[go: up one dir, main page]

JP5801735B2 - Fuel cell and fuel cell stack - Google Patents

Fuel cell and fuel cell stack Download PDF

Info

Publication number
JP5801735B2
JP5801735B2 JP2012045981A JP2012045981A JP5801735B2 JP 5801735 B2 JP5801735 B2 JP 5801735B2 JP 2012045981 A JP2012045981 A JP 2012045981A JP 2012045981 A JP2012045981 A JP 2012045981A JP 5801735 B2 JP5801735 B2 JP 5801735B2
Authority
JP
Japan
Prior art keywords
seal
reaction gas
gas
fuel cell
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012045981A
Other languages
Japanese (ja)
Other versions
JP2013182791A (en
Inventor
大野 猛
大野  猛
勝久 籔田
勝久 籔田
千栄 林
千栄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012045981A priority Critical patent/JP5801735B2/en
Publication of JP2013182791A publication Critical patent/JP2013182791A/en
Application granted granted Critical
Publication of JP5801735B2 publication Critical patent/JP5801735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、電解質の上下両面に二つの電極面を設けて、それぞれの電極面に反応ガスを供給して発電する燃料電池セル及びその燃料電池セルを複数個積層して形成される燃料電池スタックに関する。   The present invention provides a fuel battery cell in which two electrode surfaces are provided on both upper and lower surfaces of an electrolyte, and a reaction gas is supplied to each electrode surface to generate electric power, and a fuel cell stack formed by stacking a plurality of the fuel battery cells. About.

現在の燃料電池セルには電解質の材質により大別して、高分子電解質膜を電解質とする固体高分子形(PEFC)と、リン酸を電解質とするリン酸形(PAFC)と、Li−Na/K系炭酸塩を電解質とする溶融炭酸塩形(MCFC)と、例えばZrO系セラミックを電解質とする固体酸化物形(SOFC)の4タイプがある。各タイプは、作動温度(イオンが電解質中を移動できる温度)が異なるのであって、現時点において、PEFCは常温〜約90℃、PAFCは約150℃〜200℃、MCFCは約650℃〜700℃、SOFCは約700℃〜1000℃である。 Current fuel cells are roughly classified according to the material of the electrolyte, solid polymer type (PEFC) using a polymer electrolyte membrane as electrolyte, phosphoric acid type (PAFC) using phosphoric acid as an electrolyte, and Li-Na / K. There are four types, a molten carbonate type (MCFC) using an electrolyte based on carbonate and a solid oxide type (SOFC) using an electrolyte based on ZrO 2 for example. Each type has a different operating temperature (the temperature at which ions can move through the electrolyte). At present, PEFC is at room temperature to about 90 ° C, PAFC is about 150 ° C to 200 ° C, and MCFC is about 650 ° C to 700 ° C. , SOFC is about 700 ° C to 1000 ° C.

一般的な燃料電池セルは、図9,図10に示したように、一対のインターコネクタ100a,100bと、そのインターコネクタ100a,100b間に位置すると共に電解質101の上下両面に電極面102a,102bが形成されている平板状のセル本体103と、各インターコネクタ100a,100bとそれぞれの電極面102a,102bとの間に形成された反応ガス室104a,104bと、各反応ガス室104a,104bにそれぞれの反応ガス(燃料ガスたる例えば水素と、酸化剤ガスたる例えば空気)を供給するガス供給部105a,105bと、発電後の反応ガスを排出するために各反応ガス室104a,104bに設けられた排気部106a,106bと、を有する。
そして、少なくとも一方の反応ガス室104aは、インターコネクタ100aから突設されると共にガスシール部材107を介してセル本体103上に載置されるシール壁108を排気部106aとは反対側の縁に備えている。
さらにこの反応ガス室104aに対応するガス供給部105aは、シール壁108の近傍に開設されたガス流出口109からセル本体103に向けて且つ該セル本体103とほぼ直交状に交差する向きに反応ガスを流出させるようになっている(例えば特許文献1参照)。
As shown in FIGS. 9 and 10, a general fuel battery cell is located between a pair of interconnectors 100 a and 100 b and the interconnectors 100 a and 100 b, and electrode surfaces 102 a and 102 b on both upper and lower surfaces of the electrolyte 101. Are formed in the plate-like cell body 103, the reaction gas chambers 104a and 104b formed between the interconnectors 100a and 100b and the electrode surfaces 102a and 102b, and the reaction gas chambers 104a and 104b. Provided in each of the reaction gas chambers 104a and 104b for exhausting the reaction gas after power generation, and gas supply units 105a and 105b for supplying respective reaction gases (for example, hydrogen as a fuel gas and air as an oxidant gas, for example). And exhaust portions 106a and 106b.
At least one of the reaction gas chambers 104a protrudes from the interconnector 100a and has a seal wall 108 placed on the cell body 103 via the gas seal member 107 at an edge opposite to the exhaust part 106a. I have.
Further, the gas supply unit 105a corresponding to the reaction gas chamber 104a reacts from the gas outlet 109 provided in the vicinity of the seal wall 108 toward the cell body 103 and in a direction intersecting with the cell body 103 substantially orthogonally. Gas is allowed to flow out (see, for example, Patent Document 1).

特開平11−260384号公報Japanese Patent Laid-Open No. 11-260384

上記従来の燃料電池セルは、反応ガスが、ガス供給部105aのガス流出口109からセル本体103に向けてほぼ垂直方向に噴出し、図10に矢示(実線)したように、セル本体103に当たって全方向に拡散する。したがって、ガスシール部材107のシール面に沿う方向に反応ガスが流れて該シール面に直接作用するため、ガスシール部材107の劣化が早く進行してシール性が短期間のうちに低下するおそれがあった。ガスシール部材107のシール性が低下すると、燃料ガスなどの反応ガスが漏れ出すため、反応ガスの利用率が低下し、また、反応ガス同士が混ざり合って接触燃焼する可能性があり、それにより部分的に温度が上昇してセル本体103が割れるおそれがあるため好ましくない。   In the conventional fuel cell described above, the reaction gas is ejected in a substantially vertical direction from the gas outlet 109 of the gas supply unit 105a toward the cell body 103, and as indicated by an arrow (solid line) in FIG. It spreads in all directions. Therefore, since the reactive gas flows in a direction along the seal surface of the gas seal member 107 and directly acts on the seal surface, the gas seal member 107 may deteriorate quickly and the sealing performance may be reduced in a short period of time. there were. When the sealing performance of the gas seal member 107 is lowered, the reaction gas such as fuel gas leaks out, so that the utilization rate of the reaction gas is reduced, and there is a possibility that the reaction gas is mixed and burned in contact. This is not preferable because the temperature rises partially and the cell body 103 may break.

本発明は、上記に鑑みなされたもので、その目的は、ガスシール部材のシール性を向上させると共にガスシール部材が劣化し難い燃料電池セル及び燃料電池スタックを提供することにある。   The present invention has been made in view of the above, and an object thereof is to provide a fuel cell and a fuel cell stack in which the sealing performance of the gas seal member is improved and the gas seal member is hardly deteriorated.

[適用例1]
上記の目的を達成するため本発明は、
一対のインターコネクタと、
前記インターコネクタ間に位置し、電解質の上下両面に電極面が形成されている平板状のセル本体と、
前記各インターコネクタとそれぞれの前記電極面との間に形成された反応ガス室と、
前記各反応ガス室にそれぞれの反応ガスを供給するガス供給部と、
発電後の反応ガスを排出するために前記各反応ガス室に設けられた排気部と、を有し、
前記反応ガス室の少なくとも一方は、前記セル本体側を下、前記インターコネクタ側を上としたとき、前記排気部とは反対側の縁の前記セル本体上にガスシール部材を設けると共に該ガスシール部材のシール面上に載置されるシール壁を備えており、
さらにこの反応ガス室に対応する前記ガス供給部は、前記シール壁の近傍に開設されたガス流出口から前記セル本体に向けて且つ該セル本体と交差する向きに反応ガスを流出させるようになっている燃料電池セルであって、
前記セル本体と前記ガス流出口との間に、前記シール壁側から前記排気部側に向けて張り出すと共に最も上の部分が前記ガスシール部材の前記シール面より上に位置するようにしたシール保護手段を設け、そうして前記ガス流出口から流出する反応ガスを該シール保護手段で受けてその流れを前記排気部方向に変化させるようにした燃料電池セルを提供する。
[Application Example 1]
In order to achieve the above object, the present invention
A pair of interconnectors;
Located between the interconnectors, a flat cell body in which electrode surfaces are formed on both upper and lower surfaces of the electrolyte,
A reaction gas chamber formed between each interconnector and each electrode surface;
A gas supply section for supplying each reaction gas to each reaction gas chamber;
An exhaust part provided in each reaction gas chamber for discharging the reaction gas after power generation,
Wherein at least one of the reaction gas chamber, under the cell body, the when the upper interconnector side, the gas seal is provided with the moth Sushiru member on the cell body of the opposite edge and the exhaust portion A seal wall placed on the seal surface of the member ;
Further, the gas supply section corresponding to the reaction gas chamber allows the reaction gas to flow out from the gas outlet formed near the seal wall toward the cell body and in a direction intersecting the cell body. A fuel cell,
A seal that protrudes from the seal wall side toward the exhaust part side between the cell main body and the gas outlet and that the uppermost part is located above the seal surface of the gas seal member protection means is provided, thus providing a fuel cell the reaction gas so as to vary the flow of that to the exhaust portion direction is received by said seal protection means for flowing out of the gas outlet.

[適用例2]
一対のインターコネクタと、
前記インターコネクタ間に位置し、電解質の上下両面に電極面が形成されている平板状のセル本体と、
前記各インターコネクタとそれぞれの前記電極面との間に形成された反応ガス室と、
前記各反応ガス室にそれぞれの反応ガスを供給するガス供給部と、
発電後の反応ガスを排出するために前記各反応ガス室に設けられた排気部と、を有し、
前記反応ガス室の少なくとも一方は、前記セル本体側を下、前記インターコネクタ側を上としたとき、前記排気部とは反対側の縁の前記セル本体上にガスシール部材を設けると共に該ガスシール部材のシール面上に載置されるシール壁を備えており、
さらにこの反応ガス室に対応する前記ガス供給部は、前記シール壁の近傍に開設されたガス流出口から前記セル本体に向けて且つ該セル本体と交差する向きに反応ガスを流出させるようになっている燃料電池セルであって、
前記セル本体と前記ガス流出口との間に、前記シール壁側から前記排気部側に向けて張り出すと共に最も上の部分が前記ガスシール部材の前記シール面より上に位置するようにしたシール保護手段を設け、そうして前記ガス流出口から流出する反応ガスを該シール保護手段で受けてその流れを前記排気部方向及び前記シール壁の壁面に沿う方向に変化させるようにした燃料電池セルを提供する。
[Application Example 2]
A pair of interconnectors;
Located between the interconnectors, a flat cell body in which electrode surfaces are formed on both upper and lower surfaces of the electrolyte,
A reaction gas chamber formed between each interconnector and each electrode surface;
A gas supply section for supplying each reaction gas to each reaction gas chamber;
An exhaust part provided in each reaction gas chamber for discharging the reaction gas after power generation,
Wherein at least one of the reaction gas chamber, under the cell body, the when the upper interconnector side, the gas seal is provided with the moth Sushiru member on the cell body of the opposite edge and the exhaust portion A seal wall placed on the seal surface of the member ;
Further, the gas supply section corresponding to the reaction gas chamber allows the reaction gas to flow out from the gas outlet formed near the seal wall toward the cell body and in a direction intersecting the cell body. A fuel cell,
A seal that protrudes from the seal wall side toward the exhaust part side between the cell main body and the gas outlet and that the uppermost part is located above the seal surface of the gas seal member protection means is provided, thus fuel the reaction gas flowing out from the gas outlet was set to vary the flow of its receiving by said seal protection means in a direction along the wall surface of the exhaust portion direction and the sealing wall A battery cell is provided.

[適用例3]
また、前記シール保護手段は、前記シール壁における反応ガス室側の壁面に沿う部位を有する適用例1又は2に記載の燃料電池セルを提供する。
[Application Example 3]
Moreover, the said seal protection means provides the fuel battery cell of the application example 1 or 2 which has a site | part along the wall surface by the side of the reactive gas chamber in the said seal wall.

[適用例4]
また、前記シール保護手段は、前記セル本体に対して交差する方向に流れる前記反応ガスを受けて、その流れの向きを前記排気部方向に変える傾斜部を有するものである適用例1又は2に記載の燃料電池セルを提供する。
[Application Example 4]
In addition, in the application example 1 or 2, the seal protection unit includes an inclined portion that receives the reaction gas flowing in a direction intersecting the cell body and changes the flow direction to the exhaust portion direction. The fuel cell described is provided.

[適用例5]
また、前記シール保護手段は、前記ガスシール部材と一体である適用例1〜4の何れか1つの適用例に記載の燃料電池セルを提供する。
[Application Example 5]
Moreover, the said seal protection means provides the fuel battery cell as described in any one of the application examples 1-4 which are integral with the said gas seal member.

[適用例6]
また、前記ガスシール部材は、弾性部材で形成されていて前記シール壁と前記セル本体との間に圧潰状態で介装されるものであり、
また、前記シール保護手段は、前記弾性部材の一部を前記反応ガス室側へはみ出させた部分で形成されるものである適用例5に記載の燃料電池セルを提供する。
[Application Example 6]
Further, the gas seal member is formed of an elastic member and is interposed between the seal wall and the cell body in a collapsed state,
Moreover, the said seal protection means provides the fuel battery cell of the application example 5 which is formed in the part which protruded a part of said elastic member to the said reaction gas chamber side.

[適用例7]
また、前記シール壁と前記シール保護手段が別体である適用例1〜4の何れか1つの適用例に記載の燃料電池セルを提供する。
[Application Example 7]
Moreover, the fuel cell as described in any one of the application examples 1-4 with which the said seal wall and the said seal protection means are separate bodies is provided.

[適用例8]
また、適用例1〜7の何れか1つの適用例に記載の燃料電池セルを複数個積層して固定してなる燃料電池スタックを提供する。
[Application Example 8]
Moreover, the fuel cell stack formed by laminating and fixing a plurality of the fuel cells described in any one of the application examples 1 to 7 is provided.

本発明の燃料電池セルは、ガス流出口からセル本体と交差する向きに流出する反応ガスを、シール保護手段で受けてその流れを排気部方向又はシール壁の壁面に沿う方向或は適用例2に記載したように排気部方向及びシール壁の壁面に沿う方向に変化させるようにしたため、ガスシール部材のシール面に直接作用するような反応ガスの流れが抑制される。よって、ガスシール部材のシール性が向上し、且つ、ガスシール部材の劣化の進行が遅くなるため耐久性も向上する。   In the fuel cell of the present invention, the reaction gas flowing out from the gas outlet in the direction intersecting the cell main body is received by the seal protection means, and the flow is directed to the exhaust portion or along the wall surface of the seal wall or Application Example 2. Therefore, the flow of the reaction gas that directly acts on the seal surface of the gas seal member is suppressed. Accordingly, the sealing performance of the gas seal member is improved, and the progress of deterioration of the gas seal member is delayed, so that the durability is also improved.

具体的には、適用例3のように、シール保護手段にシール壁における反応ガス室側の壁面に沿う部位を設けることで、シール保護手段で受けた反応ガスをシール壁の壁面に沿う方向に変化させることができる。したがって、もし仮に反応ガスがシール保護手段の壁面に沿う部位と壁面との隙間を通ってガスシール部材のシール面に到達したとしても、直撃状態のような勢いはないため、その影響は僅かである。   Specifically, as in Application Example 3, the seal protection means is provided with a portion along the wall surface of the seal wall on the reaction gas chamber side, so that the reaction gas received by the seal protection means is directed along the wall surface of the seal wall. Can be changed. Therefore, even if the reaction gas reaches the seal surface of the gas seal member through the gap between the portion along the wall surface of the seal protection means and the wall surface, there is no momentum like a direct hit state, so the influence is slight. is there.

また、適用例4のように、セル本体に対して交差する方向に流れる反応ガスを受ける傾斜部を設けて、その流れの向きを排気部方向に変えるようにすることでガスシール部材のシール面に直接作用するような反応ガスの流れが効果的に抑制される。   Further, as in Application Example 4, the sealing surface of the gas seal member is provided by providing an inclined portion that receives the reaction gas flowing in the direction intersecting the cell body and changing the flow direction to the exhaust portion direction. The flow of the reaction gas that directly acts on the gas is effectively suppressed.

また、適用例5のように、シール保護手段をガスシール部材と一体にすることにより既存の燃料電池セルに対してもガスシール部材を交換するのみで対応することができる。   Further, as in Application Example 5, by integrating the seal protection means with the gas seal member, it is possible to cope with existing fuel cells by simply replacing the gas seal member.

また、適用例6のように、ガスシール部材を弾性部材で形成して該ガスシール部材をシール壁とセル本体との間に圧潰状態で介装し、そうして弾性部材の反応ガス室側へのはみ出し部分でシール保護手段を形成した場合には、シール保護手段の形成がきわめて簡単に行える。   Further, as in Application Example 6, the gas seal member is formed of an elastic member, and the gas seal member is interposed between the seal wall and the cell body in a crushed state, so that the reaction gas chamber side of the elastic member When the seal protection means is formed at the protruding portion, the seal protection means can be formed very easily.

また、適用例7のように、シール壁とシール保護手段を別体にした場合には、既存構造の燃料電池セルに対しても大きな改変を要することなくシール保護手段を追加することができる。   Further, when the seal wall and the seal protection means are separated as in Application Example 7, the seal protection means can be added to the existing fuel cell without significant modification.

要部を断面にして示す燃料電池セルの斜視図である。It is a perspective view of the fuel battery cell which shows a principal part in a section. 燃料電池セルの中央縦断面図である。It is a center longitudinal cross-sectional view of a fuel cell. 図2の右半分を拡大して示す要部拡大断面図である。It is a principal part expanded sectional view which expands and shows the right half of FIG. 積層方向の中間部分を省略した燃料電池スタックの中央縦断面図である。It is the center longitudinal cross-sectional view of the fuel cell stack which abbreviate | omitted the intermediate part of the lamination direction. 実施形態2の燃料電池セルを示す要部拡大断面図である。FIG. 4 is an enlarged cross-sectional view showing a main part of a fuel cell according to a second embodiment. 実施形態3の燃料電池セルを示す要部拡大断面図である。FIG. 6 is an enlarged cross-sectional view showing a main part of a fuel battery cell according to Embodiment 3. 実施形態3の燃料電池セルを示すもので、(a)は組立前の状態を示す要部拡大断面図、(b)は組立後の状態を示す要部拡大断面図である。The fuel cell of Embodiment 3 is shown, (a) is a principal part expanded sectional view which shows the state before an assembly, (b) is a principal part expanded sectional view which shows the state after an assembly. 実施形態3の燃料電池セルを示す拡大図(z)を含む要部拡大断面図である。It is a principal part expanded sectional view containing the enlarged view (z) which shows the fuel cell of Embodiment 3. FIG. 要部を断面にして示す従来型燃料電池セルの斜視図である。It is a perspective view of the conventional fuel cell which shows the principal part in cross section. 従来型燃料電池セルの要部拡大断面図である。It is a principal part expanded sectional view of the conventional fuel cell.

[実施形態1]
以下に、本発明の実施の形態1を図1〜図4を参照しつつ説明する。
実施形態1の燃料電池セル1は、前記した4タイプの中の固体酸化物形(SOFC)のものである。この燃料電池セル1は、図1に示したように、円の中心に軸方向に貫通する中通路2を設けた円盤形であって、上下一対のインターコネクタ3a,3bと、そのインターコネクタ3a,3b間に位置すると共に電解質4の上下両面に電極面5a,5bが形成されているセル本体6と、各インターコネクタ3a,3bとそれぞれの電極面5a,5bとの間に形成された反応ガス室7a,7bと、各反応ガス室7a,7bにそれぞれの反応ガスを供給するガス供給部8a,8bと、発電後の反応ガスを排出するために各反応ガス室7a,7bに設けられた排気部9a,9bと、を有する。
[Embodiment 1]
Embodiment 1 of the present invention will be described below with reference to FIGS.
The fuel cell 1 of Embodiment 1 is of the solid oxide type (SOFC) among the four types described above. As shown in FIG. 1, the fuel cell 1 has a disk shape in which an intermediate passage 2 penetrating in the axial direction is provided at the center of a circle, and includes a pair of upper and lower interconnectors 3a and 3b and the interconnector 3a. , 3b, and the cell body 6 in which the electrode surfaces 5a and 5b are formed on the upper and lower surfaces of the electrolyte 4, and the reaction formed between the interconnectors 3a and 3b and the electrode surfaces 5a and 5b. Gas chambers 7a and 7b, gas supply portions 8a and 8b for supplying the reaction gases to the reaction gas chambers 7a and 7b, and reaction gas chambers 7a and 7b for discharging the reaction gas after power generation are provided. And exhaust portions 9a and 9b.

なお、実施形態1では、図1において上の反応ガス室7aに酸化剤ガスたる例えば空気が供給され、また、下の反応ガス室7bに燃料ガスたる例えば水素が供給される。したがって、上の反応ガス室7aを「空気室」、下の反応ガス室7bを「燃料室」、さらに上の電極面5aを「空気極」、下の電極面5bを「燃料極」、上の反応ガス室7a側のガス供給部8aを「空気供給部」、下の反応ガス室7b側のガス供給部8bを「燃料供給部」ともいう。   In the first embodiment, for example, air as an oxidant gas is supplied to the upper reaction gas chamber 7a in FIG. 1, and for example, hydrogen as a fuel gas is supplied to the lower reaction gas chamber 7b. Therefore, the upper reaction gas chamber 7a is the “air chamber”, the lower reaction gas chamber 7b is the “fuel chamber”, the upper electrode surface 5a is the “air electrode”, the lower electrode surface 5b is the “fuel electrode”, and the upper The gas supply unit 8a on the reaction gas chamber 7a side is also referred to as an “air supply unit”, and the gas supply unit 8b on the lower reaction gas chamber 7b side is also referred to as a “fuel supply unit”.

[インターコネクタ]
前記インターコネクタ3a,3bは、前記中通路2形成用の円孔を有するドーナツ板形状であって、導電性を有するフェライト系ステンレス等で形成されている。
[Interconnector]
The interconnectors 3a and 3b have a donut plate shape having a circular hole for forming the middle passage 2, and are made of conductive ferritic stainless steel or the like.

[セル本体]
前記セル本体6は、前記中通路2形成用の円孔を有するドーナツ板形状に形成されたZrO系セラミック製の電解質4と、空気室7a側の面に形成された空気極5aと、燃料室7b側の面に形成された燃料極5bと、を備えている。
[Cell body]
The cell body 6 includes a ZrO 2 ceramic electrolyte 4 formed in a donut plate shape having a circular hole for forming the middle passage 2, an air electrode 5 a formed on a surface on the air chamber 7 a side, a fuel And a fuel electrode 5b formed on the surface on the chamber 7b side.

[セル本体−電解質]
前記電解質4は、ZrO系セラミックの他、LaGaO系セラミック、BaCeO系セラミック、SrCeO系セラミック、SrZrO系セラミック、CaZrO系セラミック等で形成される。
[Cell body-electrolyte]
The electrolyte 4 is made of LaGaO 3 ceramic, BaCeO 3 ceramic, SrCeO 3 ceramic, SrZrO 3 ceramic, CaZrO 3 ceramic, etc. in addition to ZrO 2 ceramic.

[セル本体−空気極]
前記空気極5aの材質は、例えば各種の金属、金属の酸化物、金属の複酸化物等を用いることができる。前記金属としてはPt、Au、Ag、Pb、Ir、Ru及びRh等の金属又は2種以上の金属を含有する合金が挙げられる。さらに、金属の酸化物としては、La、Sr、Ce、Co、Mn及びFe等の酸化物(La、SrO、Ce、Co、MnO及びFeO等)が挙げられる。また、複酸化物としては、少なくともLa、Pr、Sm、Sr、Ba、Co、Fe及びMn等を含有する複酸化物(La1−XSrCoO系複酸化物、La1−XSrFeO系複酸化物、La1−XSrCo1−yFeO系複酸化物、La1−XSrMnO系複酸化物、Pr1−XBaCoO系複酸化物及びSm1−XSrCoO系複酸化物等)が挙げられる。
[Cell body-air electrode]
As the material of the air electrode 5a, for example, various metals, metal oxides, metal double oxides, and the like can be used. Examples of the metal include metals such as Pt, Au, Ag, Pb, Ir, Ru, and Rh, or alloys containing two or more metals. Further, examples of the metal oxide include oxides such as La, Sr, Ce, Co, Mn and Fe (La 2 O 3 , SrO, Ce 2 O 3 , Co 2 O 3 , MnO 2 and FeO). It is done. As the double oxide, a double oxide containing at least La, Pr, Sm, Sr, Ba, Co, Fe, Mn, etc. (La 1-X Sr X CoO 3 -based double oxide, La 1-X Sr X FeO 3 -based double oxide, La 1-X Sr X Co 1-y FeO 3 -based double oxide, La 1-X Sr X MnO 3 -based double oxide, Pr 1-X Ba X CoO 3 -based double oxide And Sm 1-X Sr X CoO 3 -based double oxide).

[セル本体−燃料極]
前記燃料極5bの材質は、Ni及びFe等の金属と、Sc、Y等の希土類元素のうちの少なくとも1種により安定化されたジルコニア等のZrO系セラミック、CeO系セラミック等のセラミックのうちの少なくとも1種との混合物が挙げられる。また、燃料極5bの材質は、Pt、Au、Ag、Pb、Ir、Ru、Rh、Ni及びFe等の金属でもよく、これらの金属は1種のみでもよいし、2種以上の合金にしてもよい。さらに、これらの金属及び/又は合金と、上記セラミックの各々の少なくとも1種との混合物(サーメットを含む。)が挙げられる。また、Ni及びFe等の金属の酸化物と、上記セラミックの各々の少なくとも1種との混合物等が挙げられる。
[Cell body-Fuel electrode]
The material of the fuel electrode 5b is a ceramic such as a ZrO 2 ceramic such as zirconia or a CeO 2 ceramic stabilized by at least one of metals such as Ni and Fe and rare earth elements such as Sc and Y. A mixture with at least one of them is mentioned. The material of the fuel electrode 5b may be a metal such as Pt, Au, Ag, Pb, Ir, Ru, Rh, Ni and Fe. These metals may be only one kind, or two or more kinds of alloys. Also good. Furthermore, a mixture (including cermet) of these metals and / or alloys and at least one of each of the above ceramics may be mentioned. Moreover, the mixture etc. of metal oxides, such as Ni and Fe, and at least 1 type of each of the said ceramic are mentioned.

[空気室]
前記空気室7aは、上のインターコネクタ3aの前記中通路2側が、円筒状のシール壁10と、該シール壁10とセル本体6(具体的には電解質4)の間に介装したガスシール部材11とで塞がれており、反対の外周側が外部(実際には、図示しない空気用排気経路)に開放された空気用の排気部9aになっている。なお、実施形態のシール壁10は、インターコネクタ3aと別成形して溶接等により接合したものを示したが、インターコネクタ3aと一体に成形にしてもよい。
[Air chamber]
The air chamber 7a includes a gas seal in which the middle passage 2 side of the upper interconnector 3a is interposed between a cylindrical seal wall 10 and the seal wall 10 and the cell body 6 (specifically, the electrolyte 4). It is closed with the member 11, and the opposite outer peripheral side is an air exhaust portion 9a opened to the outside (actually, an air exhaust path not shown). In addition, although the sealing wall 10 of embodiment showed what was shape | molded separately from the interconnector 3a and joined by welding etc., you may shape | mold integrally with the interconnector 3a.

[空気室−空気供給部]
空気室7aと上のインターコネクタ3aの間には上下を仕切る隔壁12が設けられていて、その隔壁12の上層が空気供給部8aになっている。この空気供給部8aは、外周側を囲う外筒壁13に多数の供給口14,14…を開設してそこから内部に空気を流入させ、さらに隔壁12のシール壁10側に開設した縦孔状のガス流出口15からセル本体6に向けて空気を流出させるようになっている。
[Air chamber-Air supply section]
A partition wall 12 is provided between the air chamber 7a and the upper interconnector 3a. The upper layer of the partition wall 12 is an air supply unit 8a. This air supply unit 8a has a plurality of supply ports 14, 14... Opened in the outer cylindrical wall 13 surrounding the outer peripheral side, air is introduced into the inside from there, and a vertical hole opened on the seal wall 10 side of the partition wall 12. The air flows out from the gas outlet 15 to the cell body 6.

その他、符合16aは、空気室7a内に多数設けられた柱状の集電部材であり、該集電部材16aによって空気極5aと前記隔壁12惹いてはインターコネクタ3aが電気的に接続される。   In addition, reference numeral 16a is a columnar current collecting member provided in a large number in the air chamber 7a, and the air electrode 5a and the partition wall 12 and the interconnector 3a are electrically connected by the current collecting member 16a.

[燃料室]
前記燃料室7bは、前記中通路2に連通する燃料供給部8bと、反対の外周側を外部(実際には、図示しないが燃料用排気経路)に開放させた排気部9bを備えている。したがって、中通路2に燃料ガスを流すと、図1に破線で示した矢印のように燃料供給部8bから燃料室7bに入り、そこから排気部9bを通って外部に抜ける。
[Fuel chamber]
The fuel chamber 7b includes a fuel supply portion 8b communicating with the middle passage 2 and an exhaust portion 9b having the opposite outer peripheral side opened to the outside (actually, although not shown, a fuel exhaust path). Accordingly, when the fuel gas is caused to flow through the middle passage 2, the fuel chamber 7b enters from the fuel supply portion 8b as shown by the broken line in FIG. 1, and then exits to the outside through the exhaust portion 9b.

なお、符合16bは、燃料室7b内に多数設けられた柱状の集電部材であり、該集電部材16bによって燃料極5bとインターコネクタ3bが電気的に接続される。   The reference numeral 16b is a columnar current collecting member provided in a large number in the fuel chamber 7b, and the fuel electrode 5b and the interconnector 3b are electrically connected by the current collecting member 16b.

[シール保護手段]
空気室7aの内部には、セル本体6と前記ガス流出口15との間に、該ガス流出口15からセル本体6と交差する向きに流出する空気を受け且つ該空気の流れを前記排気部9a方向又はシール壁10の壁面に沿う方向或は排気部9a方向及びシール壁10の壁面に沿う方向に変化させるシール保護手段17が設けられている。
[Seal protection means]
Inside the air chamber 7a, air flowing out from the gas outlet 15 in a direction intersecting the cell body 6 is received between the cell main body 6 and the gas outlet 15 and the air flow is transferred to the exhaust section. Seal protection means 17 is provided to change the direction 9a or the direction along the wall surface of the seal wall 10 or the direction of the exhaust part 9a and the direction along the wall surface of the seal wall 10.

このシール保護手段17は、図1〜図3に示したように、前記シール壁10の底部内周面から排気部9aの方向に向けて設けられて、ガス流出口15からセル本体6の方向に向かって下傾し且つ前記ガス流出口15の真下に達する傾斜部17aを備えている。したがって、ガス流出口15からセル本体6に向かって流出する空気、つまりセル本体6と交差する向きに流出する空気は、図1,図3に実線で示した矢印のようにシール保護手段17の傾斜部17aに当たってその向きを排気部9aの方向に変える。
なお、シール壁10と一体のシール保護手段17は、レーザー加工やエッチング加工によって形成することができる。
As shown in FIGS. 1 to 3, the seal protection means 17 is provided from the bottom inner peripheral surface of the seal wall 10 toward the exhaust part 9 a, and from the gas outlet 15 to the cell body 6. And an inclined portion 17a which is inclined downward toward the gas outlet 15 and reaches just below the gas outlet 15. Therefore, the air flowing out from the gas outlet 15 toward the cell main body 6, that is, the air flowing out in the direction intersecting the cell main body 6, is generated by the seal protection means 17 as indicated by the arrows shown by solid lines in FIGS. When hitting the inclined portion 17a, the direction is changed to the direction of the exhaust portion 9a.
The seal protection means 17 integrated with the seal wall 10 can be formed by laser processing or etching processing.

以上の構成である燃料電池セル1に空気供給部8aの供給口14から空気を入れると、図3に矢示(実線)したように、その空気が空気供給部8aのガス流出口15を通って空気室7aに入る。空気室7aに入った空気は、ガス流出口15の下に臨んでいるシール保護手段17の傾斜部17aに当たり、該傾斜部17aの傾斜に沿って排気部9a方向に向きを変え、空気室7aの中を通って排気部9aから外部に抜ける。   When air is introduced into the fuel cell 1 having the above configuration from the supply port 14 of the air supply unit 8a, the air passes through the gas outlet 15 of the air supply unit 8a as shown by an arrow (solid line) in FIG. And enters the air chamber 7a. The air that has entered the air chamber 7a hits the inclined portion 17a of the seal protection means 17 facing below the gas outlet 15 and changes its direction in the direction of the exhaust portion 9a along the inclination of the inclined portion 17a. To the outside from the exhaust part 9a.

一方、燃料電池セル1の中通路2に燃料ガスを流すと、該燃料ガスが図3に矢示(破線)したように燃料供給部8bから燃料室7bに入り、そこから排気部9bを通って外部に抜ける。   On the other hand, when the fuel gas is caused to flow into the middle passage 2 of the fuel cell 1, the fuel gas enters the fuel chamber 7b from the fuel supply portion 8b as indicated by an arrow (broken line) in FIG. 3, and then passes through the exhaust portion 9b. And go outside.

このように空気と燃料ガスを空気室7aと燃料室7bにそれぞれ供給した状態で燃料電池セル1の温度を700℃〜1000℃にまで上昇させると、空気と燃料ガスが空気極5aと電解質4と燃料極5bを介して反応を起こすため、空気極5aを正極、燃料極5bを負極とする直流の電気エネルギが発生する。なお、燃料電池セル1内で電気エネルギが発生する原理は周知であるため説明を省略する。   When the temperature of the fuel cell 1 is raised to 700 ° C. to 1000 ° C. with the air and the fuel gas supplied to the air chamber 7a and the fuel chamber 7b as described above, the air and the fuel gas are supplied to the air electrode 5a and the electrolyte 4. Therefore, direct electric energy is generated with the air electrode 5a as the positive electrode and the fuel electrode 5b as the negative electrode. In addition, since the principle which an electrical energy generate | occur | produces in the fuel cell 1 is known, description is abbreviate | omitted.

以上のように構成される燃料電池セル1を図4のように複数個積層して直列状態に固定することで、所定の出力で発電可能な燃料電池スタック18ができる。なお、燃料電池セル1を複数個積層する場合、下に位置する燃料電池セル1の上のインターコネクタ3bは、上に位置する燃料電池セル1の下のインターコネクタ3aを利用することができる。   By stacking a plurality of the fuel cells 1 configured as described above and fixing them in series as shown in FIG. 4, a fuel cell stack 18 capable of generating power with a predetermined output can be obtained. When a plurality of fuel cells 1 are stacked, the interconnector 3b above the fuel cell 1 positioned below can use the interconnector 3a below the fuel cell 1 positioned above.

[実施形態2]
実施形態2の燃料電池セル1は、図5に示したように、シール保護手段17をシール壁10とは別体に形成して該シール壁10又はセル本体6の空気極5aに、例えば溶接又はロウ付で接合したものである。この形態のシール保護手段17の材質は、シール壁10又は空気極5aに溶接又はロウ付等の接合手段で接合可能な金属又はそのような金属を接合面に有するセラミックである。
上記以外の構成については実施形態1と同じであるため説明を省略する。
[Embodiment 2]
As shown in FIG. 5, the fuel cell 1 according to the second embodiment forms the seal protection means 17 separately from the seal wall 10 and welds the seal wall 10 or the air electrode 5 a of the cell body 6 to, for example, welding. Or it joins with brazing. The material of the seal protection means 17 in this form is a metal that can be joined to the seal wall 10 or the air electrode 5a by a joining means such as welding or brazing, or a ceramic having such a metal on the joining surface.
Since the configuration other than the above is the same as that of the first embodiment, the description thereof is omitted.

[実施形態3]
実施形態3の燃料電池セル1は、図6に示したように、シール保護手段17とガスシール部材11とを一体にしたものである。このガスシール部材11は、マイカ、バーミキュライト、アルミナフェルト等の弾性部材で形成されており、図6においてシール壁10とセル本体6の電解質4の間で圧潰されている部分がガスシール部材11であり、空気室7a側にはみ出ている部分がシール保護手段17である。
このガスシール部材11とシール保護手段17の一体品は、圧潰前において厚さ一様であり、ガスシール部材11をシール壁10とセル本体6の電解質4の間に挟んで圧潰すると、シール保護手段17の根元に相当する部位17pがシール壁10の動きに引き込まれて変形し、その部位17pがシール壁10の壁面に沿う。一方、空気室7a側にはみ出たシール保護手段17の先端側は、ほぼ元の厚さを保っている。したがって、シール保護手段17の上面には実施形態1,2のような傾斜部17aが存在しない。
[Embodiment 3]
As shown in FIG. 6, the fuel battery cell 1 of Embodiment 3 is obtained by integrating the seal protection means 17 and the gas seal member 11. The gas seal member 11 is formed of an elastic member such as mica, vermiculite, alumina felt, and the portion of the gas seal member 11 that is crushed between the seal wall 10 and the electrolyte 4 of the cell body 6 in FIG. 6 is the gas seal member 11. The portion that protrudes toward the air chamber 7 a is the seal protection means 17.
The integrated product of the gas seal member 11 and the seal protection means 17 has a uniform thickness before being crushed. When the gas seal member 11 is crushed by being sandwiched between the seal wall 10 and the electrolyte 4 of the cell body 6, seal protection is achieved. A portion 17 p corresponding to the root of the means 17 is drawn by the movement of the seal wall 10 and deformed, and the portion 17 p is along the wall surface of the seal wall 10. On the other hand, the tip side of the seal protection means 17 that protrudes to the air chamber 7a side maintains the original thickness. Accordingly, the upper surface of the seal protection means 17 does not have the inclined portion 17a as in the first and second embodiments.

斯かる構成の燃料電池セル1は、ガス流出口15から出た空気が図6に矢示(実線)したように、シール保護手段17の上面に当たってその一部がシール壁10の方向に流れる。そして、シール壁10に当たった空気は、壁面に沿う上下方向に向きを変え分散されて殆ど勢いを失うから、そのような空気がシール保護手段17の根元の部位17pとシール壁10との間を通ってガスシール部材11とシール壁10の間に到達する可能性は低い。
なお、実施形態3のシール保護手段17について、装着前に図3のような傾斜部17aを設け、その傾斜部17aで実施形態1と同様の作用が発揮されるようにしてももちろんよい。
In the fuel battery cell 1 having such a configuration, the air exiting from the gas outlet 15 hits the upper surface of the seal protection means 17 as indicated by an arrow (solid line) in FIG. 6 and a part of the air flows in the direction of the seal wall 10. The air hitting the seal wall 10 changes its direction in the vertical direction along the wall surface and is dispersed and loses almost the momentum. Therefore, such air is located between the root portion 17p of the seal protection means 17 and the seal wall 10. The possibility of reaching between the gas seal member 11 and the seal wall 10 through is low.
It should be noted that the seal protection means 17 of the third embodiment may be provided with an inclined portion 17a as shown in FIG. 3 before mounting, and the inclined portion 17a may exhibit the same action as that of the first embodiment.

また、ガスシール部材11と一体にしたシール保護手段17は、図7(a)に示したように、例えば合成樹脂等の弾性部材19をセル本体6の電解質4の上面に断面かまぼこ形に盛り上げ、さらに図7(b)に示したように、該弾性部材19のガスシール部材11に対応する部分を圧潰して形成することもできる。この場合には、シール保護手段17の上面に、弧状の傾斜部17aが形成される。
なお、図8のようにセル本体6(具体的には電解質4)の周縁コーナー部に面取り部6cを形成すれば、圧潰時にガスシール部材11が変形して該面取り部6cを覆うため、シール幅が大きくなってシール性が向上する。
Further, as shown in FIG. 7 (a), the seal protection means 17 integrated with the gas seal member 11 swells an elastic member 19 such as a synthetic resin, for example, on the upper surface of the electrolyte 4 of the cell body 6 so as to have a semi-cylindrical cross section. Further, as shown in FIG. 7B, the portion corresponding to the gas seal member 11 of the elastic member 19 may be crushed and formed. In this case, an arcuate inclined portion 17 a is formed on the upper surface of the seal protection means 17.
If the chamfered portion 6c is formed at the peripheral corner portion of the cell body 6 (specifically, the electrolyte 4) as shown in FIG. 8, the gas seal member 11 is deformed during crushing to cover the chamfered portion 6c. The width is increased and the sealing performance is improved.

実施形態3の上記以外の構成については実施形態1と同じであるため説明を省略する。   Since the configuration of the third embodiment other than the above is the same as that of the first embodiment, the description thereof is omitted.

以上、本発明を実施形態1〜3について説明したが、もちろん本発明は上記実施形態1〜3に限定されるものではない。例えば、実施形態1〜3は、固体酸化物形(SOFC)の燃料電池セル1について説明したが、上記した固体高分子形(PEFC)、リン酸形(PAFC)、溶融炭酸塩形(MCFC)にも適用可能である。
また、実施形態1〜3は、シール保護手段17を空気室7aに設けるようにしたが、空気室7aと燃料室7bの構成を入れ替えて、シール保護手段17を燃料室7bに設けるようにしてもよい。
また、実施形態の傾斜部17aは、直線状又は凸形に湾曲する形状にしたが、ガス流出口15からセル本体6に向かって階段状に下る形状や、凹形に湾曲する形状にしてもよい。
また、実施形態では、ガス流出口15をセル本体6に向かう縦孔状に形成したが、該ガス流出口15に排気部9a側に向かう傾きを設けるようにしてもよい。そうした場合には反応ガスがガス流出口15の傾きで排気部9a方向に向かうため、シール保護手段17の効果をより確実にすることができる。
As mentioned above, although this invention was demonstrated about Embodiment 1-3, of course, this invention is not limited to the said Embodiment 1-3. For example, the first to third embodiments have been described with respect to the solid oxide type (SOFC) fuel cell 1, but the above-described solid polymer type (PEFC), phosphoric acid type (PAFC), and molten carbonate type (MCFC). It is also applicable to.
In the first to third embodiments, the seal protection means 17 is provided in the air chamber 7a. However, the configurations of the air chamber 7a and the fuel chamber 7b are switched to provide the seal protection means 17 in the fuel chamber 7b. Also good.
In addition, the inclined portion 17a of the embodiment has a shape that curves in a straight line or a convex shape, but may have a shape that goes down stepwise from the gas outlet 15 toward the cell body 6 or a shape that curves in a concave shape. Good.
Further, in the embodiment, the gas outlet 15 is formed in a vertical hole shape toward the cell main body 6, but the gas outlet 15 may be provided with an inclination toward the exhaust part 9a. In such a case, since the reaction gas is directed toward the exhaust part 9a with the inclination of the gas outlet 15, the effect of the seal protection means 17 can be further ensured.

1 …燃料電池セル
3a,3b …インターコネクタ
4 …電解質
5a …電極面(空気極)
5b …電極面(燃料極)
6 …セル本体
7a …反応ガス室(空気室)
7b …反応ガス室(燃料室)
8a …ガス供給部(空気供給部)
8b …ガス供給部(燃料供給部)
9a,9b …排気部
10 …シール壁
11 …ガスシール部材
15 …ガス流出口
17 …シール保護手段
17a …傾斜部
17p …シール保護手段17のシール壁10に沿う部位
18 …燃料電池スタック
19 …弾性部材
DESCRIPTION OF SYMBOLS 1 ... Fuel cell 3a, 3b ... Interconnector 4 ... Electrolyte 5a ... Electrode surface (air electrode)
5b Electrode surface (fuel electrode)
6 ... Cell body 7a ... Reaction gas chamber (air chamber)
7b Reaction gas chamber (fuel chamber)
8a: Gas supply part (air supply part)
8b Gas supply part (fuel supply part)
DESCRIPTION OF SYMBOLS 9a, 9b ... Exhaust part 10 ... Seal wall 11 ... Gas seal member 15 ... Gas outlet 17 ... Seal protection means 17a ... Inclination part 17p ... Site along the seal wall 10 of the seal protection means 17 18 ... Fuel cell stack 19 ... Elasticity Element

Claims (8)

一対のインターコネクタと、
前記インターコネクタ間に位置し、電解質の上下両面に電極面が形成されている平板状のセル本体と、
前記各インターコネクタとそれぞれの前記電極面との間に形成された反応ガス室と、
前記各反応ガス室にそれぞれの反応ガスを供給するガス供給部と、
発電後の反応ガスを排出するために前記各反応ガス室に設けられた排気部と、を有し、
前記反応ガス室の少なくとも一方は、前記セル本体側を下、前記インターコネクタ側を上としたとき、前記排気部とは反対側の縁の前記セル本体上にガスシール部材を設けると共に該ガスシール部材のシール面上に載置されるシール壁を備えており、
さらにこの反応ガス室に対応する前記ガス供給部は、前記シール壁の近傍に開設されたガス流出口から前記セル本体に向けて且つ該セル本体と交差する向きに反応ガスを流出させるようになっている燃料電池セルであって、
前記セル本体と前記ガス流出口との間に、前記シール壁側から前記排気部側に向けて張り出すと共に最も上の部分が前記ガスシール部材の前記シール面より上に位置するようにしたシール保護手段を設け、そうして前記ガス流出口から流出する反応ガスを該シール保護手段で受けてその流れを前記排気部方向に変化させるようにしたことを特徴とする燃料電池セル。
A pair of interconnectors;
Located between the interconnectors, a flat cell body in which electrode surfaces are formed on both upper and lower surfaces of the electrolyte,
A reaction gas chamber formed between each interconnector and each electrode surface;
A gas supply section for supplying each reaction gas to each reaction gas chamber;
An exhaust part provided in each reaction gas chamber for discharging the reaction gas after power generation,
Wherein at least one of the reaction gas chamber, under the cell body, the when the upper interconnector side, the gas seal is provided with the moth Sushiru member on the cell body of the opposite edge and the exhaust portion A seal wall placed on the seal surface of the member ;
Further, the gas supply section corresponding to the reaction gas chamber allows the reaction gas to flow out from the gas outlet formed near the seal wall toward the cell body and in a direction intersecting the cell body. A fuel cell,
A seal that protrudes from the seal wall side toward the exhaust part side between the cell main body and the gas outlet and that the uppermost part is located above the seal surface of the gas seal member protection means is provided, thus a fuel cell the reaction gas flowing out characterized the kite so as to vary the flow of that to the exhaust portion direction is received by the seal protection means from the gas outlet.
一対のインターコネクタと、
前記インターコネクタ間に位置し、電解質の上下両面に電極面が形成されている平板状のセル本体と、
前記各インターコネクタとそれぞれの前記電極面との間に形成された反応ガス室と、
前記各反応ガス室にそれぞれの反応ガスを供給するガス供給部と、
発電後の反応ガスを排出するために前記各反応ガス室に設けられた排気部と、を有し、
前記反応ガス室の少なくとも一方は、前記セル本体側を下、前記インターコネクタ側を上としたとき、前記排気部とは反対側の縁の前記セル本体上にガスシール部材を設けると共に該ガスシール部材のシール面上に載置されるシール壁を備えており、
さらにこの反応ガス室に対応する前記ガス供給部は、前記シール壁の近傍に開設されたガス流出口から前記セル本体に向けて且つ該セル本体と交差する向きに反応ガスを流出させるようになっている燃料電池セルであって、
前記セル本体と前記ガス流出口との間に、前記シール壁側から前記排気部側に向けて張り出すと共に最も上の部分が前記ガスシール部材の前記シール面より上に位置するようにしたシール保護手段を設け、そうして前記ガス流出口から流出する反応ガスを該シール保護手段で受けてその流れを前記排気部方向及び前記シール壁の壁面に沿う方向に変化させるようにしたことを特徴とする燃料電池セル。
A pair of interconnectors;
Located between the interconnectors, a flat cell body in which electrode surfaces are formed on both upper and lower surfaces of the electrolyte,
A reaction gas chamber formed between each interconnector and each electrode surface;
A gas supply section for supplying each reaction gas to each reaction gas chamber;
An exhaust part provided in each reaction gas chamber for discharging the reaction gas after power generation,
Wherein at least one of the reaction gas chamber, under the cell body, the when the upper interconnector side, the gas seal is provided with the moth Sushiru member on the cell body of the opposite edge and the exhaust portion A seal wall placed on the seal surface of the member ;
Further, the gas supply section corresponding to the reaction gas chamber allows the reaction gas to flow out from the gas outlet formed near the seal wall toward the cell body and in a direction intersecting the cell body. A fuel cell,
A seal that protrudes from the seal wall side toward the exhaust part side between the cell main body and the gas outlet and that the uppermost part is located above the seal surface of the gas seal member protection means is provided, thus the kite to the reaction gas flowing out from the gas outlet so as to vary the flow of its receiving by said seal protection means in a direction along the wall surface of the exhaust portion direction and the sealing wall A fuel cell.
前記シール保護手段は、前記シール壁における反応ガス室側の壁面に沿う部位を有することを特徴とする請求項1又は2に記載の燃料電池セル。   3. The fuel cell according to claim 1, wherein the seal protection means has a portion along a wall surface of the seal wall on a reaction gas chamber side. 前記シール保護手段は、前記セル本体に対して交差する方向に流れる前記反応ガスを受けて、その流れの向きを前記排気部方向に変える傾斜部を有するものであることを特徴とする請求項1又は2に記載の燃料電池セル。   2. The seal protecting means includes an inclined portion that receives the reaction gas flowing in a direction intersecting the cell main body and changes the flow direction to the exhaust portion direction. Or the fuel battery cell of 2. 前記シール保護手段は、前記ガスシール部材と一体であることを特徴とする請求項1〜4の何れか1項に記載の燃料電池セル。   The fuel cell according to any one of claims 1 to 4, wherein the seal protection means is integral with the gas seal member. 前記ガスシール部材は、弾性部材で形成されていて前記シール壁と前記セル本体との間に圧潰状態で介装されるものであり、
また、前記シール保護手段は、前記弾性部材の一部を前記反応ガス室側へはみ出させた部分で形成されるものであることを特徴とする請求項5に記載の燃料電池セル。
The gas seal member is formed of an elastic member and is interposed between the seal wall and the cell body in a collapsed state,
The fuel cell according to claim 5, wherein the seal protection means is formed by a portion where a part of the elastic member protrudes to the reaction gas chamber side.
前記シール壁と前記シール保護手段が別体であることを特徴とする請求項1〜4の何れか1項に記載の燃料電池セル。   The fuel cell according to any one of claims 1 to 4, wherein the seal wall and the seal protection means are separate bodies. 請求項1〜7の何れか1項に記載の燃料電池セルを複数個積層して固定してなることを特徴とする燃料電池スタック。   A fuel cell stack comprising a plurality of fuel cell cells according to any one of claims 1 to 7 stacked and fixed.
JP2012045981A 2012-03-01 2012-03-01 Fuel cell and fuel cell stack Active JP5801735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012045981A JP5801735B2 (en) 2012-03-01 2012-03-01 Fuel cell and fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012045981A JP5801735B2 (en) 2012-03-01 2012-03-01 Fuel cell and fuel cell stack

Publications (2)

Publication Number Publication Date
JP2013182791A JP2013182791A (en) 2013-09-12
JP5801735B2 true JP5801735B2 (en) 2015-10-28

Family

ID=49273315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012045981A Active JP5801735B2 (en) 2012-03-01 2012-03-01 Fuel cell and fuel cell stack

Country Status (1)

Country Link
JP (1) JP5801735B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111842A1 (en) * 2019-12-03 2021-06-10 三洋電機株式会社 Battery pack

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137177B2 (en) * 1995-07-28 2001-02-19 日本電信電話株式会社 Solid oxide fuel cell
EP0936688A1 (en) * 1998-02-17 1999-08-18 Sulzer Hexis AG Interconnector for high temperature fuel cells
JP4444862B2 (en) * 2005-03-18 2010-03-31 本田技研工業株式会社 Fuel cell or separator
JP5007515B2 (en) * 2006-03-10 2012-08-22 日産自動車株式会社 Fuel cell
JP2007329083A (en) * 2006-06-09 2007-12-20 Toyota Motor Corp Fuel cell
JP2008192338A (en) * 2007-02-01 2008-08-21 Toyota Motor Corp Fuel cell
JP2009021081A (en) * 2007-07-11 2009-01-29 Shinko Electric Ind Co Ltd Hot air generator
JP2009026527A (en) * 2007-07-18 2009-02-05 Toyota Motor Corp Fuel cell
JP2011044297A (en) * 2009-08-20 2011-03-03 Nippon Soken Inc Fuel cell

Also Published As

Publication number Publication date
JP2013182791A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5198797B2 (en) Solid electrolyte fuel cell
JP6392688B2 (en) Fuel cell stack
JPWO2007138984A1 (en) Solid electrolyte fuel cell stack
JP6502726B2 (en) Flat plate fuel cell
JP5876944B2 (en) Fuel cell and fuel cell stack
JP5708923B2 (en) Fuel cell and fuel cell
JP2007317490A (en) Solid electrolyte fuel cell stack
JP5198799B2 (en) Solid electrolyte fuel cell
JPH04298965A (en) Solid electrolyte type fuel cell and manufacture thereof
JP6498992B2 (en) Flat fuel cell
JP5254588B2 (en) Solid oxide fuel cell module
JP5844167B2 (en) Solid oxide fuel cell
JPH04298963A (en) Solid electrolyte type fuel cell and manufacture thereof
JP6162542B2 (en) Fuel cell
JP5801735B2 (en) Fuel cell and fuel cell stack
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JP5584278B2 (en) Solid electrolyte fuel cell
JP2016122522A (en) Cell stack, module and module housing device
JP2015204261A (en) Fuel battery stack
JP4373378B2 (en) Stack structure of planar solid oxide fuel cell
JP2014149931A (en) Fuel cell
JP2013225422A (en) Fuel cell
JP5315656B2 (en) Stack structure of solid oxide fuel cell
JP2008021596A (en) Solid-oxide fuel cell module
WO2020012699A1 (en) Cell stack device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150827

R150 Certificate of patent or registration of utility model

Ref document number: 5801735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250