[go: up one dir, main page]

JP5809935B2 - Scanning transmission electron microscope and sample observation method - Google Patents

Scanning transmission electron microscope and sample observation method Download PDF

Info

Publication number
JP5809935B2
JP5809935B2 JP2011244082A JP2011244082A JP5809935B2 JP 5809935 B2 JP5809935 B2 JP 5809935B2 JP 2011244082 A JP2011244082 A JP 2011244082A JP 2011244082 A JP2011244082 A JP 2011244082A JP 5809935 B2 JP5809935 B2 JP 5809935B2
Authority
JP
Japan
Prior art keywords
sample
electron beam
region
image
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011244082A
Other languages
Japanese (ja)
Other versions
JP2013101791A (en
Inventor
裕也 鈴木
裕也 鈴木
充 今野
充 今野
靖 黒田
靖 黒田
邦康 中村
邦康 中村
博実 稲田
博実 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2011244082A priority Critical patent/JP5809935B2/en
Publication of JP2013101791A publication Critical patent/JP2013101791A/en
Application granted granted Critical
Publication of JP5809935B2 publication Critical patent/JP5809935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、走査透過電子顕微鏡、および試料観察方法に関し、特に厚膜試料の二次電子原子分解能像観察が可能な走査透過電子顕微鏡とその試料観察方法に関する。   The present invention relates to a scanning transmission electron microscope and a sample observation method, and more particularly to a scanning transmission electron microscope capable of observing a secondary electron atom resolution image of a thick film sample and a sample observation method thereof.

電子顕微鏡は、光学顕微鏡より高い分解能の画像が得られることから、物理、化学、医学、生物、工学など幅広い分野で利用されている。電子顕微鏡には、走査電子顕微鏡、透過電子顕微鏡、走査透過電子顕微鏡が知られているが、試料を透過した透過電子を用いた像が得られる透過電子顕微鏡や走査透過電子顕微鏡の方が、試料から発生する二次電子を用いた像が得られる走査電子顕微鏡より分解能が高いことが知られている。原子レベルでの像観察は従来、透過電子顕微鏡や走査透過電子顕微鏡が用いられてきた。   Electron microscopes are used in a wide range of fields such as physics, chemistry, medicine, biology, and engineering because they can obtain images with higher resolution than optical microscopes. Scanning electron microscopes, transmission electron microscopes, and scanning transmission electron microscopes are known as electron microscopes, but transmission electron microscopes and scanning transmission electron microscopes that can obtain images using transmission electrons that have passed through the sample are more suitable for the sample. It is known that the resolution is higher than that of a scanning electron microscope that can obtain an image using secondary electrons generated from the electron beam. Conventionally, transmission electron microscopes and scanning transmission electron microscopes have been used for image observation at the atomic level.

一方、より高い分解能の電子顕微鏡画像を得るために、電子顕微鏡に収差補正器を搭載することが可能である。収差補正器を用いた電子顕微鏡では、分解能が加速電圧5kVで0.6nmといった報告がされている(〔非特許文献1〕)。また、SEMをベースにした走査透過電子顕微鏡により透過電子顕微鏡の分解能に相当し、かつSEMの使い易さをもって試料内部構造を立体的に観察する技術(〔特許文献1〕)がある。   On the other hand, it is possible to mount an aberration corrector on the electron microscope in order to obtain an electron microscope image with higher resolution. In an electron microscope using an aberration corrector, it has been reported that the resolution is 0.6 nm at an acceleration voltage of 5 kV ([Non-Patent Document 1]). Further, there is a technique ([Patent Document 1]) that observes the internal structure of a sample three-dimensionally with a scanning transmission electron microscope based on SEM, which corresponds to the resolution of a transmission electron microscope and is easy to use.

特開2005−32732号公報JP 2005-32732 A

Kazumori, H., Honda, K., Matsuya, M., Date, M. & Nielsen, C. Field emission SEM with a spherical chromatic aberration corrector. Microsc. Microanal. 10, 1370-1371 (2004)Kazumori, H., Honda, K., Matsuya, M., Date, M. & Nielsen, C. Field emission SEM with a spherical chromatic aberration corrector. Microsc. Microanal. 10, 1370-1371 (2004) Zhu, Y., Inada, H., Nakamura, K., & Wall, J., Nature Mater. 8, 808-812 (2009)Zhu, Y., Inada, H., Nakamura, K., & Wall, J., Nature Mater. 8, 808-812 (2009)

原子レベルでの像観察は従来、透過電子顕微鏡や走査透過電子顕微鏡が用いられてきたが、この像観察の場合、ビーム調整や試料の準備の観点から準備に手間、時間がかかる。   Conventionally, transmission electron microscopes and scanning transmission electron microscopes have been used for image observation at the atomic level. However, in the case of image observation, preparation takes time and time from the viewpoint of beam adjustment and sample preparation.

例えば、結晶方位調整を行うとき、TEMやSTEMでは透過電子を用いた電子線回折像にて結晶方位の確認を行っているため、十分な透過電子の信号量を確保するため薄膜の試料を準備しなければならなかった。厚膜試料では透過電子線量が低下するため電子線回折像の観察が困難になる。実際に観察する試料も薄膜にしなければならなかった。   For example, when adjusting the crystal orientation, TEM and STEM confirm the crystal orientation with an electron beam diffraction image using transmitted electrons, so prepare a thin film sample to ensure a sufficient amount of transmitted electron signals. Had to do. In a thick film sample, the amount of transmitted electrons is reduced, making it difficult to observe an electron beam diffraction image. The sample actually observed had to be a thin film.

薄膜試料の作製法として、集束イオンビーム(Focused Ion Beam:FIB)加工法が用いられる。FIB加工装置には、FIB装置にSEMカラムを搭載し、加工位置を観察しながら加工を行うことができるものがあるが、その像分解能は原子レベルには達しておらず、加工精度やスループット、さらに加工面積などが問題となってきている。TEMやSTEMを原子レベルでの観察は、試料薄膜の厚さは20nm以下が必要とされてきており、精度よく観察試料を作製するのは難しい。   As a method for producing a thin film sample, a focused ion beam (FIB) processing method is used. Some FIB processing devices can be processed while observing the processing position by mounting an SEM column on the FIB device, but the image resolution has not reached the atomic level, and processing accuracy, throughput, Furthermore, the processing area has become a problem. Observation of TEM or STEM at the atomic level requires that the thickness of the sample thin film be 20 nm or less, and it is difficult to produce an observation sample with high accuracy.

一方、2009年に収差補正器を搭載した200kVの走査透過電子顕微鏡のSEM像にて原子が観察できることが報告された(〔非特許文献2〕)。これにより、厚膜試料であっても、走査電子顕微鏡又は走査透過電子顕微鏡のSEM像にて原子分解能の観察ができる可能性が高まった。しかし、本発明者らのその後の実験により、結晶性試料を対象とした場合、試料の結晶情報も得られること、また、TEMやSTEMと同様に結晶方位により像質が変化するため、結晶方位調整が必要であることもわかってきた。   On the other hand, in 2009, it was reported that atoms can be observed with a SEM image of a 200 kV scanning transmission electron microscope equipped with an aberration corrector ([Non-patent Document 2]). Thereby, even if it was a thick film sample, possibility that atomic resolution could be observed in the SEM image of a scanning electron microscope or a scanning transmission electron microscope increased. However, in the subsequent experiments by the present inventors, when a crystalline sample is targeted, crystal information of the sample can also be obtained, and the image quality changes depending on the crystal orientation as in TEM and STEM. It has also been found that adjustment is necessary.

本発明の目的は、電子顕微鏡を用いた厚膜試料のSEM観察において、原子レベルの像分解能で、かつ高い倍率精度で行うための電子顕微鏡装置、試料作製方法および観察方法を提供することにある。   An object of the present invention is to provide an electron microscope apparatus, a sample preparation method, and an observation method for performing SEM observation of a thick film sample using an electron microscope with an atomic level image resolution and high magnification accuracy. .

上記目的を達成する本発明の構成は以下の通りである。   The configuration of the present invention that achieves the above object is as follows.

厚膜試料の結晶構造を有する観察領域に収束した電子線を照射し、当該厚膜試料から発生した二次電子を用いて試料像を形成して観察する試料観察方法において、前記観察領域の近傍に、非晶質領域の薄膜および結晶領域の薄膜を形成し、前記電子線を非晶質領域に照射して取得したロンチグラムに基づき電子線の収差を調整し、前記結晶領域の電子線回折像に基づき当該電子線の試料に対する照射方向を調整し、当該調整された電子線を前記厚膜試料の観察領域に照射し、放出された二次電子に基づいて当該厚膜試料の観察領域の原子分解能像を形成することを特徴とする試料観察方法。  In a sample observation method of irradiating a focused electron beam to an observation region having a crystal structure of a thick film sample and forming a sample image using secondary electrons generated from the thick film sample, the vicinity of the observation region In addition, an amorphous region thin film and a crystal region thin film are formed, and the electron beam aberration is adjusted based on a Ronchigram obtained by irradiating the amorphous region with the electron beam, and an electron beam diffraction image of the crystal region is obtained. And adjusting the irradiation direction of the electron beam to the sample, irradiating the adjusted electron beam to the observation region of the thick film sample, and the atoms in the observation region of the thick film sample based on the emitted secondary electrons. A sample observation method characterized by forming a resolution image.

本発明によって、厚膜試料においてもTEM並みの倍率精度で観察と測長が行えるようになる。また、試料作製が簡便となり、短時間で大面積の観察領域も得られるようになることから、スループット向上につながる。さらに結晶性試料については、任意の結晶方位から原子分解能SEM観察が可能となり、その結晶構造情報を用いて解析を行うこともできる。   According to the present invention, even a thick film sample can be observed and measured with a magnification accuracy equivalent to that of a TEM. In addition, sample preparation is simplified, and an observation area with a large area can be obtained in a short time, leading to an improvement in throughput. Furthermore, for a crystalline sample, atomic resolution SEM observation can be performed from any crystal orientation, and analysis can be performed using the crystal structure information.

電子顕微鏡の概略構成図。The schematic block diagram of an electron microscope. EBSDを搭載した電子顕微鏡の概略構成図。The schematic block diagram of the electron microscope carrying EBSD. 半導体デバイスを試料とした際の実施例の手順を示す図。The figure which shows the procedure of the Example at the time of setting a semiconductor device as a sample. 試料加工の一例。An example of sample processing. ロンチグラムを用いたビーム調整の一例。An example of beam adjustment using Ronchigram. 試料傾斜調整の一例。An example of sample inclination adjustment. EBSDを用いた試料傾斜調整の概念図。The conceptual diagram of the sample inclination adjustment using EBSD. SEM像を用いた倍率校正の一例。An example of magnification calibration using an SEM image. 高分解能SEM観察と測長の一例。An example of high resolution SEM observation and length measurement.

以下、添付図面を参照しながら、本発明の電子顕微鏡装置、試料作製および観察方法を詳細に説明する。図1〜図9は、本発明の実施の形態を例示する図である。   Hereinafter, the electron microscope apparatus, sample preparation and observation method of the present invention will be described in detail with reference to the accompanying drawings. 1 to 9 are diagrams illustrating an embodiment of the present invention.

図1は、本発明に用いる走査透過電子顕微鏡の概念図である。走査透過電子顕微鏡1は、電子銃2、収束レンズ3、球面収差補正器4、対物レンズ5、投射レンズ6、走査電極7を含む。試料は対物レンズ5内に挿入される。走査電極と対物レンズの間には二次電子/反射電子検出器9が組み込まれている。さらに、投射レンズ6の下方には検出器出入制御部10にて電子線の光軸に出し入れ可能とした、暗視野走査透過顕微鏡像観察のため円環状の暗視野電子検出器11と明視野走査透過顕微鏡像観察のための明視野電子検出器12が配置されている。そして、透過電子検出器の下方にはロンチグラムや電子線回折像を観察するためのCCDカメラ13が配置されている。   FIG. 1 is a conceptual diagram of a scanning transmission electron microscope used in the present invention. The scanning transmission electron microscope 1 includes an electron gun 2, a converging lens 3, a spherical aberration corrector 4, an objective lens 5, a projection lens 6, and a scanning electrode 7. The sample is inserted into the objective lens 5. A secondary electron / backscattered electron detector 9 is incorporated between the scanning electrode and the objective lens. Further, an annular dark field electron detector 11 and a bright field scan are provided below the projection lens 6 so that the detector input / output control unit 10 can enter and exit the optical axis of the electron beam for dark field scanning transmission microscope image observation. A bright field electron detector 12 for observing a transmission microscope image is arranged. A CCD camera 13 for observing a Ronchigram or an electron beam diffraction image is disposed below the transmission electron detector.

また、対物レンズ5と試料8の間にはEBSD検出器14を組み込むことで試料8の結晶方位を確認しても良い。図2に、EBSD検出器14を搭載した電子顕微鏡1の概念図を示す。その他、試料の結晶方位を確認としては、反射高速電子回折(Reflection High Energy Electron Diffraction:RHEED)法を用いても良い。   Further, the crystal orientation of the sample 8 may be confirmed by incorporating an EBSD detector 14 between the objective lens 5 and the sample 8. In FIG. 2, the conceptual diagram of the electron microscope 1 carrying the EBSD detector 14 is shown. In addition, to confirm the crystal orientation of the sample, a reflection high energy electron diffraction (RHEED) method may be used.

試料8は、傾斜機構を備えた試料ホルダー15および試料ステージ16に搭載される。試料ホルダー15はFIB装置と共用とすることでスループットを向上すると共に、試料の表面と断面など多方向から観察できるようにする。試料の移動は接続されている試料制御部17で行われる。また、試料制御部17はCPU処理装置18に接続されている。   The sample 8 is mounted on a sample holder 15 and a sample stage 16 having an inclination mechanism. By using the sample holder 15 in common with the FIB apparatus, the throughput is improved and the sample holder 15 can be observed from multiple directions such as the surface and cross section of the sample. The movement of the sample is performed by the connected sample control unit 17. The sample controller 17 is connected to the CPU processing device 18.

それぞれの信号はCPU処理装置18を介して画像表示部19に接続されている。画像表示部19は、それぞれの検出器からの画像を同時に別々のウィンドウで表示することができる。電子銃2から出た電子線20は収束レンズ3により収束、球面収差補正器4を介して試料8へ照射され、走査電極7により試料面上を走査する。   Each signal is connected to the image display unit 19 via the CPU processing device 18. The image display unit 19 can simultaneously display images from the respective detectors in separate windows. The electron beam 20 emitted from the electron gun 2 is converged by the converging lens 3, irradiated to the sample 8 through the spherical aberration corrector 4, and scanned on the sample surface by the scanning electrode 7.

電子線20が試料8に照射されると試料8から二次電子や後方散乱電子などが放出される。これを二次電子/反射電子検出器9によって検出し、その検出信号にもとづく像(SEM像)を用いて試料の表面構造観察を行う。また、試料によって後方散乱された電子は、暗視野電子検出器11によって検出し、その検出信号にもとづく像(暗視野STEM像)を用いて試料8の内部構造および組成情報観察を行う。それから、試料8を透過した電子は明視野電子検出器12で検出し、明視野電子検出器12からの検出信号にもとづく像(明視野STEM像)を用いて試料8の内部構造および組成情報観察を行う。   When the sample 8 is irradiated with the electron beam 20, secondary electrons and backscattered electrons are emitted from the sample 8. This is detected by the secondary electron / backscattered electron detector 9, and the surface structure of the sample is observed using an image (SEM image) based on the detection signal. Further, electrons scattered back by the sample are detected by the dark field electron detector 11, and the internal structure and composition information of the sample 8 are observed using an image (dark field STEM image) based on the detection signal. Then, the electrons transmitted through the sample 8 are detected by the bright field electron detector 12, and the internal structure and composition information observation of the sample 8 are observed using an image (bright field STEM image) based on the detection signal from the bright field electron detector 12. I do.

図3は、半導体デバイスを試料とした際の本発明の試料作製、観察方法の手順の一例を示す図である。以下、その手順を図3に沿って説明する。   FIG. 3 is a diagram showing an example of the procedure of the sample preparation and observation method of the present invention when a semiconductor device is used as a sample. The procedure will be described below with reference to FIG.

(a)ダイサー加工やFIBマイクロサンプリング法などを用い、シリコンウエハから注目箇所を摘出する。(b)次に、FIBにて観察領域の近傍に非晶質領域とSi基板領域にて電子線回折像を観察できる程度の薄膜を作製する。(c)次に、FIBにて観察領域の断面加工を行う。(d)その後、電子顕微鏡にて非晶質領域を用いたビーム調整と電子線回折像を用いた試料の方位調整を行う。(e)観察領域にて撮像。(f)撮像したSEM像のSi基板の結晶情報を用いて電子顕微鏡の倍率校正を行い、測長を行う。(g)必要に応じてFIBにて追加工を行う。   (A) Using a dicer process, FIB microsampling method, etc., an attention location is extracted from a silicon wafer. (B) Next, a thin film is prepared by FIB so that an electron diffraction pattern can be observed in the amorphous region and the Si substrate region in the vicinity of the observation region. (C) Next, the cross section of the observation area is processed by FIB. (D) Thereafter, beam adjustment using an amorphous region and sample orientation adjustment using an electron beam diffraction image are performed with an electron microscope. (E) Imaging in the observation area. (F) The magnification of the electron microscope is calibrated using the crystal information of the Si substrate of the captured SEM image, and the length is measured. (G) Perform additional machining with FIB as necessary.

図4に加工された試料の一例を示す。ダイサー加工した試料に対し、FIBにて観察領域22(厚膜領域25)近傍を加工し、電子顕微鏡のビーム調整用に非晶質領域(ロンチグラム観察領域23)と、試料方位調整用にSi単結晶領域にて電子線回折像を観察できる程度の薄膜領域(電子線回折像観察領域24)を有する調整用領域21を作製する。作成された試料8の走査イオン顕微鏡(Scanning Ion Microscope:SIM)像と一部拡大した暗視野STEM像を図4に示す。ここで非晶質領域は、試料8に存在する領域のほか、FIB加工によるダメージ層、イオンビームアシストのデポ膜、FIB加工時に生じるリデポジション領域などを用いても良い。   FIG. 4 shows an example of the processed sample. The dicer processed sample is processed in the vicinity of the observation region 22 (thick film region 25) by FIB, and an amorphous region (Ronchigram observation region 23) is used for beam adjustment of an electron microscope, and Si single unit is used for sample orientation adjustment. The adjustment region 21 having a thin film region (electron beam diffraction image observation region 24) that can observe an electron beam diffraction image in the crystal region is produced. FIG. 4 shows a scanning ion microscope (SIM) image of the prepared sample 8 and a partially enlarged dark field STEM image. Here, as the amorphous region, in addition to the region existing in the sample 8, a damage layer caused by FIB processing, an ion beam assisted deposition film, a redeposition region generated during FIB processing, or the like may be used.

鮮明なロンチグラムを観察するために非晶質領域(ロンチグラム観察領域23)はおよそ100nm以下の厚さであることが望ましい。ロンチグラムは透過電子を用いていることから試料が厚くなると像質劣化し、バルク試料では観察できない。また、薄膜化した結晶領域(電子線回折像観察領域24)においてもロンチグラムは観察可能であるが、結晶構造情報によるコントラストが生じるためビーム調整には熟練を要する。電子線回折像観察領域も透過電子を用いるため、電子線回折像が検出できる程度の厚さで、かつ、バルク領域とのずれが生じないように、たわまない程度の厚さと面積であることが望ましい。   In order to observe a clear Ronchigram, it is desirable that the amorphous region (Ronchigram observation region 23) has a thickness of about 100 nm or less. Since the Ronchigram uses transmission electrons, the image quality deteriorates when the sample becomes thick and cannot be observed with a bulk sample. Further, the Ronchigram can be observed even in the thinned crystal region (electron diffraction image observation region 24), but since contrast is generated by crystal structure information, skill is required for beam adjustment. Since the electron beam diffraction image observation region also uses transmission electrons, the thickness is sufficient to detect an electron beam diffraction image, and the thickness and area do not bend so as not to deviate from the bulk region. It is desirable.

次に、目的領域の断面加工を行う。この際、FIBとSEMの複合機を用いることで、FIB加工断面をSEM観察しながら加工を進めることができるため、高い位置精度で終点検知を行うことが可能である。また、目的領域の薄膜作製は行う必要がないことから、加工体積が少なく、また加工時間を短くすることができる。さらに、薄膜化にて問題となる試料のたわみを考慮する必要がなくなるため、広い視野を一度に加工できるようになり、加工から観察までのスループットが向上する。断面加工の仕上げには低加速電圧のFIBなどを用いてダメージ層を低減することが望ましい。   Next, the cross section of the target area is processed. At this time, by using a FIB and SEM compound machine, the processing can be performed while observing the FIB processing cross section by SEM, so that the end point can be detected with high positional accuracy. Further, since it is not necessary to produce a thin film in the target region, the processing volume is small and the processing time can be shortened. Furthermore, since it is not necessary to consider the deflection of the sample which becomes a problem in thinning, a wide field of view can be processed at a time, and the throughput from processing to observation is improved. For finishing the cross section, it is desirable to reduce the damage layer by using FIB or the like having a low acceleration voltage.

(電子ビーム調整)
電子顕微鏡に移動した試料は非晶質領域を用いたビーム調整とSi単結晶基板部などの領域を用いた試料方位調整を行う。
(Electron beam adjustment)
The sample moved to the electron microscope is subjected to beam adjustment using an amorphous region and sample orientation adjustment using a region such as a Si single crystal substrate.

ロンチグラムを用いたビーム調整の一例を図5に示す。ビーム調整にはロンチグラムを用い、その形状から残留収差を計算、3次収差までの補正を行い、フラットエリアが極大となるように収差補正器、対物レンズ等の光学系を調整する。調整はロンチグラムの他、一次収差であれば二次電子像、暗視野電子像や明視野電子像を観察しながら手動調整することも容易である。   An example of beam adjustment using a Ronchigram is shown in FIG. Ronchigram is used for beam adjustment, residual aberration is calculated from its shape, correction up to third-order aberration is performed, and an optical system such as an aberration corrector and an objective lens is adjusted so that the flat area is maximized. In addition to the Ronchigram, manual adjustment can be easily performed while observing a secondary electron image, a dark-field electron image, and a bright-field electron image in the case of a primary aberration.

試料傾斜調整の一例を図6に示す。試料の傾斜調整は、電子線回折像のスポットが対称となるように試料傾斜を行い調整する。このような調整を行うことで、電子顕微鏡観察時にSi単結晶基板領域から鮮明な結晶構造情報が得られるようになり、また、試料積層構造の界面なども電子線の光軸に合わせることができる。   An example of sample tilt adjustment is shown in FIG. The tilt adjustment of the sample is performed by adjusting the sample tilt so that the spots of the electron beam diffraction image are symmetric. By making such adjustments, clear crystal structure information can be obtained from the Si single crystal substrate region during electron microscope observation, and the interface of the sample stack structure can be aligned with the optical axis of the electron beam. .

図7にEBSD検出器14を用いた結晶方位調整の概念図を示す。通常、BSD検出器14を用いる場合、電子線20の入射方向から60〜70°程度試料を傾斜して測定を行う。そのため、単結晶試料においては、実際に観察する面と異なる面にて方位の確認し、得られた結果から傾斜角度を求めても良い。EBSDを用いれば、半導体デバイスに限らず、単結晶材料の結晶方位の確認と調整にも応用できる。
FIG. 7 shows a conceptual diagram of crystal orientation adjustment using the EBSD detector 14. Normally, when using the E BSD detector 14, the measurement performed by tilting the 60 to 70 ° about the sample from the incident direction of the electron beam 20. Therefore, in a single crystal sample, the orientation may be confirmed on a plane different from the plane actually observed, and the tilt angle may be obtained from the obtained result. If EBSD is used, it can be applied not only to semiconductor devices but also to confirmation and adjustment of the crystal orientation of a single crystal material.

(観察、測長について)
その後、観察領域に移動して倍率を設定、フォーカスを微調整して撮像する。この際にオートフォーカス機能を用いると測定者によるばらつきを低減できる。一度に観察できる領域は高倍率ほど狭くなるため、複数枚の画像をつなぎ写真として表示する機能を提供する。また、試料ステージの位置情報も記憶し、再観察する際に記憶されていた領域へ自動で移動する。
(About observation and length measurement)
After that, the image is moved to the observation area, the magnification is set, and the focus is finely adjusted to take an image. At this time, if an autofocus function is used, variation by a measurer can be reduced. Since the area that can be observed at a time becomes narrower as the magnification becomes higher, a function for displaying a plurality of images as a connected picture is provided. In addition, the position information of the sample stage is also stored, and the stage is automatically moved to the area stored when re-observing.

取得した画像は、基板のSi単結晶領域などから得られる結晶構造情報を用いて倍率正を行う。その一例を図8に示す。SEM画像のFFTにて既知の面間隔スポットを抽出しSEM画像の正を行う。

Acquired images, performs magnification Calibration using crystal structure information obtained from such single-crystal Si region of the substrate. An example is shown in FIG. Extracting a known surface distance sights FFT of SEM images perform calibration of the SEM image.

半導体試料の高分解能SEM観察の一例を図9に示す。ゲート周囲の観察と測長を行った例である。本発明の試料作製、観察方法を用いることで、これまで困難であったサブナノメートルオーダーでのSEM観察と測長が可能となる。   An example of high-resolution SEM observation of a semiconductor sample is shown in FIG. This is an example of observation and length measurement around the gate. By using the sample preparation and observation method of the present invention, it is possible to perform SEM observation and length measurement in the sub-nanometer order, which has been difficult until now.

TEMやSTEMは試料の薄膜化された領域しか観察することができなかったが、本発明の手法を用いれば、試料の厚さに関係なく、任意の結晶方位と領域にて原子レベルSEM観察が可能となり、TEMやSTEMと同等の高い倍率精度で測定を行うことができる。また、未知の結晶性試料においては、SEM像から得られる結晶情報を用い構造解析を行うことが可能となる。   TEM and STEM can only observe the thinned region of the sample, but if the method of the present invention is used, atomic level SEM observation can be performed in any crystal orientation and region regardless of the thickness of the sample. This enables measurement with high magnification accuracy equivalent to that of TEM or STEM. In addition, for an unknown crystalline sample, structural analysis can be performed using crystal information obtained from an SEM image.

1 走査透過電子顕微鏡
2 電子銃
3 収束レンズ
4 球面収差補正器
5 対物レンズ
6 投射レンズ
7 走査電極
8 試料
9 二次電子/反射電子検出器
10 検出器出入制御部
11 暗視野電子検出器
12 明視野電子検出器
13 CCDカメラ
14 EBSD検出器
15 試料ホルダー
16 試料ステージ
17 試料制御部
18 CPU処理装置
19 画像表示部
20 電子線
21 調整用領域
22 観察領域
23 ロンチグラム観察領域
24 電子線回折像観察領域
25 厚膜領域
26 観察面
27 結晶方位確認用試料面
DESCRIPTION OF SYMBOLS 1 Scanning transmission electron microscope 2 Electron gun 3 Convergent lens 4 Spherical aberration corrector 5 Objective lens 6 Projection lens 7 Scanning electrode 8 Sample 9 Secondary electron / reflected electron detector 10 Detector input / output control unit 11 Dark field electron detector 12 Bright Field electron detector 13 CCD camera 14 EBSD detector 15 Sample holder 16 Sample stage 17 Sample control unit 18 CPU processing unit 19 Image display unit 20 Electron beam 21 Adjustment region 22 Observation region 23 Ronchigram observation region 24 Electron diffraction image observation region 25 Thick film region 26 Observation surface 27 Sample surface for crystal orientation confirmation

Claims (7)

厚膜試料の結晶構造を有する観察領域に収束した電子線を照射し、当該厚膜試料から発生した二次電子を用いて試料像を形成して観察する試料観察方法において、
前記観察領域の近傍に、非晶質領域の薄膜および結晶領域の薄膜を形成し、
前記電子線を非晶質領域に照射して取得したロンチグラムに基づき電子線の収差を調整し、前記結晶領域の電子線回折像に基づき当該電子線の試料に対する照射方向を調整し、
当該調整された電子線を前記厚膜試料の観察領域に照射し、放出された二次電子に基づいて当該厚膜試料の観察領域の原子分解能像を形成することを特徴とする試料観察方法。
In a sample observation method of irradiating a focused electron beam to an observation region having a crystal structure of a thick film sample, and forming and observing a sample image using secondary electrons generated from the thick film sample,
Forming a thin film of an amorphous region and a thin film of a crystal region in the vicinity of the observation region;
Adjust the aberration of the electron beam based on the Ronchigram acquired by irradiating the electron beam to the amorphous region, adjust the irradiation direction of the electron beam to the sample based on the electron beam diffraction image of the crystal region,
Sample observation method characterized by the adjusted electron beam irradiated to the observation region of the thick film sample, to form an atomic resolution image of the observation area of the thick film sample based on emitted secondary electrons.
請求項において、前記二次電子の信号に基づいて作成された試料像の結晶情報を用いて当該試料像の倍率を正することを特徴とする試料観察方法。 According to claim 1, sample observation method characterized by the magnification of the sample image to calibration using a crystal information of the sample image produced on the basis of a signal of the secondary electrons. 請求項1〜2のいずれかにおいて、前記ロンチグラムのフラットエリアが極大となるように光学系を調整することを特徴とする試料観察方法。3. The sample observation method according to claim 1, wherein an optical system is adjusted so that a flat area of the Ronchigram is maximized. 請求項1〜3のいずれかにおいて、前記電子線回折像のスポットが対称となるように試料傾斜を行うことを特徴とする試料観察方法。The sample observation method according to claim 1, wherein the sample is tilted so that the spots of the electron beam diffraction image are symmetric. 請求項1〜4のいずれかにおいて、カメラにより取得されたロンチグラムを用いて電子線の収差を調整することを特徴とする試料観察方法。  The sample observation method according to claim 1, wherein the aberration of the electron beam is adjusted using a Ronchigram acquired by a camera. 請求項1〜5のいずれかにおいて、カメラにより取得された電子線回折像を用いて電子線の試料に対する照射方向を調整することを特徴とする試料観察方法。  6. The sample observation method according to claim 1, wherein an irradiation direction of the electron beam on the sample is adjusted using an electron diffraction image acquired by a camera. 請求項1〜5のいずれかにおいて、EBSD検出器を用いて前記厚膜試料の結晶方位を確認することを特徴とする試料観察方法。  6. The sample observation method according to claim 1, wherein a crystal orientation of the thick film sample is confirmed using an EBSD detector.
JP2011244082A 2011-11-08 2011-11-08 Scanning transmission electron microscope and sample observation method Active JP5809935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011244082A JP5809935B2 (en) 2011-11-08 2011-11-08 Scanning transmission electron microscope and sample observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011244082A JP5809935B2 (en) 2011-11-08 2011-11-08 Scanning transmission electron microscope and sample observation method

Publications (2)

Publication Number Publication Date
JP2013101791A JP2013101791A (en) 2013-05-23
JP5809935B2 true JP5809935B2 (en) 2015-11-11

Family

ID=48622243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011244082A Active JP5809935B2 (en) 2011-11-08 2011-11-08 Scanning transmission electron microscope and sample observation method

Country Status (1)

Country Link
JP (1) JP5809935B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6163063B2 (en) * 2013-09-13 2017-07-12 株式会社日立ハイテクノロジーズ Scanning transmission electron microscope and aberration measurement method thereof
US9754762B2 (en) 2014-07-07 2017-09-05 Hitachi High-Technologies Corporation Electron microscope and sample observation method
US20240186103A1 (en) * 2021-04-13 2024-06-06 Hitachi High-Tech Corporation Transmission Electron Microscope

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790567B2 (en) * 2005-11-30 2011-10-12 日本電子株式会社 Aberration measurement method, aberration correction method and electron microscope using Ronchigram
JP2007248082A (en) * 2006-03-14 2007-09-27 Hitachi High-Technologies Corp Standard sample used for charged particle beam apparatus, charged particle beam apparatus, and method for producing standard sample used for charged particle beam apparatus
JP5438982B2 (en) * 2009-01-26 2014-03-12 株式会社日立製作所 Scanning transmission electron microscope and aberration correction method
JP5546290B2 (en) * 2010-03-02 2014-07-09 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and length measuring method using charged particle beam

Also Published As

Publication number Publication date
JP2013101791A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP6262453B2 (en) Method for preparation and visualization of flakes in a particle-optical device
JP5302595B2 (en) Inclination observation method and observation apparatus
US20110095184A1 (en) Scanning electron microscope and method of imaging an object by using the scanning electron microscope
US8552397B2 (en) Focused ion beam device and focused ion beam processing method
JP5735262B2 (en) Charged particle optical apparatus and lens aberration measuring method
EP1238405A1 (en) Method and system for the examination of specimen using a charged particle bam
JP5560246B2 (en) Standard sample used for charged particle beam apparatus and method for producing standard sample used for charged particle beam apparatus
JP5809935B2 (en) Scanning transmission electron microscope and sample observation method
JP2019075286A (en) Electron microscope and adjustment method of sample tilt angle
KR101903783B1 (en) Method and system for preparing a sample
JP6207081B2 (en) Focused ion beam device
JP6876418B2 (en) Image acquisition method and electron microscope
US11087953B2 (en) Moveable detector
US7800062B2 (en) Method and system for the examination of specimen
JP2013058363A (en) Observation method of electron microscope and electron microscope
WO2019058440A1 (en) Charged particle beam device
JP4746659B2 (en) Circuit pattern inspection method
WO2015037313A1 (en) Scanning transmission electron microscope and aberration measurement method therefor
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP2010244740A (en) Review device and review method
CZ2012273A3 (en) Charged particle beam device, position specifying method for use in the same, and program
JP4845452B2 (en) Sample observation method and charged particle beam apparatus
JP6450153B2 (en) X-ray image capturing unit, electron microscope, and sample image acquiring method
JP5228463B2 (en) Electron beam apparatus, electron beam shape measuring method and image processing method
JP2012146417A (en) Charged particle beam device and method of irradiating sample with charged particle beam by using charged particle beam device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5809935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350