[go: up one dir, main page]

JP5801033B2 - Seal structure - Google Patents

Seal structure Download PDF

Info

Publication number
JP5801033B2
JP5801033B2 JP2010004622A JP2010004622A JP5801033B2 JP 5801033 B2 JP5801033 B2 JP 5801033B2 JP 2010004622 A JP2010004622 A JP 2010004622A JP 2010004622 A JP2010004622 A JP 2010004622A JP 5801033 B2 JP5801033 B2 JP 5801033B2
Authority
JP
Japan
Prior art keywords
ring
coil expander
resin ring
resin
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010004622A
Other languages
Japanese (ja)
Other versions
JP2011144847A (en
Inventor
伊藤 宏
宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2010004622A priority Critical patent/JP5801033B2/en
Publication of JP2011144847A publication Critical patent/JP2011144847A/en
Application granted granted Critical
Publication of JP5801033B2 publication Critical patent/JP5801033B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sealing Devices (AREA)

Description

本発明は、シールリング及びシール装置に関し、特に、プーリの直径を変えることにより変速を無段階に変化させる無段変速機(Continuously Variable Transmission、以下、「CVT」という。)に用いられるシールリング及びシール装置に関する。   The present invention relates to a seal ring and a seal device, and more particularly, to a seal ring and a seal ring used in a continuously variable transmission (hereinafter referred to as “CVT”) that changes a speed change steplessly by changing a diameter of a pulley. The present invention relates to a sealing device.

油圧式CVTでは、油圧室の油圧により、プーリの溝幅を相関的に変化させ、プーリの直径を変えることにより変速を無段階に変化させている。通常、駆動用の軸に固定プーリが一体形成され、この軸に沿って往復動するハウジングに可動プーリが形成されている。可動プーリには油圧室が設けられ、油圧室の油圧を制御することにより、可動プーリが固定プーリに離接する。これにより、両プーリに形成される溝部の幅を増減して、プーリに巻き掛けられたベルトの回転半径を増減させ、動力を伝達して、変速比を変化させる。軸の外周面に形成される軸溝には、油圧室に油を満たし、油圧を生じさせるために、シールリングが装着される。   In the hydraulic CVT, the groove width of the pulley is changed in correlation with the hydraulic pressure in the hydraulic chamber, and the speed change is continuously changed by changing the diameter of the pulley. Usually, a fixed pulley is integrally formed on a drive shaft, and a movable pulley is formed on a housing that reciprocates along this shaft. The movable pulley is provided with a hydraulic chamber. By controlling the hydraulic pressure of the hydraulic chamber, the movable pulley comes into contact with and is separated from the fixed pulley. As a result, the width of the groove formed in both pulleys is increased / decreased, the rotational radius of the belt wound around the pulleys is increased / decreased, power is transmitted, and the gear ratio is changed. A shaft ring formed on the outer peripheral surface of the shaft is fitted with a seal ring to fill the hydraulic chamber with oil and generate hydraulic pressure.

CVT では、油圧室に最大約7MPaの油圧が生じるため、高油圧下で、優れた耐摩耗性及びシール性を有するシールリングが要求される。また、高速運転時の発熱による温度上昇や寒冷地での使用を考慮すると、シールリングには、−40℃〜150℃の温度領域での耐性が求められる。一般にシールリング材料としては、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン、エチレンテトラフルオロエチレン(ETFE)等のフッ素系樹脂にカーボン粉末やカーボンファイバー等の添加剤を充填した材料が用いられている。   In CVT, since a hydraulic pressure of about 7 MPa at maximum is generated in the hydraulic chamber, a seal ring having excellent wear resistance and sealing performance under high hydraulic pressure is required. In consideration of temperature rise due to heat generation during high-speed operation and use in cold regions, the seal ring is required to have resistance in a temperature range of −40 ° C. to 150 ° C. In general, as a seal ring material, a material in which an additive such as carbon powder or carbon fiber is filled in a fluorine-based resin such as polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene, or ethylenetetrafluoroethylene (ETFE) is used. ing.

前記CVTでは、エンジン停止時には、オイルポンプが停止するため、油圧が発生せず無負荷となる。従来のシールリングでは、油圧の発生している状態では、充分なシール性が得られるが、無負荷状態では、ハウジング内周面との密着性が失われ、油圧室の油が抜けてしまう。このような状態で、エンジンを再起動すると、油圧室に油が充填されるまでに時間を要する。また、油圧室に油が充填されていない状態で起動すると、CVTの回転部に焼き付きによる損傷が生じる恐れがある。そのため、油圧のない無負荷の状態においても油圧室からの油漏れを低減できるシールリングが求められている。   In the CVT, since the oil pump is stopped when the engine is stopped, no hydraulic pressure is generated and no load is applied. In the conventional seal ring, a sufficient sealing performance can be obtained in a state where hydraulic pressure is generated. However, in a no-load state, the adhesion with the inner peripheral surface of the housing is lost, and the oil in the hydraulic chamber is drained. When the engine is restarted in such a state, it takes time until the hydraulic chamber is filled with oil. In addition, if the hydraulic chamber is started without being filled with oil, the rotating part of the CVT may be damaged due to seizure. Therefore, there is a need for a seal ring that can reduce oil leakage from the hydraulic chamber even when there is no hydraulic pressure and no load.

従来、CVT用のシールリングとしては、図1に示すように、断面略矩形で外周側に配置されるエンドレスタイプの樹脂リング7と、内周側に配置され、樹脂リングに拡張力を与えるOリング6から構成される組合せシールリングが用いられてきた。一般に、樹脂リング7の材料としては、充填剤を添加したPTFE樹脂等が用いられ、Oリング6の材料としては、ゴム状弾性体が用いられている。
このような従来の組合せシールリングでは、Oリング6と樹脂リング7を潰し込んで、溝底8とハウジング4の内面4aとの間の隙間に装着するため、その後、Oリング6と樹脂リング7が装着された軸3をハウジング4に挿入する際の組み付け抵抗が大きく、圧入装置を導入してハウジング4を組み付ける必要があった。そのため、製造コストが増加し、シールリングの組み付け不具合も検知できないという問題があった。
さらに、従来の樹脂リング7は合口を有していないため、軸溝9に挿入する際、軸ランド部3bまでリング外径を拡張して挿入する必要があった。このため、治具を用いて、樹脂リング7の外径を所定の外径まで縮径する必要があり、組み付けに時間を要していた。
また、このような組合せシールリングでは、摺動抵抗が高くなるため、特に、高油圧下において摺動摩耗が問題となっていた。
Conventionally, as a seal ring for CVT, as shown in FIG. 1, an endless type resin ring 7 having a substantially rectangular cross section and disposed on the outer peripheral side, and an O ring that is disposed on the inner peripheral side and gives expansion force to the resin ring. Combination seal rings made up of rings 6 have been used. In general, a PTFE resin or the like to which a filler is added is used as the material of the resin ring 7, and a rubber-like elastic body is used as the material of the O-ring 6.
In such a conventional combination seal ring, the O-ring 6 and the resin ring 7 are crushed and installed in the gap between the groove bottom 8 and the inner surface 4a of the housing 4. Assembling resistance is large when the shaft 3 to which is attached is inserted into the housing 4, and it is necessary to install the housing 4 by introducing a press-fitting device. For this reason, there is a problem in that the manufacturing cost increases, and it is impossible to detect an assembly failure of the seal ring.
Furthermore, since the conventional resin ring 7 does not have a joint, it has been necessary to extend the outer diameter of the ring to the shaft land portion 3b when inserting the shaft into the shaft groove 9. For this reason, it is necessary to reduce the outer diameter of the resin ring 7 to a predetermined outer diameter using a jig, and it takes time to assemble.
Further, in such a combined seal ring, since sliding resistance becomes high, sliding wear has been a problem particularly under high hydraulic pressure.

上述の課題に対し、より小さな力で容易にシール溝(軸溝)に装着できるエンドレスタイプのシールリングが提案されている。特許文献1には、樹脂のエンドレスタイプのシールリングに、環状体の内周側に軸方向に延びる複数の突条を設け、これらの突条の先端をシール溝の底に接触させる構成が示されている。前記構成を採用することにより、シール溝の溝縁を乗り越えさせる際に、環状体の内周側に設けた各突条を周方向に倒すように変形させ、エンドレスタイプのシールリングを小さな力で容易にシール溝に装着可能であると記載されている。
また、特許文献2には、ハウジングの内部を密封する軸の外径面に設けられたシール溝に装着され、外周部が、樹脂材料で形成され、内周部が弾性材料で形成されたシールリングにおいて、樹脂材料で形成された外周部を薄肉とするように、弾性材料で形成された内周部を、外周部の内側に食い込ませた構成が示されている。前記構成を採用することにより、拡径に対する変形抵抗が大きい外周部の断面積を小さくするとともに、扁平に変形して逃げやすい弾性材料で形成された内周部の断面積を大きくし、エンドレスタイプのシールリングを小さな力で容易にシール溝に装着可能であると記載されている。
In response to the above-described problems, an endless type seal ring that can be easily mounted in a seal groove (shaft groove) with a smaller force has been proposed. Patent Document 1 shows a configuration in which a plurality of ridges extending in the axial direction are provided on an inner peripheral side of an annular body on a resin endless type seal ring, and the tips of these ridges are brought into contact with the bottom of the seal groove. Has been. By adopting the above-mentioned configuration, when getting over the groove edge of the seal groove, each protrusion provided on the inner peripheral side of the annular body is deformed so as to be tilted in the circumferential direction, and the endless type seal ring is made with a small force. It is described that it can be easily mounted in the seal groove.
Further, Patent Document 2 discloses a seal that is mounted in a seal groove provided on an outer diameter surface of a shaft that seals the inside of a housing, an outer peripheral portion is formed of a resin material, and an inner peripheral portion is formed of an elastic material. In the ring, a configuration is shown in which an inner peripheral portion formed of an elastic material is bitten inside the outer peripheral portion so that the outer peripheral portion formed of a resin material is thin. By adopting the above configuration, the cross-sectional area of the outer peripheral portion having a large deformation resistance against diameter expansion is reduced, and the cross-sectional area of the inner peripheral portion formed of an elastic material that is deformed flat and easily escapes is increased. The seal ring can be easily mounted in the seal groove with a small force.

上記特許文献に記載された構成を採用することにより、シール溝への装着が容易になる可能性が考えられる。しかしながら、上記の構成は、いずれもシールリングの内周面を溝底に接触させる設計であるため、軸をハウジングに挿入する際の組み付け抵抗が大きく、圧入装置を用いる必要がある。このような装着方法では、シールリングに破損や欠けが生じる可能性がある。また、上記特許文献のシールリングのように複雑な形状は一般に射出成形により形成される。射出成形用樹脂としては、一般に、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルファイド(PPS)、ポリアミド(PA)等が用いられる。しかし、これらの材料は従来のPTFE等フッ素系樹脂に比べ、硬く脆いため、上記のようにリング内周面が軸溝底と接触した構成を採用した場合には、シールリングを軸に装着する際にも、破損や欠けが生じる可能性がある。   By adopting the configuration described in the above patent document, there is a possibility that the mounting to the seal groove is facilitated. However, since all of the above configurations are designed so that the inner peripheral surface of the seal ring is in contact with the groove bottom, the assembly resistance when inserting the shaft into the housing is large, and it is necessary to use a press-fitting device. With such a mounting method, the seal ring may be damaged or chipped. Further, a complicated shape like the seal ring of the above-mentioned patent document is generally formed by injection molding. In general, polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polyamide (PA) or the like is used as the resin for injection molding. However, these materials are harder and more brittle than conventional fluororesins such as PTFE. Therefore, when the structure in which the inner peripheral surface of the ring is in contact with the shaft groove bottom as described above is adopted, the seal ring is attached to the shaft. In some cases, breakage or chipping may occur.

特開2008−190643号公報JP 2008-190643 A 特開2008―190650号公報JP 2008-190650 A

本発明は上記事情に鑑みてなされたもので、軸溝及びハウジングへの装着が容易で、摺動摩耗が小さく、油圧の発生しない無負荷の状態においても、ハウジング内周面との密着を維持し得るシールリング及びシール装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can be easily attached to the shaft groove and the housing, has little sliding wear, and maintains close contact with the inner peripheral surface of the housing even in a no-load state where no hydraulic pressure is generated. It is an object of the present invention to provide a seal ring and a seal device that can be used.

上記目的に鑑み鋭意研究の結果、本発明者らは、ハウジングと相対移動する軸の外周面に形成される軸溝に装着され、外周側に配置され合口を有する樹脂リングと、樹脂リングの内周側に配置されるコイルエキスパンダを備えるシールリングにおいて、樹脂リングの受圧側面の内周側に、内周面に向かい軸方向幅が小さくなるように傾斜角度45°〜75°の傾斜面を設け、且つコイルエキスパンダの合口を閉じた自由状態の外径を、樹脂リングの合口を閉じた状態の外径を1として0.92〜0.98とすることにより、無負荷状態においても、ハウジング内周面との間の密着を維持でき、摺動摩耗を低く抑えられ、且つ軸溝及びハウジングに容易に装着できることを見出し、本発明を完成した。即ち、本発明のシールリングは、ハウジングと相対移動する軸の外周面に形成される軸溝に装着されるシールリングであって、外周側に配置され合口を有する樹脂リングと、樹脂リングの内周側に配置されるコイルエキスパンダを備え、樹脂リングの受圧側面の内周側に、内周面に向かい軸方向幅が小さくなるように傾斜角度45°〜75°の傾斜面が設けられ、且つコイルエキスパンダの合口を閉じた自由状態の外径が、樹脂リングの合口を閉じた状態の外径を1として0.92〜0.98であることを特徴とする。
また、本発明のシール装置は、前記シールリングを備えるシール装置であって、コイルエキスパンダの合口を閉じた自由状態の外径が軸溝の外径より大きく、且つ軸の外径より小さく設定されていることを特徴とする。
As a result of diligent research in view of the above object, the present inventors have found that a resin ring that is mounted on a shaft groove formed on the outer peripheral surface of a shaft that moves relative to the housing and that is disposed on the outer peripheral side and has an abutment, In a seal ring having a coil expander disposed on the circumferential side, an inclined surface with an inclination angle of 45 ° to 75 ° is formed on the inner peripheral side of the pressure receiving side surface of the resin ring so that the axial width decreases toward the inner peripheral surface. The outer diameter of the free state in which the joint of the coil expander is provided and the outer diameter of the state in which the joint of the resin ring is closed is set to 0.92 to 0.98, even in a no-load state, The present invention has been completed by finding that the contact with the inner peripheral surface of the housing can be maintained, sliding wear can be kept low, and that it can be easily attached to the shaft groove and the housing. That is, the seal ring of the present invention is a seal ring that is attached to a shaft groove formed on the outer peripheral surface of a shaft that moves relative to the housing, and is disposed on the outer peripheral side and has a joint. A coil expander arranged on the circumferential side is provided, and an inclined surface with an inclination angle of 45 ° to 75 ° is provided on the inner peripheral side of the pressure receiving side surface of the resin ring so that the axial width decreases toward the inner peripheral surface, Further, the outer diameter of the free state in which the joint of the coil expander is closed is 0.92 to 0.98, where the outer diameter in the state of closing the joint of the resin ring is 1.
The sealing device of the present invention is a sealing device including the seal ring, wherein the outer diameter of the free state in which the joint of the coil expander is closed is set larger than the outer diameter of the shaft groove and smaller than the outer diameter of the shaft. It is characterized by being.

本発明のシールリングによれば、油圧の発生しない無負荷の状態においても、内周側に配置されたコイルエキスパンダの拡張力により、外周側に配置された樹脂リングの外周面が、ハウジングの内周面と密着するため、油圧室からの油の漏れを防止できる。また、本発明のシールリングでは、樹脂リングが合口を有するため、軸溝への装着も容易である。さらに、本発明のシールリング及びシール装置では、軸溝への装着時に潰し込む必要がないため、シールリングを装着した軸を容易にハウジングに組み付けることができる。さらに、本発明のシールリングでは、高温高油圧下でもコイルエキスパンダによるハウジング内周面への押し付け力が均一に維持されるため、摺動摩耗量を低く抑えることができる。
また、本発明のシール装置では、樹脂リング及びコイルエキスパンダがリング溝の溝底に接触しないため、稼動時にコイルエキスパンダや樹脂リングが変形することなく、優れたシール性を維持できる。上記構成では、シールリングを軸溝に装着した状態で、樹脂リングの接触側面と軸溝壁面に適度な掛かり代があるため、軸をハウジングに挿入する際、かじりが生じることなく、優れた組付け性が得られる。さらに、上記構成のシール装置は、摺動抵抗が低く、高油圧下においても、摺動摩耗を抑制することができる。
According to the seal ring of the present invention, even in a no-load state where no hydraulic pressure is generated, the outer peripheral surface of the resin ring disposed on the outer peripheral side is caused by the expansion force of the coil expander disposed on the inner peripheral side. Since it is in close contact with the inner peripheral surface, oil leakage from the hydraulic chamber can be prevented. In the seal ring of the present invention, since the resin ring has a joint, it can be easily mounted in the shaft groove. Furthermore, in the seal ring and the seal device of the present invention, since it is not necessary to crush at the time of mounting on the shaft groove, the shaft on which the seal ring is mounted can be easily assembled to the housing. Furthermore, in the seal ring of the present invention, the pressing force against the inner peripheral surface of the housing by the coil expander is maintained uniformly even under high temperature and high hydraulic pressure, so that the amount of sliding wear can be kept low.
Further, in the sealing device of the present invention, since the resin ring and the coil expander do not contact the bottom of the ring groove, excellent sealing performance can be maintained without deformation of the coil expander and the resin ring during operation. In the above configuration, there is an appropriate margin on the contact side of the resin ring and the wall surface of the shaft groove when the seal ring is mounted in the shaft groove. Easy to get. Furthermore, the sealing device having the above-described configuration has low sliding resistance and can suppress sliding wear even under high hydraulic pressure.

従来のシールリングが装着された状態を示す断面図である。It is sectional drawing which shows the state with which the conventional seal ring was mounted | worn. 本発明のシールリングが装着された状態を示す断面図である。It is sectional drawing which shows the state with which the seal ring of this invention was mounted | worn. 本発明の樹脂リングの合口形状の一例を示す斜視図である(ダブルアングル合口)。It is a perspective view which shows an example of the joint shape of the resin ring of this invention (double angle joint). 本発明の樹脂リングの合口形状の他の一例を示す斜視図である(ダブルカット合口)。It is a perspective view which shows another example of the joint shape of the resin ring of this invention (double cut joint). 本発明のコイルエキスパンダの一例を示す正面図である。It is a front view which shows an example of the coil expander of this invention. 静的漏れ性能試験装置の概略を示す断面図である。It is sectional drawing which shows the outline of a static leak performance test apparatus.

以下に本発明のシールリング及びシール装置について図面を参照して詳細に説明する。
図2に、本発明のシールリングの装着状態の一例を示す。シールリングは、ハウジング4の内周に設置される軸3の外周面に設けられた軸溝9に装着されている。そして、軸溝の溝底8側にはコイルエキスパンダ1が配置され、ハウジング4側には樹脂リング2が配置されている。樹脂リング2の受圧側面(軸溝壁面3aと接触する接触側面とは反対の側面)の内周側には内周面に向かい軸方向幅が小さくなるように傾斜面が設けられている。ここで、傾斜面の傾斜角度は45°〜75°に設定する。傾斜角度は、図2中のθであり、受圧側面外周側(傾斜していない面)の延長面と傾斜面とのなす角度である。また、コイルエキスパンダ1の自由時の外径、即ち、両合口を閉じた撓みのない状態での外径が、樹脂リング2の合口を閉じた状態の外径を1として0.92〜0.98となるようにする。前記構成のシールリングでは、コイルエキスパンダ1は樹脂リング2の受圧側面に設けられた傾斜面と軸溝の側面との間に配置し、コイルエキスパンダ1の張力により、樹脂リング2の外周面が、ハウジング4の内周面4aと密着し、無負荷状態においてもシール性能を発揮する。
Hereinafter, a seal ring and a seal device of the present invention will be described in detail with reference to the drawings.
FIG. 2 shows an example of a mounting state of the seal ring of the present invention. The seal ring is attached to a shaft groove 9 provided on the outer peripheral surface of the shaft 3 installed on the inner periphery of the housing 4. A coil expander 1 is disposed on the groove bottom 8 side of the shaft groove, and a resin ring 2 is disposed on the housing 4 side. An inclined surface is provided on the inner peripheral side of the pressure receiving side surface (the side surface opposite to the contact side surface that contacts the shaft groove wall surface 3a) of the resin ring 2 so that the axial width decreases toward the inner peripheral surface. Here, the inclination angle of the inclined surface is set to 45 ° to 75 °. The inclination angle is θ in FIG. 2, and is an angle formed by the extended surface on the outer side of the pressure receiving side surface (surface not inclined) and the inclined surface. In addition, the outer diameter of the coil expander 1 when it is free, that is, the outer diameter in a state where both joints are closed and not bent is 0.92 to 0, where the outer diameter in the state where the joint of the resin ring 2 is closed is 1. .98. In the seal ring having the above-described configuration, the coil expander 1 is disposed between the inclined surface provided on the pressure receiving side surface of the resin ring 2 and the side surface of the shaft groove, and the outer peripheral surface of the resin ring 2 due to the tension of the coil expander 1. However, it is in close contact with the inner peripheral surface 4a of the housing 4 and exhibits sealing performance even in a no-load state.

前記傾斜角度が45°未満では、優れたシール性能が得られないのみならず、ハウジング内周面4aの公差による張力変化が大きくなるため、組付け作業者がハウジング4を組付ける感覚の変化が大きくなり、組付け性が低下する。また、高温下で樹脂リング2の樹脂が軟化した場合、傾斜角度が小さいと、コイルエキスパンダ1によるハウジング内周面への押し付け力が不安定になり、摺動摩耗量が増加する。一方、傾斜角度が75°より大きくても優れたシール性は得られない。さらに、この場合には、軸3にコイルエキスパンダ1及び樹脂リング2を装着した後、ハウジングを挿入する際に、コイルエキスパンダ1が樹脂リング2からはみ出しやすく、装着性に問題が生じる。また、傾斜角度が大きいと、高圧下でコイルエキスパンダ1が移動しやすくなるため、樹脂リング2のハウジング内周面4aに対する押し付け力が不安定になり、摺動摩耗量が増加する。シール性、装着(組み付け)性及び摺動特性を考慮すると、傾斜角度は 55°〜 65°とするのがより好ましい。   If the inclination angle is less than 45 °, not only excellent sealing performance can be obtained, but also the tension change due to the tolerance of the housing inner peripheral surface 4a becomes large. It becomes larger and the assembling property is lowered. Further, when the resin of the resin ring 2 is softened at a high temperature, if the inclination angle is small, the pressing force of the coil expander 1 against the inner peripheral surface of the housing becomes unstable, and the amount of sliding wear increases. On the other hand, even if the inclination angle is larger than 75 °, excellent sealing performance cannot be obtained. Furthermore, in this case, when the housing is inserted after the coil expander 1 and the resin ring 2 are mounted on the shaft 3, the coil expander 1 is likely to protrude from the resin ring 2, causing a problem in mounting properties. Further, if the inclination angle is large, the coil expander 1 is likely to move under high pressure, so that the pressing force of the resin ring 2 against the housing inner peripheral surface 4a becomes unstable, and the amount of sliding wear increases. In consideration of sealing properties, mounting (assembly) properties and sliding characteristics, the inclination angle is more preferably 55 ° to 65 °.

前記コイルエキスパンダ1の自由時の外径が、樹脂リング2の合口を閉じた状態の外径を1として0.92未満では、コイルエキスパンダ1の撓みが小さいため、シールリングがふらつきやすくなり、摺動摩耗量が増加する傾向があり、組み付けも困難となる。一方、コイルエキスパンダ1の自由時の外径が、樹脂リング2の合口を閉じた状態の外径を1として0.98を超えた場合には、組み付けが困難となる。摺動特性及び装着性を考慮すると、コイルエキスパンダ1の自由時の外径は、樹脂リング2の合口を閉じた状態の外径を1として0.94〜0.98とするのがより好ましい。   If the outer diameter of the coil expander 1 when free is less than 0.92 with the outer diameter of the resin ring 2 in the closed state being less than 0.92, the coil expander 1 is less bent and the seal ring is likely to wobble. The sliding wear amount tends to increase, and the assembly becomes difficult. On the other hand, when the outer diameter of the coil expander 1 when free exceeds 0.98 with the outer diameter of the resin ring 2 in the closed state being 1, the assembly becomes difficult. In consideration of sliding characteristics and mountability, the outer diameter of the coil expander 1 when free is preferably 0.94 to 0.98, where the outer diameter of the resin ring 2 in the closed state is 1. .

本発明の樹脂リング2は、合口を有し、装着性に優れるため、エンドレスタイプの樹脂リングとOリングから構成される従来のシールリングのように、軸溝への装着時に、シールリングを潰し込む必要はない。そのため、ハウジングへの軸の装着時に、圧入装置を使用する必要がなく、手作業で容易に装着できる。
樹脂リング2の合口形状は特に限定されず、直角(ストレート)合口、斜め(アングル)合口、段付き(ステップ)合口の他、図3に示すダブルアングル合口や図4に示すダブルカット合口等を採用することができる。合口隙間部への油の流通を遮断し、シール性を向上させるためには、ダブルアングル合口及びダブルカット合口が好ましい。
樹脂リング2の材料は、高油圧下での摺動に耐えうる材料であれば特に限定されず、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン、エチレンテトラフルオロエチレン(ETFE)等のフッ素系樹脂の他、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリイミド(PI)等が用いられる。一般に、これらの樹脂にカーボン粉末やカーボンファイバー等の添加剤を分散した材料が好ましく用いられる。
Since the resin ring 2 of the present invention has an abutment and is excellent in mounting properties, the seal ring is crushed when mounted in the shaft groove like a conventional seal ring composed of an endless type resin ring and an O-ring. There is no need to include it. Therefore, it is not necessary to use a press-fitting device when mounting the shaft to the housing, and it can be easily mounted manually.
The shape of the joint of the resin ring 2 is not particularly limited. In addition to a right angle (straight) joint, an oblique (angle) joint, a stepped joint, a double angle joint shown in FIG. 3, a double cut joint shown in FIG. Can be adopted. A double angle joint and a double cut joint are preferable in order to block the oil flow to the joint gap and improve the sealing performance.
The material of the resin ring 2 is not particularly limited as long as it can withstand sliding under high hydraulic pressure, and fluorine such as polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene, ethylenetetrafluoroethylene (ETFE), etc. In addition to the resin, polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polyimide (PI), etc. are used. In general, materials in which additives such as carbon powder and carbon fiber are dispersed in these resins are preferably used.

コイルエキスパンダ1の材料は特に限定されるものではないが、ピアノ線、ステンレス鋼、シリコンクロム鋼等を用いて製造するのが好しい。また、コイルエキスパンダ1の両端面1a,1bを固定して、外力により両端面1a,1bが離間しないようにすると、シールリングの組付け性がさらに向上する。両端部の固定方法は特に限定されないが、図5に示すように、コイルエキスパンダ1の内周に、丸線1cを挿入し、コイルエキスパンダ1の両端面1a,1bを圧着させるのが好ましい。   The material of the coil expander 1 is not particularly limited, but is preferably manufactured using piano wire, stainless steel, silicon chrome steel or the like. Further, if both end faces 1a and 1b of the coil expander 1 are fixed so that the both end faces 1a and 1b are not separated by an external force, the assemblability of the seal ring is further improved. The fixing method of both end portions is not particularly limited, but it is preferable to insert a round wire 1c into the inner periphery of the coil expander 1 and crimp the end surfaces 1a and 1b of the coil expander 1 as shown in FIG. .

また、本発明のシール装置では、コイルエキスパンダ1の合口を閉じた自由状態の外径を軸溝の外径より大きく、且つ軸の外径より小さく設定するのが好ましい。この構成では、コイルエキスパンダ1は、前記傾斜面と軸溝壁面との間に装着され、溝底8に接触しない。そのため、稼働時にコイルエキスパンダ1や樹脂リング2が変形することなく、優れたシール性を維持できる。また、上記構成では、シールリングを軸溝に装着した状態で、樹脂リング2の接触側面と軸溝壁面3aに適度な掛かり代があるため、軸3をハウジング4に挿入する際、かじりが生じることなく、優れた組付け性が得られる。さらに、上記構成のシール装置では、摺動抵抗が低いため、運転時の摩耗を抑制できる。   In the sealing device of the present invention, it is preferable that the outer diameter of the free state in which the joint of the coil expander 1 is closed is set larger than the outer diameter of the shaft groove and smaller than the outer diameter of the shaft. In this configuration, the coil expander 1 is mounted between the inclined surface and the shaft groove wall surface and does not contact the groove bottom 8. Therefore, excellent sealability can be maintained without the coil expander 1 and the resin ring 2 being deformed during operation. Further, in the above-described configuration, there is an appropriate margin between the contact side surface of the resin ring 2 and the shaft groove wall surface 3a in a state where the seal ring is mounted in the shaft groove, and therefore, galling occurs when the shaft 3 is inserted into the housing 4. And excellent assemblability can be obtained. Furthermore, since the sealing device having the above configuration has low sliding resistance, it is possible to suppress wear during operation.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
(実施例1)
30質量%のカーボン繊維を含有するPTFE樹脂を用いて樹脂リングを作製した。ここで、樹脂リングの外径(呼び径)は、130mm、厚み(径方向幅)は、2.8mm、幅(軸方向幅)は、3.1mmとした。得られた樹脂リングに、図3に示すダブルアングル合口を1箇所形成し、一方の側面(受圧側面)の内周側に内周面に向かい軸方向幅が小さくなるように傾斜角度θが45°の傾斜面を形成した。また、線径0.45mmのピアノ線を用いて、巻径Φ1.6mm、張力2Nのコイルエキスパンダを作製した。なお、この時、コイルエキスパンダの合口を閉じた自由状態での外径は、樹脂リングの合口を閉じた状態での外径を1とすると0.95であった。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
(Example 1)
A resin ring was produced using PTFE resin containing 30% by mass of carbon fibers. Here, the outer diameter (nominal diameter) of the resin ring was 130 mm, the thickness (radial width) was 2.8 mm, and the width (axial width) was 3.1 mm. A single double angle joint shown in FIG. 3 is formed in the obtained resin ring, and the inclination angle θ is 45 on the inner peripheral side of one side surface (pressure receiving side surface) so that the axial width decreases toward the inner peripheral surface. An inclined surface of ° was formed. Further, a coil expander having a winding diameter of 1.6 mm and a tension of 2 N was produced using a piano wire having a wire diameter of 0.45 mm. At this time, the outer diameter in the free state with the joint of the coil expander closed was 0.95 when the outer diameter in the state with the joint of the resin ring closed was 1.

(実施例2)
樹脂リングの斜面角度θを55°とした以外、実施例1と同様に樹脂リング及びコイルエキスパンダを作製した。
(実施例3)
樹脂リングの斜面角度θを60°とした以外、実施例1と同様に樹脂リング及びコイルエキスパンダを作製した。
(実施例4)
樹脂リングの斜面角度θを65°とした以外、実施例1と同様に樹脂リング及びコイルエキスパンダを作製した。
(実施例5)
樹脂リングの斜面角度θを75°とした以外、実施例1と同様に樹脂リング及びコイルエキスパンダを作製した。
(比較例1)
樹脂リングの斜面角度θを40°とした以外、実施例1と同様に樹脂リング及びコイルエキスパンダを作製した。
(比較例2)
樹脂リングの斜面角度θを80°とした以外、実施例1と同様に樹脂リング及びコイルエキスパンダを作製した。
(Example 2)
A resin ring and a coil expander were produced in the same manner as in Example 1 except that the slope angle θ of the resin ring was 55 °.
(Example 3)
A resin ring and a coil expander were produced in the same manner as in Example 1 except that the slope angle θ of the resin ring was 60 °.
Example 4
A resin ring and a coil expander were produced in the same manner as in Example 1 except that the slope angle θ of the resin ring was 65 °.
(Example 5)
A resin ring and a coil expander were produced in the same manner as in Example 1 except that the slope angle θ of the resin ring was 75 °.
(Comparative Example 1)
A resin ring and a coil expander were produced in the same manner as in Example 1 except that the slope angle θ of the resin ring was 40 °.
(Comparative Example 2)
A resin ring and a coil expander were produced in the same manner as in Example 1 except that the slope angle θ of the resin ring was 80 °.

(静止状態におけるオイル漏れ量の測定)
実施例1〜5並びに比較例1及び2のコイルエキスパンダ及び樹脂リングを、図2に示すように軸の外周面に設けた軸溝に装着し、図6に示す静的漏れ性能試験装置に設置した。実施例1については、樹脂リングの合口が、試験装置の中心線18に対して、上側及び下側となるように配置して、それぞれのオイル漏れ量を測定した。また、実施例2〜5並びに比較例1及び2については、試験装置の中心線18に対して合口を下側に配置したものについてオイル漏れ量を測定した。油圧室16に、165ccのオイルを充填し、室温下(オイル温度:25℃)、静止状態で、シールリングから漏れたオイルを排油溝から回収し、7日間の累積オイル漏れ量を測定した。また、参考として、コイルエキスパンダを用いず、実施例1と同様の樹脂リングのみ装着した構成(参考例1)及び内周側にOリング(1種A)を配置し、外周側に合口のない樹脂リングを配置し、Oリングの内周面を溝底部に接触させ、樹脂リングの外周面をハウジング内周面に接触させた構成(参考例2)についても同様に静的漏れ性能試験を行った。なお、シールリングを装着した軸の外径は、160mm、軸溝の外径は、145mmで、コイルエキスパンダの合口を閉じた自由状態での外径(155mm)は、軸の外径より小さく、軸溝の外径より大きく設定した。
(Measurement of oil leakage in a stationary state)
The coil expanders and resin rings of Examples 1 to 5 and Comparative Examples 1 and 2 are mounted on the shaft groove provided on the outer peripheral surface of the shaft as shown in FIG. 2, and the static leakage performance test apparatus shown in FIG. installed. About Example 1, it arrange | positioned so that the abutment of a resin ring may become an upper side and a lower side with respect to the centerline 18 of a test apparatus, and each oil leak amount was measured. Moreover, about Examples 2-5 and Comparative Examples 1 and 2, the amount of oil leak was measured about what arrange | positioned the joint in the lower side with respect to the centerline 18 of a testing apparatus. The hydraulic chamber 16 was filled with 165 cc of oil, and at room temperature (oil temperature: 25 ° C.), the oil leaked from the seal ring was recovered from the oil drain groove in a stationary state, and the cumulative amount of oil leakage for 7 days was measured. . Also, as a reference, without using a coil expander, a configuration in which only a resin ring similar to that in Example 1 is mounted (Reference Example 1) and an O-ring (1 type A) is disposed on the inner peripheral side, and an abutment is formed on the outer peripheral side. The static leakage performance test was similarly performed for the configuration (Reference Example 2) in which the inner ring surface of the O-ring was in contact with the groove bottom and the outer surface of the resin ring was in contact with the housing inner surface. went. The outer diameter of the shaft equipped with the seal ring is 160 mm, the outer diameter of the shaft groove is 145 mm, and the outer diameter (155 mm) in the free state with the joint of the coil expander closed is smaller than the outer diameter of the shaft. The outer diameter of the shaft groove was set larger.

静的漏れ量を測定した結果を表1に示す。実施例1では、合口を上側及び下側のいずれに配置した場合にも充分な静的シール性が得られることが確認された。一方、コイルエキスパンダを設置しない参考例1では、7日間の累積オイル漏れ量が、160ccとなり、無負荷状態では、充分なシール性を得られないことがわかった。また、実施例1〜5並びに比較例1及び2の結果より、樹脂リングの傾斜角度が45°〜75°の間で優れた静的シール性が得られることが確認された。なお、Oリングと合口のない樹脂リングから構成される比較例2のオイル漏れ量も実施例1〜5と同程度であった。   The results of measuring the static leakage amount are shown in Table 1. In Example 1, it was confirmed that sufficient static sealability was obtained when the abutment was arranged on either the upper side or the lower side. On the other hand, in Reference Example 1 in which no coil expander was installed, the cumulative amount of oil leakage for 7 days was 160 cc, and it was found that sufficient sealability could not be obtained in a no-load state. Moreover, from the results of Examples 1 to 5 and Comparative Examples 1 and 2, it was confirmed that excellent static sealing performance was obtained when the inclination angle of the resin ring was between 45 ° and 75 °. In addition, the amount of oil leakage of the comparative example 2 comprised from the resin ring without an O-ring and a joint was also comparable as Examples 1-5.

(摺動抵抗の測定)
実施例1〜5のコイルエキスパンダ及び樹脂リングを、軸の外周面に設けた軸溝に装着し、油圧1.5MPa、油温80℃において、ハウジングを10mm/sのストロークで往復動させた時の摺動抵抗を測定した。比較として、比較例1及び2並びに参考例1及び2についても、実施例1と同様に測定を行った。
摺動抵抗を測定した結果を表1に示す。Oリングと合口のない樹脂リングから構成される比較例2では、2000Nと非常に大きい摺動抵抗を示したが、実施例1〜5、比較例1及び2並びに参考例1の摺動抵抗に殆ど差異は認められなかった。
(Sliding resistance measurement)
The coil expander and the resin ring of Examples 1 to 5 were attached to the shaft groove provided on the outer peripheral surface of the shaft, and the housing was reciprocated at a stroke of 10 mm / s at an oil pressure of 1.5 MPa and an oil temperature of 80 ° C. The sliding resistance was measured. As a comparison, Comparative Examples 1 and 2 and Reference Examples 1 and 2 were also measured in the same manner as in Example 1.
The results of measuring the sliding resistance are shown in Table 1. Comparative Example 2 composed of an O-ring and a resin ring without a joint showed a very large sliding resistance of 2000 N, but the sliding resistance of Examples 1 to 5, Comparative Examples 1 and 2 and Reference Example 1 Almost no difference was observed.

(高油圧下での摺動摩耗量の測定)
実施例1〜5のコイルエキスパンダ及び樹脂リングを、軸の外周面に設けた軸溝に装着し、油圧4.0MPa、油温150℃において、ハウジングを10mm/sのストロークで、累積200mm往復動した後の樹脂リングの摩耗量を測定した。比較として、比較例1及び2並びに参考例1及び2についても、実施例1と同様に測定を行った。
高油圧下での摺動摩耗量の測定結果を表1に示す。参考例2に比べ、実施例1〜5、比較例1及び2、並びに参考例1は、高油圧下での摺動摩耗量が非常に少なく、特に、傾斜角度が55°〜65°の実施例2〜4で、摺動摩耗量が少ないことが確認された。この傾斜角度では、熱により樹脂リングの樹脂が軟化してもコイルエキスパンダによるハウジング内周面への押し付け力が安定に維持され、さらに高油圧下でもコイルエキスパンダが所定の位置に維持され、コイルエキスパンダによるハウジング内周面への押し付け力が安定に維持されたことにより、摺動摩耗が抑えられたと考えられる。
(Measurement of sliding wear under high hydraulic pressure)
The coil expander and the resin ring of Examples 1 to 5 are mounted in the shaft groove provided on the outer peripheral surface of the shaft, and the housing is reciprocated 200 mm at a stroke of 10 mm / s at a hydraulic pressure of 4.0 MPa and an oil temperature of 150 ° C. The wear amount of the resin ring after moving was measured. As a comparison, Comparative Examples 1 and 2 and Reference Examples 1 and 2 were also measured in the same manner as in Example 1.
Table 1 shows the results of measurement of sliding wear under high hydraulic pressure. Compared with Reference Example 2, Examples 1 to 5, Comparative Examples 1 and 2, and Reference Example 1 have a very small amount of sliding wear under high hydraulic pressure, and in particular, an inclination angle of 55 ° to 65 °. In Examples 2 to 4, it was confirmed that the amount of sliding wear was small. At this inclination angle, even if the resin of the resin ring is softened by heat, the pressing force against the housing inner peripheral surface by the coil expander is stably maintained, and the coil expander is maintained at a predetermined position even under high hydraulic pressure, It is thought that sliding wear was suppressed by the fact that the pressing force against the inner peripheral surface of the housing by the coil expander was stably maintained.

Figure 0005801033
Figure 0005801033

(実施例6)
樹脂リングの斜面角度θを50°とした以外、実施例1と同様に樹脂リング及びコイルエキスパンダを作製した。
(実施例7)
コイルエキスパンダの合口を閉じた自由状態での外径を、樹脂リングの合口を閉じた状態での外径を1として0.98とした以外、実施例6と同様に樹脂リング及びコイルエキスパンダ
を作製した。
(実施例8)
コイルエキスパンダの合口を閉じた自由状態での外径を、樹脂リングの合口を閉じた状態での外径を1として0.92とした以外、実施例6と同様に樹脂リング及びコイルエキスパンダを作製した。
(比較例3)
コイルエキスパンダの合口を閉じた自由状態での外径を、樹脂リングの合口を閉じた状態での外径を1として1.00とした以外、実施例6と同様に樹脂リング及びコイルエキスパンダを作製した。
(Example 6)
A resin ring and a coil expander were produced in the same manner as in Example 1 except that the slope angle θ of the resin ring was 50 °.
(Example 7)
Resin ring and coil expander in the same manner as in Example 6 except that the outer diameter of the coil expander with the joint closed is 0.98, where the outer diameter of the resin ring with the joint closed is 1. Was made.
(Example 8)
Resin ring and coil expander in the same manner as in Example 6 except that the outer diameter in the free state with the joint of the coil expander closed is 0.92 with the outer diameter in the state of closing the joint of the resin ring being 1. Was made.
(Comparative Example 3)
Resin ring and coil expander in the same manner as in Example 6, except that the outer diameter in the free state with the joint of the coil expander closed is set to 1.00 with the outer diameter in the state of closing the joint of the resin ring being 1. Was made.

比較例3では、コイルエキスパンダがはみ出して、適正な組み付けができなかったので、それ以外の実施例6〜8について、実施例1と同様に、静的漏れ量、摺動抵抗、及び高油圧下での摺動摩耗量を測定した。結果を表2に示す。いずれの実施例でも、静的オイル漏れ量及び高油圧下での摺動摩耗量ともに少なかったが、高油圧下での摺動摩耗量は、実施例6及び7で特に少なかった。これは、コイルエキスパンダの撓み量が最適化されることにより、高油圧下においても、シールリングがふらつくことなく、ハウジング内周面に対して安定した押し付け力が負荷されたためと考えられる。   In Comparative Example 3, since the coil expander protruded and proper assembly could not be performed, the static leakage amount, sliding resistance, and high hydraulic pressure of other Examples 6 to 8 were the same as in Example 1. The amount of sliding wear at the bottom was measured. The results are shown in Table 2. In any of the examples, the static oil leakage amount and the sliding wear amount under high hydraulic pressure were small, but the sliding wear amount under high hydraulic pressure was particularly small in Examples 6 and 7. This is considered to be due to the fact that the amount of deflection of the coil expander is optimized, so that a stable pressing force is applied to the inner peripheral surface of the housing without the seal ring fluctuating even under high hydraulic pressure.

Figure 0005801033
Figure 0005801033

1 コイルエキスパンダ
2、7 樹脂リング
3 軸
4 ハウジング
6 Oリング
1 Coil expander 2, 7 Resin ring 3 Shaft 4 Housing 6 O-ring

Claims (2)

ハウジングと相対移動する軸の外周面に形成された軸溝に装着され、油圧が4.0MPa以上となる油圧室内で用いられるシール構造であって、
外周側に配置され、合口を有する樹脂リングと、樹脂リングの内周側に前記軸溝の溝底から離間して配置され、合口を有するコイルエキスパンダとを備え、
前記樹脂リングの受圧側面の内周側に、内周面に向かい軸方向幅が小さくなるように傾斜角度50°〜65°の傾斜面が設けられ、
前記コイルエキスパンダが前記傾斜面に沿って配置されている
ことを特徴とするシール構造
A seal structure that is mounted in a shaft groove formed on an outer peripheral surface of a shaft that moves relative to a housing and that is used in a hydraulic chamber having a hydraulic pressure of 4.0 MPa or more;
A resin ring disposed on the outer peripheral side and having a joint; and a coil expander disposed on the inner peripheral side of the resin ring and spaced apart from the groove bottom of the shaft groove, and having a joint;
An inclined surface with an inclination angle of 50 ° to 65 ° is provided on the inner peripheral side of the pressure-receiving side surface of the resin ring so that the axial width decreases toward the inner peripheral surface,
The seal structure, wherein the coil expander is disposed along the inclined surface.
前記コイルエキスパンダの両方の前記合口が互いに固定されている
ことを特徴とする請求項1に記載のシール構造
The seal structure according to claim 1, wherein both the joints of the coil expander are fixed to each other.
JP2010004622A 2010-01-13 2010-01-13 Seal structure Expired - Fee Related JP5801033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010004622A JP5801033B2 (en) 2010-01-13 2010-01-13 Seal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010004622A JP5801033B2 (en) 2010-01-13 2010-01-13 Seal structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014136762A Division JP5807095B2 (en) 2014-07-02 2014-07-02 SEAL RING AND SEALING DEVICE

Publications (2)

Publication Number Publication Date
JP2011144847A JP2011144847A (en) 2011-07-28
JP5801033B2 true JP5801033B2 (en) 2015-10-28

Family

ID=44459882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010004622A Expired - Fee Related JP5801033B2 (en) 2010-01-13 2010-01-13 Seal structure

Country Status (1)

Country Link
JP (1) JP5801033B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140127691A1 (en) 2011-06-29 2014-05-08 Kagoshima University Method for diagnosing type of pancreatic tumor
JP5849647B2 (en) * 2011-11-25 2016-01-27 Nok株式会社 Sealing device
JP5382272B1 (en) 2012-03-12 2014-01-08 Nok株式会社 Sealing device and sealing structure
US20150362074A1 (en) 2013-02-20 2015-12-17 Nok Corporation Sealing device
CN105102866B (en) * 2013-03-27 2017-05-10 株式会社理研 Sealing means
CN111917245B (en) * 2020-08-03 2023-01-10 珠海格力电器股份有限公司 Sealing structure, motor and machine tool
CN112629847B (en) * 2021-01-06 2023-09-29 四川云游九天科技有限公司 O-shaped ring sealing resistance experiment platform and sealing resistance test method
CN118742753B (en) * 2023-08-25 2025-03-18 马渊马达株式会社 Sliding surface sealing structure, gear box and motor unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594440U (en) * 1978-12-26 1980-06-30
JPS5726645U (en) * 1980-07-21 1982-02-12
JP2553203B2 (en) * 1988-10-31 1996-11-13 株式会社東芝 Cryogenic refrigerator
JP2002310002A (en) * 2001-04-13 2002-10-23 Nippon Piston Ring Co Ltd Two-piece oil ring

Also Published As

Publication number Publication date
JP2011144847A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP5801033B2 (en) Seal structure
JP5548312B2 (en) Seal ring
JP5352007B2 (en) Seal ring
US8240672B2 (en) Low breakout friction energized gasket
KR102468516B1 (en) Sealing ring
KR101889143B1 (en) Seal ring
WO2014129505A1 (en) Sealing device
JP7002401B2 (en) Compressor
JP2013145056A (en) Sealing device
JP5337926B1 (en) Seal ring
JP5807095B2 (en) SEAL RING AND SEALING DEVICE
US20190040956A1 (en) Seal ring
WO2014045838A1 (en) Sealing device
JP2017155771A (en) Seal and seal structure
JP6458905B2 (en) Seal ring
JP6783273B2 (en) Seal ring
JP6910260B2 (en) Sealed structure
JP2017133571A (en) Sealing device
KR102038238B1 (en) Seal ring
JP6623775B2 (en) Sealed structure
JP2014062575A (en) Sealing device
JP2017150590A (en) Sealing device
JP2019060368A (en) Hermetically sealed structure
JP2018162823A (en) Seal ring
JP2014109347A (en) Sealing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140710

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150826

R150 Certificate of patent or registration of utility model

Ref document number: 5801033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees