチウムイオン二次電池用集電体を構成する電解銅箔につき説明する。しかし、本発明の電解銅箔はリチウムイオン二次電池用集電体にのみ使用されるものではなく、プリント配線板、電磁はシールド用の導電体等その要旨を変更しない範囲において適宜その他の用途に使用可能なものである。
本実施形態のリチウムイオン二次電池負極集電体用電解銅箔は、150℃で1時間の熱処理を施した後の常温における引張り強度が300MPa以上、特に好ましくは400MPa以上であり、充放電時の活物質の体積膨張収縮による応力に耐えることができ、良好なサイクル寿命の二次電池を提供することができる。[Configuration of electrolytic copper foil]
One embodiment of the present invention will be described with respect to an electrolytic copper foil constituting a current collector for a lithium ion secondary battery. However, the electrolytic copper foil of the present invention is not used only for a current collector for a lithium ion secondary battery, and is appropriately used for other purposes as long as the gist of the printed wiring board, the electromagnetic conductor, etc. does not change its gist. Can be used.
The electrolytic copper foil for a lithium ion secondary battery negative electrode current collector of the present embodiment has a tensile strength at room temperature of 300 MPa or more, particularly preferably 400 MPa or more after being subjected to a heat treatment at 150 ° C. for 1 hour. Thus, it is possible to withstand the stress due to the volume expansion and contraction of the active material, and to provide a secondary battery having a good cycle life.
また、例えば、本実施形態のリチウムイオン二次電池集電体用電解銅箔は、少なくとも電解銅箔に活物質層を設ける側の表面に防錆処理層が設けられる。
防錆処理層は、例えば、クロメート処理層、あるいはNi又はNi合金めっき層、Co又はCo合金めっき層、Zn又はZn合金めっき層、Sn又はSn合金めっき層、上記各種めっき層上にさらにクロメート処理層を設けたもの等の無機防錆処理、あるいは、ベンゾトリアゾール等の有機防錆処理層である。
さらに、シランカップリング剤処理層等が形成されていてもよい。
上記無機防錆処理、有機防錆処理、シランカップリング剤処理は、活物質との密着強度を高め、電池の充放電サイクル効率の低下を防ぐ役割を果たす。For example, the electrolytic copper foil for a lithium ion secondary battery current collector of the present embodiment is provided with a rust-proofing layer on at least the surface on the side where the active material layer is provided on the electrolytic copper foil.
The antirust treatment layer is, for example, a chromate treatment layer, or a nickel or Ni alloy plating layer, a Co or Co alloy plating layer, a Zn or Zn alloy plating layer, a Sn or Sn alloy plating layer, or a chromate treatment on the above various plating layers. It is an inorganic rust preventive treatment such as one provided with a layer, or an organic rust preventive treatment layer such as benzotriazole.
Furthermore, a silane coupling agent treatment layer or the like may be formed.
The inorganic rust-proofing treatment, organic rust-proofing treatment, and silane coupling agent treatment increase the adhesion strength with the active material and prevent the charge / discharge cycle efficiency of the battery from decreasing.
また、例えば、本実施形態のリチウムイオン二次電池集電体用電解銅箔は、電解銅箔の活物質層を設ける表面に粗化処理が施され、該粗化処理が施された表面に防錆処理層が,更に必要によりシランカップリング剤処理層が設けられる。 Further, for example, the electrolytic copper foil for the lithium ion secondary battery current collector of the present embodiment is subjected to a roughening treatment on the surface on which the active material layer of the electrolytic copper foil is provided, and the roughened treatment is applied to the surface subjected to the roughening treatment. A rust-proofing layer is provided, and if necessary, a silane coupling agent-treated layer is provided.
本実施形態の電解銅箔は、マット面(M面)およびシャイニー面(S面)の少なくとも一方の表面において、十点平均表面粗さRzが2.0μm以下、光沢度Gs(60°)が40以上150以下、動摩擦係数が0.11以上0.29以下である。
なお、Gs(60°)とは、投受光角60°で測定した光沢度を示す。
前記少なくとも一方の表面は、活物質層が形成される側の表面であることが好ましい。両面に活物質が形成される場合は、両方の面について、表面粗さRz及び光沢度Gs(60°)が上記の範囲を満たすことが好ましい。
電解銅箔の少なくとも活物質層が形成される表面の表面粗さRzを2.0μm以下とするのは、2.0μm以上では、電解銅箔(集電体)表面の凹凸が大きく、活物質と集電体の接触点が少なくなり、接触抵抗が大きい電極となる。そのため充放電を繰り返すと、活物質の充放電に伴う膨張収縮によるストレスや、接着剤であるバインダーの電解液への溶解などによって、集電体と活物質との距離が段々と大きくなり、一部の活物質が充放電に利用できない電気伝導度になって容量の劣化が起きる危惧があり、好ましくないためである。The electrolytic copper foil of the present embodiment has a 10-point average surface roughness Rz of 2.0 μm or less and a glossiness Gs (60 °) on at least one of the matte surface (M surface) and the shiny surface (S surface). It is 40 or more and 150 or less, and a dynamic friction coefficient is 0.11 or more and 0.29 or less.
Gs (60 °) represents the glossiness measured at a light projection / reception angle of 60 °.
The at least one surface is preferably a surface on the side where the active material layer is formed. When the active material is formed on both surfaces, it is preferable that the surface roughness Rz and the glossiness Gs (60 °) satisfy the above ranges for both surfaces.
The surface roughness Rz of the surface on which at least the active material layer of the electrolytic copper foil is formed is 2.0 μm or less. When the surface roughness is 2.0 μm or more, the surface of the electrolytic copper foil (current collector) has large irregularities, and the active material As a result, the number of contact points of the current collector is reduced, resulting in an electrode having a large contact resistance. Therefore, when charging / discharging is repeated, the distance between the current collector and the active material gradually increases due to stress due to expansion / contraction associated with charging / discharging of the active material and dissolution of the binder as an adhesive in the electrolyte. This is because there is a concern that the active material of the part may have electric conductivity that cannot be used for charging and discharging, resulting in deterioration of capacity, which is not preferable.
また、本実施形態の電解銅箔は、光沢度Gs(60°)を40以上150以下とし、動摩擦係数を0.11以上0.29以下とする。銅箔の表面粗さRzが2.0μm以下で光沢度Gs(60°)が40以上とすることで、活物質と集電体の接触性が良くなり、電気伝導度が高く、良好なサイクル寿命が得られる。
また、銅箔の光沢度Gs(60°)が150以下で動摩擦係数が0.11以上0.29以下とすることで、電池製造工程における活物質塗工ラインで銅箔表面の微細な凹凸が搬送ロール上の滑り止めとなり、銅箔がロール上でスリップすることが抑制され、電池製造ラインで銅箔に皺が発生せず、ハンドリング性が良好となる。また、この微細な凹凸は、活物質と集電体間のアンカー効果としても機能し、活物質の密着性の向上にも有効である。
即ち、ハンドリング性は光沢度Gs(60°)が150以下、動摩擦係数0.11以上0.29以下、より好ましくは0.15以上0.25以下のとき良好であり、電池特性は光沢度Gs(60°)が40以上、150℃で1時間加熱後の常温における引張り強度が300MPa以上のときに良好となる。Moreover, the electrolytic copper foil of this embodiment makes glossiness Gs (60 degrees) 40-150, and makes a dynamic friction coefficient 0.11-0.29. When the surface roughness Rz of the copper foil is 2.0 μm or less and the glossiness Gs (60 °) is 40 or more, the contact between the active material and the current collector is improved, the electric conductivity is high, and the cycle is good. Life expectancy is obtained.
In addition, when the glossiness Gs (60 °) of the copper foil is 150 or less and the coefficient of dynamic friction is 0.11 or more and 0.29 or less, fine irregularities on the surface of the copper foil are produced in the active material coating line in the battery manufacturing process. It becomes slippery on a conveyance roll, it is suppressed that copper foil slips on a roll, a wrinkle does not generate | occur | produce in copper foil in a battery manufacturing line, and handling property becomes favorable. The fine irregularities also function as an anchor effect between the active material and the current collector, and are effective in improving the adhesion of the active material.
That is, the handling property is good when the glossiness Gs (60 °) is 150 or less and the dynamic friction coefficient is 0.11 or more and 0.29 or less, more preferably 0.15 or more and 0.25 or less, and the battery characteristics are glossiness Gs. (60 °) is 40 or more, and is good when the tensile strength at room temperature after heating at 150 ° C. for 1 hour is 300 MPa or more.
また、本実施形態の電解銅箔を、例えば高周波用プリント配線板に通用した場合、高周波になるにつれて大きくなる表皮効果により、表面粗さRzが大きいと表面領域の抵抗値が大きくなり、伝送損失の増大、伝送遅延時間が長くなることを阻止するため、十点表面粗さRzは2.0μm以下が好ましい。 In addition, when the electrolytic copper foil of the present embodiment is applied to, for example, a printed wiring board for high frequency, the resistance value of the surface region increases as the surface roughness Rz increases due to the skin effect that increases as the frequency increases, and transmission loss increases. In order to prevent the increase in transmission time and transmission delay time, the ten-point surface roughness Rz is preferably 2.0 μm or less.
[電解銅箔の製造方法]
本実施形態のリチウムイオン二次電池負極集電体用電解銅箔は、例えば、硫酸−硫酸銅水溶液を電解液とし、白金属元素又はその酸化物元素で被覆したチタンからなる不溶性陽極と該陽極に対向させて設けられたチタン製陰極ドラムとの間に該電解液を供給し、陰極ドラムを一定速度で回転させながら、両極間に直流電流を通電することにより陰極ドラム表面上に銅を析出させ、析出した銅を陰極ドラム表面から引き剥がし、連続的に巻き取る方法により製造される。[Method for producing electrolytic copper foil]
The electrolytic copper foil for the negative electrode current collector of the lithium ion secondary battery according to the present embodiment includes, for example, an insoluble anode made of titanium coated with a white metal element or an oxide element thereof using a sulfuric acid-copper sulfate aqueous solution as an electrolyte and the anode Copper is deposited on the surface of the cathode drum by supplying a direct current between both electrodes while supplying the electrolyte between the cathode cathode and a titanium cathode drum provided opposite to the cathode drum and rotating the cathode drum at a constant speed. The deposited copper is peeled off from the surface of the cathode drum and is continuously wound up.
本実施形態のリチウムイオン二次電池負極集電体用電解銅箔は、例えば、硫酸−硫酸銅電解めっき液において電解処理を行って製造することができる。
硫酸−硫酸銅電解めっき液の銅濃度としては、例えば、40〜120g/Lの範囲を用い、好ましくは60〜100g/Lの範囲を用いる。
また、硫酸−硫酸銅電解めっき液の硫酸濃度としては、40〜60g/Lの範囲を用いる。
硫酸−硫酸銅電解めっき液の塩素濃度としては、5〜25ppmの範囲のものを用いる。
また、添加剤については以下に示す有機添加剤AとBの両方を用いる。The electrolytic copper foil for a lithium ion secondary battery negative electrode current collector of the present embodiment can be produced, for example, by performing an electrolytic treatment in a sulfuric acid-copper sulfate electrolytic plating solution.
As a copper concentration of a sulfuric acid-copper sulfate electroplating solution, the range of 40-120 g / L is used, for example, Preferably the range of 60-100 g / L is used.
Moreover, as a sulfuric acid concentration of a sulfuric acid-copper sulfate electroplating solution, the range of 40-60 g / L is used.
The chlorine concentration in the sulfuric acid-copper sulfate electroplating solution is in the range of 5-25 ppm.
Moreover, about an additive, both the organic additives A and B shown below are used.
有機添加剤Aは、チオ尿素系化合物であり、炭素数が4以上のチオ尿素系化合物である。
有機添加剤Aとして、例えば、N,N’−ジエチルチオ尿素(C5H12N2S)、テトラメチルチオ尿素(C5H12N2S)、N,N’−アリルチオ尿素(C4H8N2S)、等の水溶性のチオ尿素誘導体を用いることができる。The organic additive A is a thiourea compound and is a thiourea compound having 4 or more carbon atoms.
Examples of the organic additive A include N, N′-diethylthiourea (C 5 H 12 N 2 S), tetramethylthiourea (C 5 H 12 N 2 S), N, N′-allylthiourea (C 4 H 8). Water-soluble thiourea derivatives such as N 2 S) can be used.
また有機添加剤Bは、例えば、ニカワ、ゼラチン、ポリエチレングリコール、ポリプロピレングリコール、デンプン、セルロース系水溶性高分子(カルボキシルメチルセルロース、ヒドロキシエチルセルロース等)等の高分子多糖類、ポリエチレンイミン、ポリアリル、ポリアリルアミン、ポリアクリルアミドなどの水溶性高分子化合物から選ばれた一種以上の添加剤を用いることができる。
有機添加剤Aに加えて有機添加剤Bをさらに添加し、特定の電解条件で製箔を行うことで、高強度で表面粗度Rzが2.0μm以下、光沢度Gs(60°)が40以上150以下、動摩擦係数が0.11以上0.29以下、より好ましくは0.15以上0.25以下である電解銅箔を製箔することができる。The organic additive B includes, for example, glue, gelatin, polyethylene glycol, polypropylene glycol, starch, high molecular polysaccharides such as cellulose water-soluble polymers (carboxyl methyl cellulose, hydroxyethyl cellulose, etc.), polyethylene imine, polyallyl, polyallylamine, One or more additives selected from water-soluble polymer compounds such as polyacrylamide can be used.
In addition to organic additive A, organic additive B is further added, and foil formation is performed under specific electrolysis conditions, so that the strength is high, the surface roughness Rz is 2.0 μm or less, and the glossiness Gs (60 °) is 40. An electrolytic copper foil having a dynamic friction coefficient of 0.11 to 0.29, more preferably 0.15 to 0.25, can be produced.
製造された電解銅箔(未処理銅箔)に対して、例えば、クロメート処理、あるいはNi又はNi合金めっき、Co又はCo合金めっき、Zn又はZn合金めっき、Sn又はSn合金めっき、上記各種めっき層上にさらにクロメート処理を施す等の無機防錆処理、あるいは、ベンゾトリアゾール等の有機防錆処理を施す。
さらに、例えばシランカップリング剤処理等が施されて、リチウムイオン二次電池負極集電体用電解銅箔とする。
上記無機防錆処理、有機防錆処理、シランカップリング剤処理は活物質との密着強度を高め、電池の充放電サイクル効率の低下を防ぐ役割を果たす。For the produced electrolytic copper foil (untreated copper foil), for example, chromate treatment, Ni or Ni alloy plating, Co or Co alloy plating, Zn or Zn alloy plating, Sn or Sn alloy plating, the above various plating layers Further, an inorganic rust prevention treatment such as a chromate treatment or an organic rust prevention treatment such as benzotriazole.
Furthermore, for example, a silane coupling agent treatment or the like is performed to obtain an electrolytic copper foil for a negative electrode current collector of a lithium ion secondary battery.
The inorganic rust prevention treatment, organic rust prevention treatment, and silane coupling agent treatment increase the adhesion strength with the active material and prevent the charge / discharge cycle efficiency of the battery from being lowered.
また、上記の防錆処理を施す前に、例えば、電解銅箔表面に粗化処理を行うことも可能である。粗化処理としては、例えば、めっき法、エッチング法等が好適に採用できる。
めっき法は、未処理電解銅箔の表面に凹凸を有する薄膜層を形成することにより表面を粗化する方法である。めっき法としては、電解めっき法及び無電解めっき法を採用することができる。めっき法による粗化としては、銅や銅合金などの銅を主成分とするめっき膜を、未処理電解銅箔表面に形成する方法が好ましい。Moreover, before performing said rust prevention process, it is also possible to perform a roughening process, for example to the electrolytic copper foil surface. As the roughening treatment, for example, a plating method or an etching method can be suitably employed.
The plating method is a method of roughening the surface by forming a thin film layer having irregularities on the surface of the untreated electrolytic copper foil. As the plating method, an electrolytic plating method and an electroless plating method can be employed. As the roughening by the plating method, a method of forming a plating film mainly composed of copper such as copper or copper alloy on the surface of the untreated electrolytic copper foil is preferable.
エッチング法による粗化としては、例えば、物理的エッチングや化学的エッチングによる方法が適している。物理的エッチングにはサンドブラスト等でエッチングする方法があり、化学エッチングには処理液として、無機または有機酸と酸化剤と添加剤を含有する液が多数提案されている。 As the roughening by the etching method, for example, a method by physical etching or chemical etching is suitable. For physical etching, there is a method of etching by sandblasting or the like, and for chemical etching, many liquids containing an inorganic or organic acid, an oxidizing agent, and an additive have been proposed.
[リチウムイオン二次電池用集電体を用いたリチウムイオン二次電池の構成と製造方法]
本実施形態のリチウムイオン二次電池負極電極は、上記の本実施形態のリチウムイオン二次電池負極集電体用電解銅箔を集電体とし、該集電体の前記防錆処理層等表面処理が施された面に活物質層が形成された構成である。[Configuration and production method of lithium ion secondary battery using current collector for lithium ion secondary battery]
The negative electrode of the lithium ion secondary battery of the present embodiment uses the electrolytic copper foil for the negative electrode current collector of the lithium ion secondary battery of the present embodiment as a current collector, and the surface of the current collector such as the rust preventive treatment layer In this configuration, an active material layer is formed on the treated surface.
例えば、上記の活物質層は、活物質、バインダー、溶媒を混練しスラリー状としたものを負極集電体に塗布、乾燥、プレスしたものである。 For example, the active material layer is obtained by applying a slurry obtained by kneading an active material, a binder, and a solvent to a negative electrode current collector, drying, and pressing.
本実施形態における活物質層は、リチウムを吸蔵・放出する物質であり、リチウムを合金化することにより吸蔵する活物質であることが好ましい。このような活物質材料としては、例えば、カーボンや、ケイ素、ゲルマニウム、スズ等の第14族元素等が挙げられる。 The active material layer in the present embodiment is a material that occludes / releases lithium, and is preferably an active material that occludes lithium by alloying. Examples of such an active material include group 14 elements such as carbon, silicon, germanium, and tin.
本実施形態においては、集電体の厚みは4〜10μmと薄いものであることが好ましく、活物質層は、集電体の片面または両面上に形成する。表面粗さRzが1.0μm以上2.0μm以下のドラムから形成した銅箔の光沢面のみに活物質を塗布する場合、活物質を塗布する表面は平滑であり、活物質との密着性は良好であった。集電体の厚みは、4μm以下では箔切れを生じ易く製造が困難であり、10μmよりも厚い場合、電池の軽量化・高エネルギー密度化の観点より好ましくない。また、動摩擦係数が0.11以下では、表面が平滑過ぎるため、銅箔製造工程および電池製造工程における搬送ロール表面でスリップしやすく、皺になりやすい。従って、銅箔の厚さ4〜10μmで動摩擦係数を0.11〜0.29の範囲とすることで、ハンドリング性がよく電池の軽量化・高エネルギー密度化に有効な集電体(銅箔)となる。 In the present embodiment, the current collector is preferably as thin as 4 to 10 μm, and the active material layer is formed on one side or both sides of the current collector. When the active material is applied only to the glossy surface of the copper foil formed from the drum having a surface roughness Rz of 1.0 μm or more and 2.0 μm or less, the surface on which the active material is applied is smooth and the adhesion with the active material is It was good. If the thickness of the current collector is 4 μm or less, the foil is likely to break, and the production is difficult. If the current collector is thicker than 10 μm, it is not preferable from the viewpoint of weight reduction and high energy density of the battery. In addition, when the coefficient of dynamic friction is 0.11 or less, the surface is too smooth, so that it easily slips on the surface of the transport roll in the copper foil manufacturing process and the battery manufacturing process, and is easily wrinkled. Therefore, a collector (copper foil) that has good handling properties and is effective in reducing the weight and increasing the energy density of the battery by setting the thickness of the copper foil to 4 to 10 μm and the dynamic friction coefficient in the range of 0.11 to 0.29. )
カーボン系の負極活物質層を形成する場合は、負極活物質であるカーボン、バインダーであるポリフッ化ビニリデン樹脂、溶媒であるN−メチルピロリドンからなるペーストを作製し、集電体(銅箔)の片面または両面に塗布し、乾燥を行う。
本実施形態における活物質層には、例えば、予めリチウムが吸蔵または添加されていてもよい。また、リチウムは活物質層を形成する際に添加してもよい。すなわち、リチウムを含有する活物質層を形成することにより、活物質層にリチウムを含有させる。また、活物質層を形成した後に、活物質層にリチウムを吸蔵または添加させてもよい。活物質層にリチウムを吸蔵または添加させる方法としては、電気化学的にリチウムを吸蔵または添加させる方法が挙げられる。When forming a carbon-based negative electrode active material layer, a paste made of carbon as a negative electrode active material, polyvinylidene fluoride resin as a binder, and N-methylpyrrolidone as a solvent is prepared, and a current collector (copper foil) Apply to one or both sides and dry.
For example, lithium may be occluded or added to the active material layer in this embodiment in advance. Lithium may be added when forming the active material layer. That is, lithium is contained in the active material layer by forming an active material layer containing lithium. Further, after forming the active material layer, lithium may be occluded or added to the active material layer. Examples of a method for inserting or adding lithium into the active material layer include a method for electrochemically inserting or adding lithium.
また、本実施形態のリチウムイオン二次電池は、正極及び負極を備えるリチウムイオン二次電池であって、負極電極は上記の本実施形態のリチウムイオン二次電池負極電極で構成する。 Moreover, the lithium ion secondary battery of this embodiment is a lithium ion secondary battery provided with a positive electrode and a negative electrode, Comprising: A negative electrode is comprised by the lithium ion secondary battery negative electrode of said this embodiment.
本実施形態の電解銅箔を、例えば高周波用プリント配線板に通用した場合、高周波になるにつれて大きくなる表皮効果により、表面粗さRzが大きいと表面領域の抵抗値が大きくなり、伝送損失の増大、伝送遅延時間が長くなることを阻止するため、十点表面粗さRzは2.0μm以下が好ましい。 When the electrolytic copper foil of the present embodiment is applied to, for example, a printed wiring board for high frequency, the resistance value of the surface region increases when the surface roughness Rz is large due to the skin effect that increases as the frequency becomes high, and the transmission loss increases. In order to prevent an increase in the transmission delay time, the ten-point surface roughness Rz is preferably 2.0 μm or less.
[プリント配線板の構成]
本発明の電解銅箔は、リジッドプリント配線板やフレキシブルプリント配線板等のプリント配線板(本明細書ではリジッドプリント配線板、フレキシブルプリント配線板等を総称してプリント配線板と称することがある)、電磁波シールド材等種々の分野で使用することができる。
最近のプリント配線板は通常2種類に分けられる。一つは、絶縁フィルム(ポリイミド、ポリエステル等)に銅箔を接着樹脂で張り付け、エッチング処理してパターンを施した三層プリント配線板である。これに対してもう一つのタイプは、接着剤を使用せずに絶縁フィルム(ポリイミド、液晶ポリマー等)と直接銅箔を積層した二層プリント配線板である。
本発明の電解銅箔はこれらプリント配線板の導電体として絶縁フィルムと張り合わされる。[Configuration of printed wiring board]
The electrolytic copper foil of the present invention is a printed wiring board such as a rigid printed wiring board or a flexible printed wiring board (in this specification, the rigid printed wiring board, the flexible printed wiring board, etc. may be collectively referred to as a printed wiring board). It can be used in various fields such as electromagnetic shielding materials.
Recent printed wiring boards are usually divided into two types. One is a three-layer printed wiring board in which a copper foil is attached to an insulating film (polyimide, polyester, etc.) with an adhesive resin and etched to give a pattern. On the other hand, another type is a two-layer printed wiring board in which an insulating film (polyimide, liquid crystal polymer, etc.) and a copper foil are directly laminated without using an adhesive.
The electrolytic copper foil of the present invention is laminated with an insulating film as a conductor of these printed wiring boards.
プリント配線板の主な用途は、液晶ディスプレイ、プラズマディスプレイ等のフラットパネルディスプレイ用、或いはカメラ、AV機器、パソコン、コンピューター端末機器、HDD、携帯電話機、カーエレクトロニクス機器等の内部配線用である。これらの配線は機器に折り曲げて装着し、或いは繰り返して曲げられるような箇所に使用されるため、プリント配線板用銅箔に対する要求特性として、耐久性と屈曲性に優れていることが一つの重要な特性である。
本発明のプリント配線板は、表面粗さRzが2.0μm以下、光沢度Gs(60°)が40以上である電解銅箔を絶縁フィルムに貼り付けることで、銅箔表面に存在する微細な凹凸により、より高い銅箔と絶縁フィルム間の密着強度を有しながら、回路基板に要求される高周波特性に優れるプリント配線板とすることができる。
加えて、絶縁フィルムと張り合わせる銅箔の150℃、1時間加熱後に常温で測定した引張り強度が300MPa以上であることから、薄箔でも強度があり、特にフレキシブルプリント配線板の製造工程において箔切れや皺等が発生し難い。
また、絶縁フィルムを張り合わせる銅箔の150℃、1時間加熱後の常温における引張り強度が300MPa以上であることで、プリント配線板を製造する際にかかる熱履歴を経ても、高い強度を維持することができる。The main uses of printed wiring boards are for flat panel displays such as liquid crystal displays and plasma displays, or for internal wiring of cameras, AV equipment, personal computers, computer terminal equipment, HDDs, mobile phones, car electronics equipment, and the like. Since these wirings are used in places where they are bent or attached to equipment or repeatedly bent, one of the important characteristics of copper foil for printed wiring boards is that they are durable and flexible. It is a characteristic.
The printed wiring board according to the present invention has a surface roughness Rz of 2.0 μm or less and a glossy Gs (60 °) of 40 or more. Due to the unevenness, a printed wiring board having excellent high-frequency characteristics required for a circuit board can be obtained while having higher adhesion strength between the copper foil and the insulating film.
In addition, the copper foil laminated with the insulating film has a tensile strength of 300 MPa or more measured at room temperature after heating at 150 ° C. for 1 hour, so that even a thin foil has strength, especially in the manufacturing process of a flexible printed wiring board. It is difficult for wrinkles and wrinkles to occur.
In addition, the tensile strength at room temperature after heating at 150 ° C. for 1 hour of the copper foil that laminates the insulating film is 300 MPa or more, so that a high strength is maintained even after passing through a heat history when manufacturing a printed wiring board. be able to.
本発明の電解銅箔の優れた諸特性は、本発明の電解銅箔を電磁波シールドに適用した場合にも、電磁波シールド効果にも優れ、絶縁基板と張り合わせることで優れた電磁波シールド材となる。
また、いずれの用途においても、本発明の電解銅箔は銅箔の光沢度Gs(60°)が150以下で動摩擦係数が0.11以上0.29以下であることで、表面の微細な凹凸が搬送ロール上の滑り止めとなり、箔がロール上でスリップすることを抑制するため、ハンドリング性が良好となる。The excellent characteristics of the electrolytic copper foil of the present invention are excellent in the electromagnetic shielding effect even when the electrolytic copper foil of the present invention is applied to an electromagnetic shielding, and becomes an excellent electromagnetic shielding material by being bonded to an insulating substrate. .
Moreover, in any application, the electrolytic copper foil of the present invention has a glossiness Gs (60 °) of the copper foil of 150 or less and a dynamic friction coefficient of 0.11 or more and 0.29 or less. Becomes anti-slip on the transport roll and suppresses the foil from slipping on the roll, so that the handling property is improved.
以下、本発明を表1の実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。 Hereinafter, the present invention will be described in more detail based on the examples in Table 1. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.
[未処理銅箔の製造]
実施例1〜12
銅濃度を65g/L、硫酸濃度を45g/L、塩化物イオン濃度25ppmに調整し、表1に示す添加剤A、Bを添加した電解液を用い、アノード(陽極)には貴金属酸化物被覆チタン電極、カソード(陰極)にはチタン製回転ドラムを用いて電流密度35A/dm2、浴温50℃の条件下で、10μm厚みの未処理銅箔を電解製箔法によって製造した。
なお、未処理銅箔の製造は、電流密度を35A/dm2以下で行うことが好ましい。電
流密度を35A/dm2より大きくして製箔すると銅箔表面の平滑性が低下し、動摩擦係数を0.29以下にすることが難しくなる場合がある。[Manufacture of untreated copper foil]
Examples 1-12
Adjust the copper concentration to 65 g / L, the sulfuric acid concentration to 45 g / L, and the chloride ion concentration to 25 ppm, and use the electrolyte solution to which the additives A and B shown in Table 1 are added, and the anode (anode) is coated with a noble metal oxide An untreated copper foil having a thickness of 10 μm was produced by an electrolytic foil method under the conditions of a current density of 35 A / dm 2 and a bath temperature of 50 ° C. using a titanium rotating drum as a titanium electrode and a cathode (cathode).
The untreated copper foil is preferably produced at a current density of 35 A / dm 2 or less. If the current density is made larger than 35 A / dm 2 and the foil is made, the smoothness of the copper foil surface is lowered, and it may be difficult to make the dynamic friction coefficient 0.29 or less.
比較例1〜8
比較例1〜8について、表2に示す組成の電解液と電解条件により実施例と同様の設備で厚さが10μmとなるように未処理銅箔を製造した。Comparative Examples 1-8
About Comparative Examples 1-8, the untreated copper foil was manufactured so that thickness might be set to 10 micrometers with the same installation as an Example by the electrolyte solution of the composition shown in Table 2, and electrolysis conditions.
[電解銅箔の引張り強度及び伸び率の測定]
実施例1〜12,比較例1〜8の各電解銅箔の常温での引張り強度(MPa)、伸び率(%)を測定した。結果を表3に示す。
また、引張り強度(MPa)及び伸び率(%)については、150℃で1時間の熱処理を施した後についても常温で測定し、その結果を表3に併記した。
引張り強度、伸び率は引張試験機(インストロン社製1122型)を用いて引張試験速度50mm/minで測定した値である。
なお本実施例において、「常温」とは、上記のような150℃、1時間の熱処理を行う前の通常の温度、代表的には20℃を表す。[Measurement of tensile strength and elongation of electrolytic copper foil]
The tensile strength (MPa) and elongation rate (%) at normal temperature of each electrolytic copper foil of Examples 1 to 12 and Comparative Examples 1 to 8 were measured. The results are shown in Table 3.
The tensile strength (MPa) and elongation (%) were measured at room temperature even after heat treatment at 150 ° C. for 1 hour, and the results are also shown in Table 3.
The tensile strength and elongation are values measured at a tensile test speed of 50 mm / min using a tensile tester (Instron type 1122).
In this embodiment, “normal temperature” represents a normal temperature before the heat treatment of 150 ° C. for 1 hour as described above, typically 20 ° C.
[表面粗さRzの測定]
実施例1〜12,比較例1〜8の各電解銅箔のマット面の十点平均表面粗さRz(μm)を測定した。測定は、JIS B 0601−1994)に定められた方法により測定し、その結果を表3に示す。[Measurement of surface roughness Rz]
Ten-point average surface roughness Rz (μm) of the mat surface of each of the electrolytic copper foils of Examples 1 to 12 and Comparative Examples 1 to 8 was measured. The measurement was performed by the method defined in JIS B 0601-1994), and the results are shown in Table 3.
[電解銅箔の動摩擦係数の測定]
実施例1〜12,比較例1〜8の各電解銅箔の動摩擦係数は、表面性測定機(新東科学(株)製 HEIDON 14FW)を用いて測定した。測定条件は、摺動子に10mm径の鋼球を使用し、摺動速度100mm/minで、摺動距離10mm片道1回で実施した。その結果を表3に示す。なお、表3にはマット面についての測定結果を示したが、シャイニー面についてもほぼ同様の結果が得られた。[Measurement of dynamic friction coefficient of electrolytic copper foil]
The dynamic friction coefficients of the electrolytic copper foils of Examples 1 to 12 and Comparative Examples 1 to 8 were measured using a surface property measuring machine (HEIDON 14FW manufactured by Shinto Kagaku Co., Ltd.). The measurement conditions were as follows: a 10 mm diameter steel ball was used for the slider, the sliding speed was 100 mm / min, and the sliding distance was 10 mm once per way. The results are shown in Table 3. Table 3 shows the measurement results for the matte surface, but almost the same results were obtained for the shiny surface.
[電解銅箔の光沢度の測定]
実施例1〜12,比較例1〜8の各電解銅箔のマット面の光沢度Gs(60°)は、光沢度計(日本電色工業株式会社製VG2000)を用いて投受光角60°にて測定した。その結果を表3に示す。[Measurement of gloss of electrolytic copper foil]
The glossiness Gs (60 °) of the mat surface of each of the electrolytic copper foils of Examples 1 to 12 and Comparative Examples 1 to 8 was measured using a glossmeter (VG2000 manufactured by Nippon Denshoku Industries Co., Ltd.) at a light emitting / receiving angle of 60 °. Measured at The results are shown in Table 3.
[クロメート処理]
実施例1〜12、比較例1〜8の各電解銅箔表面にクロメート処理を施して防錆処理層を形成し、集電体とした。
銅箔表面のクロメート処理の条件は以下の通りである。
クロメート処理条件:
重クロム酸カリウム 1〜10g/L
浸漬処理時間 2〜20秒[Chromate treatment]
The surface of each electrolytic copper foil of Examples 1 to 12 and Comparative Examples 1 to 8 was subjected to chromate treatment to form a rust preventive treatment layer to obtain a current collector.
The conditions for the chromate treatment of the copper foil surface are as follows.
Chromate treatment conditions:
Potassium dichromate 1-10g / L
Immersion treatment time 2 to 20 seconds
[電池特性の評価]
1.正極の製造
LiCoO2粉末90重量%、黒鉛粉末7重量%、ポリフッ化ビニリデン粉末3重量%を混合してN−メチルピロリドンをエタノールに溶解した溶液を添加して混練し、正極剤ペーストを調整した。このペーストを厚み15μmのアルミ箔に均一に塗着した後窒素雰囲気中で乾燥してエタノールを揮散させ、次いでロール圧延を行って、全体の厚みが100μmであるシートを作製した。このシートを巾43mm、長さ290mmに切断した後その一端にアルミ箔のリード端子を超音波溶接で取り付け、正極とした。[Evaluation of battery characteristics]
1. Production of positive electrode 90% by weight of LiCoO 2 powder, 7% by weight of graphite powder and 3% by weight of polyvinylidene fluoride powder were mixed and a solution prepared by dissolving N-methylpyrrolidone in ethanol was added and kneaded to prepare a positive electrode agent paste. . The paste was evenly applied to an aluminum foil having a thickness of 15 μm, dried in a nitrogen atmosphere to evaporate ethanol, and then rolled to produce a sheet having an overall thickness of 100 μm. The sheet was cut into a width of 43 mm and a length of 290 mm, and then an aluminum foil lead terminal was attached to one end thereof by ultrasonic welding to form a positive electrode.
2.負極の製造:
天然黒鉛粉末(平均粒径10μm)90重量%、ポリフッ化ビニリデン粉末10重量%を混合し、N−メチルピロリドンをエタノールに溶解した溶液を添加して混練しペーストを作製した。ついで、このペーストを実施例、比較例の各銅箔の両面に塗着した。塗着後の銅箔を窒素雰囲気中で乾燥してエタノールを揮散させ、次いで、ロール圧延して全体の厚みが100μmであるシートに成型した。このシートを巾43mm、長さ285mmに切断した後その一端にニッケル箔のリード端子を超音波溶接で取り付け、負極とした。2. Production of negative electrode:
90% by weight of natural graphite powder (average particle size: 10 μm) and 10% by weight of polyvinylidene fluoride powder were mixed, and a solution in which N-methylpyrrolidone was dissolved in ethanol was added and kneaded to prepare a paste. Next, this paste was applied to both surfaces of each of the copper foils of Examples and Comparative Examples. The coated copper foil was dried in a nitrogen atmosphere to evaporate ethanol, and then rolled to form a sheet having an overall thickness of 100 μm. This sheet was cut into a width of 43 mm and a length of 285 mm, and then a nickel foil lead terminal was attached to one end thereof by ultrasonic welding to form a negative electrode.
3.電池の作製:
以上のようにして製造した正極と負極の間に厚み25μmのポリプロピレン製のセパレータを挟んで全体を巻き、これを軟鋼表面にニッケルめっきした電池缶に収容して負極のリード端子を缶底にスポット溶接した。ついで、絶縁材の上蓋を置き、ガスケットを挿入後正極のリード端子とアルミ製安全弁とを超音波溶接して接続し、炭酸プロピレンと炭酸ジエチルと炭酸エチレンからなる非水電解液を電池缶の中に注入した後、前記安全弁に蓋を取り付け、外形14mm、高さ50mmの密閉構造型リチウムイオン二次電池を組み立てた。3. Battery fabrication:
The whole was wound with a 25 μm thick polypropylene separator sandwiched between the positive electrode and negative electrode manufactured as described above, and this was accommodated in a nickel-plated battery can, and the lead terminal of the negative electrode was spotted on the bottom of the can Welded. Next, place the top cover of the insulating material, insert the gasket, and connect the lead terminal of the positive electrode and the aluminum safety valve by ultrasonic welding to connect the non-aqueous electrolyte consisting of propylene carbonate, diethyl carbonate and ethylene carbonate in the battery can. Then, a lid was attached to the safety valve, and a sealed structure type lithium ion secondary battery having an outer shape of 14 mm and a height of 50 mm was assembled.
4.電池特性の測定
以上の電池につき、充電電流50mAで4.2Vになるまで充電し、50mAで2.5Vになるまで放電するサイクルを1サイクルとする充放電サイクル試験を行った。初回充電時の電池容量とサイクル寿命を表3に示した。なお、サイクル寿命は、電池の放電容量が300mAhを割り込んだときのサイクル数である。結果を表3に示す。
5.ハンドリングの良好性評価
活物質塗工ラインでの1000mの箔の塗工処理において、搬送ロール上での箔のスリップが生じず、さらに搬送ロール上に箔が引っかかることなくスムーズに搬送することできる箔をハンドリング性良好として◎、スリップが生じたり、箔がロール上に引っかかり搬送が止まる現象が起こった箔はハンドリング性不良として×として、その結果を表3に示した。
また、搬送にあたって若干の支障が生じることがあったものの、活物質の塗工に問題が生じるほどではなかったものには○を付した。4). Measurement of battery characteristics The above batteries were subjected to a charge / discharge cycle test in which a cycle of charging to 4.2 V at a charging current of 50 mA and discharging to 2.5 V at 50 mA was taken as one cycle. Table 3 shows the battery capacity and cycle life at the first charge. The cycle life is the number of cycles when the discharge capacity of the battery is below 300 mAh. The results are shown in Table 3.
5. Evaluation of good handling A foil that can be smoothly transported without any foil slip on the transport roll and without being caught on the transport roll in the coating process of 1000 m foil in the active material coating line. The results are shown in Table 3. The results are shown in Table 3, where ◎ indicates that the handleability is good and 箔 indicates that the slip occurs or the foil is caught on the roll and the conveyance stops, and the handleability is poor.
In addition, although some troubles occurred in the transportation, those that did not cause a problem in the coating of the active material were marked with a circle.
表3より実施例1〜12は、150℃、1時間加熱後の常温における引張り強度が300MPa以上であり、光沢度Gs(60°)が40%以上であるためサイクル寿命が400サイクル以上と良好な電池特性を示した。さらに、動摩擦係数が.0.11以上0.29以下であり、ライン製造時のロールでの滑りが抑制されハンドリング性も良好であった。 From Table 3, Examples 1 to 12 have an excellent tensile strength of 400 cycles or more because the tensile strength at room temperature after heating at 150 ° C. for 1 hour is 300 MPa or more and the glossiness Gs (60 °) is 40% or more. Showed good battery characteristics. Furthermore, the coefficient of dynamic friction was not less than 0.11 and not more than 0.29, slippage with a roll during line production was suppressed, and handling properties were good.
しかしながら、比較例1の銅箔は、加熱後の常温における引張り強度が300MPa未満であり、マット面側のRzが2.0以上と大きく、光沢度(60°)も40以下と非常に低いことから、活物質との接触が良好でないため、充放電時の活物質の膨張収縮による応力に耐え切れず、マット面側に形成した活物質層の剥離などが生じたため、サイクル寿命が400サイクル以下と非常に低かった。また、動摩擦係数が0.33と非常に高いことから、搬送ロール上で箔が引っかかりストップしてしまうことがあるため、ハンドリング性も好ましくない結果となった。
比較例2の銅箔は、加熱後の引張り強度が300MPa以上ではあるがマット面側のRzが2.0以上で、光沢度も40以下であることから、マット面側に形成した活物質と集電体の接触性があまり良くなく、サイクル寿命が400サイクル以下と好ましくない結果となっている。なお、ハンドリング性はマット面側の動摩擦係数が0.28と高いことから、好ましい結果となった。
また、比較例3、5、8の銅箔は、マット面側の動摩擦係数が0.11未満であり、光沢度Gs(60°)が150以上であるため活物質塗工時に搬送ロール上でスリップし皺を生じてしまうため、ハンドリング性に難があり好ましくない結果となった。
比較例4は、加熱後の常温における引張強度が300MPa以上ではあり、マット面側の光沢度Gs(60°)も40以上であるため、好ましいサイクル寿命を示したが、マット面側の動摩擦係数が0.11以下と低いことから搬送時のスリップが生じてしまったためハンドリング性が好ましくなかった。
また、比較例6はマット面側の動摩擦係数は0.20で、光沢度Gs(60°)も143と好ましいが、加熱後の常温における引張強度が300MPa以下と低いため、充放電時の活物質の膨張収縮に耐え切れず箔の変形等が生じた影響でサイクル特性に乏しかった。
比較例7は、マット面側の光沢度Gs(60°)は40以上と高いため、活物質との密着性は良好であったが、150℃、1時間加熱後強度が300MPa以下であるため、充放電時の活物質の膨張収縮によって箔の変形等が生じた影響でサイクル特性に乏しかった。さらに、動摩擦係数が0.11以下と低いことと、光沢度Gs(60°)が150以上と高いためハンドリング性も好ましくなかった。However, the copper foil of Comparative Example 1 has a tensile strength at room temperature after heating of less than 300 MPa, Rz on the mat surface side is as large as 2.0 or more, and gloss (60 °) is very low as 40 or less. Since the contact with the active material is not good, the stress due to the expansion and contraction of the active material during charge / discharge cannot be endured, and the active material layer formed on the mat surface side is peeled off, resulting in a cycle life of 400 cycles or less. And it was very low. In addition, since the dynamic friction coefficient is as high as 0.33, the foil is caught on the transport roll and may be stopped, so that the handling property is not preferable.
Although the copper foil of Comparative Example 2 has a tensile strength after heating of 300 MPa or more, the Rz on the mat surface side is 2.0 or more and the glossiness is 40 or less. The contact property of the current collector was not so good, and the cycle life was 400 cycles or less. In addition, since the dynamic friction coefficient on the mat surface side was as high as 0.28, the handling property was a preferable result.
Moreover, the copper foils of Comparative Examples 3, 5, and 8 have a kinetic friction coefficient on the mat surface side of less than 0.11 and a glossiness Gs (60 °) of 150 or more. Since it slips and wrinkles occur, handling is difficult and the result is not preferable.
Comparative Example 4 showed a preferable cycle life because the tensile strength at room temperature after heating was 300 MPa or more, and the glossiness Gs (60 °) on the mat surface side was 40 or more. Since it was as low as 0.11 or less, a slip occurred during transportation, so that handling was not preferable.
In Comparative Example 6, the dynamic friction coefficient on the mat surface side is preferably 0.20 and the glossiness Gs (60 °) is preferably 143. However, since the tensile strength at normal temperature after heating is as low as 300 MPa or less, The cycle characteristics were poor due to the influence of the deformation of the foil that could not withstand the expansion and contraction of the material.
In Comparative Example 7, the glossiness Gs (60 °) on the mat surface side is as high as 40 or more, so the adhesion with the active material was good, but the strength after heating at 150 ° C. for 1 hour is 300 MPa or less. The cycle characteristics were poor due to the deformation of the foil caused by the expansion and contraction of the active material during charging and discharging. Furthermore, since the dynamic friction coefficient was as low as 0.11 or less and the glossiness Gs (60 °) was as high as 150 or more, the handling property was not preferable.
上述したように本発明の電解銅箔は、150℃、1時間加熱後の常温における引張り強度が300MPa以上、好ましくは400MPa以上であり、表面粗さRzが2.0μm以下、光沢度Gs(60°)が40以上150以下、動摩擦係数が0.11以上0.29以下、好ましくは0.15以上0.25以下である電解銅箔を用いることで、良好なリチウムイオン二次電池特性を示しながら、製造ラインで滑り難く、ライン製造時のハンドリング性が良好な電解銅箔を提供することができる。
また、本発明の電解銅箔は150℃、1時間加熱後の常温における引張り強度が300MPa以上で
あり、充放電時の活物質体積膨張収縮による応力に耐えることができ、良好なサイクル寿命の二次電池が得られる。As described above, the electrolytic copper foil of the present invention has a tensile strength at room temperature after heating at 150 ° C. for 1 hour of 300 MPa or more, preferably 400 MPa or more, a surface roughness Rz of 2.0 μm or less, and a glossiness Gs (60 °) is 40 or more and 150 or less, and a dynamic friction coefficient is 0.11 or more and 0.29 or less, preferably 0.15 or more and 0.25 or less, and shows good lithium ion secondary battery characteristics. On the other hand, it is possible to provide an electrolytic copper foil that is difficult to slip on the production line and has good handleability during the production of the line.
Moreover, the electrolytic copper foil of the present invention has a tensile strength at room temperature of 150 MPa or higher after heating at 150 ° C. for 1 hour, can withstand stress due to volume expansion / contraction of the active material during charge / discharge, and has a good cycle life. A secondary battery is obtained.
更に本発明の電解銅箔は、その表面粗さRzが2.0μm以下、光沢度Gs(60°)が40以上であることで、活物質と集電体の接触性が良く、電気伝導度が高く、良好なサイクル寿命が得られる。
更に本発明の電解銅箔は、その光沢度Gs(60°)が150以下で動摩擦係数が0.11以上0.29以下であり、表面の微細な凹凸が搬送ロール上の滑り止めとなり、箔がロール上でスリップすることが抑制され、ハンドリング性が良好となる。Furthermore, the electrolytic copper foil of the present invention has a surface roughness Rz of 2.0 μm or less and a glossiness Gs (60 °) of 40 or more, so that the contact property between the active material and the current collector is good, and the electrical conductivity. And a good cycle life can be obtained.
Furthermore, the electrolytic copper foil of the present invention has a gloss Gs (60 °) of 150 or less and a dynamic friction coefficient of 0.11 or more and 0.29 or less. Is suppressed from slipping on the roll, and handling properties are improved.
また本発明のリチウムイオン二次電池負極電極は、本発明の電解銅箔を集電体として用いることで、サイクル特性を高めたリチウムイオン二次電池負極電極となり、該電極を組み込んだリチウムイオン二次電池は優れたサイクル寿命を有する電池である。 Moreover, the lithium ion secondary battery negative electrode of the present invention becomes a lithium ion secondary battery negative electrode with improved cycle characteristics by using the electrolytic copper foil of the present invention as a current collector, and the lithium ion secondary battery incorporating the electrode. The secondary battery is a battery having an excellent cycle life.
[プリント配線板の作製と評価]
実施例5の電解銅箔をポリイミドフィルムと張り合わせ3層プリント配線板を製造し、出来上がった配線板の性能を評価した。
(1)銅箔とフィルムの密着性
銅箔とフィルムの密着性は、銅箔表面に存在する微細な凹凸にポリイミドフィルムが食い込んでおり、満足できる密着強度を有していた。
(2)高周波特性
プリント配線板の高周波特性は、銅箔表面の粗さRzが2.0μm以下、光沢度Gs(60°)が40以上でありであり、銅箔表面の凹凸が微細であるため、満足できるものであった。(3)銅箔の強度と皺の発生
銅箔の常温での引張り強度が662MPaであり、450MPa以上であることら、絶縁フィルムと張り合わせる強度が薄箔でも充分であり、プリント配線板の製造工程において箔切れや皺等の発生はなかった。
(4)熱履歴
銅箔と絶縁フィルムとを張り合わせる際の加熱において銅箔に熱履歴による強度の変化は殆どみられず、プリント配線板を製造する際にかかる熱履歴を経ても、高い強度を維持した。[Production and evaluation of printed wiring boards]
The electrolytic copper foil of Example 5 was bonded to a polyimide film to produce a three-layer printed wiring board, and the performance of the completed wiring board was evaluated.
(1) Adhesiveness between copper foil and film The adhesiveness between the copper foil and the film was such that the polyimide film digs into the fine irregularities present on the surface of the copper foil, and had satisfactory adhesive strength.
(2) High-frequency characteristics The high-frequency characteristics of the printed wiring board are that the roughness Rz of the copper foil surface is 2.0 μm or less, the glossiness Gs (60 °) is 40 or more, and the unevenness of the copper foil surface is fine. Therefore, it was satisfactory. (3) Strength of copper foil and generation of wrinkles Tensile strength of copper foil at room temperature is 662 MPa, and since it is 450 MPa or more, the strength of bonding with an insulating film is sufficient even with a thin foil. There was no occurrence of foil breakage or wrinkles in the process.
(4) Thermal history There is almost no change in strength due to the thermal history in the copper foil during heating when the copper foil and the insulating film are bonded together, and even after passing through the thermal history when manufacturing a printed wiring board, the strength is high. Maintained.
本発明は上述したように、特に、サイクル寿命の長い二次電池集電体用銅箔として優れ、かつ、優れたハンドリング性を有するために活物質塗工ラインで銅箔に皺が生ぜず、このような特性からサイクル特性を高めたリチウムイオン二次電池負極電極を容易に提供でき、該リチウムイオン二次電池負極電極を組み込んだサイクル寿命の長いリチウムイオン二次電池を提供できる優れた効果を有するものである。
また本発明は上述したように、優れた特性を有するプリント配線板を、また、電磁波シールド材を提供できる優れた効果を有するものである。As described above, the present invention is particularly excellent as a copper foil for a secondary battery current collector with a long cycle life, and in order to have excellent handling properties, no wrinkles are formed on the copper foil in the active material coating line, From these characteristics, it is possible to easily provide a negative electrode for a lithium ion secondary battery with improved cycle characteristics, and to provide a lithium ion secondary battery with a long cycle life incorporating the negative electrode for the lithium ion secondary battery. I have it.
In addition, as described above, the present invention has an excellent effect of providing a printed wiring board having excellent characteristics and an electromagnetic wave shielding material.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015522818A JP5810249B1 (en) | 2014-01-07 | 2014-12-24 | Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014000963 | 2014-01-07 | ||
JP2014000963 | 2014-01-07 | ||
PCT/JP2014/084134 WO2015104999A1 (en) | 2014-01-07 | 2014-12-24 | Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material |
JP2015522818A JP5810249B1 (en) | 2014-01-07 | 2014-12-24 | Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5810249B1 true JP5810249B1 (en) | 2015-11-11 |
JPWO2015104999A1 JPWO2015104999A1 (en) | 2017-03-23 |
Family
ID=53523836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015522818A Active JP5810249B1 (en) | 2014-01-07 | 2014-12-24 | Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5810249B1 (en) |
WO (1) | WO2015104999A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3483306A1 (en) * | 2017-11-14 | 2019-05-15 | Chang Chun Petrochemical Co., Ltd. | Electrodeposited copper foil and secondary battery comprising the electrodeposited copper foil |
JP7633416B2 (en) | 2022-05-11 | 2025-02-19 | 高麗亞鉛株式会社 | Method for controlling physical properties of electrolytic copper foil and its manufacturing method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102136784B1 (en) * | 2015-07-24 | 2020-07-22 | 케이씨에프테크놀로지스 주식회사 | Electrolytic copper foil for lithium secondary battery and Lithium secondary battery comprising the same |
KR101798195B1 (en) * | 2015-10-21 | 2017-11-15 | 엘에스엠트론 주식회사 | Electrolytic copper foil, and Current collector for lithium secondary battery and Secondary battery comprising the same |
GB2551191B (en) * | 2016-06-10 | 2020-01-15 | Imperial Innovations Ltd | Electrically conductive composite coating with azole corrosion inhibitor |
KR102180926B1 (en) | 2017-06-28 | 2020-11-19 | 에스케이넥실리스 주식회사 | Copper foil having improved workability and charge discharge characteristics, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same |
US10403898B2 (en) | 2017-07-27 | 2019-09-03 | Kcf Technologies Co., Ltd. | Electrolytic copper foil having high tensile strength, electrode including the same, secondary battery including the same, and method of manufacturing the same |
JP6721547B2 (en) * | 2017-07-27 | 2020-07-15 | ケイシーエフ テクノロジース カンパニー リミテッド | Electrolytic copper foil having high tensile strength, electrode including the same, secondary battery including the same, and manufacturing method thereof |
KR102495166B1 (en) * | 2018-02-23 | 2023-02-06 | 후루카와 덴키 고교 가부시키가이샤 | Electrolytic copper foil, and negative electrode for lithium ion secondary battery using the electrodeposited copper foil, lithium ion secondary battery, copper clad laminate, and printed wiring board |
HUE060765T2 (en) * | 2018-08-10 | 2023-04-28 | Sk Nexilis Co Ltd | Copper foil having workability and charge/discharge characteristics, electrode including the same, secondary battery including the same and method for manufacturing the same |
US10581081B1 (en) * | 2019-02-01 | 2020-03-03 | Chang Chun Petrochemical Co., Ltd. | Copper foil for negative electrode current collector of lithium ion secondary battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004263289A (en) * | 2002-10-25 | 2004-09-24 | Fukuda Metal Foil & Powder Co Ltd | Low rough surface electrolytic copper foil, and production method therefor |
JP2009221592A (en) * | 2007-10-31 | 2009-10-01 | Mitsui Mining & Smelting Co Ltd | Electrolytic copper foil and process for producing the electrolytic copper foil |
JP2012099351A (en) * | 2010-11-02 | 2012-05-24 | Jx Nippon Mining & Metals Corp | Copper foil for lithium ion battery collector |
JP2012140660A (en) * | 2010-12-28 | 2012-07-26 | Nippon Denkai Kk | Electrolytic copper foil, and method for manufacturing the same |
JP2013133514A (en) * | 2011-12-27 | 2013-07-08 | Furukawa Electric Co Ltd:The | Copper foil, electrode for secondary battery, secondary battery, and printed circuit board |
-
2014
- 2014-12-24 WO PCT/JP2014/084134 patent/WO2015104999A1/en active Application Filing
- 2014-12-24 JP JP2015522818A patent/JP5810249B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004263289A (en) * | 2002-10-25 | 2004-09-24 | Fukuda Metal Foil & Powder Co Ltd | Low rough surface electrolytic copper foil, and production method therefor |
JP2009221592A (en) * | 2007-10-31 | 2009-10-01 | Mitsui Mining & Smelting Co Ltd | Electrolytic copper foil and process for producing the electrolytic copper foil |
JP2012099351A (en) * | 2010-11-02 | 2012-05-24 | Jx Nippon Mining & Metals Corp | Copper foil for lithium ion battery collector |
JP2012140660A (en) * | 2010-12-28 | 2012-07-26 | Nippon Denkai Kk | Electrolytic copper foil, and method for manufacturing the same |
JP2013133514A (en) * | 2011-12-27 | 2013-07-08 | Furukawa Electric Co Ltd:The | Copper foil, electrode for secondary battery, secondary battery, and printed circuit board |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3483306A1 (en) * | 2017-11-14 | 2019-05-15 | Chang Chun Petrochemical Co., Ltd. | Electrodeposited copper foil and secondary battery comprising the electrodeposited copper foil |
CN109786752A (en) * | 2017-11-14 | 2019-05-21 | 长春石油化学股份有限公司 | Electrolytic copper foil and its manufacturing method and secondary cell including the electrolytic copper foil |
CN109786752B (en) * | 2017-11-14 | 2020-11-10 | 长春石油化学股份有限公司 | Electrolytic copper foil, method for producing the same, and secondary battery including the same |
JP7633416B2 (en) | 2022-05-11 | 2025-02-19 | 高麗亞鉛株式会社 | Method for controlling physical properties of electrolytic copper foil and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015104999A1 (en) | 2017-03-23 |
WO2015104999A1 (en) | 2015-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5810249B1 (en) | Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material | |
KR101782737B1 (en) | Electrolytic copper foil, the negative electrode for a lithium ion secondary battery and a lithium ion secondary battery, printed circuit board and an electromagnetic shielding material | |
CN103649378B (en) | Electrolytic copper foil, the manufacture method of this electrolytic copper foil and using this electrolytic copper foil as the lithium rechargeable battery of collector body | |
JP5916904B1 (en) | Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, rigid printed wiring board and flexible printed wiring board | |
JP5276158B2 (en) | Lithium ion secondary battery, negative electrode for battery, and electrolytic copper foil for battery negative electrode current collector | |
JP6190980B2 (en) | Electrolytic copper foil and various products using the electrolytic copper foil | |
JP5466664B2 (en) | Porous metal foil and method for producing the same | |
JP6582156B1 (en) | Electrolytic copper foil, and negative electrode for lithium ion secondary battery, lithium ion secondary battery, copper clad laminate and printed wiring board using the electrolytic copper foil | |
JP5400826B2 (en) | Composite metal foil and manufacturing method thereof | |
JP2010000679A (en) | Aluminum material and its manufacturing method | |
JP2012038700A (en) | Copper foil for current collector of lithium secondary battery | |
TW201912805A (en) | Electrolytic copper foil, method for manufacturing the same, and anode for lithium secondary battery of high capacity | |
JP2011134651A (en) | Copper foil for nonaqueous solvent secondary battery negative electrode collector, its manufacturing method, and method of manufacturing nonaqueous solvent secondary battery negative electrode | |
WO2021131359A1 (en) | Surface-treated copper foil and method for manufacturing same | |
JP6067910B1 (en) | Electrolytic copper foil and lithium ion secondary battery using the electrolytic copper foil | |
JP6861304B1 (en) | Electrolytic copper foil, electrodes containing electrolytic copper foil, and copper-clad laminate containing electrolytic copper foil | |
JP6611751B2 (en) | Rolled copper foil for lithium ion battery current collector and lithium ion battery | |
JP2013185228A (en) | Electrolytic copper foil and negative electrode collector for secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20150817 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150825 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150914 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5810249 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |